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Abstract. Modelling and simulation is an alternative way of testing the dynamic 
behaviour of a real system – in some situation, testing the real system are 
expensive, time consuming, not comfortable, and dangerous. Mathematical 
model describing the dynamic behaviour of a system can be represented by using 
white, black, or grey box model. This study focuses on developing a simplified 
Auto Regressive Moving Average (ARMA) model (a type of linear black model) 
to represent the dynamic thermal behaviour of iHouse – simplification is done 
based on the theoretical knowledge of the building. The performance of the 
simplified ARMA model developed in this study is compared with the 
performance of the models developed in previous studies, which are: (1) House 
Thermal Simulator; (2) and ARMA model. Result shows that the simplified 
ARMA model developed in this study consists of simpler set of mathematical 
equations, but can still simulate the dynamic thermal behaviour of iHouse with 
the accuracy that is almost on par with the models developed in previous studies. 

Keywords: Modelling and simulation; black box modelling; building 
temperature simulation; building temperature prediction. 
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1   Introduction 

Mathematical model is used to represent the dynamic behaviour of a system for 
simulation purpose. Mathematical model can be categorised as white, black and grey 
box model. 

White box model is also known as theoretical model [1] and is developed based on 
the fundamental knowledge in science and engineering [2]. The value of unknown 
parameters in the white box model representing the dynamic behaviour of a system can 
be obtained through measurement in the actual system, referring to datasheet/manual 
of the system etc. [2]. Complex models can be simplified by making assumptions [2]. 
The advantage of white box model is it gives insight to the user on how the system 
behaves according to the fundamental law of science and engineering [1]. Since the 
model is constructed based on fundamental law of science and engineering, the model 
can be simulated over a wide range of operating point [1]. However, the white box 
model also has some weaknesses – in some situations, the value of unknown parameters 
contained in the system that is going to be modelled is difficult or even impossible to 
be measured or obtained [1]. In addition, assumptions made to simplify complex model 
may cause the model to be inaccurate [2]. 

Black box model is also known as empirical model [1] or data driven model [3], is 
developed by tuning the parameters in a set of linear or non-linear equations to map the 
relationship between the input(s) and output(s) of a system. Example of linear black 
box models are Auto Regressive (AR) model, Moving Average (MA) model, Auto 
Regressive Moving Average (ARMA) model etc. Example of non-linear black box 
model is Artificial Neural Network (ANN). Black box model is a purely data driven 
model – it maps the relationship between input(s) and output(s) of a system without 
describing the physical theory behind it. One of the advantages of the black box model 
is that it is suitable to be implemented when only the recorded input(s) and output(s) 
produced by the system that is going to be model are available, but the theoretical 
knowledge describing the system is unknown [1, 3]. Shamsul et. al. [4] developed a 
black box model to simulate the air temperature of one of the rooms in iHouse, a smart 
house testbed (shown in Fig. 1) belongs to Japan Advanced Institute of Science and 
Technology (JAIST) with minimal physical knowledge of iHouse. Mustafaraj et. al. in 
[5] predicted the room temperature and relative humidity of visa building in London 
using the following models: (1) autoregressive model with external inputs (ARX); (2) 
and neural network- based nonlinear auto regressive model with external inputs 
(NNARX) – results shows that both ARX and NNARX performed reasonably good, 
but the NNARX outperformed ARM. Mustafaraj et. al. in [6] investigated the 
performance of the following models to predict the thermal behaviour of an open-plan 
office (room) in Portman House, located in central London: (1) a neural network-based 
non-linear autoregressive model with external inputs (NNARX); (2) a non-linear 
autoregressive moving average model with external inputs (NNARMAX); (3) and a 
non-linear output error model (NNOE) to predict the thermal behaviour of an open-plan 
office (room) in Portman House, central London – results showed that all models 
performed reasonably good, but the NNARX and NNARMAX models outperformed 
the NNOE model. Hazyuk et. al. in [7] uses physical knowledge to decide the structure 
of the model, then uses black box modelling to represent the dynamic behaviour of the 



indoor temperature of a typical detached house in France, which is used as one of the 
reference building by Centre Scientifique et Technique du Bâtiment (CSTB)/Building 
Scientific and Technical Centre for performance evaluation. Even though black box 
model can be implemented with minimal theoretical knowledge of the system, knowing 
more theoretical knowledge will be more advantageous during the model development 
[3]. Like other models, the black box model also has disadvantage – it cannot be 
simulated within the operating condition that is outside the range of the data that is used 
to train/regress the black box model [1, 3] and it doesn’t give physical insight regarding 
the theoretical knowledge of the system. 

