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Abstract

Concept similarity measure, as investigated in this thesis, aims at identifying a degree
of commonality of two given concepts and is often regarded as a generalization of the
classical reasoning problem of equivalence. That is, any two concepts are equivalent if and
only if their similarity degree is one. We formally investigate this notion in Description
Logics (DLs). Its results provide a basis for computational methods of identifying the
commonalities and the discrepancies between two concepts. Our methods of concept
similarity measure are proven to be tractable. To this end, they are thereby restricted
to the DLs which do not provide all Boolean operators such as FL0 and ELH to avoid
inheriting NP-hardness from propositional logic.

Similarity judgment used by human beings often involve preferences and needs in prac-
tice. More specifically, when two concepts are not logically equivalent or totally similar,
they may rely on subjective factors e.g. the agent’s preferences. Here, we formally define a
formal notion of concept similarity under such subjective factors called concept similarity
measure under preference profile and identify a set of its desirable properties. These prop-
erties relate to the question “what could be good preference-based similarity measures?”.
To exemplify the developments, we suggest computational techniques for FL0 and ELH,
and also, prove their inherited properties. Two algorithmic procedures for our developed
measure simπ are introduced for the top-down and bottom-up implementations, respec-
tively, and their computational complexities are intensively studied. We also discuss the
usefulness of our proposed developments to potential use cases.

Analogical reasoning is a complex process based on a comparison between two pairs of
concepts or states of affairs (aka. the source and the target) for characterizing certain
features from the source to the target. To exploit our results of concept similarity measure,
we investigate such kind of reasoning that analogical conclusions can be derived from the
similarity between DL concepts. Two approaches for the implementation of analogical
reasoning are explored. Each is formulated from the study of philosophical understanding
called argumentation schemes where patterns of non-deductive reasoning are analyzed.
Finally, we demonstrate that the analogical argument used in the case of Silkwood v.
Kerr-McGee Corporation is reconstructible from the proposed formalisms.

Keywords: Concept Similarity Measure, Semantic Web Ontology, Preference Profile,
Description Logics, Analogical Reasoning
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Chapter 1

Introduction

1.1 What is an Ontology?

The word ontology is used by different communities under different interpretations. Gen-
erally speaking, it can be classified based on two ways of the usage [1], i.e. as an uncount-
able noun and as a countable noun. The former one appears in the field of philosophy.
It is worth noting that Aristotle first defined Ontology as the study of attributes that
belong to things because of their very nature [2]. This interpretation may not require an
existence of actual realities. For instance, ones may study the Ontology of pegasi and
other fictitious entities.

On the other hand, the latter one (i.e. an ontology) may mean a special kind of
information object or computational artifact. In other words, an ontology is referred
to a set of relevant entities and relations reflecting an observation. This interpretation
prominently appears in computer science. For example, ones may model a human resource
department by consisting of three entities, viz. Person, Manager, and Researcher. It is
worth noting that entities may be called concepts. The backbone of an ontology is a
generalization/specialization hierarchy of concepts. Hence, it makes perfect sense to say
that Person is a super-concept of Manager and Researcher. Also, cooperativeWith may be
drawn as a relation between persons. Each concrete person working in the department is
considered as an instance of each corresponding concept.

In 1993, Gruber [3] originally defines the notion of an ontology as an explicit specifi-
cation of a conceptualization. Later, it is redefined by Borst [4] that an ontology is a
formal specification of a shared conceptualization. There are two assumptions from this
definition: (1) the conceptualization should express a shared view among parties (rather
than an individual view) and (2) the conceptualization should be expressed in a formal
machine readable format. In 1998, Studer et al. [5] merge these two definitions, i.e. an
ontology is “a formal, explicit specification of a shared conceptualization”. As a computer
scientist, this thesis perceives the notion of an ontology in this intuition.
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1.2. DESCRIPTION LOGICS AS ONTOLOGY LANGUAGE

1.2 Description Logics as Ontology Language

Description Logics (DLs) [6–8] are a family of knowledge representation languages that
can be used to represent the knowledge of an application domain in a structured and
formally well-understood way. Based on these characteristics, DLs are well-suited for an
ontology representation language. The name description logics is coined based on the fact
that the application domain is described by concept descriptions, i.e. expressions that
are built from atomic concepts (unary predicates) and atomic roles (binary predicates)
using the concept and role constructors provided by the particular DL. Furthermore, DLs
differ from their predecessors (e.g. semantic networks and frames) in the way that DLs
are equipped with a formal and logic-based semantics.

For the interested reader with some background in mathematical logic, we will relate
examples to First Order Logic (FOL) in square brackets. DLs are characterized by the
constructors they provide to build complex concepts from atomic ones. Formal definitions
are given in Chapter 3. Let us illustrate that a concept of “an inflammation that has
location on endocardium tissue” can be expressed as follows:

Inflammation u ∃hasLocation.Endocardium

[Inflammation(x)∧∃y(hasLocation(x, y)∧Endocardium(y))] where Inflammation and Endocar-
dium are atomic concepts. Also, hasLocation is an atomic role and u,∃ are concept con-
structors. We note that an atomic role relates an instance of a concept to another.

In addition to this description formalism, DLs are also equipped with a terminological
formalism and an assertional formalism. Generally, terminological axioms can be used
to: (1) introduce an abbreviation of a complex concept (for stating the “necessary and
sufficient” conditions of a concept), e.g.

Endocarditis ≡ Inflammation u ∃hasLocation.Endocardium

[∀x(Endocarditis(x)↔ Inflammation(x)∧∃y(hasLocation(x, y)∧Endocardium(y)))] meaning
that an “endocarditis is definitely an inflammation that has location on endocardium
tissue”; (2) state the “necessary” conditions for being a particular concept1, e.g.

Inflammation v Disease u ∃actsOn.Tissue

[∀x(Inflammation(x) → Disease(x) ∧ ∃y(actsOn(x, y) ∧ Tissue(y)))] meaning that an “in-
flammation is a disease that acts on a tissue”. Or, (3) it may be used to supplement a
constraint like “vitamin K1 has a function as a catalyst”:

VitaminK1 v ∃hasFunction.Catalysing

[∀x(VitaminK1(x) → ∃y(hasFunction(x, y) ∧ Catalysing(y)))]. Another example of con-
straint statements is “∃hasChild.Human v Human” [∀x(∃y(hasChild(x, y) → Human(x)))]

1Sometimes, we might know some necessary (but not sufficient) conditions for membership.
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1.2. DESCRIPTION LOGICS AS ONTOLOGY LANGUAGE

saying that only humans can have human children. Furthermore, terminological axioms
can be used to state role inclusion statements such as:

hasExactLocation v hasLocation

[∀x∀y(hasExactLocation(x, y) → hasLocation(x, y))] which states that having an exact
location implies that having a location. A set of terminological axioms is called a TBox.

The assertional formalism can be used to state properties of an individual. This intuitive
idea coincides with ground facts in FOL. For instance, one may assert that “bob is taking
antifungal antibiotics”:

onMedication(bob, anonym1); AntifungalAntibiotics(anonym1)

A set of assertional axioms is called an ABox. In general, an ontology can be represented
by a set of terminological axioms and a set of assertional axioms.

The suitability of DLs as ontology representation languages is not only caused by their
well-defined languages; but also, is caused by their ability to support various forms of
reasoning services. Reasoning is important to ensure the quality of an ontology and to
make implicit information in an ontology explicit. For instance, any sound DL reasoners
should infer that an endocarditis is a disease from the previous example ontology.

Reasoning can be employed in different phases of an ontology life cycle. For instance,
it may used during an ontology design to test whether a concept is non-contradictory or
to obtain explicit relationship. In particular, one usually wants to compute the concept
hierarchy, i.e. the partial ordering of named concepts based on the subsumption relation-
ship. Information on which concept is a specialization of another, and which concepts
are synonyms, can be used in the design phase to test whether axioms described in the
ontology have intended consequences [9]. Though this subsumption hierarchy inevitably
benefits ontology modeling, it merely gives binary responses, i.e. inferring a concept is
subsumed by another concept or not. Certain pairs of concepts may share commonal-
ity even though they are not subsumed. This leads to an amount of research effort on
measuring concept similarity.

It is worth noting that applications may not use the same ontology. Thus, the issue
of ontology integration can be benefited from reasoning services as well. Integration may
be supported by asserting inter-ontology relationships. After that, one might want to
compute the integrated concept hierarchy or find similar pairs of integrated concepts.
Missing subsumption relationships or unsound concept similarity may be a sign of incor-
rect or incomplete inter-ontology assertions, which should be corrected or completed by
a knowledge engineer.

Reasoning can be also employed at the deployment phase. For example, when searching
for an information stored in an ontology, it can be useful to consider not only perfect
matches; but also, matches with respect to more general/specific terms or similar terms.
However, the requirement on the efficiency of reasoning (e.g. the practical performance)
should be much more strict than in the design phase and the integration phase.

On the availability of a well-defined semantics and the reasoning support, DLs are ideal
candidates for ontology representation languages. For instance, OIL [10], DAML+OIL
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[11, 12], OWL [13], and OWL 2 [14] are all based on DLs. The advantage of this close
connection is that the basic research in DLs and implementation experiences can be
directly exploited. Among these languages, OWL and OWL 2 are adopted as the standard
(W3C recommendation) for ontology representation languages. There are three sub-
languages of OWL (OWL 2), viz. OWL Lite (OWL 2 Lite), OWL DL (OWL 2 DL), and
OWL Full (OWL 2 Full). OWL DL and OWL 2 DL are basically DLs. Hence, DLs are
the logical underpinnings of the DL flavor of OWL and OWL 2. OWL 2 also has three
profiles, viz. OWL 2 EL, OWL 2 QL, and OWL 2 RL.

1.3 Research in Description Logics

Following [9, 15], we distinguish the development in DLs into five phases as follows.

Phase 0 (1965 - 1980)

This phase is known as the pre-DL phase in which the so-called semantic networks [16] and
frame [17] were introduced. Both were specialized approaches for representing knowledge
in a structured way; however, they were criticized due to their lack of formal semantics
[18–21]. An approach to overcome this problem was Brachman’s structured inheritance
networks [22]. This formalism hugely contributed to the next development. Indeed, it
was realized by the first DL system, i.e. KL-ONE.

Phase 1 (1980 - 1990)

This phase is mainly concerned with the implementation of DL systems, such as KL-ONE
[23], K-REP [24], and KRYPTON [25]. These systems employed a so-called structural
subsumption algorithm, in which concept descriptions were normalized for recursively
comparing their syntactic structures. On the one hand, this algorithm is very efficient
(i.e. in polynomial time). On the other hand, they are limited to inexpressive DLs, i.e.
they cannot detect all subsumption/instance relationships for more expressive DLs. There
were formal investigations into the complexity of reasoning in DLs during this phase. For
example, it was shown in [26] that adding small expressive power for the representation
might cause intractability for the subsumption problem. It was also shown in [27] that us-
ing abbreviations for concept descriptions in TBox might make subsumption intractable if
the underlying DL used the constructors conjunction and value restriction. Unfortunately,
these constructors were supported by DL systems during this phase. According to this
negative complexity results, the implementors of CLASSIC (the first industrial-strength
DL system) carefully restricted their DL [28,29].

Phase 2 (1990 - 1995)

This phase involves in an introduction of a new algorithmic paradigm called tableau-based
algorithms [30, 31]. They work on propositionally closed DLs (i.e. DLs with all Boolean
operators) and are also usable with expressive DLs. A tableau-based algorithm works as

10
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follows in order to decide the consistency of a knowledge base: (1) it tries to construct a
model by structurally decomposing the concepts in the knowledge base; (2) it infers new
constraints on the elements of this model; (3) it stops either when all attempts to build a
model failed with obvious contradictions or when reaching a canonical model. This phase
also investigates the complexity of reasoning in various DLs [31–33] and observes that
DLs are closely related to modal logics [34].

Phase 3 (1995 - 2000)

This phase is characterized by the development of inference procedures for very expressive
DLs, either based on the tableau-based approach [35,36] or a translation into modal logics
[37–40]. Highly optimized systems, e.g. FaCT [41] and RACE [42], showed that tableau-
based algorithms for expressive DLs performed a good practical performance even on some
large knowledge bases. This phase also studies the relationship to modal logics [37,43], the
relationship to decidable fragments of First Order Logic [44–48], and the applications in
databases (e.g. schema reasoning, query optimization, and database integration) [49–51].

Phase 4 (2000 - 2005)

Industrial strength DL systems employing very expressive DLs and tableau-based algo-
rithms (e.g. [28, 42, 52]) were developed with applications like the Semantic Web, knowl-
edge representation and integration in medical and bio-informatics systems in mind. In
this phrase, the sub-languages of OWL viz. OWL DL and OWL Lite became an of-
ficial W3C recommendation1. Furthermore, other approaches were also investigated.
For example, ones might employ optimized translation procedures for converting DLs
into first-order predicate logic and then applied appropriate first-order resolution provers
(cf. [53–57]). Another foundation investigation could be found in [8, 55, 58–61] where
automata-based approaches were used to show ExpTime complexity upper-bounds.

Phase 5 (2005 - onward)

We are currently in this phase. Here, more expressive DLs with highly-optimized tableau-
based methods were proposed e.g. the approach in [62] as a basis for the new Web Ontol-
ogy Language OWL 22. More light-weight DLs were also investigated and were proposed
as profiles of OWL 23. For instance, the EL family [63,64] in which the subsumption and
the instance problems can be computed in polynomial time. The DL Lite family [65, 66]
offers polynomial-time algorithms for instance checking in the size of the ABox.

Despite the higher efficiency of available DL systems, they are not capable of providing
good explanations for their main uses. In other words, they are good from the viewpoint
of providing yes/no answers. According to this problem, some work [67,68] has described
methods to extract explanations from the tableau-based algorithms. Moreover, proof

1https://www.w3.org/TR/owl-features/
2https://www.w3.org/TR/owl2-overview/
3https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
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theory was investigated in [69] in which Sequent Calculi and Natural Deduction for some
DLs were introduced and were shown to improve the extraction for explanation purpose.

Other problems rather than the classical ones (i.e. subsumption checking, instance
checking, and consistency checking) have started to gain interest. For instance, query
answering (cf. [70–73]) aims at answering conjunctive queries w.r.t. DL knowledge base.
Axiom pinpointing (cf. [24, 43, 74–76]) enables finding the axioms which are responsible
for a given consequence. Given a set of desired consequences, modularization (cf. [77–79])
extracts a part of DL knowledge base which infers such consequences. Other non-classical
problems include least common subsumers, most specific concepts, and concept similarity
which is belonged to our primary interest of this thesis. We review the current issues on
concept similarity in DLs in the next section.

1.4 Two Issues on Concept Similarity in Description

Logics

Figure 1.1: Concept similarity in general sense

Concept similarity refers to human judgments of a degree to which a pair of concepts
in question is similar. Figure 1.1 depicts the intuitive understanding of this notion. The
figure illustrates two possible scenarios where an agent is judging the similarity between
the Japanese castle and the Thai-styled house (see the fine-dashed arrows) as well as the
Japanese castle and the European castle (see two-dots-one-dash arrows). As seen in the
figure, the agent may assign a value from a range (viz. not similar, less similar, similar,
pretty similar, and same) reflecting his/her judgment to each pair (i.e. the Japanese
castle vs. the Thai-styled house and the Japanese castle vs. the European castle).

Measures of concept similarity are computational approaches attempting to imitate
the human judgments of concept similarity. This subject has been widely studied in
many years and is central to functioning of many techniques e.g. ontology matching and
ontology learning. However, it is still hindered by the following issues.
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Issue 1: Formal Development of Concept Similarity in DLs

Concept similarity is widely studied in various fields, e.g. psychological science, computer
science, artificial intelligence, and linguistic literature. For example, Tversky [82] studied
a feature model where common and distinguishing features were used to derived the degree
of similarity. The traditional edge-based approach estimates the degree of similarity from
the distance/edge length between nodes, e.g. as in [83,84]. Or, similarity may be stemmed
from the similarity between documents as appeared in natural language processing [85,86].
It is worth observing that, with a few exceptions like [87, 88], those approaches usually
ignore the ontological constraints and relationship defined in an ontology.

This thesis deliberately investigates well-designed approaches for developing measures
of concept similarity in DLs. A well-defined notion of concept similarity is introduced and
concrete measures based on the notion are developed according to our defined notion.

It is worth mentioning here that “concept similarity” developed in this work should not
be confused with “the logic for concepts and similarity” considered in [80, 81]. Precisely,
we concentrate on how similar two concepts of an ontology is whereas they rather focus
on more expressive description languages toward similarity.

Issue 2: Adaptability with Agent’s Preferences

When two concepts in question are not totally similar, the degree of similarity may vary
depending on subjective factors (e.g. the agent’s preferences). This issue can be illustrated
in the following example.

Example 1.1. (Based on Figure 1.1) It is reasonable to conclude that the Japanese castle
is totally different to the Thai-styled house and the Japanese castle is also totally different
to the European castle. These situations may happen if the agent considers merely the
style of each construction, i.e. the agent makes judgment based on his/her needs and
preferences. Particularly, the usage of preferences typically depends on target applications.
For instance, if the agent is finding a building using castle-styled architecture, the degree
between the Japanese castle and the European castle should be higher than the degree
between the Japanese castle and the Thai-styled house. Using the needs and preferences
for judgment usually appear in domain-specific knowledge base and the development of
recommendation systems based on the agent’s preferences.

1.5 Objectives

The primary objective of the thesis is to provide well-designed techniques for solving the
two issues. This goal is further developed into the following objectives:

1. To propose well-defined notions of concept similarity in DLs. These well-defined
notions can be divided into two parts, i.e. the basic notion of concept similarity
and its extended notion for concept similarity under the agent’s preferences;
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2. To develop concrete measures based on the proposed notions. We restricts our
attention on traceable measures. Thus, sub-Boolean DLs viz. FL0 and ELH are
considered for our concrete developments; and

3. To demonstrate potential applications of our proposed measures.

To fulfill these objectives, this thesis makes the following main contributions:

1. The well-defined notion of concept similarity measure in DLs, which is defined as
a function mapping from a concept pair to a unit interval (0 ≤ x ≤ 1 for any real
number x), and also, the corresponding concrete measures e.g. ∼s (cf. Chapter 4);

2. The identification of preferential aspects (called preference profile) relevant to con-
cept similarity measure in DLs and the refined notion called concept similarity mea-
sure under preference profile in DLs, which is defined as a function mapping from a
concept pair under preference profile π to a unit interval (cf. Chapter 5);

3. The well-designed concrete measures
π∼s and simπ for the DLs FL0 and ELH,

respectively, and the proofs of their underlying properties (cf. Chapter 5);

4. Two algorithmic procedures for implementing the measure simπ and the empirical
evaluation w.r.t. realistic ontologies, for example, showing how the proposed mea-
sure yields more intuitive results in the medical ontology Snomed ct than using
other measures (cf. Chapter 5);

5. The discussion of potential applications in knowledge engineering, and also, the
developed formalisms for inferring conclusions from analogy which are based on the
proposed concept similarity measure under preference profile (cf. Chapter 5 - 6);

1.6 Thesis Structure

The remainder of the thesis is organized as follows:
Chapter 2 briefly summarizes the background in predicate logic, particularly first-order

logic. It basically introduces three basic elements of logic viz. syntax, semantics, and
proof theory. It also introduces semantic tableau as a proof system which can be be used
to prove if a formula is a logical consequence of a set of formulae. In this chapter, we
mention that first-order logic is not decidable; hence, it is not appropriate to construct
knowledge base systems based on full first-order logic. According to this negative result,
decidable subsets of first-order logic are studied in the framework of Description Logics.