Grey box model is also known as semi-empirical model [1] or hybrid model [3], is 
the combination of both white box model and black box model – the set of mathematical 
equations describing the dynamic behaviour of the model is constructed based on the 
knowledge of science and engineering while the unknown parameters in these 
equations are estimated based on the input(s)-output(s) relationship data produced by 
the system. The mathematical equations constructed based on fundamental knowledge 
of science and engineering gives physical insight to the system like the white box 
model, but the value of the unknown parameters in the equations that are difficult or 
impossible to be obtained can be estimated based on the input(s)-output(s) relationship 
data produced by the system that is going to be modelled [1]. Unlike black box model, 
the grey box model can be simulated (with caution) within the operating range that is 
outside the range of the data that is used to train/regress the grey box model [1]. Nguyen 
et. al. [8] built a SIMULINK® toolbox named House Thermal Simulator to simulate 
the dynamic indoor temperature of iHouse, JAIST (shown in Fig. 1) based on a set of 
large quantity of equations that describe how the controlled inputs and disturbances 
affect the indoor air temperature of iHouse – the unknown parameters in these equations 
were estimated based on the real recorded data in iHouse using Simulink Design 
Optimization toolbox in MATLAB®. 

A mathematical model is just a set of mathematical equations that represents the 
dynamic behaviour of a system [1]. Depending of the application of the model, care 
must be taken before and during the development process to maintain the balance 
between accuracy and complexity of the model [1]. Too accurate models will increase 
its complexity and consume lots of resources (in terms of time, budget, etc.) during the 
model development while too simple model will decrease its accuracy [1]. 

This study focuses on simplifying the ARMA model developed in [4] to represent 
the dynamic indoor air temperature behaviour of iHouse belongs to JAIST (shown in 
Fig. 1) based on theoretical knowledge – simpler model leads to simpler 
implementation and faster simulation. There are 2 previous studies that modelled the 
dynamic thermal behaviour of iHouse: (1) the first study developed a grey box model 
called House Thermal Simulator [8], which was developed using a set of many detailed 
mathematical equations describing the dynamic thermal behaviour of iHouse; (2) and 
the second study developed a black box model which was based on a purely data driven 
auto regressive and moving average (ARMA) model with minimal theoretical 
knowledge regarding the heat transfer properties of iHouse [4]. This study simplify the 
model developed in [4] based on some of the theoretical knowledge learnt in [8] and 
other sources. 



 
Fig. 1. The photo of iHouse, the smart house testbed belongs to Japan Advanced Institute of 
Science and Technology (JAIST). 

2   Methodology 

Since this study is related to the previous work in [4], the scope of this study is also 
similar with the previous work. First, only one out of fifteen rooms available in iHouse 
is modelled in this study. The modelled room is Bedroom A, which is the same room 
modelled in previous work in [4] and is shown in the iHouse floor plan shown in Fig. 
2. 

 
Fig. 2. The floorplan of iHouse. 

Second, only the weather-related inputs (disturbances) without control-related 
input(s) are considered for this study. Even though thermal comfort devices such as air 
conditioner and motor-operated windows are installed in iHouse, the available 
historical data that are recorded when these thermal comfort devices are operated by 
the time this study is done are still not sufficient to develop model with control-related 
inputs using black box and grey box modelling. Therefore, it is still unable to develop 
a grey box or black box model that is capable to simulate control-related input by the 
time this study is done. 

Third, all the walls of the room that is going to be modelled is assumed to be 
consisted of plain wall without doors or windows – these door and windows are 
assumed to be part of the wall to maintain the simplicity of the model and reduce time 
taken to develop it. Including the equations describing how the weather-related inputs 



affect the room’s air temperature through the door and windows will increase the total 
number or length of the mathematical equations in the model and will increase the 
development duration. 

2.2   Data Collection 

Due to time constrain, available historical data that were used in previous study in [4] 
are used again in this study. These selected data were recorded with the following 
conditions: (1) the air conditioner was switched off; (2) and the motor-operated 
windows were closed. 

Two groups of historical data that were recorded with same conditions (as mentioned 
previously) and were recorded on the date that are as close with each other as possible 
are identified and assigned as training and testing data set. The reason why the training 
and testing data set must be recorded on the date that are as close as possible is to reduce 
the variation of weather related inputs, especially in four-season countries. 

The first group of historical data were recorded from the 1st of August 2012 until the 
3rd of August 2012 (assigned as train data set) while the second group of historical data 
were recorded from the 10th of August 2012 until the 19th of August 2012 (assigned as 
test data set). 

Different types of sensors in iHouse record different data at different time intervals. 
To simplify the model development process, the interval for all recorded data is 
standardized at every 90 seconds – this means that there will be 960 recorded input-
output relationship data for every day if the data is recorded at the interval of every 90 
seconds. Training data set (recorded from the 1st of August 2012 until the 3rd of August 
2012) has 2880 recorded inputs-outputs relationships while testing data-set (recorded 
from the 10th of August 2012 until the 19th of August 2012) has 9600 recorded inputs-
outputs relationships. 

2.3   Data Selection 

In previous work in [4], the ARMA model representing the dynamic indoor thermal 
behaviour of iHouse was created based on minimal (almost zero) theoretical knowledge 
regarding the physical thermal characteristic of iHouse. By the time this study is done, 
more theoretical knowledge regarding the thermal characteristic of iHouse (and other 
buildings) has been learnt. 

Like the ARMA model developed in previous study in [4], the simplified ARMA 
model developed in this study is a multi-input single-output (MISO) system. However, 
the number of inputs has been reduced after having more information regarding the 
theoretical knowledge of iHouse (and other buildings). The output assigned for this 
model is the future temperature of bedroom A, (𝑇"#$%). Unlike in the previous work in 
[4], the inputs assigned for this model has been revised based on the physical insight 
regarding how the weather related inputs affect the indoor air temperature of iHouse, 
which are: (1) the past temperature of bedroom A itself (𝑇"#$%); (2) the differences 
between the past temperatures of the spaces surrounding bedroom A and the 
temperature of bedroom A itself – based on Fig. 2, bedroom A is surrounded by 



bedroom B and staircase from the North (∆𝑇"#$"'"#$% and ∆𝑇()*+,'"#$%), outdoor from 
the East and South (∆𝑇-.)'"#$%), master bedroom from the West (∆𝑇/"#$'"#$%), roof 
attic from the top (∆𝑇%))+0'"#$%) and Japanese-style room from the bottom 
(∆𝑇12334'"#$%); (3) the past heat emitted from residence(s) and electronic device(s) in 
bedroom A (𝑄2#67#8"#$%); (4) the past heat radiation from outside air and ground onto 
the outer walls of bedroom A (𝑄-.)%+,2*$); (5) the past solar radiations – only 2 types 
of solar radiations data are considered in this study, which are direct solar radiation on 
eastern and southern outer wall surface of bedroom A (𝜑7+,:*6);*<< and 𝜑7+,(3.)=;*<<) 
and diffuse solar radiation on both eastern and southern outer wall surface of bedroom 
A (𝜑7+>>:*6);*<< and 𝜑7+>>(3.)=;*<<); (6) and the past heat gain due to convection 
between outside air and both eastern and southern outer wall surface of bedroom A 
(𝑄?3@8:*6);*<< and 𝜑?3@8(3.)=;*<<). This model with the determined inputs and output 
is illustrated in Fig. 3. 

 
Fig. 3. The illustration of model for the thermal behaviour of bedroom A with listed possible 
inputs. 

2.4   Model Construction 

Let’s say that the ARMA model has 𝑘 past input(s), which is from 𝑖 = 0 until 𝑖 =
𝑘 − 1. After the inputs that may have the potential to influence the temperature in 
bedroom A are determined and listed in Section 2.3 and depicted in Fig. 3, the 
simplified ARMA model equation with 𝑘 past input(s) describing the air temperature 
in bedroom A is written, which is shown below:  

𝑇"#$% 𝑛 + 𝑘 = 𝐴+𝑇"#$% 𝑛 + 𝑖J'K
+LM + 𝐵+∆𝑇"#$"'"#$% 𝑛 + 𝑖J'K

+LM +
𝐶+∆𝑇()*+,'"#$% 𝑛 + 𝑖J'K

+LM + 𝐷+∆𝑇-.)'"#$% 𝑛 + 𝑖J'K
+LM +

𝐸+∆𝑇/"#$'"#$% 𝑛 + 𝑖J'K
+LM + 𝐹+∆𝑇%))+0'"#$% 𝑛 + 𝑖J'K

+LM +
𝐺+∆𝑇12334'"#$% 𝑛 + 𝑖J'K

+LM + 𝐻+𝑄2#67#8"#$% 𝑛 + 𝑖J'K
+LM +

𝐼+𝑄-.)%+,2*$ 𝑛 + 𝑖J'K
+LM + 𝐽+𝜑7+,:*6);*<< 𝑛 + 𝑖J'K

+LM +

(1) 

Bedroom A 
(Simplified 
Black Box) 