Chapter 3 is dedicated to most of preliminaries about Description Logics that are fre-
quently referred by other chapters. It introduces the basics of Description Logics, reason-
ing services, the most commonly used reasoning techniques, in particular tableau-based
and structural subsumption algorithms, and the computational complexity of important
basic reasoning services.
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Chapter 4 discusses the problem of concept similarity and the existing approaches
dealing with the problem. It should be noted that the problem of concept similarity is
not new and has been widely studied in various domains. However, they still lack in
formal development as discussed in Section 1.4. In this chapter, we revisit and re-define
in a more formal way for DLs. Concretely, a problem of concept similarity can be seen
as a generalization of concept equivalence and we denote the notion by ∼. With this
viewpoint, ∼ can be seen as a function which maps two equivalent concepts to 1 and
totally dissimilar concepts to 0. Next, concrete measures of ∼ for sub-Boolean DLs,
viz. FL0 and ELH, are investigated and their underlying properties are discussed. In
contrast to expressive DLs, sub-Boolean DLs are inherently tractable by nature. This
fact has motivated us to take a look into them closely in the thesis, especially how ones
can generalize the notion of concept equivalence for developing concrete measures. This
chapter is mainly summarized from our published work [89,90].

Similarity measures might be personalized when they are applied for agent-based situ-
ations such as recommendation systems. Selecting an appropriate measure is one way of
personalizing. In chapter 5, we present an alternative approach by generalizing ∼ w.r.t.
the notion of the agent’s preferences. To achieve this, we propose a formal development of
preferential aspects called preference profile (denoted by π) which can play an important
role in concept similarity under the agent’s preferences. A refined notion called concept
similarity under preference profile (denoted by

π∼) is developed by equipping ∼ with π.
Intuitively,

π∼ is a general notion which maps a concept pair under a preference profile π
to a unit interval. To develop concrete measures of

π∼, previously developed measures of
∼ are investigated and are generalized w.r.t each aspect of preference profile. As a result,
the measure ∼s is generalized to

π∼s for the DL FL0 and the measure sim is generalized to
simπ for the DL ELH. Several underlying properties e.g. the computational complexity
and desirable properties are investigated. This chapter also investigates two algorithmic
procedures for the measure simπ (cf. Appendix B) and empirical evaluation is carried out
w.r.t. realistic ontologies such as the medical ontology Snomed ct (cf. Appendix A).
This chapter is mainly summarized from our published work [90–94]

Chapter 6 considers the problem of analogical reasoning, which is one of potential appli-
cations of the proposed measure. Roughly, analogical reasoning is a form of non-deductive
reasoning in which a conclusion is inferred based on the similarity of concepts or states of
affairs. This chapter proposes two different approaches which are based on the underlying
principle i.e. the argumentation scheme for argument from analogy. The first approach
combines answer set programming (cf. Subsection 6.2.1) with concept similarity measure
under preference profile whereas the second approach introduces another formalism of
argument-based logic programming which considers three types of rules viz. strict, defea-
sible, and similarity rules. Analogical reasoning is often used by human beings in real-life
situations, especially when humans encounter an unseen situation. In this chapter, we
demonstrate that realistic arguments which have been supported by analogies between
concepts can be reconstructed from our proposed formalisms. There are extremely inter-
esting relations between analogical reasoning and defeasible argumentation (cf. Appendix
C). We have covered some of them in this chapter. This chapter is mainly summarized
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from our published work [95,96].
Chapter 7 reviews the work presented and the extent to which the stated objectives

have been met. The significance of the major results is summarized, and perspectives for
further research are sketched.
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Chapter 2

Preliminaries: Predicate Logic

In this chapter, we briefly describe the basics of predicate logic, particularly first-order
logic. Most of the content in this chapter is summarized from [97].

2.1 Quantifiers

Predicate logic differs from propositional logic2 in a sense that means of talking about
objects in a domain are introduced. For example, statements of the form “all even num-
bers are a sum of two odd primes” can be impractical to formulate in the language of
propositional logic e.g. ϕ → σ and could have no reasons why it must be true. Hence,
predicate logic allows to use variables for ranging over objects and quantifiers viz. ∀ and
∃ (for “for all” and “there exists”, respectively). We give a few examples as follows:

• ∃xP (x) represents “there is an x with property P”;

• ∀yP (y) represents “for all y P holds”;

• ∀ε(ε > 0→ ∃n( 1
n
< ε)) represents “for all positive ε there is an n such that 1

n
< ε.

In this chapter, variables are ranged over elements of a given universe but not over
properties, relations, or properties of properties, etc.. In this way, the predicate logic
discussed in this chapter is called first-order logic (or elementary logic).

2.2 Structures

Definition 2.1. A structure is an ordered sequence 〈A,R1, . . . , Rn, F1, . . . , Fm, {ci|i ∈
I}〉, where A is a non-empty set, R1, . . . , Rn are relations on A, F1, . . . , Fm are functions
on A, the ci(i ∈ I) are elements of A (constants).

Structures are often denoted by Gothic capitals: A,B,C,D, . . . . As for examples, the
field of real numbers is represented by 〈R,+, ·,−1 , {0, 1}〉 and the ordered set of natural

2https://en.wikipedia.org/wiki/Propositional_calculus
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numbers is represented by 〈N, <〉. However, it is more traditional to write down the
constants instead of the set of constants e.g. 〈R,+, ·,−1 , 0, 1〉 instead of 〈R,+, ·,−1 , {0, 1}〉.

If we overlook the special properties of the relations and operations (e.g. commutativity
of addition on the reals), then what remains is the type of a structure, which is given by
the number of relations, functions (or operations), and their respective arguments, plus
the cardinality of constants. We define this generalization as follows.

Definition 2.2. The similarity type of a structure A = 〈A,R1, . . . , Rn, F1, . . . , Fm, {ci|i ∈
I} is a sequence 〈r1, . . . , rn; a1, . . . , am;κ〉 where Ri ⊆ Ari , Fj : Aaj → A, κ = |{ci|i ∈ I}|
(cardinality of I).

For example, the similarity types of the previous two examples are 〈−; 2, 2, 1; 2〉 and
〈2;−; 0〉, respectively. We call A a universe of A. If R ⊆ A, then we call R a property
(or unary relation). If R ⊆ A2, then we call R a binary relation. If R ⊆ An, then we call
R an n-ary relation.

Considering the limiting cases of relations and functions i.e. 0-ary relations and func-
tions. An 0-ary relation is a subset of A∅. Since A∅ = {∅}, there are two such relations
viz. ∅ and {∅} (considered as ordinals: 0 and 1). These can be also seen as truth val-
ues, which plays the role of the interpretation of propositions. On the other hand, 0-ary
functions can play the role of constants. A 0-ary function is a mapping from A∅ into A
i.e. a mapping from {∅} into A. Since the mapping has a singleton as domain, it can be
identified with the range.

2.3 The Language of a Similarity Type

Let us fix the similarity type 〈r1, . . . , rn; a1, . . . , am;κ〉 (where ri ≥ 0 and aj > 0) in this
section for convenience. The alphabet consists of the following symbols:

1. Predicate symbols: P1, . . . , Pn,$

2. Function symbols: f1, . . . , fm

3. Constant symbols: ci for i ∈ I

4. Variables: x0, x1, x2, . . . (countably many)

5. Connectives: ∨,∧,→,¬,↔,⊥,∀,∃

6. Auxiliary symbols: (, ), ,

where ∨,∧,→,¬,↔,⊥ are as defined for the propositional logic and ∀,∃ are read as the
universal and existential quantifier. In the following, we define two syntactical categories.

Definition 2.3. TERM is the smallest set X with the properties:

1. ci ∈ X(i ∈ I) and xi ∈ X(i ∈ N),
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2. t1, . . . , tai ∈ X =⇒ fi(t1, . . . , tai) ∈ X, for 1 ≤ i ≤ m.

TERM is our set of terms.

Definition 2.4. FORM is the smallest set X with the properties:

1. ⊥ ∈ X; Pi ∈ X if ri = 0; t1, . . . , tri ∈ TERM =⇒ Pi(t1, . . . , tri) ∈ X; t1, t2 ∈
TERM =⇒ t1 $ t2 ∈ X,

2. ϕ, ψ ∈ X =⇒ (ϕ � ψ), where � ∈ {∧,∨,→,↔},

3. ϕ ∈ X =⇒ (¬ϕ) ∈ X,

4. ϕ ∈ X =⇒ ((∀xi)ϕ, (∃xi)ϕ) ∈ X.

FORM is our set of formulae. The formulae introduced in 1. are called atoms. The
case of 0-ary predicate symbols (also introduced in 1.) are called proposition symbols.

As discussed in Section 2.2, a proposition symbol can be seen as a 0-ary relation i.e.
either 0 or 1. This also corresponds to the practice of propositional logic for interpreting
a proposition as either true or false. We also allow a special proposition ⊥ for the false
proposition.

As for the logical connectives, there are the basic propositional logical connectives viz.
∧,∨,→,↔ and the newly introduced quantifiers viz. ∀, ∃. They can be used to form new
formulae. To indicate the scope of a quantifier, we find the matching brackets i.e. given
((∀x)ϕ) and ((∃x)ϕ), we say that ϕ is the “scope” of a quantifier.

Properties of terms and formulae are established by inductive procedures i.e. first
we deal with the atoms and then we proceed to deal with the composite parts. These
procedures can be used to prove properties of terms and formulae.

Lemma 2.1. Let A(t) be a property of terms. If A(t) holds for variable of constant t,
and if A(t1), A(t2), . . . , A(tn) =⇒ A(f(t1, . . . , tn)), for all function symbol f , then A(t)
holds for all t ∈ TERM.

Lemma 2.2. Let A(ϕ) be a property of formulae. If

1. A(ϕ) for atomic ϕ,

2. A(ϕ), A(ψ) =⇒ A(ϕ � ψ),

3. A(ϕ) =⇒ A(¬ϕ),

4. A(ϕ) =⇒ A((∀xi)ϕ), A((∃xi)ϕ) for all i, then A(ϕ) holds for all ϕ ∈ FORM.

To improve readability, we may sometimes delete the outer brackets around ∀x and ∃x
and join strings of quantifiers e.g. ∀x1x2∃x3x4.

Example 2.1. Example of a language of type 〈2; 2, 1; 1〉. Let L,$ be predicate symbols,
p, i be function symbols, and e be a constant symbol. Then, x0, p(x1, x2), p(e, e), i(x7) are
examples of terms. Furthermore, (x0 $ x1 → x1 $ x0),∀x0∀x1(x0 $ x1 → ¬L(x0, x)1))
are examples of formulae.
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The value of a term and a formula is uniquely determined by the values of its parts.
This allows us to find its value in finitely many steps.

Definition 2.5 (Recursion on TERM). Let Var and Const be a set of variables and
constant symbols, respectively. Let A be a universe, H0 : Var∪Const→ A, Hi : Aai → A,
then there is a unique mapping H : TERM→ A such that:

• H(t) = H0(t) for variable or constant t,

• H(fi(t1, . . . , tai)) = Hi(H(t1), . . . , H(tai)).

Definition 2.6 (Recursion on FORM). Let At be a set of atoms and A be a universe. Let
Hat : At → A, H� : A2 → A (where � ∈ {∨,∧,→,↔}), H¬ : A → A, H∀ : A × N → A,
H∃ : A× N→ A. Then, there is a unique mapping H : FORM→ A such that:

• H(ϕ) = Hat(ϕ) for atomic ϕ,

• H(ϕ�ψ) = H�(H(ϕ), H(ψ)),

• H(¬ϕ) = H¬(H(ϕ)),

• H(∀xiϕ) = H∀(H(ϕ), i),

• H(∃xiϕ) = H∃(H(ϕ), i).

Next, we distinguish between “free” and “bound” variables.

Definition 2.7. The set FV(t) of free variables of term t is defined by:

• FV(xi) := {xi},
FV(ci) := ∅,

• FV(f(t1, . . . , tn)) := FV(t1) ∪ · · · ∪ FV(tn).

Definition 2.8. The set of FV(ϕ) of free variables of formula ϕ is defined by:

• FV(P (t1, . . . , tp)) := FV(t1) ∪ · · · ∪ FV(tp),
FV(t1 $ t2) := FV(t1) ∪ FV(t2),
FV(⊥) = FV(P ) := ∅ for propositional symbol P ,

• FV(ϕ � ψ) := FV(ϕ) ∪ FV(ψ),
FV(¬ϕ) := FV(ϕ),

• FV(∀xiϕ) = FV(∃xiϕ) := FV(ϕ)− {xi}.

Definition 2.9. t or ϕ is called closed if FV(t) = ∅ or FV(ϕ) = ∅, respectively. A closed
formula is also called a sentence. TERMc denotes the set of closed terms and SENT
denotes the set of sentences.
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It is worth observing that the same variable may occur free and bound. For example,
∀x1(x1 $ x2)→ P (x1) contains x1 both free and bound.

We also have substitution operators for terms and for formulae in predicate calculus.

Definition 2.10. Let s, t be terms. Then, a substitution of term t for x in term s (denoted
by s[t/x]) is defined as follows.

• y[t/x] := y if y 6≡ x; or t if y ≡ x,
c[t/x] := c,

• f(t1, . . . , tp)[t/x] := f(t1[t/x], . . . , tp[t/x]).

In the above, y ≡ x refers to “x and y are the same variables”.

Definition 2.11. Let ϕ be a formula. Then, a substitution of term t for x in formula ϕ
(denoted by ϕ[t/x]) is defined as follows:

• ⊥[t/x] := ⊥,
P [t/x] := P for proposition P ,
P (t1, . . . , tp)[t/x] := P (t1[t/x], . . . , tp[t/x]),
(t1 $ t2)[t/x] := t1[t/x] $ t2[t/x],

• (ϕ � ψ)[t/x] := ϕ[t/x] � ψ[t/x],
(¬ϕ)[t/x] := ¬ϕ[t/x],

• (∀yϕ)[t/x] := ∀yϕ[t/x] if x 6≡ y; otherwise ∀yϕ,
(∃yϕ)[t/x] := ∃yϕ[t/x] if x 6≡ y; otherwise ∃yϕ.

Definition 2.12. Let $ be a proposition symbol. Then, a substitution of formula ϕ of $
in formula σ (denoted by σ[ϕ/$]) is defined as follows:

• σ[ϕ/$] := σ if σ 6≡ $ for atomic $; otherwise ϕ,

• (σ1 � σ2)[ϕ/$] := σ1[ϕ/$] � σ2[ϕ/$],
(¬σ1)[ϕ/$] := ¬σ1[ϕ/$],
(∀yϕ)[ϕ/$] := ∀yσ[ϕ/$],
(∃yϕ)[ϕ/$] := ∃yσ[ϕ/$].

Example 2.2. Let t1 := p(x1, x2) and t2 := i(x3). Therefore, t2[t1/x1] = i(x3).

It is worth noticing that Definition 2.11 forbids substitution for bound variables. Un-
fortunately, there is another case we have to be aware of i.e. when some variables become
bound after substitution. To deal with this case, we define t is free for x in ϕ to indicate
that the free variables of t are not going to be bound after substitution in ϕ.

Definition 2.13. t is free for x in ϕ if

• ϕ is atomic,
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• ϕ := ϕ1 � ϕ2 (or ϕ := ¬ϕ1) and t is free for x in ϕ1 and ϕ2 (ϕ1, respectively),

• (ϕ := ∃yψ or ϕ := ∀yψ) and (y 6∈ FV(t) and t is free for x in ψ, where x 6≡ y).

Example 2.3. x2 is free for x0 in ∃x3P (x0, x3) whereas f(x0, x1) is not free for x0 in
∃x1P (x0, x3).

Lemma 2.3. t is free for x in ϕ ⇐⇒ the variables of t in ϕ[t/x] are not bound by a
quantifier.

There are also analogous definition and lemma for the substitution of a formula as
follows:

Definition 2.14. ϕ is free for $ in σ if

• σ is atomic,

• σ := σ1 � σ2 (or ¬σ1) and ϕ is free for $ in σ1 and σ2 (σ1, respectively),

• (σ := ∃yτ or σ := ∀yτ) and (y 6∈ FV(ϕ) and ϕ is free for $ in τ , where $ 6≡ y).

Lemma 2.4. ϕ is free for $ in σ ⇐⇒ the free variables of ϕ are in σ[ϕ/$] not bound by
a quantifier.

For simplicity, we may sometimes write down substitution informally i.e. ϕ(t) is the
result of replacing x by t in ϕ(x) and ϕ(t) is called a substitution instance of ϕ(x).

The language we have introduced so far can be used to describe structures and classes
of structures of a given type. The predicate symbols, function symbols, and constant
symbols act as names for various relations, operations, and constants, respectively. In the
following, we define how each element of |A| can be referred individually.

Definition 2.15. The extended language, L(A), of A is obtained from the language L, of
the type of A, by adding constant symbols for all elements of A. We denote the constant
symbol, belonging to a ∈ |A|, by a.

2.4 Semantics

Interpretation is the art of relating syntactic objects (i.e. strings of symbols) and state of
affairs in reality. That is, a statement σ is true in a structure if it is actually the case that
σ applies. For example, the sentence “snow is white” is true if snow is actually white.

We start by giving an example in the structure of integer numbers. That is, let structure
A = (Z, <,+,−, 0)) with the following alphabet:

• predicate symbols: $, L;

• function symbols: P,M ,

• constant symbol: 0.
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Table 2.1: Interpretation of closed terms of A

t tA

m m
P (t1, t2) tA1 + tA2
M(t) −tA

As introduced in Definition 2.15, L(A) has constant symbol m for all m ∈ Z. First, we
interpret the closed terms of L(A) i.e. the interpretation tA of t is an element of Z (cf.
Table 2.1).

Second, we interpret sentences of L(A) by assigning one of the truth values viz. 0 or 1.
These can be defined by the valuation function v as follows:

• v(⊥) = 0,

• v(t $ s) = 1 if tA = sA; otherwise 0,

• v(L(t, s)) = 1 if tA < sA; otherwise 0,

• v(ϕ � ψ) where � ∈ {∨,∧,→,↔} and v(¬ϕ) as defined for the propositional logic,

• v(∀xϕ) = min{v(ϕ[n/x])|n ∈ Z},

• v(∃xϕ) = max{v(ϕ[n/x])|n ∈ Z}.

Observe that v is uniquely determined by A. Though it may be more appropriate to use
vA, we may simply drop A for convenience. Furthermore, we may write [[ϕ]]A for vA(ϕ).
Following this convention, it may be better to write [[t]]A for tA. However, we may keep
both notations and use them interchangeably. We may sometimes drop the subscript if
no confusion can be arisen.

Example 2.4. (P (P (2, 3),M(7)))A = P (2, 3)A + M(7)A = (2
A

+ 3
A
) + (−7

A
) = 2 + 3 +

(−7) = 2.

Example 2.5. [[2 $ 1]] = 0 since 2 6= 1.

Let us now present a formal definition of interpretation for the general case. Let A =
〈A,R1, . . . , Rn, F1, . . . , Fm, {ci|i ∈ I} of a given similarity type 〈r1, . . . , rn; a1, . . . , am; |I|〉.
The corresponding language has predicate symbolR1, . . . , Rn, function symbol F 1, . . . , Fm,
and constant symbol ci. Moreover, L(A) has constant symbol a for all a ∈ |A|.

Definition 2.16. An interpretation of the closed terms of L(A) in A is a mapping (·)A :
TERMc → |A| satisfying:

• cAi = ci,
aA = a,

• (F i(t1, . . . , tp))
A = Fi(t

A
1 , . . . , t

A
p ) where p = ai.
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Definition 2.17. Let ϕ be a sentence of L(A) in A. An interpretation of ϕ is a mapping
[[·]]A : SENT→ {0, 1} satisfying:

• [[⊥]]A := 0,
[[R]]A := R (i.e. 0 or 1),

• [[Ri(t1, . . . , tp)]]A := 1 if 〈tA1 , . . . , tAp 〉 ∈ Ri where p = ri; otherwise 0,
[[t1 $ t2]]A := 1 if tA1 = tA2 ; otherwise 0,

• [[ϕ ∧ ψ]]A := min([[ϕ]]A, [[ψ]]A),
[[ϕ ∨ ψ]]A := max([[ϕ]]A, [[ψ]]A),
[[ϕ→ ψ]]A := max(1− [[ϕ]]A, [[ψ]]A),
[[ϕ↔ ψ]]A := 1− |[[ϕ]]A − [[ψ]]A|,
[[¬ϕ]]A := 1− [[ϕ]]A

• [[∀xϕ]]A := min{[[ϕ[a/x]]]A | a ∈ |A|}
[[∃xϕ]]A := max{[[ϕ[a/x]]]A | a ∈ |A|}

When [[ϕ]]A = 1, we write A |= ϕ which can be read as “ϕ is true (or valid) in A”. The
relation |= is called the satisfaction relation.

So far, we have only defined truth for sentences of L(A). To deal with arbitrary formu-
lae, we extend |= to the following.

Definition 2.18. Let FV(ϕ) = {z1, . . . , zk}. Then, Cl(ϕ) := ∀z1 . . . zkϕ is the universal
closure of ϕ (assume that the order of variable z1 . . . zk is fixed in some way).

Definition 2.19. 1. A |= ϕ iff A |= Cl(ϕ),

2. |= ϕ iff A |= ϕ for all A (of the appropriate type),

3. A |= Γ iff A |= ψ for all ψ ∈ Γ,

4. Γ |= ϕ iff (A |= Γ =⇒ A |= ϕ) where Γ ∪ {ϕ} consists of sentences.

Traditionally, we call A a model of σ if A |= σ. We call A a model of Γ if A |= Γ. We
say that ϕ is true (or valid) if |= ϕ. Furthermore, ϕ is a semantic consequence of Γ if
Γ |= ϕ i.e. ϕ holds in each model of Γ.

The properties of the satisfaction relation are in understandable and convenient corre-
spondence with the intuitive meaning of the connectives (cf. the following lemma).

Lemma 2.5. If we restrict ourselves to sentences, then

1. A |= ϕ ∧ ψ ⇐⇒ A |= ϕ and A |= ψ,

2. A |= ϕ ∨ ψ ⇐⇒ A |= ϕ or A |= ψ,

3. A |= ¬ϕ⇐⇒ A 6|= ϕ,

4. A |= ϕ→ ψ ⇐⇒ (A |= ϕ =⇒ A |= ψ),
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5. A |= ϕ↔ ψ ⇐⇒ (A |= ϕ⇐⇒ A |= ψ),

6. A |= ∀xϕ⇐⇒ A |= ϕ[a/x], for all a ∈ |A|,

7. A |= ∃xϕ⇐⇒ A |= ϕ[a/x], for some a ∈ |A|.

The above lemma also says that we can replace the connectives by their analogues in
the meta-language and interpret the atoms by checking the relations in the structure.

2.5 Simple Properties of Predicate Logic

We first consider the generalizations of De Morgan’s laws as follows.

Theorem 2.1. 1. |= ¬∀xϕ↔ ∃x¬ϕ;

2. |= ¬∃xϕ↔ ∀x¬ϕ;

3. |= ∀xϕ↔ ¬∃x¬ϕ;

4. |= ∃xϕ↔ ¬∀x¬ϕ.

The following theorem says that the order of quantifiers of the same sort is not relevant
and quantification over a variable that does not occur can be deleted.

Theorem 2.2. 1. |= ∀x∀yϕ↔ ∀y∀xϕ;

2. |= ∃x∃yϕ↔ ∃y∃xϕ;

3. |= ∀xϕ↔ ϕ if x 6∈ FV(ϕ);

4. |= ∃xϕ↔ ϕ if x 6∈ FV(ϕ).

Ones may observe from Definition 2.17 that ∀ and ∃ are generalizations of ∧ and ∨,
respectively. It is not surprising that ∀ and ∃ can distribute over ∧ and ∨, respectively.
However, ∀ and ∃ can distribute over ∨ and ∧ only if a certain condition is met.

Theorem 2.3. 1. |= ∀x(ϕ ∧ ψ)↔ ∀xϕ ∧ ∀xψ;

2. |= ∃x(ϕ ∨ ψ)↔ ∃xϕ ∨ ∃xψ;

3. |= ∀x(ϕ(x) ∨ ψ)↔ ∀xϕ(x) ∨ ψ if x 6∈ FV(ψ);

4. |= ∃x(ϕ(x) ∧ ψ)↔ ∃xϕ(x) ∧ ψ if x 6∈ FV(ψ).

It is worth noting that ∀x(ϕ(x)ψ(x)) → ∀xϕ(x) ∨ ∀xψ(x) and ∃xϕ(x) ∧ ∃xψ(x) →
∃x(ϕ(x) ∧ ψ(x)) are “not” true.

The following theorem spells out that one can replace a bound variable by a “fresh”
one, which enable us to pull out quantifiers from a formula.
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Theorem 2.4 (Change of Bound Variables). If x, y are free for z in ϕ and x, y 6∈ FV(ϕ),
the following holds:

• |= ∃xϕ[x/z]↔ ∃yϕ[y/z];

• |= ∀xϕ[x/z]↔ ∀yϕ[y/z].

For example, ones can use the above theorem as follows: ∀xϕ(x)∨∀xψ(x)⇐⇒ ∀xϕ(x)∨
∀yψ(y)⇐⇒ ∀xy(ϕ(x) ∨ ψ(y)).

2.6 Semantic Tableau

In the preceding sections, we always look at the logic from a semantic point of view.
However, this is not the only possible viewpoint. In this section, we will explore the
non-semantic approach i.e. by setting up a system for deriving formula ϕ from a given
set Γ of formulae (denoted by Γ ` ϕ). There are many available such systems and we are
going to introduce a so-called semantic tableau here [98].

Definition 2.20. A signed formula is an expression of the form Tϕ or Fϕ where ϕ is a
formula. A signed formula Tϕ is called true if ϕ is true and false otherwise. On the other
hand, a signed formula Fϕ is called true if ϕ is false and true otherwise.

Definition 2.21. A signed tableau is a rooted dyadic tree where each node carries a
signed formula.

If τ is a signed tableau, an immediate extension of τ is a larger tableau τ ′ obtained by
applying a tableau rule to a finite path of τ .

Definition 2.22. A path of a tableau is said to be closed if it contains a conjugate pair
of formulae i.e. Tϕ and Fϕ. A path of a tableau is said to be open if it is not closed. A
tableau is said to be closed if each of its path is closed.

To show that Γ ` ϕ by semantic tableau, we form a signed tableau starting with
Tψ1, . . . ,Tψk,Fϕ, where ψ1, . . . , ψk ∈ Γ. If the tableau is closed, then ϕ is derivable from
Γ. If Γ = ∅ i.e. ` ϕ, we form a signed tableau with Fϕ and conclude ` ϕ holds if the
tableau is closed. Figure 2.1 depicts tableau rules for propositional logic. To cope with
predicate logic, we have to equip with additional rules for the quantifiers (cf. Figure 2.2)
where t is a closed term and c is a fresh constant.

Figure 2.3 depicts that we can employ semantic tableau to show ` (∃x(P (x)∨Q(x))↔
(∃xP (x) ∨ ∃xQ(x))). This holds because the tableau is closed (cf. Definition 2.22)

It is worth mentioning that semantic tableau is sound and complete i.e. the relation |=
and ` coincide. We state this in the following theorems.

Theorem 2.5 (Soundness). Γ ` ϕ =⇒ Γ |= ϕ.

Theorem 2.6 (Completeness). Γ |= ϕ =⇒ Γ ` ϕ.
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Figure 2.1: Rules used in propositional logic

Figure 2.2: Rules used in predicate logic

While semantic tableau in propositional logic is decidable i.e. we can test if Γ ` ϕ
for arbitrary Γ and ϕ, this is not the case for first-order predicate logic. If Γ 6|= ϕ, then
semantic tableau may be not terminated. This is not a deficiency of the tableau method
since first-order predicate logic is known to be undecidable (cf. Section 3.3). This negative
result gives unimpressiveness to use first-order predicate logic to model some knowledge
base systems. In the next chapter, we will briefly introduce a decidable fragment of first-
order logic which has been immensely studied in the area of ontology development called
Description Logics.
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Figure 2.3: Example of using semantic tableau
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Chapter 3

Fundamental of Description Logics

Description Logics (DLs) [6–8] are a family of logic-based knowledge representation for-
malisms that can be used to represent and reason about the knowledge of an application
domain in a structured and well-understood way. They are based on a common family
of languages, called description languages, which specifies a set of concept constructors
to build concept descriptions and role descriptions. These concept and role descriptions
may be used to set up a knowledge base in forms of terminology (TBox) and assertions
(ABox), and also, to reason about the content of a knowledge base, by a knowledge rep-
resentation system based on DLs (or shortly, DL system). Generally, an architecture of
DL systems can be sketched as in Figure 3.1.

Figure 3.1: Architecture of a DL system

Intuitively, a knowledge base (KB) is composed of two distinct parts, i.e. a TBox
representing general knowledge about the problem domain and an ABox representing
knowledge about a specific situation. As informally exemplified in Chapter 1, a statement
like Endocarditis ≡ Inflammation u ∃hasLocation.Endocardium is contained in the TBox
and statements like onMedication(bob, anonym1) and AntifungalAntibiotics(anonym1) are
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contained in the ABox. A formal discussion on these two parts will be continued in Section
3.2.

Figure 3.1 also shows that the general architecture of a DL system interacts with users
via application programming interface (API) for several purposes, e.g. querying the knowl-
edge base and modifying the knowledge base by adding/retracting concepts, roles, and
assertions. However, many systems, in addition of providing APIs, may also provide an
escape hatch by which application programs can operate on a knowledge base in arbitrary
ways [6].

In the first section, we introduce core elements of arbitrary description languages that
are building-blocks of concept descriptions and role descriptions. Then, we give definitions
of ontological axioms which can be distinguished into the two main groups, viz. a TBox
and an ABox (cf. Section 3.2). Section 3.4 describes the most widely used DL reasoning
services. Finally, a variety of reasoning algorithms which can be used to deal with the
reasoning services are discussed in Section 3.5.

3.1 Description Languages

The foundations of description languages are concept descriptions and role descriptions
(concepts and roles, for short, respectively). Intuitively, a concept represents a class of
objects sharing common characteristics whereas a role represents a binary relationship
between objects. The language for building concepts and roles is a characteristic of each
DL system and different systems are distinguished by their description languages. As we
shall see soon, the description languages have a model-theoretic semantics. Hence, it is
worth noting that concepts and roles can be identified by formulae in First Order Logic
or its slight extension in some cases (see Section 3.3 and [6] for such discussions).

Basically, we assume three disjoint sets of concept names CN, role names RN, and indi-
vidual names Ind. Description languages are distinguished by a set of concept constructors
they provide. These constructors are used to inductively define concepts and roles. It is
obvious that the more concept constructors a particular DL provides, the more expressive
concepts and roles can be constructed. In abstract notations, we use A and B to de-
note atomic concepts, C and D to denote concept descriptions1, r to denote atomic roles,
and a and b to denote individuals. Table 3.1 lists common concept constructors that are
widely considered in the literature. The second and the third columns show the syntax
and semantics elements, respectively. The attributive language AL was introduced in [99]
as a minimal language that is of practical interest. AL provides exactly the constructors
as in the table except existential quantification (∃r.C).

The first naming scheme for DLs was also proposed in [99]: starting from the DL AL,
additional constructors are indicated by appending corresponding letters; e.g. ALC is
obtained from AL by featuring the complement operator (¬) and ALE is obtained from
AL by adding existential quantification (∃r.C). It is worth noting that ALC (stands for
Attributive Language with Complement) is considered as the smallest Boolean-closed DL.2

1The precise definition of concept description is given later.
2Strictly speaking, a DL must provide at least one quantifier, i.e. either existential or universal. Thus,
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Constructor name Syntax Semantics

top concept > ∆I

bottom concept ⊥ ∅
conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

atomic negation ¬A ∆I \ AI

negation ¬C ∆I \ CI

nominal {a1, . . . , an} {aI1 , . . . , aIn}
limited existential quantification ∃r.> {d ∈ ∆I | ∃e : (d, e) ∈ rI}
existential quantification ∃r.C {d ∈ ∆I | ∃e : (d, e) ∈ rI ∧ e ∈ CI}
universal restriction ∀r.C {d ∈ ∆I | ∀e : (d, e) ∈ rI → e ∈ CI}

Table 3.1: Syntax and semantics of concept constructors.

There are also a number of interesting sub-Boolean DLs1, most of which disallow dis-
junction and (full) negation such as FL0 and EL. For historical naming reasons, FL0 is
obtained by disallowing atomic negation and limited existential quantification from AL;
and also, EL is obtained by disallowing atomic negation and universal restriction from
AL. Both are sub-languages of AL that are practical interest due to their practical effi-
ciency and sufficient expressivity. The main investigation of this thesis starts from these
two languages. In the following, we provide their formal definitions and discuss on their
corresponding reasoning techniques later in the remaining of this chapter.

Let L be a specific DL. We denote the set of concept descriptions for DL L by Con(L).
In the following, we give formal definitions for the syntax and semantics of FL0 (cf.
Definition 3.1) and EL (cf. Definition 3.2).

Definition 3.1 (FL0 syntax). Let CN be a set of concept names and RN be a set of role
names. The sets of FL0 concept descriptions (denoted by Con(FL0)) is the smallest sets
such that:

1. If A ∈ CN ∪ {>}, then A ∈ Con(FL0);

2. If C,D ∈ Con(FL0) and r ∈ RN, then C uD, ∀r.C ∈ Con(FL0).

Definition 3.2 (EL syntax). Let CN be a set of concept names and RN be a set of role
names. The sets of EL concept descriptions (denoted by Con(EL)) is the smallest sets
such that:

1. If A ∈ CN ∪ {>}, then A ∈ Con(EL);

the logic with the first five constructors in Table 3.1 is not a DL as it is equivalent to the propositional
logic.

1Sub-Boolean DLs are DLs that are not equipped with all Boolean operators
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2. If C,D ∈ Con(EL) and r ∈ RN, then C uD, ∃r.C ∈ Con(EL).

In the following, we give examples of concepts expressed in FL0 and EL.

Example 3.1. The concept of Herbivore, whose members are animal which eat only plants,
may be expressed as: Animal u ∀eat.Plant. Similarly, the concept of Carnivore, whose
members are animal which eats only animals, may be expressed as: Animalu∀eat.Animal.
Finally, the concept of Omnivore which eats animals and plants, may be expressed as:
Animal u ∃eat.Animal u ∃eat.Plant.

Example 3.2. The concept of Endocarditis, whose members are an inflammation which
has location on an endocardium tissue, may be expressed using concept names and role
names in Snomed ct as: Inflammation u ∃hasLocation.Endocardium.

We can agree that the concepts Herbivore and Carnivore are FL0 concepts because,
following Definition 3.1, it is obvious that:

1. Animal is FL0 concept;

2. ∀eat.Plant and ∀eat.Animal are FL0 concepts;

3. Finally, Animal u ∀eat.Plant and Animal u ∀eat.Animal are FL0 concepts.

On the other hand, the concepts Omnivore and Endocarditis can be shown to be EL
concepts based on the similar steps together with Definition 3.2.

Though sub-Boolean DLs are not very expressive, they are also of theoretical interest
due to their tractability. Table 3.2 shows the worst-case complexity of concept satisfiability
problem1 in ALC and the subsumption problem in FL0 and EL. It is worth noting that
the satisfiability problem is trivial in FL0 and EL since any concept expressed in these
languages is satisfiable. The table also shows that EL exhibits the most robust behavior
w.r.t. every type of terminology.

Terminology ALC FL0 EL
the empty TBox PSpace-complete [99] polynomial [100] polynomial [101]
acyclic TBoxes PSpace-complete [99] coNP-complete [27] polynomial [102]
general TBoxes ExpTime-complete [103] ExpTime-complete [63] polynomial [104]

Table 3.2: Comparing the Description Logics ALC, FL0, and EL

It should be also noted that these results are not merely theoretical interest. In fact,
they also provide sufficiently expressivity. For instance, the Systematized Nomenclature of
Medicine, Clinical Terms (aka. Snomed ct)2 [105,106] employs EL with an acyclic TBox
extended with role hierarchy axioms. Furthermore, the Gene Ontology [107] can be seen

1Section 3.4 gives precise definitions of most widely used reasoning services in DLs.
2http://bioportal.bioontology.org/ontologies/SNOMEDCT
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as an acyclic EL TBox. These motivate us to find tractable DLs for our targeted problem,
i.e. concept similarity. It is worth noting that FL0 and EL are the minimal candidate
DLs to pursue a polynomial complexity since they would not inherit NP-hardness from
the propositional logic [15].

Like any DLs, the semantics of FL0 and EL concepts are defined through interpretations
as shown in the following.

Definition 3.3 (Semantics of FL0 and EL). An interpretation I = (∆I , ·I) consists of
a non-empty set ∆I of interpretation domain and an interpretation function ·I , which
assigns to each concept name A ∈ CN a subset AI ⊆ ∆I and to each role name r ∈ RN
a binary relation rI ⊆ ∆I × ∆I . The interpretation function is extended to a concept
descriptions by inductive definitions given in the right column of Table 3.1.

An interpretation I is said to be a model of a concept C, or I models C, iff the
interpretation of C in I, i.e. CI , is not empty, i.e. CI 6= ∅.

Example 3.3. Given a concept Animal u ∀eat.Plant, we can find an interpretation I =
(∆I , ·I) such that I is a model of the concept as follows:

1. Suppose an interpretation domain ∆I = {cow1, cow2, cow3, grass1};

2. Suppose AnimalI = {cow1, cow2, cow3}, PlantI = {grass1}, and eatI = {(cow1, grass1)
, (cow2, cow3)};

3. Using the semantics given in Table 3.1, we know (∀eat.Plant)I = {cow1, cow3};

4. Using the semantics given in Table 3.1, we know (Animalu∀eat.Plant)I = {cow1, cow3}.

Since (Animalu∀eat.Plant)I 6= ∅, then the defined interpretation I = (∆I , ·I) is a model
of the concept Animal u ∀eat.Plant.

3.2 DL Knowledge Base

We have seen how concept descriptions are built through the use of concept constructors.
Now, ones may want to form statements representing the general knowledge about the
problem domain and the knowledge about a specific situation. For example,

Herbivore ≡ Animal u ∀eat.Plant

saying that “a herbivore is an animal which eats only plants”. Or, the statements

Herbivore(cow1) and Herbivore(cow3)

saying that “cow1 is a herbivore” and “cow3 is a herbivore”, respectively.
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Constructor name Syntax Semantics

concept definition A ≡ C AI = CI

concept inclusion C v D CI ⊆ DI

concept disjointness C uD v ⊥ CI ∩DI = ∅
domain restriction domain(r) v C {d ∈ ∆I | ∃e : (d, e) ∈ rI} ⊆ CI

range restriction range(r) v C {e ∈ ∆I | ∃d : (d, e) ∈ rI} ⊆ CI

functionality functional(r) ∀d ∈ ∆I : ]{e ∈ ∆I | (d, e) ∈ rI} ≤ 1

reflexivity reflexive(r) ∀d ∈ ∆I : (d, d) ⊆ rI

transitivity transitive(r) ∀d, e, f ∈ ∆I : (d, e), (e, f) ∈ rI → (d, f) ∈ rI

role hierarchy r v s rI ⊆ sI

role inclusion r1 ◦ · · · ◦ rk v s rI1 ◦ · · · ◦ rIk ⊆ sI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

Table 3.3: Syntax and semantics of ontological constructors

These statements can be formulated by using a terminological formalism and an asser-
tional formalism. Interestingly, such a formalism is also characterized by a set of ontologi-
cal constructors. Table 3.3 lists most commonly used constructors in the literature where
the middle and the right column show their syntax and semantics.