Future 𝑇"#$%  

Past 𝑇"#$%  
Past ∆𝑇"#$"'"#$%  
Past ∆𝑇()*+,'"#$%  
Past ∆𝑇-.)'"#$%  
Past ∆𝑇/"#$'"#$%  
Past ∆𝑇%))+0'"#$%  
Past ∆𝑇12334'"#$%  
Past 𝑄2#67#8"#$%  
Past 𝑄-.)%+,2*$  
Past 𝜑7+,:*6);*<<  
 Past 𝜑7+,(3.)=;*<<  
 Past 𝜑7+,:*6);*<< 
 Past 𝜑7+,(3.)=;*<<  
 Past 𝑄?3@8:*6);*<< 
 Past 𝑄?3@8(3.)=;*<< 
  



𝐾+𝜑7+,(3.)=;*<< 𝑛 + 𝑖J'K
+LM + 𝐿+𝜑7+>>:*6);*<< 𝑛 + 𝑖J'K

+LM +
𝑀+𝜑7+>>(3.)=;*<< 𝑛 + 𝑖J'K

+LM + 𝑁+𝑄?3@8:*6);*<< 𝑛 + 𝑖J'K
+LM +

𝑂+𝑄?3@8(3.)=;*<< 𝑛 + 𝑖J'K
+LM  . 

Equation (1) can also be written in an expanded form as shown below: 

𝑇"#$% 𝑛 + 𝑘 = 𝐴J'K𝑇"#$% 𝑛 + 𝑘 − 1 + 𝐴J'\𝑇"#$% 𝑛 + 𝑘 − 2 + ⋯+
𝐴K𝑇"#$% 𝑛 + 1 + 𝐴M𝑇"#$% 𝑛 + 𝐵J'K∆𝑇"#$"'"#$% 𝑛 + 𝑘 − 1 +
𝐵J'\∆𝑇"#$"'"#$% 𝑛 + 𝑘 − 2 + ⋯+ 𝐵K∆𝑇"#$"'"#$% 𝑛 + 1 +

𝐵M∆𝑇"#$"'"#$% 𝑛 + 𝐶J'K∆𝑇()*+,'"#$% 𝑛 + 𝑘 − 1 + 𝐶J'\∆𝑇()*+,'"#$% 𝑛 +
𝑘 − 2 + ⋯+ 𝐶K∆𝑇()*+,'"#$% 𝑛 + 1 + 𝐶M∆𝑇()*+,'"#$% 𝑛 +

𝐷J'K∆𝑇-.)'"#$% 𝑛 + 𝑘 − 1 + 𝐷+∆𝑇-.)'"#$% 𝑛 + 𝑘 − 2 + ⋯+
𝐷K∆𝑇-.)'"#$% 𝑛 + 1 + 𝐷M∆𝑇-.)'"#$% 𝑛 + 𝐸J'K∆𝑇/"#$'"#$% 𝑛 + 𝑘 − 1 +

𝐸J'\∆𝑇/"#$'"#$% 𝑛 + 𝑘 − 2 + ⋯+ 𝐸K∆𝑇/"#$'"#$% 𝑛 + 1 +
𝐸M∆𝑇/"#$'"#$% 𝑛 + 𝐹J'K∆𝑇%))+0'"#$% 𝑛 + 𝑘 − 1 + 𝐹J'\∆𝑇%))+0'"#$% 𝑛 +

𝑘 − 2 + ⋯+ 𝐹K∆𝑇%))+0'"#$% 𝑛 + 1 + 𝐹M∆𝑇%))+0'"#$% 𝑛 +
𝐺J'K∆𝑇12334'"#$% 𝑛 + 𝑘 − 1 + 𝐺J'\∆𝑇12334'"#$% 𝑛 + 𝑘 − 2 + ⋯+

𝐺K∆𝑇12334'"#$% 𝑛 + 1 + 𝐺M∆𝑇12334'"#$% 𝑛 + 𝐻J'K𝑄2#67#8"#$% 𝑛 + 𝑘 −
1 + 𝐻J'\𝑄2#67#8"#$% 𝑛 + 𝑘 − 2 + ⋯+ 𝐻K𝑄2#67#8"#$% 𝑛 + 1 +

𝐻M𝑄2#67#8"#$% 𝑛 + 𝐼J'K𝑄-.)%+,2*$ 𝑛 + 𝑘 − 1 + 𝐼J'\𝑄-.)%+,2*$ 𝑛 + 𝑘 −
2 + ⋯+ 𝐼K𝑄-.)%+,2*$ 𝑛 + 1 + 𝐼M𝑄-.)%+,2*$ 𝑛 + 𝐽J'K𝜑7+,:*6);*<< 𝑛 + 𝑘 −

1 + 𝐽J'\𝜑7+,:*6);*<< 𝑛 + 𝑘 − 2 + ⋯+ 𝐽K𝜑7+,:*6);*<< 𝑛 + 1 +
𝐽M𝜑7+,:*6);*<< 𝑛 + 𝐾J'K𝜑7+,(3.)=;*<< 𝑛 + 𝑘 − 1 + 𝐾J'\𝜑7+,(3.)=;*<< 𝑛 +