According to the table, ontological constructors can be divided into three main groups,
viz. concept axiom constructors, role axiom constructors, and assertion constructors.
Ones may notice that the above examples also conform to these three groups. The state-
ment Herbivore ≡ Animalu∀eat.Plant employs the concept definition constructor, which is
a concept axiom constructor, and also, Herbivore(cow1) and Herbivore(cow3) employs the
concept assertion, which is one of assertion constructors. We note that, for the rest of
the thesis, we adopt these notations (i.e. font styles) of concept names, role names, and
individual names throughout the thesis.

In the following subsections, we give formal definitions of a DL knowledge base and
its basic components. Informally speaking, a terminological formalism (TBox) captures
definitions, relations, and constraints about terminology (concepts and roles) whereas
an assertional formalism (ABox) captures assertional statements about individuals w.r.t.
the TBox. We note that some work in the literature may regard role axioms as another
component called RBox due to some specific reasons e.g. the style of internalization in
TBox does not involve role axioms.
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3.2.1 TBox

As aforementioned, a TBox captures general knowledge about the problem domain. It is
basically a set of statements about how concepts are related to each other. For example,
“endocarditis is an inflammation that has location on endocardium tissue”. This can be
expressed as Endocarditis ≡ Inflammation u ∃hasLocation.Endocardium. Formally, a TBox
is defined as follows.

Definition 3.4 (TBox). Let L be a specific DL, A ∈ CN, and C ∈ Con(L). Then, A ≡ C
and A v C are called a concept definition and a primitive concept definition, respectively.
Let B denote either ≡ or v. Then, TBox T is a finite set of (possibly primitive) concept
definitions. A concept definition A B C is unique if, for each A ∈ CN, there is at most
one concept definition AB C for some C ∈ Con(L).

We call A directly uses B in T if A B B occurs in T and we define uses to be the
transitive closure of the relation directly uses. Then, a concept definition AB C is cyclic
if A uses itself. Otherwise, we call such definition an acyclic concept definition. TBox T
is called unfoldable if all concept definitions are unique and acyclic definitions.

A concept name P in T is said to be undefined if it is neither fully defined nor primitively
defined in T .

An interpretation I is a model of a concept definition A ≡ C iff AI = CI and is a
model of a primitive concept definition A v C iff AI ⊆ CI . I is a model of T iff it is a
model of every definition AB C in T .

Given an unfoldable TBox T , concept names occurring on the left-hand side of a concept
definition are called defined concept names (denoted by CNdef) whereas the others are
called primitive concept names (denoted by CNpri). The name unfoldable is motivated
by the fact that, in such a TBox T , T can be transformed into an equivalent one T ′ by
substituting all the defined concept names in concept descriptions with their definitions
until only primitive concept names remain. In particular, for a concept definition defined
in T by an axiom A ≡ D, the procedure is simply to replace A with D whenever if occurs
in C, and then to recursively unfold D. For a “primitive” concept definition defined in T
by an axiom A v D, the procedure is slightly more complex. Whenever A occurs in C, it
is replaced with the concept X uD where X is a new concept name not occurring in T
or C. After that, D is recursively unfolded. We note that X represents the unspecified
characteristics that differentiate if from D. Such unfolded concepts which remain only
primitive concept names are called fully expanded concepts. This transformation is called
unfolding and we use Unfold(C, T ) to denote that the concept C is unfolded w.r.t. T .

When T is unfolded to T ′, each defined concept name in T ′ is an independent concept
description in a sense that the TBox itself can be disregard. From a computational point
of view, unfoldable TBoxes are interesting since they may allow for the use of simplified
reasoning techniques (cf. Table 3.2) and reasoning in the presence of a TBox is often
harder than that without a TBox (or an empty TBox).

A much more expressive formalism of TBox is called a general TBox where each axiom is
called a general concept inclusion. Informally, a general concept inclusion is a statement
like this form: ∃married.Human v Human saying that “a human is only married to a
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human”. This general formalism is supported by most state-of-the-art DL reasoners. In
the following, we gives a formal definition for a general TBox.

Definition 3.5 (General TBox). Let L be a specific DL and C,D ∈ Con(L). Then, a
general concept inclusion (GCI) is of the form C v D. Then, a general TBox is a finite
set of GCIs.

An interpretation I is called a model of a GCI C v D iff CI ⊆ DI . I is a model of a
general TBox T iff it is a model of every GCI in T .

It should be also noted that general TBoxes are more general than unfoldable TBoxes
since GCIs can be used to express (primitive) concept definitions. In particular, a primitive
concept definition is a special form of GCI whereas a concept definition can be expressed
by means of two GCIs, i.e. A ≡ C with A v C and C v A.

It is also worth noting that, following [108], the semantics we have studied so far is called
descriptive semantics. This semantics can produce counter-intuitive results when a TBox
contains cyclic dependency. In such a case, the so-called fixpoint semantics [40, 108] is
recommended to use. However, the descriptive semantics is adopted in this thesis because
of its wide acceptance as the most appropriate one [109,110].

Apart from concept definitions and inclusions, there are also interesting and important
ontological constructors. Some of them are listed in the upper part of Table 3.3. In some
cases, one constructor can be simulated by another. For instance, a domain restriction
domain(r) v C can be expressed by the GCI ∃r.> v C. Also, reflexivity, transitivity,
and role hierarchy are special forms of role inclusion1, i.e. ε v r, r ◦ r v r, and r v s,
respectively. Table 3.4 presents various DLs with their supported constructors, where 3

denotes optional features that may or may not be supported.

3.2.2 ABox

Intuitively, an ABox describes a specific situation (w.r.t. individuals) of an application
domain in terms of concepts and roles. This component is alternatively called world
description. An ABox can contain two kinds of axiom. That is, the first is for asserting
that an individual is an instance of a given concept and the second kind is for asserting
that a pair of individuals is an instance of a given role. As seen, a statement “bob is a
Man and is married to jane who is a Professor” can be represented as:

(Human uMale)(bob) married(bob, jane) Professor(jane)

In the following, we give a formal definition of an ABox.

Definition 3.6 (ABox). Let L be a specific DL, C ∈ Con(L), r ∈ RN, and a, b ∈ Ind.
Then, an assertional axiom is of the form C(a) or r(a, b). Then, an ABox A is a finite set
of assertional axioms.

1Sometimes role axioms are regarded as another component called RBox (cf. page 34).
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DL dialects L0 EL FL0 ELH ALC SHIF SROIQ
top concept 4 4 4 4 4 4 4

bottom concept 4 4 4

conjunction 4 4 4 4 4 4 4

disjunction 4 4 4

negation 4 4 4

nominal 4

exist. restrictions 4 4 4 4 4

value restrictions 4 4 4 4

concept definition 3 3 3 3 3 3 3

concept inclusion 3 3 3 3 3 3 3

domain restriction 3 3 3 3 3 3

concept disjointness 3 3 3

range restriction 3 3 3

functionality 4 4

reflexivity 4

transitivity 4 4

role hierarchy 4 4 4

role inclusion 4

concept assertion 3 3 3 3 3 3 4

role assertion 3 3 3 3 3 4

Table 3.4: Logical constructors in various DLs

An interpretation I is a model of C(a)1 iff aI ∈ CI and is a model of r(a, b) iff
(aI , bI) ∈ rI . I is a model of an ABox A iff it is a model of every axiom in A.

An Abox A also has a special interpretation IA = (∆IA , ·IA) called canonical interpre-
tation [6]. In general, any canonical model should be a representative and small model
(which can be extended to other models). Such a model can be constructed according to
the following definition.

Definition 3.7 (Canonical Interpretation). Let A be an ABox and ∆IA be a non-empty
finite set of the domain. Then, a canonical interpretation IA is induced by A as follows:

1. The domain ∆IA of IA consists of all individual names occurring in A;

2. For all atomic concepts A, we define AIA = {x | A(x) ∈ A}; and

3. For all roles r, we define rIA = {(x, y) | r(x, y) ∈ A}.

There are two common assumptions about the ABox. The first one is the so-called
unique name assumption (UNA), i.e. if a, b ∈ Ind are distinct individual names, then

1Several other notations for writing axioms can be found in the literature, e.g. a : C and 〈a, b〉 : r
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aI 6= bI . The second one is called the open world assumption. This is inherent in the fact
that an ABox may have many models, only some of them are constrained by assertions.
For example, A = {Student(ken)} expresses that ken is a Student in all models. In
particular, ken is the only one student in some models whereas there are other students
in other models.

3.2.3 Knowledge Base

Having defined an TBox and an ABox, we are now ready to give the formal definition of a
DL ontology. As aforementioned, an ontology consists of two parts, viz. a terminological
part and an assertional part. Though the assertional part often boils down to an ABox
A as defined above, the terminological part is more flexible. For example, some DLs only
allow for an unfoldable TBox, some may allow for a general TBox, and also, different DLs
may employ different logical constructors (cf. Table 3.4).

Definition 3.8 (Knowledge Base). A DL knowledge base (KB) is a pair (T ,A) where T
is a TBox and A is an ABox.

An interpretation I is a model of a knowledge base K = (T ,A) iff I is a model of T
and I is a model of A. Let T , A, and ϕ denote a TBox, an ABox, and a (terminological
or assertional) axiom, respectively. Conventionally, we write I |= K, I |= T , I |= A, and
I |= ϕ to denote that I is a model of K, T , A, and ϕ, respectively.

It should be also noted that when a knowledge base does not contain an ABox, i.e.
A = ∅, we may denote the knowledge base by T . This case may appear in practice since
some ontologies, e.g. the medical ontology Snomed ct, do not have the ABox.

3.3 Description Logics as First Order Fragments

As shown in Section 1.2, it is easily seen that both TBox axioms and ABox axioms can
be translated into FOL formulae in a satisfiability-preserving way; and thus, DLs can be
seen as notational variants of fragments of FOL. Indeed, it is well-known that most of
DLs are fragments of FOL. This means that DL interpretations have the same structure
as FOL interpretations if we view individual names as constants, concept names as unary
predicates, and role names as binary predicates. Under this viewpoint, we can design a
syntactical translation τ which, applied to a DL axiom α, yields a FOL formula τ(α) such
that the model sets of α and τ(α) coincide. In the following, we discuss the mentioned
translation and relate the results to well-known decidable fragments of FOL.

3.3.1 First Order Translation

We provide the definition of φ which outputs FOL formulae corresponding to DL ALCH1.
Technically, every ALCH knowledge base KB can be translated via φ to a theory φ(KB)

1Similar translations can be applied for more expressive DLs but we omit to discuss here.
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in FOL. Hence, we define

φ(KB) =
⋃
α∈KB

φ(α) (3.1)

i.e. we translate each axiom in KB separately to a FOL formula. Since axioms in DL
knowledge base are inductively constructed from concept descriptions together with on-
tological constructors, two translation steps are to be done viz. a translation for concept
description level and another one for ontological axiom level.

First, we define auxiliary function φC(y) for translating any concept C to a FOL for-
mula, where y is a new variable. Each type of concepts is translated as follows:

φA(y) = A(y) iff A is atomic concept.

φCtD(y) = φC(y) ∨ φD(y)

φCuD(y) = φC(y) ∧ φD(y)

φ¬C(y) = ¬φC(y)

φ∃r.C(y) = ∃x.r(y, x) ∧ φC(x)

φ∀r.C(y) = ∀x.r(y, x)→ φC(x)

Second, we define φ to translate each DL axiom α in KB (cf. Equation 3.1) based on
the above functions as follows:

φ(r v s) = ∀x, y(r(x, y)→ s(x, y))

φ(C v D) = ∀x(φC(x)→ φD(x))

φ(C ≡ D) = ∀x(φC(x)↔ φD(x))

φ(C(a)) = φC(x)[x/a]

φ(r(a, b)) = r(x, y)[x/a, y/b]

where [xi/a] denotes the substitution of an occurrence of x for FOL constant a; and also,
[x/a, y/b] denotes the “simultaneous” substitution of each occurrence of x, y for FOL
constant a, b, respectively.

Though DL knowledge base can be translated into FOL, the variable-free syntax of DLs
is much more concise [9]. This also lends itself easily to the development of algorithms.

3.3.2 Decidable First Order Fragments

As aforementioned, most of DLs can be seen as “decidable” fragments of FOL i.e. preserv-
ing the decidability of the satisfiability problem in FOL. Several well-known fragments
include two variable logic (denoted by FO2)1 [111], the guarded fragment [112], fluted
logic [113, 114], and the dual of Maslov’s class K [115] (see also [116] for detailed survey
of these fragments). Here, we review FO2, which is often associated with DLs.

Historically, after FOL was independently shown to be undecidable by Church [117]
and Turing [118] in 1936 and 1937, respectively, logicians had an ambitious to delineate

1This may be sometimes denoted by L2 in the literature.
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the boundary between decidable and undecidable fragments of FOL. One way to classify
syntactic fragments is to partition formulae based on the number of variables. This way is
known as k-variable logic (denoted by FOk), i.e. relational first-order formulae containing
at most k different individual variables, introduced by Henkin [119].

Decidability of FO2 without equality and with equality were first shown by Scott [120]
and Mortimer [111], respectively. As we can observe from Section 3.3.1, ALCH knowledge
base can be expressed by first-order formulae with just two variables i.e. it is contained in
FO2. With appropriately reusing variable names, any ALCH concept can be translated
into a FO2 formula. For example, a direct translation of ∀r.(∃r.A) yields the formula
∀x1(r(x0, x1)→ ∃x2(r(x1, x2)∧A(x2))). Since the subformula ∃x2(r(x1, x2)∧A(x2)) does
not contain x0, then we can rename the bound variable x2 to x0 i.e. ∀x1(r(x0, x1) →
∃x0(r(x1, x0) ∧ A(x0))) which uses only two variables. This connection was clearly in-
vestigated in [44]. It also shows that any extension of ALCH by constructors that can
be expressed with the help of only two variables and its sublogic such as FL0 and ELH
yields a decidable DLs. Number restrictions is an example that cannot be expressed
within FO2. Fortunately, this can be expressed by an extension of FO2 with counting
quantifiers (denoted by C2), which has shown to be decidable in [121].

3.4 Reasoning Services

A DL system goes beyond storing TBox axioms and ABox axioms. Indeed, it is able to
perform specific kinds of reasoning services. Typically, reasoning in a DL knowledge base
is a process of discovering implicit knowledge entailed by the knowledge base.

Basically, different kinds of reasoning services are defined as logical inferences. In
this section, we define reasoning services w.r.t. a knowledge base. Later on, we may
consider special cases where an TBox or/and an ABox is empty or where an TBox satisfies
additional constraints, such as being unfoldable.

Definition 3.9 (KB Consistency). Let K = (T ,A) be a DL knowledge base where T be
a TBox and A be an ABox. K is called consistent if it has a model.

Definition 3.10 (Concept Satisfiability). Let L be a specific DL, K be a DL knowledge
base, and C ∈ Con(L). Then, a concept C is called satisfiable w.r.t. K if there is a model
I of K with CI 6= ∅.

Definition 3.11 (Concept Subsumption). Let L be a specific DL, K be a DL knowl-
edge base, and C,D ∈ Con(L). Then, a concept D subsumes a concept C w.r.t. K
(denoted by K |= C v D or C vK D) if CI ⊆ DI holds for all models I of K.

Definition 3.12 (Concept Equivalence). Let L be a specific DL, K be a DL knowl-
edge base, and C,D ∈ Con(L). Then, two concepts C,D are equivalent w.r.t. K
(denoted by K |= C ≡ D or C ≡K D) if K |= C v D and K |= D v C.

Definition 3.13 (Instance Checking). Let L be a specific DL, K be a DL knowledge
base, C ∈ Con(L), and a, b ∈ Ind. An individual a and a pair of individuals (a, b) are an
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instance of a concept C and an instance of a role r w.r.t. K (denoted by K |= C(a) and
K |= r(a, b), respectively) if aI ∈ CI and (aI , bI) ∈ rI , respectively, for all models I of K.

The reasoning services introduced in Definition 3.9 - 3.13 are called basic reasoning
services and should be supported by most DL systems. There are also additional services
which could be implemented by a finite number of calls to the basic services. These are
formally defined as follows:

Definition 3.14 (Ontology Classification). Let K be a DL knowledge base and CN(K)
be a set of concept names occurring in K. Then, an ontology classification of K is the
identification of subsumption between all pairs of concept names in K, i.e. for all A,B ∈
CN(K), determines whether or not K |= A v B.

Modern DL systems often represent the result of an ontology classification in the so-
called directed acyclic graph (DAG), where a directed edge links a concept name to an
immediate subsumer. This graph is referred to as the concept hierarchy.

In the following, we give another formal definition which is stemmed from the instance
checking. This service retrieves all individuals in a DL knowledge base that are instances
of a particular concept name.

Definition 3.15 (Instance Retrieval). Let L be a specific DL, K be a DL knowledge base,
CN(K) be a set of concept names in K, and A ∈ CN(K). Then, an instance retrieval for
A is the computation of all individuals a ∈ Ind such that K |= A(a).

The above basic reasoning services may depend on each other. If L is closed under
negation, i.e. the complement of any L concept is also an L concept, then all basic
reasoning services can be reduced to knowledge base consistency (cf. Definition 3.9)
[122]. For example, ones can show C vK D by showing that (T , (C u¬D)(x)), where x is
an arbitrarily chosen individual name, is not consistent. This kind of reduction method is
called refutation, which gives an advantage to reuse consistency checking algorithms for
other reducible problems.

Another technique is eliminating the ABox and the TBox to obtain easier computa-
tion procedures. First, eliminating the ABox is based on an important characteristic of
DLs. Cconcept satisfiability, concept subsumption, and concept equivalence w.r.t. a DL
knowledge base K are often referred to as terminological reasoning or TBox reasoning.
Typically, TBox reasoning is not influenced by the ABox A as long as A is consistent
(i.e. it has a model). Thus, concept satisfiability, concept subsumption, and concept
equivalence w.r.t. a DL knowledge base K simply mean concept satisfiability, concept
subsumption, and concept equivalence w.r.t. a TBox T . This discussion is formally
presented in the following theorem.

Theorem 3.1 ([123]). Let L be a specific DL that does not provide the nominal con-
structor1 and K = (T ,A) be a DL knowledge base. Then, for every pair C,D ∈ Con(L),
we have:

(T ,A) |= C v D ⇐⇒ T |= C v D

1Nominal is the set constructor (cf. Table 3.1)
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Second, eliminating the TBox can be done through unfolding (cf. page 35). This can
reduce the reasoning services w.r.t. a TBox to the services for independent concepts. As
shown in Table 3.2, reasoning may become conceptually easier by abstracting way from
the TBox or assuming that it is empty. The following theorem formally presents the use
of unfolding for TBox elimination. When the TBox is eliminated, we omit to denote it.

Theorem 3.2. Let L be a specific DL and T be a TBox. Then, for every pair C,D ∈
Con(L), we have:

T |= C v D ⇐⇒ |= Unfold(C, T ) v Unfold(D, T )

It is worth to note that the procedure of unfolding is only restricted to an unfoldable
TBox T [6]. For example, if T is not unique, e.g. {(A ≡ C), (A ≡ D)} ⊆ T , then it is not
possible to make precisely the substitution for A. If T contains the cyclic dependency,
it could lead to a non-termination problem. If T contains GCIs, e.g. ∃r.C v D, then
it could not be guaranteed that an interpretation satisfying an unfolded concepts would
also satisfy these axioms.

3.5 Reasoning Algorithms

A variety of reasoning algorithms were introduced for the problems previously discussed
in Section 3.4. This section briefly reviews two widely used approaches in DLs, viz.
tableau-based approaches and structural approaches for sub-Boolean DLs.

Before looking at each algorithmic procedure, let us state the general requirements on
the “behaviors” of such procedures [9] as follows:

• The procedure should be a decision procedure1, meaning that it should be:

1. sound, i.e. the positive answers should be correct,

2. complete, i.e. the negative answers should be correct, and

3. terminating, i.e. it should always give an answer in finite time;

• The procedure should be as “efficient” as possible. That is, it should be “optimal”
w.r.t. the worst-case complexity of the problem;

• The procedure should be “practical”, i.e. it should be easy to be implemented, be
easy to be optimized, and behave well in applications.

The idea of syntactic translation to FOL (cf. Section 3.3) provides an upper bound for
the computational complexity of particular logics. However, decision procedures obtained
this way could be higher than necessary. For example, the satisfiability problem of FO2 is
NExpTime-complete whereas the satisfiability of ALC, FL0, and ELH w.r.t. the empty
TBox are PSpace-complete, polynomial, and polynomial, respectively. Hence, instead of

1This can be seen as a metaphorical meaning of soundness and completeness in logic (cf. page 26).
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leveraging existing methods of automated reasoning, DL community flavors on special-
purpose techniques. In this section, we discuss two well-known techniques viz. tableau-
based (cf. Subsection 3.5.1) and structural-based (cf. Subsection 3.5.2) algorithms. Both
techniques are decision procedures. We discuss each procedure in the following.

3.5.1 A Tableau Algorithm for ALC
The tableau-based approach was first introduced in [99]. This approach mainly concen-
trates on knowledge base consistency since this problem can be reduced to others. For
instance, given a DL knowledge K = (T ,A) and C,D ∈ CN, we know K |= C v D ⇐⇒
(T ,A ∪ {(C u ¬D)(x)}) is not consistent, where x is a fresh individual name1. The idea
behind this approach is that, given a DL knowledge base K = (T ,A), the approach checks
the consistency of K by constructing a model of K. The approach uses the so-called ex-
pansion rules to expand the model with constraints and stops when it encounters a clash,
i.e. {A(x),¬A(x)} ⊆ A for some individual name x and some concept name A.

As aforementioned, the satisfiability and the consistency problem (without TBox) are
PSpace-complete in ALC. The traditional tableau algorithm (as briefly described above)
needs exponential space, but it can be modified such that it needs only polynomial space.
However, when GCIs are admitted, the tableau-based procedure for the satisfiability and
the consistency problem are ExpTime-complete. This means that it can run in worst-case
non-deterministic double exponential time w.r.t. the size of an ontology. Fortunately,
according to the highly optimized techniques, this approach works well in practice as
many modern DL systems such as FaCT [41], FaCT++ [52], Racer [42], and Pellet [28] have
based their developments on this procedure. Discussing about the development of this
procedure is important; however, it is irrelevant to our contributions of this thesis. We
refer the readers to [6, 15] for detail.

3.5.2 Structural Approaches

Although the tableau-based approaches are widely employed by modern DL systems,
other approaches have been also developed as they might be suitable for some certain
needs e.g. to analyze the worst-case running-time complexity.

When trying to find a DL with a polynomial subsumption algorithm, it is clear that
such a particular DL should not provide all Boolean operators since it will inherit NP-
hardness from propositional logic [9]. When ones have to decide to drop an operator,
conjunction seems to be indispensable since it is used to state for different properties of a
defining concept. Finally, if ones want to call that logic a DL, a constructor using roles is
needed. This leads to the consideration of two minimal candidate sub-Boolean DLs, viz.
FL0 and EL. As aforementioned in Table 3.2, these DLs exhibit robust behaviors. The
following discusses two characterizations for structural subsumption in detail.

1That is, x does not occur in K
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Subsumption in FL0

Here, we briefly explain how subsumption in FL0 can be verified. We discuss the case of
subsumption based on two ways, i.e. without and with an unfoldable TBox in order.

Structural subsumption is based on the notion of normal forms. Informally, we use
the rewrite rule ∀r.(C u D) → ∀r.C u ∀r.D together with associativity, commutativity,
and idempotence of u to transform any FL0 concept into an equivalent one of the form
∀r1 . . . ∀rm.A for m ≥ 0. We also abbreviate ∀r1 . . . ∀rm.A by ∀r1 . . . rm.A where r1 . . . rm
is viewed as a word over the alphabet of all role names. If m = 0, then this is an
empty word, i.e. ε. In addition, instead of ∀w1.A u · · · u ∀wl.A we write ∀L.A where
L := {w1, . . . , wl} is a finite set of words over the alphabet of all role names. Let us note
that ∀∅.A is equivalent to >. Hence, this term can be added to a conjunction without
changing the meaning of the concept. Using these notions, any pair of FL0 concepts C,D
containing the concept names A1, . . . , Ak can be rewritten as:

C ≡ ∀U1.A1 u · · · u ∀Uk.Ak and D ≡ ∀V1.A1 u · · · u ∀Vk.Ak (3.2)

where Ui, Vi are two finite sets of words over the alphabet of all role names. This normal
form provides us with the following characterization of subsumption:

C v D ⇐⇒ Ui ⊇ Vi for all i, 1 ≤ i ≤ k (3.3)

According to [15], the size of the normal forms is polynomial in the size of the original
concepts and the inclusion checking Ui ⊇ Vi can also be computed in polynomial time.
Hence, the above procedure can be computed in polynomial time. We illustrate how the
subsumption relation between FL0 concepts can be verified in Example 3.4.

Example 3.4. The concept of Herbivore, whose members are animals which eat only
plants, might be defined as Animal u ∀eats.Plant. To show that Animal is subsumed by
Herbivore w.r.t. an empty TBox, i.e. Animal v Herbivore, we consider the following steps:

1. Animal is translated as a form: ∀{ε}.Animal u ∀∅.Plant; and

2. Herbivore is translated as a form: ∀{ε}.Animal u ∀{eats}.Plant.

Since {ε} ⊆ {ε} and ∅ ⊆ {eats}, we conclude that Herbivore v Animal.

This characterization of subsumption via inclusion of finite sets of words can be ex-
tended to unfoldable TBox. Formally, let CN(T ), CNdef(T ), and CNpri(T ) be a set of
concept names occurring in T , a set of defined concept names occurring in T , and a set of
primitive concept names occurring in T , respectively. A given TBox T can be translated
into a finite automaton AT with word transitions, whose states are A ∈ CN(T ) and tran-
sitions are the corresponding value restrictions. The language LAT (A,P ) is the set of all
words labeling paths in AT from A ∈ CNdef(T ) to P ∈ CNpri(T ). Let C,D ∈ Con(FL0),
the following is a characterization of subsumption in FL0 w.r.t. an unfoldable TBox:

C vT D ⇐⇒ ∀P ∈ CNpri(T ) : (LAT (D,P ) ⊆ LAT (C,P )) (3.4)
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Example 3.5. (Continuation of Example 3.4) We note that an unfoldable TBox T is
defined as:

Animal′ ≡ Animal u ∀∅.Plant
Herbivore ≡ Animal u ∀eats.Plant

The corresponding acyclic automaton can be depicted on Figure 3.21. It is not difficult
to observe that LAT (A′,A) = {ε} ⊆ LAT (H,A) = {ε} and LAT (A′,P) = { } ⊆ LAT (H,P) =
{eats}. Thus, Herbivore vT Animal′.

A′

H

A

P

ε

ε

eats

Figure 3.2: The corresponding acyclic automaton

We note that the original definitions of these characterizations were developed in [124].
As we shall see soon, our concrete developments of concept similarity (under the agent’s
preference) in FL0 are driven by this form of structural characterization.

Subsumption in EL

Suppose that TBox T is unfoldable and EL concepts are fully expanded. Let an EL
concept C is of the following form:

P1 u · · · u Pm u ∃r1.C1 u · · · u ∃rn.Cn (3.5)

That concept C can be structurally transformed into the corresponding EL description
tree. The root v0 of the EL description tree TC has {P1, . . . , Pm} as its label and has
n outgoing edges, each labeled rj to a vertex vj for 1 ≤ j ≤ n. Then, a subtree with
the root vj is defined recursively relative to the concept Cj. In [102, 125], a characteri-
zation of subsumption for the DL EL w.r.t. an unfoldable TBox was proposed. Instead
of considering concept descriptions, the so-called EL description trees corresponding to
those concept descriptions are considered. The subsumption is then characterized by an
existence of a homomorphism in the reverse direction (cf. Definition 3.16 and Theorem
3.3).

Definition 3.16 (Homomorphism [102, 125]). An EL description tree T is a quintuple
(V,E, rt, l, ρ) where V is a set of vertices, E ⊆ V × V is a set of edges, rt is the root,

l : V → 2CNpri
is a vertex labeling function, and ρ : E → RN is an edge labeling function.

Let T1 and T2 be two EL description trees, v ∈ V1 and v2 ∈ V2. Then, the mapping
h : V1 → V2 is a homomorphism from T1 to T2 iff the following conditions are satisfied:

1Obvious abbreviation of concept names are used for succinctness.
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• For all v ∈ V1, l1(v1) ⊆ l2(h(v1)); and

• For each successor w1 of v1 in T1, h(w1) is a successor of h(v1) with ρ1(v1, w1) =
ρ2(h(v1), h(w1)).

Theorem 3.3 ([102, 125]). Let C,D ∈ Con(EL) and TC and TD be the corresponding
description trees. Then, C v D iff there exists a homomorphism (denoted by h : TD → TC)
which maps the root v of TD to the root w of TC .

We illustrate how the subsumption relation between EL concepts in Example 3.6.

Example 3.6. Let a family TBox is given as follows: GrandFather ≡ Manu∃hasChild.Parent,
Man ≡ Male u Person, and Parent ≡ Person u ∃hasChild.Person. By unfolding, it yields a
semantically equivalent TBox T ′ as follows:

GrandFather ≡ Male u Person u ∃hasChild.(Person u ∃hasChild.Person)
Man ≡ Male u Person

Parent ≡ Person u ∃hasChild.Person

To show that GrandFather v Parent, we construct the description tree T ′GrandFather for the
concept GrandFather (cf. Figure 3.3a) and the description tree T ′Parent for the concept Parent
(cf. Figure 3.3b). Following Definition 3.16, it is not difficult to identify a homomorphism
from TParent to TGrandFather. Thus, GrandFather v Parent.

{Male, Person}

{Person}

{Person}
hasChild

hasChild

(a) The description tree T ′GrandFather

{Person}

{Person}
hasChild

(b) The description tree T ′Parent

Figure 3.3: The corresponding description trees of concepts GrandFather and Parent

As shown in [102,125], this form of characterization can be decided in polynomial time
(cf. Table 3.2). This result is not only of theoretical interest. In fact, well-known medical
ontologies such as Gene Ontology [107] and Snomed ct [105, 106] are expressible with
the logic EL. As we shall also see soon, our concrete development for concept similarity
under the agent’s preferences in ELH1 is driven by this form of structural subsumption.

1Strictly speaking, ELH extends EL with the role hierarchy.
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3.6 Summary

• One of the most prominent decisions to be made on designing an ontology is a
choice of DLs. As presented in this chapter, there are numerous DLs ranging from
inexpressive sub-Boolean logics to expressive ones. Usually, the more expressive the
logics are, the higher complexity they will have; and

• When a TBox is unfolded, reasoning procedures become simpler and the TBox can
be ignored. Due to this advantage, our concrete development in this thesis assumes
this characteristic of a knowledge base and the TBox is considered as being empty.
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Chapter 4

Concept Similarity Measure in DLs

Concept similarity refers to human judgments of a degree to which a pair of concepts in
question is similar. Concept similarity measures are computational techniques attempting
to imitate the human judgments of concept similarity. Formally, they aims at identifying
a degree of commonality of two given concepts and can be regarded as a generalization of
the classical reasoning problem of equivalence. Studies have shown that they contribute
to many applications. For instance, they were employed in bio-medical ontology-based
applications to discover functional similarities of gene [107] and they were often used by
ontology alignment algorithms [126].

In this chapter, we review the current state of the art for concept similarity measures.
Many ideas have been proposed to automatically calculate the degree of concept similarity.
Their advantages and disadvantages are immensely investigated (cf. Section 4.1 - 4.2).
Finally, we introduce a well-defined general notion of concept similarity measures in DLs
(cf. Section 4.3) and investigate some of its concrete developments (cf. Section 4.4 - 4.5).

4.1 Literature Survey

As aforementioned, many ideas have been proposed to automatically compute the degree
of concept similarity. Roughly, they can be classified into five groups:

1. Path Finding;

2. Information Content;

3. Context Vector;

4. Structure Similarity; and

5. Semantic Similarity.

In the following, we discuss their relative advantages and disadvantages in detail.
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4.1.1 Path Finding

This method requires to firstly construct the concept hierarchy (cf. Definition 3.14). That
is, the more general concepts they are, the more they are closer to the root of the hierarchy.
Also, the more specific concepts they are, the more they are closer to the leaves of the
hierarchy. After the concept hierarchy is constructed, the degree of concept similarity can
be computed from paths between concepts. In fact, there are various ways to determine
the degree and we discuss each of them in the following.

In the bio-medical domain, [84] proposed a measure based on path lengths between
concepts in the Medical Subject Headings (MeSH) ontology1, which has been distributed
by the National Library of Medicine. This measure found a path length between concepts
according to successively either more specific concepts or less specific concepts. A similar
approach was proposed in [127] in which the measure determined the degree of similarity
based on the shortest path between concepts. Ones may also assign different weights to
the role depth as done in [128].

In the area of natural language processing, [129] determined the path length from the
most specific concept to the root of the hierarchy. The degree of similarity was then scaled
by the sum of the distances between concepts in question to their most specific concept.
Similarly, a measure in [130] used the shortest path between concepts in question; then,
the distance was scaled by the logarithm of twice the maximum depth of the hierarchy. In
both approaches, the path length was scaled somehow to avoid strict reliance on the path
length. In some other areas, the distance between concepts w.r.t. their least common
subsumer could be considered as performed in [131].

It is worth noting that path finding methods are simple to use since they mainly rely
on the subset relation. However, these approaches have several obvious disadvantages as
follows:

1. They often ignore to consider the constraints explicitly and implicitly defined in an
ontology. For example, given T = {X ≡ A u B, Y ≡ A u C,Z ≡ A uD u E u F},
where concepts A, . . . , F are primitive, it is reasonable to say that the similarity
between X and Y is likely equal to the similarity between X and Z because they
share the same parent. Nevertheless, Y may appear to be more similar to X than
Z if considering the constraints in T ; and

2. When the relationships between concepts cannot be identified, none of similarity
information between concepts can be obtained.

4.1.2 Information Content

The limitations addressed in Subsection 4.1.1 shows that using a path between concepts is
not enough to identify the degree of similarity between concepts. One possible approach
to cope with this situation is to augment concepts with a corpus-based statistics. This is
known as an information content-based approach.

1https://www.nlm.nih.gov/mesh/
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In general, the information content of each concept in a hierarchy is calculated based
on the frequency of occurrence of that concept in a corpus. The more specific concepts
they are, the higher information content values of them will be. Formally, the following
equation defines how the information content for a concept C is computed:

IC(C) = − log(
freq(C)

freq(root)
), (4.1)

where freq(C) is the frequency of a concept C and freq(root) is the frequency of the root
of the hierarchy. It should be also noted that, in order to count a frequency, each concept
in the hierarchy should be mapped to lexical terms in a corpus. Following the above
equation, there could be many ways to calculate the degree of similarity. For instance,
[132] defined the degree of similarity between concepts as the information content of the
least common subsumer of them. Intuitively, this measure was defined to calculate the
degree of the shared information between concepts. Let simres(C,D) denotes the similarity
between concepts C and D, as defined in [132]. Its definition was given as follows:

simres(C,D) = IC(LCS(C,D)), (4.2)

where LCS(C,D) is the least common subsumer (LCS ) between concepts C,D and IC
returns the information content of that concept.

On the one hand, this approach may suit for content-based applications since the values
of information content are evaluated from a relevant corpus. On the other hand, there
could be several drawbacks as follows:

1. It strictly requires on a set of world descriptions such as a text corpus; and

2. Using the least common subsumer as given in Equation 4.2 may be not enough since
many concept pairs may share the same least common subsumer.

However, there exists work which addressed the limitation introduced by using LCS such
as [133, 134]. Mathematically, the measure in [133] calculated the similarity distance as:
distjcn(C,D) = IC(C)+IC(D)−2·IC(LCS(C,D)) whereas the measure in [134] computed
the degree of similarity as: simlin(C,D) = (2 · IC(LCS(C,D)))/(IC(C) + IC(D)).

4.1.3 Context Vector

On the one hand, the first two approaches utilize the concept hierarchy to compute the
degree of similarity. On the other hand, this approach totally relies on the vector rep-
resentation. Roughly, each concept is represented by a context vector and the cosine of
the angle between vectors is used to determine the degree of similarity between related
concepts.

In general, this approach starts by creating word vectors, which are first-order context
vectors for every word in a relevant corpus. More specifically, the vector corresponding
to a word w is created as follows:
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1. Initialize the first-order context vector to a zero vector
→
w. The dimensions of this

vector are content words derived from text sources;

2. Find every occurrence of each content word in
→
w from a given text corpus; and

3. For each occurrence of a content word, we increment the corresponding dimension
of the corresponding vector by one.

After that, the degree of similarity between concepts C and D can be computed as the
cosine of the angle between their corresponding context vectors as follows:

simvector(C,D) =

→
vC ·

→
vD

|→vC | · |
→
vD|

(4.3)

where
→
vC and

→
vD are context vectors corresponding to C and D, respectively, and | · |

denotes the absolute value. Work which employs this approach includes [135–138].
The strong points of this approach are that no underlying structure is required and

purely based on the empirical knowledge implicit in a given corpus. However, the approach
requires computationally intensive and uses short definitions. The latter may result in its
inability to investigate further on the fundamental of similarity’s characteristics.

4.1.4 Structure Similarity

Similarity can be measured based on the structure or the form tied to particular concepts.
This approach has been shown to be useful for many natural language processing tasks,
in which sentences or words are represented by particular structures (e.g. strings, trees,
etc.) and structure-based techniques are developed to measure their similarity. We review
several of them viz. (string) edit distance, tree edit distance, and tree kernel, as follows.