𝑘 − 2 + ⋯+ 𝐾K𝜑7+,(3.)=;*<< 𝑛 + 1 + 𝐾M𝜑7+,(3.)=;*<< 𝑛 +
𝐿J'K𝜑7+>>:*6);*<< 𝑛 + 𝑘 − 1 + 𝐿J'\𝜑7+>>:*6);*<< 𝑛 + 𝑘 − 2 + ⋯+

𝐿K𝜑7+>>:*6);*<< 𝑛 + 1 + 𝐿M𝜑7+>>:*6);*<< 𝑛 + 𝑀J'K𝜑7+>>(3.)=;*<< 𝑛 + 𝑘 −
1 + 𝑀J'\𝜑7+>>(3.)=;*<< 𝑛 + 𝑘 − 2 + ⋯+𝑀K𝜑7+>>(3.)=;*<< 𝑛 + 1 +

𝑀M𝜑7+>>(3.)=;*<< 𝑛 + 𝑁J'K𝑄?3@8:*6);*<< 𝑛 + 𝑘 − 1 +
𝑁J'\𝑄?3@8:*6);*<< 𝑛 + 𝑘 − 2 + ⋯+ 𝑁K𝑄?3@8:*6);*<< 𝑛 + 1 +

𝑁M𝑄?3@8:*6);*<< 𝑛 + 𝑂J'K𝑄?3@8(3.)=;*<< 𝑛 + 𝑘 − 1 +
𝑂J'\𝑄?3@8(3.)=;*<< 𝑛 + 𝑘 − 2 + ⋯+ 𝑂K𝑄?3@8(3.)=;*<< 𝑛 + 1 +

𝑂M𝑄?3@8(3.)=;*<< 𝑛  . 

(2) 

2.5   Model Regression 

‘Regression’ is defined as the process of estimating the unknown parameter(s) in 
ARMA model. In Artificial Neural Network, this process is known as ‘training’. 

Let’s say that the training data-set is recorded from 𝑡 = 0 until 𝑡 = 𝑝. Therefore, the 
number of available sampled data recorded from 𝑡 = 0 until 𝑡 = 𝑝 are 𝑝 + 1. The value 
of 𝑝 + 1 in this study is equal to the number of data recorded from the 1st of August 
2012 until the 3rd of August 2012, which is 2880 (as mentioned earlier in Sub-section 
2.2 – Data Collection). When the data from 𝑘 previous steps are used to estimate the 
temperature of bedroom A (from 𝑡 = 0 until 𝑡 = 𝑘 − 1), the input-output pairs are 
equal to 𝑝 + 1 − 𝑘. This can be illustrated by the matrices in Equation (3) below: 



𝕐 = 𝕏𝕄 . 

where: 

𝕐 =

𝑇"#$% 𝑛 + 𝑘
𝑇"#$% 𝑛 + 𝑘 + 1

⋮
𝑇"#$% 𝑛 + 𝑝 − 1
𝑇"#$% 𝑛 + 𝑝

 , 

𝕏 =

𝕏 K,:
𝕏 \,:
⋮

𝕏 g'J,:
𝕏 ghK'J,:

 , 

𝕏 K,: =

𝑇"#$% 𝑛 + 𝑘 − 1
𝑇"#$% 𝑛 + 𝑘 − 2

⋮
𝑇"#$% 𝑛 + 1
𝑇"#$% 𝑛

∆𝑇"#$"'"#$% 𝑛 + 𝑘 − 1
∆𝑇"#$"'"#$% 𝑛 + 𝑘 − 2

⋮
∆𝑇"#$"'"#$% 𝑛 + 1
∆𝑇"#$"'"#$% 𝑛

⋮
𝑄?3@8(3.)=;*<< 𝑛 + 𝑘 − 1
𝑄?3@8(3.)=;*<< 𝑛 + 𝑘 − 2

⋮
𝑄?3@8(3.)=;*<< 𝑛 + 1
𝑄?3@8(3.)=;*<< 𝑛

i

 , 

(3) 