Edit distance is a way of quantifying the degree of dissimilarity from one string to
another one by counting the minimum number of operations required to transform one
string to the other. This approach has wide range applications such as automatic spelling
correction [139] and DNA analysis [140]. Different definitions of an edit distance may
use different sets of string operations. For example, the Levenshtein distance uses three
operations viz. the removal, insertion, and substitution of a character in the string. We
give an example of the Levenshtein distance between “kitten” and “sitting” as follows:

1. From “kitten” to “sitten” (by substituting “s” for “k”);

2. From “sitten” to “sittin” (by substituting “i” for “e”); and

3. From “sittin” to “sitting” (by inserting “g” at the end).

This shows that the distance between “kitten” and “sitting” is 3.
The idea of edit distance can be extended to deal with the dissimilarity between two

trees. This is known as tree edit distance [141], which is analogously defined as the
minimum number of node edit operations for transforming one tree to another. A rooted
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tree T is called a labeled tree if each node is assigned a set of symbols from an alphabet Σ
and T is called an ordered tree if left-to-right order among siblings in T is specified. Given
an ordered labeled tree T , the tree edit distance uses three operations viz. renaming,
deletion, and insertion. First, renaming is used to change the label of a node v in T .
Second, deletion removes a non-root node v in T with the parent v′ and move v’s children
to be the children of v′. These children are inserted in the place of v so that their relative
order is maintained. The last operation inserts a node v as a child of v′ in T ; thus, makes
v to be the parent of a consecutive subsequence of the children of v′. Figure 4.1 illustrates
the usage of each tree edit distance operation, where a, . . . , e, x represent tree’s nodes.

(a) Deletion operation (b) Insertion operation (c) Renaming operation

Figure 4.1: Basic operations of tree edit distance

Another tree similarity technique which is often used to measure the similarity between
two parse trees is called tree kernel. Informally, tree kernel measures similarity between
two syntactic trees in terms of their sub-structures [142]. Suppose we want to measure the
similarity between the parse trees of two phrases: “a dog” and “a cat”. Figure 4.2 shows
all possible sub-trees, where NP, D, and N denotes noun phrase, determinator, and noun,
respectively. As 3 structures (out of 5) are completely identical, the similarity between
these two phrases are 3.

(a) The parse tree and its subtrees for “a dog” (b) The parse tree and its subtrees for “a cat”

Figure 4.2: Parse trees and their sub-trees

4.1.5 Semantic Similarity

Existing approaches (as discussed above) have been proposed to automatically calculate
the degree of similarity between two words or two concepts based on some particular
representation of those words or concepts. Some of them may also augment such structural
information with corpus based statistics. Though some approaches may satisfy several
properties such as ones from metric spaces [87], they are not built to capture human’s
semantic representation of concepts. As opposed to similarity which calculates based
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on structural information, semantic similarity relies on the meaning or semantic content
of words or concepts. It is obvious that this way of calculation tends to agree with
human perception. For example, most humans would agree that “bird” is more similar
to “feather” than it is to “fork” or to “cat”. Consequently, it is comfortable to further
study on similarity’s characteristics (cf. Section 4.2) as well as the relationship between
similarity measure and the classical notion of concept equivalence.

Conventionally, semantic similarity can be estimated by using ontologies to refer to
the semantic contents of concepts in question. Since DLs are the logical underpinning of
ontologies, an appropriate way to calculate it should stem from three major ingredients of
logics: syntax, semantics (interpretation), and proof theory (proof calculi). Consequently,
we categorize existing approaches of semantic similarity in the literature into four groups
viz. a feature-based approach, a structure-based approach, an interpretation-based ap-
proach, and a hybrid approach, as discussed in the following.

Feature-based Approach

In this approach, the notion of concept similarity is built around comprising unique fea-
tures of a concept pair. Basically, their intuitions rely on the so-called feature model
proposed by Tversky in [82]. In Tversky’s model, an object was considered as a set of
features. Hence, the similarity of two objects was measured by the relationship between
a number of common features and a number of different features. A simple approach was
developed in [143] for the DL L0 (i.e. no use of roles) and was known as Jaccard Index.
Let C,D ∈ Con(L0). Its similarity function was mathematically expressed as follows:

simJaccard(C,D) =
|Ĉ ∩ D̂|
|Ĉ ∪ D̂|

(4.4)

where ·̂ and | · | denotes a set of conjunct concepts and the set cardinality, respectively.
A little more advanced was proposed in [144] where the notion of classical subsumption

was used to determine features of each concept. This idea can be seen in Equation 4.5.

simfeature(C,D,O) =
|{C ′ ∈ CN | O |= C v C ′} ∩ {D′ ∈ CN | O |= D v D′}|
|{C ′ ∈ CN | O |= C v C ′} ∪ {D′ ∈ CN | O |= D v D′}|

(4.5)

where O and CN represents a DL knowledge base and a set of concept names, respectively.
Using subsumption technique for determining features as in [144] is simple to implement
as many existing DL systems in the literature which feature subsumption reasoning can
be immediately used.

Structure-based Approach

Basically, structure-based measures are defined using the syntactic form of concept de-
scriptions to compute the degree of similarity, These measures often manipulate on a
so-called normal form. For instance, an extension to Jaccard Index was proposed in [88].
This work also introduced important properties of concept similarity measures and sug-
gested a general framework called simi which satisfied most of the properties. In simi,
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functions and operators such as t-conorm
⊙

and the fuzzy connector ./ were to be param-
eterized and thus left to be specified. The framework also did not contain implementation
details. This may cause implementation difficulties since merely promising properties
were given and no guideline of how concrete operators could be chosen was provided. Let
C,D ∈ Con(ELH). The measure was mathematically expressed as follows:

simi(C,D) = simid(C,D) ./ simid(D,C) (4.6)

where ./ is the fuzzy connector defined as ./: [0, 1]2 → [0, 1] such that the following
properties are satisfied for all x, y ∈ [0, 1]:

• x ./ y = y ./ x (commutativity),

• x ./ y = 1⇐⇒ x = y = 1 (equivalence closed),

• x ≤ y =⇒ 1 ./ x ≤ 1 ./ y (weak monotonicity),

• x ./ y = 0 =⇒ x = 0 or y = 0 (bounded), and

• 0 ./ 0 = 0 (grounded); and

simid(>,>) = simid(>, D) := 1 (4.7)

simid(C,>) = 0 (4.8)

simid(C,D) =

∑
C′∈Ĉ

[g(C ′) ·
⊙
D′∈D̂

simia(C
′, D′)]∑

C′∈Ĉ
g(C ′)

(4.9)

where ·̂ denotes a set of conjunct concepts, a function g : NA → R>0 is called a weighting
function1,

⊙
represents a bounded t-conorm, and simia is defined as follows:

simia(A,B) = pm(A,B) (4.10)

simia(∃r.E,A) = simia(A,∃r.E) = 0 (4.11)

simia(∃r.E, ∃s.F ) = pm(r, s) · [w + (1− w)simid(E,F )] (4.12)

where a function pm : CN2 ∪ RN2 → [0, 1] is called a primitive measure function and
0 < w < 1.

A similar approach which attempts on the DL EL was proposed in [145] in which the
notion of homomorphism degree was developed according to the structural subsumption
by means of tree homomorphism. It should be noted that this idea is later extended in the

1In [88], NA denotes a set of atoms, i.e. concept names and existential restriction atoms.
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thesis at the heart of concept similarity measure under the agent’s preferences for ELH.
Let an EL concept C ∈ Con(EL) is of the following form:

P1 u · · · u Pm u ∃r1.C1 u · · · u ∃rn.Cn (4.13)

where Pi ∈ CNpri, rj ∈ RN, Cj ∈ Con(EL) in the same format, 1 ≤ i ≤ m, and 1 ≤ j ≤ n.
The set P1, . . . , Pn and the set ∃r1.C1, . . . ,∃rn.Cn are denoted by PC and EC , respectively,
i.e. PC = {P1, . . . , Pn} and EC = {∃r1.C1, . . . ,∃rn.Cn}. Also, a concept D ∈ Con(EL) has
the same format as C. Let TC and TD be the corresponding description tree of concept C
and D, respectively. Then, the function sim computes the degree of similarity w.r.t. the
structural homomorphism-based subsumption technique:

sim(C,D) =
hd(TC , TD) + hd(TD, TC)

2
(4.14)

where the function hd computes the degree of homomorphism mapping from one descrip-
tion tree to one another. This function is mathematically expressed as follows:

hd(TD, TC) = µ · p-hd(PD,PC) + (1− µ) · e-set-hd(ED, EC), (4.15)

where µ = |PD|/(|PD ∪ ED|) and | · | represents the set cardinality;

p-hd(PD,PC) =

{
1 if PD = ∅

|PD∩PC |
|PD|

otherwise,
(4.16)

e-set-hd(ED, EC) =


1 if ED = ∅
0 if ED 6= ∅ and EC = ∅∑

εi∈ED

max
εj∈EC

{e-hd(εi,εj)}

|ED|
) otherwise;

(4.17)

with εi, εj existential restrictions; and

e-hd(∃r.X,∃s.Y ) = ν + (1− ν) · hd(TX , TY ) (4.18)

where 0 ≤ ν < 1.
It is worth noting that both Equations 4.6 and 4.14 look similar in the sense that they

are recursive definitions for EL and are derived from the same observation i.e. the classical
reasoning problem of equivalence (cf. Definition 3.12). There were also other approaches
which used the syntactical form of concepts in other DLs. For instance, [146], [147], [148],
and [149] used the negation normal form for SHI, the ALCN normal form for ALC, the
ALN normal form for ALN , and the ELH description tree for ELH, respectively.

Interpretation-based Approach

Interpretation-based approaches are defined using an interpretation for computing the
degree of concept similarity. These measures often work on the canonical interpretation
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IA (cf. Definition 3.7) and the cardinality of a representative set. For example, [150]
defined a function simsemantics : Con(ALC)2 → [0, 1] as follows:

simsemantics(C,D) =
|IIA |

|CIA |+ |DIA | − |IIA |
·max(|IIA |/|CIA |, |IIA |/|DIA|) (4.19)

where a concept I is constructed as C uD and | · | represents the set cardinality.
Another approach was presented in [87] where the least common subsumer w.r.t. a

TBox (aka. Good Common Subsumer or GCS ) is considered. As aforementioned, let IA
be the canonical interpretation. The function simGCS : Con(ALE)2 → [0, 1] was formally
expressed as follows:

simGCS(C,D) =
min(|CIA |, |DIA|)
|GCS(C,D)IA |

· (1− |GCS(C,D)IA|
|∆IA|

· (1− min(|CIA|, |DI |)
|GCS(C,D)IA |

)) (4.20)

where | · | represents the set cardinality.
Obviously, these measures can give precise outputs if the canonical interpretation is

available. Unfortunately, not every ontology is made up with an ABox in practice. For
instance, Snomed ct merely contains a terminology part. Hence, such ontologies are not
applicable with the above measures since the notion IA is not constructible.

Hybrid Approach

This approach uses a combination of the above to calculate the degree of similarity between
concepts. For example, [147, 148] used the structure-based approach to compute the
degree of similarity between defined concept names and used the canonical interpretation
to compute the degree of similarity between corresponding primitive concept names.

4.2 Desirable Properties

Various models were proposed to calculate the degree of similarity. One approach to
evaluate such models is to investigate their intended behaviors. These are recognized as
desirable properties [82, 87, 88]. For instance, let δ be a metric distance function that
assigns to every pair of points a non-negative number. Then, δ satisfies:

• minimality iff δ(a, b) ≥ δ(a, a) = 0;

• symmetry iff δ(a, b) = δ(b, a); and

• triangular inequality iff δ(a, b) + δ(b, c) ≥ δ(a, c).

Indeed, the above properties are from metric space and δ can be regarded as a measure of
dissimilarity. They are very controversial and we discuss their intuitions in the following.

Firstly, the minimality implies that the similarity between an object and itself is the
same for all objects. However, this characterization may not hold for all measures. For
example, considering clinical measures, it is not constant for all stimuli that identical
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stimuli are judged as the same. If we consider this as a required property of measures,
then such stimuli violate this property.

Secondly, perceiving similarity judgment as a form of “a is like b” may invoke the feeling
of directional similarity. That is, a is a subject and b is a referent. In this sense, the
reversion of a statement (e.g. “b is like a”) may be not equivalent. Humans tend to select
the prototype as a referent and the variant as a subject. For example, it is natural saying
that “the portrait resembles the person” rather than “the person resembles the portrait”.
Also, we usually say “the son resembles the father” rather than “the father resembles the
son”. If we consider this kind of perception as a required property of measures, then it
may violate the symmetric property.

Lastly, the triangular inequality asserts that one distance must be smaller than or equal
to the sum of the corresponding others. In other words, if “a is quite similar to b” and “b
is quite similar to c”, then “a and c cannot be very dissimilar from each other”. That is, it
sets a threshold to the similarity between a and c in terms of the similarity between a and
b and between b and c. However, this may be not hold for all cases. For instance, “Russia
is similar to China (due to geographical proximity)” and “China is similar to Singapore
(due to Chinese population)”; however, “Russia may be not similar to Singapore at all”.

Two important points, which are strongly related to the second issue of this thesis,
should be mentioned according to the above discussion. First, similarity made by cogni-
tive agents may be “subjective” since each cognitive agent may have different perspectives
for his/her similarity judgment. Second, desirable properties of similarity may be con-
troversial. This in fact relates to a point of view when the notion of similarity is investi-
gated. For example, many research on concept similarity in DLs favor on symmetry (e.g.
[87–89, 92, 147, 148, 150–152]) whereas [146, 153] prefer asymmetry. In fact, the former
one agrees on that because reading a pair of concept description from left-to-right or vice
versa does not introduce the focus whereas the latter one tends to follow an approach
from cognitive science. In addition, we notice that the counterexamples discussed above
inherently use preferences in the identification of similarity degree. For example, an utter-
ing agent may have his/her personal perception before speaking that “his son resembles
the father”. To address this observation, we seek to explicate and theorize the notion
of the agent’s preferences relevant to concept similarity. Several desirable properties are
redefined and introduced to gain the better understanding and easier computation when
similarity measure is used w.r.t. the agent’s preferences. For instance, instead of saying
“his son resembles the father”, we rather view “when the particular perception is fixed,
his son and the father are similar to each other”. We continue this point in Chapter 5.

4.3 Formal Notion of Concept Similarity

We begin to address the first issue of the thesis in this section. As aforementioned,
there is substantial work for similarity judgment ranging from a kind of introspective folk
psychology (e.g. Tversky’s model) to numeric computational techniques. In this work, we
base our investigation on the definition of logical equivalence. That is, let T be a TBox
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and C,D ∈ Con(L) for a particular DL L, then (cf. Definition 3.12):

C ≡T D ⇐⇒ C vT D and D vT C (4.21)

Intuitively, concept equivalence can be seen as an operation for comparing two concept
descriptions. For instance, if two concepts are equivalent, then the concept equivalence
yields 1; or yields 0 otherwise. Figure 4.3 illustrates this observation.

Figure 4.3: Concept equivalence can be seen as an operation for comparing concepts

Unfortunately, concept equivalence cannot give any information to a case of two nonequiv-
alent concepts sharing some commonalities. Regarding this observation, it is very natural
to generalize concept equivalence and view this generalization as concept similarity mea-
sure. That is, we regard two equivalent concepts as being total similarity and indicate
this relationship with the value 1. On the other hand, two nonequivalent concepts hav-
ing no commonalities at all are regarded as total dissimilarity and are represented by 0.
Basically, the higher the value is mapped to, the more likely similarity of them may hold.
We give a formal definition for this observation in the following.

Definition 4.1. Given two concept descriptions C,D ∈ Con(L), a concept similarity
measure w.r.t. a TBox T is a function ∼T : Con(L) × Con(L) → [0, 1] such that C ∼T
D = 1 iff C ≡T D (total similarity) and C ∼T D = 0 indicates total dissimilarity between
C and D.

When a TBox T is clear from the context, we simply write ∼. Furthermore, to avoid
confusion on the symbols, ∼T is used when referring to arbitrary measures. An interesting
question to this observation is that “how concrete measures for particular DLs can be
generalized from the logical notion of equivalence?” This thesis addresses the question by
the following analogous characterization:

C ∼T D = 1⇐⇒ C  T D = 1 and D  T C = 1 (4.22)

That is, two concepts are totally similar iff the degree of directional subsumption from a
concept to another one is 1 and vice versa. In Equation 4.22, the notion of directional
subsumption degree is denoted by  T . It should be noted that the logical conjunction
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“and” in the equation should also be generalized in such a way that two numerical values
are aggregated and result in a unit interval [0, 1].

As discussed in page 57, similarity may be subjective. Then, the notion of directional
subsumption degree should also be generalized in such a way that the agent’s preferences
can be taken into account. We outline our methodology to develop concrete measures
corresponding to our observations as follows:

1. Generalize the notion of concept subsumption to the notion of subsumption degree
(cf. Chapter 4), which contributes to a concrete concept similarity measure as its
immediate outcome;

2. Generalize the notion of subsumption degree to the notion of subsumption degree
under the agent’s preferences (cf. Chapter 5); and

3. Generalize the logical conjunction (i.e. “and”) for aggregating two numerical values
to result in a unit interval (cf. Chapter 4 - 5).

We address each of the above steps in the following subsequent chapters. Basically, classi-
cal subsumption reasoning techniques are investigated under scrunity in this thesis. Two
logics FL0 and ELH are our primary focuses in this work to develop efficient algorithms
for measuring concept similarity under the agent’s preferences. Taking into account the
efficiency, we should not consider the particular DLs which offer all boolean operations
since they would inherit NP-hardness from propositional logic.

Two logics FL0 and ELH are investigated in this thesis with their goals to find out
concept similar measures which can be computed efficiently i.e. in polynomial time.
Intuitively, computational approaches introduced in this chapter are derived from the
scrutiny of structural subsumption approaches in both logics. Section 4.4 and Section 4.5
describe approaches of computing subsumption degree in FL0 and ELH, respectively.

4.4 From Concept Subsumption to Subsumption De-

gree in FL0

For self-containment of this chapter, we summarize basic steps for checking subsumption
of FL0 concepts as follows (cf. Subsubsection 3.5.2 for detail):

1. Concepts are fully expanded and are normalized into one of the form ∀r1 . . . rn.A
where r1 . . . rn is seen as a word over the alphabet of all role names and A ∈ CN;

2. Concepts are grouped into one of the form: ∀U1.A1 u · · · u ∀Uk.Ak where U1, . . . , Uk
denotes finite sets of words over the alphabet of role names and {A1, . . . , Ak} ⊆ CN.
The empty word is also denoted by ε; and

3. Given concepts C,D are normalized as ∀U1.A1u· · ·u∀Uk.Ak and ∀V1.A1u . . . Vk.Ak,
we conclude that C v D holds iff Ui ⊇ Vi for all i where 1 ≤ i ≤ k.
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Let us demonstrate how ones can employ the approach to check if subsumption relation
holds between FL0 concepts with the following example and shade some light of the
possibility to compute the subsumption degree.

Example 4.1. Consider two concept descriptions

∀r.P u ∀r.Q u ∀r.∀s.P u ∀s.Q and ∀r.∀s.∀r.P u ∀s.Q u ∀r.P

Let us denote the former concept by C and the latter concept by D. Following the steps
mentioned earlier, we can transform both concepts to ones of the forms: ∀{r, rs}.P u
∀{r, s}.Q and ∀{r, rsr}.P u ∀{s}.Q, respectively.

Then, we can conclude that C 6v D because {r, rsr} 6⊆ {r, rs}. Furthermore, we also
conclude that D 6v C because {r, rs} 6⊆ {r, rsr}.

Though we conclude that the subsumption relations between two concepts do not hold,
we can notice that they have some finite sets of words in common. For instance, consid-
ering the primitive concept name Q, it appears that {s} ⊆ {r, s}. This observation leads
us to develop approaches for computing the subsumption degree between FL0 concepts.

An interesting question to this observation could be “how computational procedures
should look like?”. To counter this question, we develop two computational procedures
viz. skeptical subsumption degree and credulous subsumption degree, which can be used
to identify the subsumption degree w.r.t. the structure of normalized concepts. We also
formally study the relationship underlying between these two procedures in this chapter.