𝕏 \,: =

𝑇"#$% 𝑛 + 𝑘
𝑇"#$% 𝑛 + 𝑘 − 1

⋮
𝑇"#$% 𝑛 + 2
𝑇"#$% 𝑛 + 1

∆𝑇"#$"'"#$% 𝑛 + 𝑘
∆𝑇"#$"'"#$% 𝑛 + 𝑘 − 1

⋮
∆𝑇"#$"'"#$% 𝑛 + 2
∆𝑇"#$"'"#$% 𝑛 + 1

⋮
𝑄?3@8(3.)=;*<< 𝑛 + 𝑘

𝑄?3@8(3.)=;*<< 𝑛 + 𝑘 − 1
⋮

𝑄?3@8(3.)=;*<< 𝑛 + 2
𝑄?3@8(3.)=;*<< 𝑛 + 1

i

 , 

𝕏 g'J,: =

𝑇"#$% 𝑛 + 𝑝 − 2
𝑇"#$% 𝑛 + 𝑝 − 3

⋮
𝑇"#$% 𝑛 + 𝑝 − 𝑘

𝑇"#$% 𝑛 + 𝑝 − 1 − 𝑘
∆𝑇"#$"'"#$% 𝑛 + 𝑝 − 2
∆𝑇"#$"'"#$% 𝑛 + 𝑝 − 3

⋮
∆𝑇"#$"'"#$% 𝑛 + 𝑝 − 𝑘

∆𝑇"#$"'"#$% 𝑛 + 𝑝 − 1 − 𝑘
⋮

𝑄?3@8(3.)=;*<< 𝑛 + 𝑝 − 2
𝑄?3@8(3.)=;*<< 𝑛 + 𝑝 − 3

⋮
𝑄?3@8(3.)=;*<< 𝑛 + 𝑝 − 𝑘

𝑄?3@8(3.)=;*<< 𝑛 + 𝑝 − 1 − 𝑘

i

 , 



𝕏 ghK'J,: =

𝑇"#$% 𝑛 + 𝑝 − 1
𝑇"#$% 𝑛 + 𝑝 − 2

⋮
𝑇"#$% 𝑛 + 𝑝 + 1 − 𝑘
𝑇"#$% 𝑛 + 𝑝 − 𝑘

∆𝑇"#$"'"#$% 𝑛 + 𝑝 − 1
∆𝑇"#$"'"#$% 𝑛 + 𝑝 − 2

⋮
∆𝑇"#$"'"#$% 𝑛 + 𝑝 + 1 − 𝑘
∆𝑇"#$"'"#$% 𝑛 + 𝑝 − 𝑘

⋮
𝑄?3@8(3.)=;*<< 𝑛 + 𝑝 − 1
𝑄?3@8(3.)=;*<< 𝑛 + 𝑝 − 2

⋮
𝑄?3@8(3.)=;*<< 𝑛 + 𝑝 + 1 − 𝑘
𝑄?3@8(3.)=;*<< 𝑛 + 𝑝 − 𝑘

i

 , 

𝕄 =

𝐴J'K
𝐴J'\
⋮
𝐴K
𝐴M
𝐵J'K
𝐵J'\
⋮
𝐵K
𝐵M
⋮

𝑂J'K
𝑂J'\
⋮
𝑂K
𝑂M

 . 

In this study, the least square method is used to regress the simplified ARMA model. 
The purpose of regression is to estimate the values of the unknown constants in matrix 
𝕄 for the ARMA model in Equation (3). The least square equation used for regressing 
the model is represented by Equation (4) is written below: 

𝕄 = 𝕏i𝕏 'K𝕏i𝕐 . (4) 

After the values of the unknown constants in matrix 𝕄 are estimated using least 
square method, the model is then simulated again using the training data set to check 
its ability to fit the data-set. Then, the model can be tested and optimized with new data 
set that has never been ‘seen’ by the model, which will be discussed in the next sub-
section. 



2.6   Model Testing 

In this process, the regressed simplified ARMA model is simulated with a new data-set 
that has never been ‘seen’ by the model. This data-set is called testing data-set. The 
purpose of this process is to ensure that the regressed model can produce accurate result 
when the model is simulated using different data-set (other than the training data-set). 

Let’s say that the testing data-set is recorded from 𝑡 = 0 until 𝑡 = 𝑞. Therefore, the 
number of available sampled data recorded from 𝑡 = 0 until 𝑡 = 𝑞 are 𝑞 + 1. The value 
of 𝑞 + 1 in this study is equal to the number of data recorded from the 10th of August 
2012 until the 19th of August 2012, which is 9600 (as mentioned earlier in Sub-section 
2.2 – Data Collection). 