4.4.1 Skeptical Subsumption Degree

Let us reconsider Example 4.1. The set inclusion relation {r, rsr} ⊆ {r, rs} does not
hold but the relation {s} ⊆ {r, s} holds. Ones may regard this as partial subsumption
relation. Basically, the skeptical subsumption degree adopts this viewpoint to develop the
computational procedure, i.e. set inclusions between set of words.

Definition 4.2 (Skeptical FL0 Subsumption Degree). Let C,D ∈ Con(FL0) be in their
normal forms and W(E,A) be a set of words w.r.t. the concept E and the primitive A.
Then, a skeptical FL0 degree from C to D (denoted by C  s D) is defined as follows:

C  s D =
|{P ∈ CNpri | W(D,P ) ⊆ W(C,P )}|

|CNpri|
, (4.23)

where | · | denotes the set cardinality.

Example 4.2. (Continuation of Example 4.1) The skeptical FL0 subsumption degree
from C to D can be calculated as follows:

C  s D =
|{Q}|
|{P,Q}|

=
1

2
= 0.5
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Similarly, D  s C can be calculated as follows:

D  s C =
|∅|

|{P,Q}|
=

0

2
= 0

The example shows that the subsumption degree from concept C to concept D is 0.5
even though concept C is not subsumed by concept D. However, the subsumption degree
from concept D to concept C is 0, which means D is unrelated to C at all.

4.4.2 Credulous Subsumption Degree

With the more granularity of degree computing, we may calculate the proportion between
sets of words rather than checking the set inclusions between them. To demonstrate this,
we reconsider Example 4.2. Considering the set inclusion {r, rs} ⊆ {r, s}, it is clear that
the relation does not hold. However, rather than regarding this as 0, we may take into
account the proportion between them, i.e. (|{r, rs} ∩ {r, s}|)/(|{r, s}|) = 1/2. We adopt
this viewpoint to develop the credulous subsumption degree.

Definition 4.3 (Credulous FL0 Subsumption Degree). Let C,D ∈ Con(FL0) be in their
normal forms and W(E,A) be a set of words w.r.t. the concept E and the primitive A.
Then, a credulous FL0 subsumption degree from C to D (denoted by C  c D) is defined
as follows:

C  c D =

∑
P∈CNpri µ(D,C, P )

|CNpri|
, (4.24)

where | · | denotes the set cardinality and µ(D,C, P ) ={
1 if W(D,P ) = ∅

|W(D,P )∩W(C,P )|
|W(D,P )| otherwise

(4.25)

Example 4.3. From Example 4.1, the credulous FL0 subsumption degree from C to D
can be calculated as follows:

C  c D =

|{rsr,r}∩{r,rs}|
|{rsr,r}| + |{s}∩{r,s}|

|{s}|

|{P,Q}|
=

1
2

+ 1
1

2
= 0.75

Whereas D  c C can be calculated as follows:

D  c C =

|{rsr,r}∩{r,rs}|
|{r,rs}| + |{s}∩{r,s}|

|{r,s}|

|{P,Q}|
=

1
2

+ 1
2

2
= 0.5

According to the example, it speaks out that C is partially subsumed by D in the
degree of 0.75 whereas D is partially subsumed by C in the degree of 0.5.
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4.4.3 Properties underlying Skeptical Subsumption Degree and
Credulous Subsumption Degree

The fact that there exist more than one computational approaches for identifying a degree
of subsumption corresponds to different skepticism of a rational agent’s judgment. For
example, an agent may say that C is partially subsumed by D in the degree of 0.5 whereas
another agent may say to the same concepts that their partial subsumption degree is 0.75.

Regarding this point, we are interested to formally investigate the underlying rela-
tionship between the functions  s and  c. It is worth observing that if (|W(D,P ) ∩
W(C,P )|)/(|W(D,P )|) = 1, then W(D,P ) ⊆ W(C,P ) holds (and vice versa). Using this
observation, we can show the following property.

Proposition 4.1. For any C,D ∈ Con(FL0), it follows that C  s D ≤ C  c D.
Proof. Fix any C,D ∈ Con(FL0). We show the following inequality:

|{P ∈ CNpri | W(D,P ) ⊆ W(C,P )}| ≤
∑

P∈CNpri

|W(D,P ) ∩W(C,P )|
|W(D,P )|

Fix any P ∈ CNpri. We show inequality of the following three cases.
Case 1 (both W(D,P ) and W(C,P ) are identical): Let W(D,P ) = {r1, . . . , rn} and

W(C,P ) = {r1, . . . , rn}. Then, we show (W(D,P ) ⊆ W(C,P )) ≤ (|W(D,P )∩W(C,P )|)/
(|W(D,P )|)⇐⇒ 1 ≤ 1.

Case 2 (both W(D,P ) and W(C,P ) share some commonalities): Let W(D,P ) =
{r1, . . . , rn, s1, . . . , sm} and W(C,P ) = {r1, . . . , rn, t1, . . . , to}. Then, we show (W(D,P ) ⊆
W(C,P )) ≤ (|W(D,P ) ∩W(C,P )|)/(|W(D,P )|)⇐⇒ 0 ≤ (n)/(n+m).

Case 3 (both W(D,P ) and W(C,P ) do not share any commonalities) Let W(D,P ) =
{s1, . . . , sm} and W(C,P ) = {t1, . . . , to}. Then, we show (W(D,P ) ⊆ W(C,P )) ≤
(|W(D,P ) ∩W(C,P )|)/(|W(D,P )|)⇐⇒ 0 ≤ (0/m). o

Definition 4.4 (Ordering of Functions). Let α and β be different functions. Then, α
is more skeptical than or equal to β (denoted by α � β) if (C α D) ≤ (C β D) for all
concepts C,D ∈ Con(L).

Proposition 4.2. Let C,D ∈ Con(FL0). Then, the following ordering holds:

v �  s �  c

Proof. Let us view v as a function which returns 1 if C v D holds for any C,D or
0 otherwise. If C v D holds, then C  s D = C  c D = 1. Otherwise, it immediately
follows from Proposition 4.1 that C v D ≤ C  s D ≤ C  c D together with considering
C 6v D as the value 0. o
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Theorem 4.1. Let C,D ∈ Con(FL0). Then, the following are equivalent:

1. C v D;

2. C  s D = 1; and

3. C  c D = 1.

Proof. Let C := ∀L1.A1 u · · · u ∀Ln.An and D := ∀M1.A1 u · · · u ∀Mn.An. We need to
show C v D ⇐⇒ C  s D = 1 and C  s D = 1⇐⇒ C  c D = 1.

(1 =⇒ 2) Assume C v D i.e. Mi ⊆ Li for i = 1, . . . , n. Then, we have C  s D = 1.
(2 =⇒ 1) Assume C  s D = 1. This implies that Mi ⊆ Li for i = 1, . . . , n. Thus, we

conclude C v D.
(2 =⇒ 3) Assume C  s D = 1. We have C  c D = 1 (by Proposition 4.1).
(3 =⇒ 2) Assume C  c D = 1. This implies that Mi ⊆ Li for i = 1, . . . , n. Thus, we

conclude C  s D = 1. o

In the following, we show that both  s and  c can be computed in polynomial time.

Theorem 4.2. Let L,M be sets of words over the alphabet of role names corresponding
to concepts C,D, respectively. The computational complexity of both  s and  c is
O(n|M ||L|), where n is the size of concepts C,D.

Proof. Let C := ∀L1.A1u· · ·u∀Ln.An and D := ∀M1.A1u· · ·u∀Mn.An, where Li,Mi

(1 ≤ i ≤ n) are sets of words over the alphabet of role names. Checking the inclusion of
finite languages (cf. Definition 4.2) and the proportion of finite languages (cf. Definition
4.3) can be done in polynomial time, i.e. in the worst case we have to check for all words
w ∈ Mi and v ∈ Li whether w = v. Each equality checking can be done in min(|w|, |v|)
and such tests have to be done for |Mi| · |Li|. Assume in the worst case that each Mi and
Li are identical i.e. |Mi| = |M | and |Li| = |L| for every i. Therefore, we have shown that
both measures are bound by O(n|M ||L|). o

4.5 From Concept Subsumption to Subsumption De-

gree in ELH
Now, we concentrate on a computational approach for identifying the subsumption degree
between ELH concepts. We have reviewed the basis of structural subsumption for EL
in Subsubsection 3.5.2. Since ELH is a superlogic of EL, its structural subsumption
procedure can be slightly modified from EL as follows:

1. Concepts are fully expanded to the form P1 u . . . Pm u ∃r1.C1 u · · · u ∃rn.Cn;

2. Fully expanded concepts are structurally transformed into the corresponding de-
scription trees, where its root has {P1, . . . , Pm} as its label, has n outgoing edges,
each labeled by the set Rrj of all rj’s super roles to a vertex vj for 1 ≤ j ≤ n.
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Formally, Rr = {s | r v∗ s} and r v∗ s if r = s or ri v ri+1 ∈ T where 1 ≤ i ≤ n,
r1 = r, rn = s. That is, v∗ denotes a transitive closure of v between roles. Then,
a subtree with the root vj is defined recursively relative to the concept Cj; and

3. Given two description trees TC , TD, we conclude that C v D holds iff there exists a
homomorphism from TD to TC according to the following definition and theorem.

Definition 4.5 (Homomorphism [102, 125]). An ELH description tree T is a quintuple
(V,E, rt, l, ρ) where V is a set of vertices, E ⊆ V × V is a set of edges, rt is the root,

l : V → 2CNpri
is a vertex labeling function, and ρ : E → 2RN is an edge labeling function.

Let T1 and T2 be two ELH description trees, v ∈ V1 and v2 ∈ V2. Then, the mapping
h : V1 → V2 is a homomorphism from T1 to T2 iff the following conditions are satisfied:

• For all v ∈ V1, l1(v1) ⊆ l2(h(v1)); and

• For each successor w1 of v1 in T1, h(w1) is a successor of h(v1) with ρ1(v1, w1) ⊆
ρ2(h(v1), h(w1)).

Theorem 4.3. Let C,D ∈ Con(ELH) and TC and TD be the corresponding description
trees. Then, C v D iff there exists a homomorphism (denoted by h : TD → TC) which
maps the root v of TD to the root w of TC .

Let us demonstrate how ones can employ the approach to check if subsumption relation
holds between ELH concepts with the following example and shade some light of the
possibility to compute the subsumption degree.

Example 4.4. An agent A wants to visit a place for doing some physical activities (i.e.
ActivePlace). Suppose that a place ontology is modeled as follows. The classical reasoning
of subsumption may be used to find out a concept subsumed by ActivePlace.

ActivePlace v Place u ∃canWalk.Trekking u ∃canSail.Kayaking
Mangrove v Place u ∃canWalk.Trekking

Beach v Place u ∃canSail.Kayaking
canWalk v canMoveWithLegs

canSail v canTravelWithSails

Following the above steps, each primitive definition is transformed to a corresponding
equivalent full definition and the corresponding description tree is constructed accordingly.

ActivePlace ≡ X u Place u ∃canWalk.Trekking u ∃canSail.Kayaking
Mangrove ≡ Y u Place u ∃canWalk.Trekking

Beach ≡ Z u Place u ∃canSail.Kayaking

where X, Y, and Z are fresh primitive concept names. canWalk ≡ t u canMoveWithLegs
and canSail ≡ u u canTravelWithSails, where t and u are fresh primitive role names. In
other words, RcanWalk = {t, canMoveWithLegs} and RcanSail = {u, canTravelWithSails}.
Figure 4.4a - 4.4c depict TActivePlace, TMangrove, and TBeach, respectively.
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v0: {X, Place}

v1: {Trekking}

{t, canMoveWithLegs}

v2: {Kayaking}

{u, canTravelWithSails}

(a) The description tree of concept ActivePlace

v0: {Y, Place}

v1: {Trekking}

{t, canMoveWithLegs}

(b) The description tree of concept Mangrove

v0: {Z, Place}

v2: {Kayaking}

{u, canTravelWithSails}

(c) The description tree of concept Beach

Figure 4.4: The description tress of concepts TActivePlace, TMangrove, and TBeach

It is not difficult to find a failed attempt of identifying a homomorphism mapping the
the root of TActivePlace to the root of TMangrove, i.e. h : TActivePlace 6→ TMangrove. Hence, this
infers Mangrove 6v ActivePlace. Similarly, we can conclude that Beach 6v ActivePlace.

Though we conclude that subsumption relations from ActivePlace to Mangrove and from
ActivePlace to Beach do not hold, we can notice that they have some commonalities among
their structures. For instance, considering the roots of TActivePlace and TBeach, it appears
that Place is belonged to both {X,Place} and {Y,Place}. This observation leads us to
develop approaches for computing the subsumption degree between ELH concepts. In
the next subsection, a homomorphism-based structural subsumption degree function is
discussed. And, its properties are investigated accordingly.

4.5.1 Homomorphism Degree

Let us reconsider Example 4.4. It is obvious that h : TActivePlace 6→ TMangrove holds due to
{X,Place} 6⊆ {Y,Place}. However, Place appears to be in common on both sets. Ones may
regard this as partial mapping from TActivePlace to TMangrove. Intuitively, the homomorphism
degree function adopts this viewpoint to develop the computational procedure.

Let C,D ∈ Con(ELH) be fully expanded concept of the form: P1u· · ·uPmu∃r1.C1u· · ·u
∃rn.Cn. We denote the set P1, . . . , Pm of the concepts C,D and the set ∃r1.C1, . . . ,∃rn.Cn
of the concepts C,D by PC ,PD and EC , ED, respectively. The super roles Rr,Rs are as
defined on page 64. The following definition extends Theorem 4.3 to the case where no
such homomorphism exists but there is some commonality.

Definition 4.6 (Homomorphism Degree [151]). Let TELH be a set of all ELH description
trees and TC , TD ∈ TELH correspond to two ELH concept names C and D, respectively.
The homomorphism degree function hd : TELH ×TELH → [0, 1] is inductively defined as
follows:

hd(TD, TC) = µ · p-hd(PD,PC) + (1− µ) · e-set-hd(ED, EC), (4.26)
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where µ = |PD|/(|PD ∪ ED|) and | · | represents the set cardinality;

p-hd(PD,PC) =

{
1 if PD = ∅

|PD∩PC |
|PD|

otherwise,
(4.27)

e-set-hd(ED, EC) =


1 if ED = ∅
0 if ED 6= ∅ and EC = ∅∑

εi∈ED

max
εj∈EC

{e-hd(εi,εj)}

|ED|
) otherwise;

(4.28)

with εi, εj existential restrictions; and

e-hd(∃r.X,∃s.Y ) = γ(ν + (1− ν) · hd(TX , TY )) (4.29)

where γ = (|Rr ∩Rs|)/|Rr| and 0 ≤ ν < 1.

The value of ν determines how important the roles are to be considered for similarity
between two existential restriction information. For instance, ∃canWalk.Trekking and
∃canWalk.Parading for dissimilar nested concepts Trekking and Parading should not be
regarded as entirely dissimilar themselves. If ν is assigned the values 0.3, 0.4, and 0.5,
then e-hd(∃canWalk.Trekking, ∃canWalk.Parading) is 0.3, 0.4, and 0.5, respectively. This
value may vary among applications. In this work, ν is set to 0.4 (if it is not explicitly
defined) for exemplifying the calculation of hd.

Example 4.5. (Continuation of Example 4.4)
For brevity, let ActivePlace, Mangrove, Beach, Place, Trekking, Kayaking, canWalk, and
canSail be abbreviated as AP, M, B, P, T, K, cW, and cS, respectively. Using Definition
4.6, the homomorphism degree from TAP to TM, or

hd(TAP, TM) = (2
4
)(1

2
) + (2

4
)(max{e-hd(∃cW.T,∃cW.T)}

2
+ max{e-hd(∃cS.K,∃cW.T)}

2
)

= (2
4
)(1

2
) + (2

4
)(1+0

2
) = 0.5

Similarly, hd(TM, TAP) = 0.67, hd(TAP, TB) = 0.5, and hd(TB, TAP) = 0.67.

The example shows that the homomorphism degree from TAP to TM is 0.5 even though
M is not subsumed by AP. Similar interpretations can be applied for the other results.

4.5.2 Properties underlying Homomorphism Degree

Theorem 4.4. Let C,D ∈ Con(ELH) and TC , TD be their corresponding description tree,
respectively. Then, the following are equivalent:

1. C v D; and

2. hd(TD, TC) = 1.
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Proof. (=⇒) Assume C v D i.e. there exists a homomorphism h which maps the
root of TD to the root of TC ⇐⇒ lD(vD) ⊆ lC(h(vD)) for each vD ∈ VD and ρD(vD, wD) ⊆
ρC(h(vC), h(wC)) for each successor wD of vD. We show hd(TD, TC) = 1 by cases.

• When |VD| = 1 i.e. TD contains only one node, then we show hd(TD, TC) = 1 ⇐⇒
p-hd(PD,PC) = 1 (by Definition 4.6). This is obvious since PD ⊆ PC .

• When |VD| > 1, then we need to show hd(TD, TC) = 1 ⇐⇒ p-hd(PD,PC) = 1 and
e-set-hd(ED, EC) = 1 (by Definition 4.6). Since lD(rtD) ⊆ lC(h(rtD)) (by assump-
tion), then p-hd(PD,PC) = |PD|/|PD| = 1. To show e-set-hd(ED, EC) = 1, we need
to show that ρD(rtD, w) ⊆ ρC(rtC , h(w)) for each successor w of rtD (in order to
have γ = 1) and there exists a homomorphism h′ which maps w of its subtree TDi
to h′(h(w)) of another subtree TCj (in order to have hd(TDi , TCj) = 1). The former
is obvious by assumption. Since TDi is part of TD and TCj is also part of TC , then
such h′ also exists by assumption. Thus, we have hd(TD, TC) = 1.

(⇐=) Assume hd(TD, TC) = 1 i.e. p-hd(PD,PC) = 1 and e-set-hd(ED, EC) = 1 (by
Definition 4.6). Then, we need to show C v D i.e. there exists a homomorphism which
maps the root of TD to the root of TC . By Definition 4.6, p-hd(PD,PC) = 1 implies that
PD ⊆ PC . Also, e-set-hd(ED, EC) = 1 ⇐⇒ γ = 1 and hd(TDi , TCj) = 1 for each depth of
the tree TD⇐⇒ lD(vD) ⊆ lC(h(vD)) for each vD ∈ VD and ρD(vD, wD) ⊆ ρC(h(vC), h(wC))
for each successor wD of vD. Therefore, we conclude that C v D. o

Theorem 4.4 describes a property of concept subsumption, i.e. C is a sub-concept of
D if the homomorphism degree of the corresponding description tree TD to TC is equal to
1, and vice versa. In other words, the more value of hd(TD, TC) is closer to 1, the more
likely the subsumption of C and D may hold.

In the following, we show that hd can be computed in polynomial time.

Theorem 4.5. Let V1, V2 be sets of vertices corresponding to T1, T2, respectively. The
computational complexity of hd is O(|V1| · |V2|).

Proof. Let C := P1 u · · · u Pm u ∃r1.C1 u · · · u ∃rn.Cn, D := Q1 u · · · uQl u ∃s1.D1 u
· · · u ∃ro.Do, and TC , TD be the corresponding description trees. We need to show µ, γ,
p-hd(PD,PC), and e-set-hd(ED, EC) are bounded by O(|V1||V2|).

Since the set union, the intersection, and the set cardinality |·| can be computed in poly-
nomial time in the worst case, then µ, p-hd(PC ,PD), and γ are bounded by O(|V1||V2|).