2.7   ARMA Model Parameter Estimation 

The only parameter that needs to be tuned to optimize the ARMA model is the 
number of past input(s), which is the value of 𝑘. Bigger value of 𝑘 leads to more 
quantity of constants available in matrix 𝕄 (and vice versa). A MATLAB® script is 
written to try the possible values of 𝑘 one by one (instead of assigning the value of 𝑘 
randomly and manually using trial and error method). Due to time constraint however, 
the value of 𝑘 in this research is tried one by one only from 𝑘 = 1 until 𝑘 = 200. The 
percentage of fitness, %𝐹𝑖𝑡 is calculated for each tested value of 𝑘 and its formula is 
shown below: 

%𝐹𝑖𝑡 = 1 − @3,4 imnop'imnop
@3,4 imnop'4#*@ imnop

 . (5) 

3   Results 

The performance of the optimized simplified ARMA model in this study is compared 
with the performance of the previous works, which are: (1) the optimised ARMA model 
[4]; (2) the optimized House Thermal Simulator [8]. The parameters in both ARMA 
model [4] and House Thermal Simulator [8] are also estimated and optimized by using 
their own parameter estimation and optimization methods, but using the same training 
and testing data-sets as those used in this study. The simulation results for the simplified 
ARMA model in this study, the ARMA model in previous study [4], and House 
Thermal Simulator [8] are plotted and displayed in Fig. 4 for comparison. Meanwhile, 
the value of percentage of fitness, %𝐹𝑖𝑡 for the simplified ARMA model in this study, 
the ARMA model in previous study [4], and House Thermal Simulator [8] are 
summarized in Table 1 for comparison. 



 

Fig. 4. The simulation result comparison for all three optimized models when simulated with 
training data set and testing data set. 

Table 1.  The %𝐹𝑖𝑡 values for all optimized models during simulation are presented in. 

Model %𝐹𝑖𝑡 
(Train Data Set) 

%𝐹𝑖𝑡 
Test Data Set 

House Thermal Simulator [8] 94.824 88.0188 
ARMA Model [4] 97.6667 91.6101 
Simplified ARMA Model 95.071 87.4575 

4   Discussion 

From the result displayed on Fig. 4 and Table 1, the accuracy of the simplified ARMA 
model obtained in this study in terms of percentage of best fit, %𝐹𝑖𝑡 is slightly less 
compared to the previous works in [8] and [4]. However, the differences are not big. 

Even though the accuracy of the simplified ARMA model done in this study is 
slightly less compared to the previous works [4, 8], it’s development and 
implementation is simpler. The ARMA model developed in previous study [4] has 19 
types of inputs – when the model’s number of order (which is also the number of past 
inputs) is tuned from 𝑘 = 1 until 𝑘 = 200, the model is accurate the most when 𝑘 =
26. Meanwhile the simplified ARMA model developed in this study has 15 types of 
inputs – when the model’s number of order is tuned in this study (from 𝑘 = 1 until 𝑘 =
200), the model is accurate the most when 𝑘 = 1. Lesser types of inputs increase 
model’s simplicity and reduces the time taken during model’s regression process while 
model with lower order number (or lesser number of past inputs) reduces computation 
time during simulation. Meanwhile, the model developed in this study is also simpler 
to be implemented compared to House Thermal Simulator even though the accuracy of 
the model developed in this study is slightly lower than the accuracy of House Thermal 
Simulator because the simplified ARMA model developed in this study has lesser and 
simpler mathematical equations. 
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House Thermal Simulator [8] is a grey box model – it was developed based on 
fundamental knowledge of science and engineering while the unknown parameters in 
the model are estimated based on recorded inputs-output data relationship recorded in 
iHouse, which provide insight regarding how each input cause increment/decrement to 
the air temperature in iHouse. The set of equations used in House Thermal Simulator 
[8] are in large quantities to describe the relationship between the inputs and output 
vividly base on theoretical knowledge. This makes the House Thermal Simulator 
suitable to be used by the advanced researchers who would like to get a very detail 
insight on how the inputs affect the output. However, utilizing large quantity of 
equation is time consuming and requires more powerful computers for simulation. 
Meanwhile, the ordinary ARMA model that was developed [4] is a purely data driven 
model and was developed with minimal theoretical knowledge – ARMA model is just 
a single equation with parameters tuned to map the value of inputs versus output of a 
system. This make a black box model suitable to be used by beginner researchers 
because it can be constructed with minimal physical knowledge describing the system. 
Model with single equation (or a set of equation in small quantity) can be simulated in 
less powerful computers. Knowing more theoretical knowledge of a system while 
developing black box models will be more advantageous [3]. Compared to the ARMA 
model developed previously in [4], the number of inputs and model’s order in this study 
is managed to be reduced based on the theoretical knowledge. In previous work, the 
only inputs that provide the insight regarding how they affect the air temperature 
increment/decrement in iHouse are: (1) the past temperature of bedroom A (𝑇"#$%); (2) 
the past temperature difference between the surrounding spaces and bedroom A 
(∆𝑇"#$"'"#$%, ∆𝑇()*+,'"#$%, ∆𝑇-.)'"#$%, ∆𝑇/"#$'"#$%, ∆𝑇%))+0'"#$%, and 
∆𝑇12334'"#$%); (3) the heat generated by residence(s) and electrical device(s) in 
bedroom A (𝑄2#67#8"#$%); (4) and heat radiation from outside air and ground onto the 
outer walls of bedroom A (𝑄-.)%+,2*$). Meanwhile the rest of the inputs utilised in 
previous study [4] did not give insight on how they affect the air temperature gain/loss 
in iHouse – these inputs are: (1) the relative humidity of bedroom A (𝑅𝐻"#$%); (2) the 
solar altitude (𝑍(3<*,); (3) the solar azimuth (𝜃(3<*,); (4) and the wind speed blowing 
from all 4 directions (𝑉v3,)=;+@$, 𝑉:*6);+@$, 𝑉(3.)=;+@$, and 𝑉;#6);+@$). Instead of 
being used directly as one of the inputs in the previous study, the relative humidity of 
bedroom A (𝑅𝐻"#$%) should be used to calculate the heat capacity of the air in bedroom 
A. However, neither the relative humidity of bedroom A (𝑅𝐻"#$%) nor the heat capacity 
of the air in bedroom A are used as the inputs of the simplified ARMA model in this 
study. Then, instead of being used directly as some of the inputs in the previous study, 
the value of solar position (𝑍(3<*,) and solar azimuth (𝜃(3<*,) are used to calculate the 
amount of direct and diffuse solar radiation that hit both the eastern and southern outer 
wall surfaces of bedroom A (𝜑7+,:*6);*<<, 𝜑7+,(3.)=;*<<, 𝜑7+>>:*6);*<<, 
𝜑7+>>(3.)=;*<<), which are used as the inputs of the simplified ARMA model in this 
study – these values are calculated based on solar altitude, solar azimuth wall slope 
angle, and wall azimuth. Finally, the wind speed (𝑣;+@$) and direction (𝜃;+@$) in the 
previous research were resolved using trigonometric method into wind velocities that 
are coming from 4 directions, which are the wind velocity blowing from all 4 directions 
(𝑣v3,)=;+@$, 𝑣:*6);+@$, 𝑣(3.)=;+@$, and 𝑣;#6);+@$). However, the values of 𝑣;+@$ and 
𝜃;+@$ should be used to calculate heat gain due to convection between outside air and 



both eastern and southern outer wall surface of bedroom A (𝑄?3@8:*6);*<< and 
𝑄?3@8(3.)=;*<<), which are used as the inputs of the simplified ARMA model in this 
study – these values are calculated based on outdoor air temperature (𝑇-.)), the wind 
speed (𝑣;+@$), and wind direction (𝜃;+@$). 

5   Suggestion for Future Work 

The simplified ARMA model developed in this study is the improvement of the basic 
ARMA model developed in the previous study in [4] and will be used in the future as 
a platform to test any proposed control system and strategy to maintain the thermal 
comfort in iHouse. Like the ARMA model developed in the previous study [4], the 
simplified ARMA model developed in this study only considers weather-related inputs 
during the model development due to the unavailability of historical data that was 
recorded when thermal comfort devices were operated. The next step is to include the 
control-related input(s) produced by thermal comfort device(s) so that the developed 
model can be used to simulate any proposed control system and strategy to maintain 
the thermal comfort in iHouse. New data will be recorded in iHouse while the thermal 
comfort devices (air conditioner and motor operated window) are operated. The study 
in this area is in progress and will be published once it is completed. 

The equation of the model can be improved to increase the model’s accuracy. One 
of the suggestion is to include the mathematical equations to represent the heat transfer 
through the door and windows. Due to time constrain, all the walls of bedroom A in 
this study is assumed to be plain walls (without window and door) to simplify the model 
development. Investigation should be done on the model’s performance when the 
model is expanded to have mathematical equations describing the heat transfer through 
door and windows. 

In addition, additional mathematical equations describing the heat transfer through 
the envelope of bedroom A can be investigated and added. 

6   Conclusion 

The main goal of this study is to simplify the ARMA model describing the thermal 
behaviour of iHouse developed in [4] based on fundamental knowledge in science and 
engineering. Through this study, it is shown that the simplified ARMA model with 
lesser inputs and model’s order can still perform almost on par compared to the ARMA 
model in [4] and House Thermal Simulator in [8]. This is supported by the results 
presented in Section 3 which show that the accuracy of the simplified ARMA model 
developed in this study is slightly less compared to the other models of the previous 
studies, but the accuracy differences are not big. In addition, the model developed in 
this study is simpler to be implemented and faster to be simulated due to the lower 
number of inputs and model’s order. The main contribution from this finding is in the 
simplification of ARMA model based on theoretical knowledge that can be 
implemented easier and simulated faster. 
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