Computing e-set-hd(ED, EC) requires to call e-hd for |ED| · |EC | times. Each call of e-hd
will make a recursive call to hd and its number of calls is bounded by the height of TD
and TC . Hence, e-set-hd(ED, EC) are bounded by O(|V1||V2|). o

4.6 From Subsumption Degree to Concept Similarity

We recall from Equation 4.22 that the degree of concept similarity can be determined
from the two directional subsumption degree of each direction. Mathematically, such
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4.6. FROM SUBSUMPTION DEGREE TO CONCEPT SIMILARITY

aggregation can be defined as any binary operators accepting the unit interval, e.g. the
average, the multiplication, and the root mean square. In the following, two concrete
measures in FL0, viz. the skeptical measure ∼s [89, 90] and the credulous measure ∼c
[89, 90], and one measure in ELH, viz. the measure sim [145, 151], have defined to base
the computation on the average. Their formal definitions are precisely defined in order
and arguments supporting our selection i.e. the average are discussed.

Definition 4.7 (Skeptical FL0 Similarity Degree). Let C,D ∈ Con(FL0). The skeptical
FL0 similarity degree between C and D (denoted by C ∼s D), is defined as follows:

C ∼s D =
(C  s D) + (D  s C)

2
(4.30)

Example 4.6. (Continuation of Example 4.2) The skeptical FL0 similarity degree be-
tween C and D can be calculated as follows:

C ∼s D =
C  c D + D s C

2
=

0.5 + 0

2
= 0.25

Definition 4.8 (Credulous FL0 Similarity Degree). Let C,D ∈ Con(FL0). The credulous
FL0 similarity degree between C and D (denoted by C ∼s D), is defined as follows:

C ∼c D =
(C  c D) + (D  c C)

2
(4.31)

Example 4.7. (Continuation of Example 4.3) The credulous FL0 similarity degree be-
tween C and D can be calculated as follows:

C ∼c D =
C  c D +D  c C

2
=

0.75 + 0.5

2
= 0.625

It is worth mentioning that other choices of the operator may be used as discussed
earlier. However, redefining the aggregation operator may produce a different behavior.
We continue the discussion later on page 71 in this chapter.

The following propositions discuss about some inherited properties of the two measures
for FL0 concepts. That is, they are symmetric measures and preserve ordering in the
viewpoint of skepticism between relations.

Proposition 4.3 (Symmetry). Let C,D ∈ Con(FL0). The following holds:

1. C ∼s D = D ∼s C; and

2. C ∼c D = D ∼c C.

Proof. These are obvious by the average. o
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Proposition 4.4. Let C,D ∈ Con(FL0). Then, the following ordering holds1

≡ � ∼s � ∼c

Proof. By average, it suffices to show v �  s �  c. This has already been proven
by Proposition 4.2. o

Intuitively, the above property spells out that, for any C,D ∈ Con(FL0), we have (C ≡
D) ≤ (C ∼s D) ≤ (C ∼c D). In particular, if C ≡ D, then (C ∼s D) = (C ∼c D) = 1. It
also tells us that both ∼s and ∼c can be used to identify the equivalent degree between
concepts when the equivalent relation between them does not hold. In other words, they
are the more elastic notions of the concept equivalence.

Theorem 4.6. Let L,M be sets of words over the alphabet of role names corresponding
to concepts C,D, respectively. The computational complexity of both ∼s and ∼c is
O(n|M ||L|), where n is the size of concepts C,D.

Proof. This is immediately followed from Theorem 4.2 and the average. o

Now, we show that both ∼s and ∼c are procedures which ensures termination and can
be used as an indicator for the degree of commonalities between FL0 concepts. Intuitively,
Lemma 4.1 ensures that the positive results are correct and Lemma 4.2 ensures that the
negative results are also correct. Termination guarantees that they always provide an
answer in finite time.

Lemma 4.1. Let C,D be FL0 concepts. It follows that:

• if C ∼s D ∈ (0, 1], then both C and D share commonalities among each other;

• if C ∼c D ∈ (0, 1], then both C and D share commonalities among each other.

Proof. Let C,D be any FL0 concepts. By the average, it suffices to show:

• C  s∈ (0, 1], then C is “partially subsumed” by D;

• C  c∈ (0, 1], then C is “partially subsumed” by D.

To show the first point, we assume that C  s∈ (0, 1]. By assumption, Theorem 4.1, and
Proposition 4.2, we know that C is partially subsumed by D (based on the characterization
of language inclusion).

We can also show the second point in an analogous manner. o

1See Definition 4.4 for the meaning of �
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4.6. FROM SUBSUMPTION DEGREE TO CONCEPT SIMILARITY

Lemma 4.2. Let C,D be any FL0 concepts. It follows that:

• if both C and D share commonalities among each other, then C ∼s D ∈ (0, 1];

• if both C and D share commonalities among each other, then C ∼c D ∈ (0, 1].

Proof. Let C,D be any FL0 concepts. We show their contraposition i.e.

• if C ∼s D = 0, then both C and D do not share commonalities to each other;

• if C ∼c D = 0, then both C and D do not share commonalities to each other.

To show the first point, we assume that C ∼s D = 0. By assumption and the average,
we know that C  s D = 0 and D  s C = 0. This means that both C and D do not
share any commonalities to each other.

We can also show the second point in analogous manner. o

Theorem 4.7. Both ∼s and ∼c are guaranteed for termination and fulfill the conditions:

• C ∼s D ∈ (0, 1] iff both C and D share commonalities among each other;

• C ∼c D ∈ (0, 1] iff both C and D share commonalities among each other.

Proof. These are obvious by Lemma 4.1, Lemma 4.2, and Theorem 4.6. o

The measure sim for the DL ELH can be developed in the similar fashion as in FL0.

Definition 4.9 (ELH Similarity Degree). Let C,D ∈ Con(ELH) and TC , TD be the
corresponding description trees. Then, the ELH similarity degree between C and D
(denoted by sim(C,D)) is defined as follows:

sim(C,D) =
hd(TC , TD) + hd(TD, TC)

2
(4.32)

Example 4.8. (Continuation of Example 4.5) The ELH similarity degree between AP
and M can be calculated as follows:

sim(AP,M) =
hd(TAP, TM) + hd(TM, TAP)

2
=

0.5 + 0.67

2
= 0.585

Similarly, sim(AP,B) = 0.585.

The following propositions discuss about some inherited properties of the above measure
for ELH concepts i.e. it is symmetric and is less skeptical than the concept equivalence.

Proposition 4.5. Let C,D ∈ Con(ELH). Then, the following properties hold:

1. sim(C,D) = sim(D,C); and

2. ≡ � sim.

Proof. (1) This is obvious by the average.
(2) This is immediately followed from Theorem 4.4 and the average. o
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Theorem 4.8. Let V1, V2 be sets of vertices corresponding to T1, T2, respectively. The
computational complexity of sim is O(|V1| · |V2|).

Proof. This is immediately followed from Theorem 4.5 and the average. o

We can show that sim is also a procedure which ensures termination and can be used
as an indicator for the degree of commonalities between ELH concepts. Intuitively, we
ensure that the correct results are correct (cf. Lemma 4.3) and the negative results are
also correct (cf. Lemma 4.4). Termination guarantees to provide an answer in finite time.

Lemma 4.3. Let C,D be any ELH concepts and ν ∈ (0, 1). Then, sim(C,D) ∈ (0, 1]
implies that C and D share commonalities among each other.

Proof. Let C,D ∈ Con(ELH), TC , TD be their corresponding trees, and ν ∈ (0, 1).
With Theorem 4.4 and the average, it suffices to show that hd(TC , TD) ∈ (0, 1] implies
p-hd(PC ,PD) > 0 or e-set-hd(ED, ED) > 0. We show these cases as follows:

• If there exists v ∈ VC such that lC(v) ∩ lD(h(v)) 6= ∅, then we show hd(TC , TD) ∈
(0, 1]. Since |lC(v) ∩ lD(h(v))| > 0, then we know µ > 0 and p-hd(Pv,Ph(v)) > 0.
That is, p-hd(PC ,PD) > 0.

• If there exist v, w ∈ VC such that ρC(v, w) ∩ ρD(h(v), h(w)) 6= 0, then we show
hd(TC , TD) ∈ (0, 1]. Since |ρC(v, w) ∩ ρD(h(v), h(w))| > 0, then we know γ > 0.
Since hd cannot be decreased, we know e-set-hd(ED, ED) > 0.

o

Lemma 4.4. Let C,D be ELH concepts and ν ∈. Then, if C and D share commonalities
among each other, then sim(C,D) ∈ (0, 1].

Proof. Let C,D ∈ Con(ELH), TC , TD be their corresponding trees, and ν ∈ (0, 1).
We show their contraposition i.e. sim(C,D) = 0 implies that C and D do not share
commonalities to each other.

By the average, we know that hd(TC , TD) = 0 and hd(TD, TC) = 0. This means that
both C and D do not share any commonalities to each other. o

Theorem 4.9. The measure sim is guaranteed for termination and fulfills the condition:

sim(C,D) ∈ (0, 1] iff both C and D share commonalities among each other.

Proof. This is obvious by Lemma 4.3, Lemma 4.4, and Theorem 4.8. o

Discussing about the choice of an aggregating operator, ones may argue to base the
definitions on other methods. However, those may create unsatisfactory results for the
extreme cases. To illustrate this, we define the functions ∼× and ∼rms as follows.

C ∼× D = (C  s D)× (D  s D) (4.33)

C ∼rms D =

√
(C  s D)s + (D  s C)2

2
(4.34)
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Then, we have A ∼× > = 0 × 1 = 0 and A ∼rms > =
√

(02 + 12)/2 = 0.707, whereas
A ∼s > = (0 + 1)/2 = 0.5. Since C ∼× D ≤ C ∼s D ≤ C ∼rms D for any concepts
C and D, we agree with [93, 145] that the average-based definition as given above is the
most appropriate method.1

Figure 4.5: Different types of agents

Proposition 4.4 and Example 4.6 - 4.7 exhibit that there is no the unique concept sim-
ilarity measure for similarity-based applications. Which measure should be used depends
on concrete applications, especially the type of an agent. For example, when employing
the notion ∼ to a query answering system, a credulous agent may want to see answers
as much as possible; hence, the measure ∼c is employed. On the other hand, a skeptical
agent would like to see sufficient relevant answers; hence, the measure ∼s is employed.
Figure 4.5 exemplifies a similar situation where two different types of agents are looking
at two different kinds of castles. Indeed, we could simulate this situation by using ∼s for
the skeptical agent and ∼c for the credulous agent. This fact of having multiple measures
also corresponds to an experiment in [154]. That is, similarity measures might depend
on target applications (e.g. target ontologies) and applicable similarity measures should
be personalized to the agent’s similarity judgment style. We shall further investigate this
point on the notion of concept similarity under preferences in the next chapter.

4.7 Summary

• Most of current approaches for concept similarity do not consider the ontological con-
straints and definitions defined in an ontology. This may result in counter-intuitive
results when a thorough consideration on the similarity of concepts is involved. This
chapter has improved this problem by redefining the problem of concept similarity
as a generalization of concept equivalence in DLs, i.e. two equivalent concepts
are considered to be totally similar and are assigned to 1 whereas total dissimilar
concepts are assigned to 0;

1Though we recommend to use the average, its choice of operators may be changed and it may produce
a different behavior as discussed.
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4.7. SUMMARY

• Subsumption degree approaches for FL0 and ELH were developed based on their
structural subsumption techniques; and also, their properties e.g. the relationship
between subsumption degree and subsumption relation were explored; and

• Concept similarity measures for FL0 and ELH were developed based on the cor-
responding notions of subsumption degree and their properties were investigated.
Finally, they were shown to be procedures which ensure termination and can be
used as indicators for similarity between concepts in an ontology.
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Chapter 5

Personalization of Concept
Similarity Measure

The approaches for identifying subsumption degree and concept similarity degree can be
used to extract information about the commonalities and the discrepancies of the subset
relation and equivalence relation, respectively, between concepts. Unfortunately, when
they are employed by an agent-related application (or other domains similar to this),
counter-intuitive results may obtain. We illustrate this situation in the following example
(by slightly modified from Example 4.4) to emphasize the need of considering the agent’s
preference in practice. We note that this is related to the second issue of the thesis.

Example 5.1. An agent A wants to visit a place for doing some physical activities (i.e.
ActivePlace). At that moment, he would like to enjoy walking. Suppose that a place
ontology has been modeled as follows:

ActivePlace v Place u ∃canWalk.Trekking u ∃canSail.Kayaking
Mangrove v Place u ∃canWalk.Trekking

Beach v Place u ∃canSail.Kayaking
canWalk v canMoveWithLegs

canSail v canTravelWithSails

Since the above ontology is expressed in ELH, we may use the measure sim to query
the similarity degree between ActivePlace and Beach i.e. sim(AP,B), and also, between
ActivePlace and Mangrove i.e. sim(AP,M). As shown in Example 4.8, sim(AP,B) =
sim(AP,M) = 0.585. These information shows that both Mangrove and Beach are equally
similar to ActivePlace. We note that sim was developed based on the structural subsump-
tion algorithm; thus, it merely considers the objective aspects. Taking into account also
the agent’s preferences, Mangrove may appear to be more suitable for his perception of
ActivePlace at that moment. In other words, he will not be happy if an intelligent system
happens to recommend him to go for a Beach.

To address this issue, a new formalism for expressing preferential aspects of a context
in consideration (e.g. the agent) has to be developed. Since DL concepts are constructed
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5.1. PREFERENCE PROFILE

inductively from the set of concept names and the set of role names, such formalism should
offer ways to express the preferences w.r.t. concept names and role names. As guided in
Chapter 4 (on page 59), the previously developed subsumption degree techniques should
be generalized w.r.t. those preferential aspects and such generalization will be used to
derive a new notion for concept similarity measure under the agent’s preferences.

5.1 Preference Profile

We first introduced preference profile (denoted by π) in [91] as a collection of preferential
elements in which the development of similarity measure of concepts for a particular
cognitive agent should consider. Its first intuition is to model different forms of preferences
(of an agent) based on concept names and role names. Similarity measure which adopts
this notion is flexible to be tuned by an agent and can determine the similarity conformable
to that agent’s perception.

The syntax and semantics of each form are given in term of “partial” functions because
agents may not have preferences over all concept names and role names. We recommend to
devise similarity measures with considerations on preference profile if we aim at developing
concept similarity measure for general purposes – a measure based on both subjective
and objective factors. Mathematical definitions for each form of preferences are formally
defined as follows.

Definition 5.1 (Primitive Concept Importance). Let CNpri(T ) be a set of primitive con-
cept names occurring in a TBox T . Then, a primitive concept importance is a “partial”
function ic : CNpri(T )→ [0, 2]1.

For any A ∈ CNpri(T ), ic(A) = 1 captures an expression of normal importance for A,
ic(A) > 1 (and ic(A) < 1) indicates that A has higher (and lower, respectively) importance,
and ic(A) = 0 indicates that A is of no importance to the agent.

Example 5.2. (Continuation of Example 5.1) Suppose that an agent A is using a sim-
ilarity measure for querying some names similar to ActivePlace. He concerns that those
names will be similar to ActivePlace if they are “places”. Thus, the agent can express this
preference as ic(Place) = 2, i.e. values should be higher than 1.

On the other hand, suppose he “does not care” if those are places or not, he may express
this preference as ic(Place) = 0, i.e. values must be equal to 0.

Definition 5.2 (Role Importance). Let RN(T ) be a set of role names occurring in T .
Then, a role importance is a “partial” function ir : RN(T )→ [0, 2].

For any r ∈ RN(T ), ir(r) = 1 captures an expression of normal importance for r,
ir(r) > 1 (and ir(r) < 1) indicates that r has higher (and lower, respectively) importance,
and ir(r) = 0 indicates that r is of no importance to the agent.

1In the original definition of preference profile [91], elements in the domains of both ic and ir are
mapped to R≥0, which is a minor error.
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Example 5.3. (Continuation of Example 5.1) Suppose that the agent A wants to enjoy
“walking”. He may express this preference as ir(canWalk) = 2, i.e. values should be
higher than 1.

Definition 5.3 (Primitive Concepts Similarity). Let CNpri(T ) be a set of primitive con-
cept names occurring in T . For A,B ∈ CNpri(T ), a primitive concepts similarity is a
“partial” function sc : CNpri(T ) × CNpri(T ) → [0, 1] such that sc(A,B) = sc(B,A) and
sc(A,A) = 1.

For A,B ∈ CNpri(T ), sc(A,B) = 1 captures an expression of total similarity between A
and B and sc(A,B) = 0 captures an expression of their total dissimilarity.

Example 5.4. (Continuation of Example 5.1) Suppose that the agent A believes that
“trekking” and “kayaking” invoke similar feeling. Thus, he can express sc(Trekking,
Kayaking) = 0.1, i.e. values should be higher than 0.

Another example is the similarity of concepts Pet1 and Pet2, in which both are defined
as follows: Pet1 v Dog u ∃hasOwned.Human; Pet2 v Cat u ∃hasOwned.Human. Here, Dog
and Cat are both primitive concept names. Intuitively, Dog and Cat are similar, then we
may attach this knowledge in form of sc in order to yield more accuracy on the measure.

Definition 5.4 (Primitive Roles Similarity). Let RNpri(T ) be a set of primitive role names
occurring in T . For r, s ∈ RNpri(T ), a primitive roles similarity is a “partial” function
sr : RNpri(T )× RNpri(T )→ [0, 1] such that sr(r, s) = sr(s, r) and sr(r, r) = 1.

For r, s ∈ RN(T ), sr(r, s) = 1 captures an expression of total similarity between r and
s and sr(r, s) = 0 captures an expression of their total dissimilarity.

Example 5.5. (Continuation of Example 5.1) Suppose that the agent A believes that
“moving with legs” and “traveling with sails” invoke similar feeling. He may express
sr(canMoveWithLegs, canTravelWithSails) = 0.1, i.e. values should be higher than 0.

Basically, our motivations of both functions sc and sr are the same, i.e. we aim at
attaching subjective feeling of proximity (about primitive concept names and primitive
role names) into a measure. In DLs, different primitive concept names (and also primitive
role names) are considered to be total dissimilarity even though they may be recognized
as being similar in real-world domains.

Definition 5.5 (Role Discount Factor). Let RN(T ) be a set of role names occurring in
T . Then, a role discount factor is a “partial” function d : RN(T )→ [0, 1].

Intuitively, role discount factor means a factor that discounts an important contribution
of a role. This aspect plays a part when comparing two existential restrictions or two value
restrictions, i.e. concepts of the form ∃r.C or concepts of the form ∀r.C, respectively, are
being compared. For example, comparing ∃r1.(∃r2.C1) and ∃r3.(∃r4.C2) involves checking
the commonality of r1, r3 and the commonality of ∃r2.C1,∃r4.C2. Depending on a context
of consideration, the commonality appeared in r1 may have more/less importance than
the commonality appeared in its nested concept part i.e. ∃r2.C1.
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More formally, for any r ∈ RN(T ), d(r) = 1 captures an expression of total importance
on the role (beyond a corresponding nested concept) and d(r) = 0 captures an expression
of total importance on a nested concept (beyond the correspondent role r).

Example 5.6. (Continuation of Example 5.1) Suppose that the agent A does not concern
much if places permit to either walk or to sail. He would rather consider on actual activities
which he can perform. Thus, he may express d(canWalk) = 0.3 and d(canSail) = 0.3, i.e.
values should be close to 0.

Definition 5.6 (Preference Profile). A preference profile, in symbol π, is a quintuple
〈ic, ir, sc, sr, d〉 where ic, ir, sc, sr, and d are as defined above and the default preference
profile, in symbol π0, is the quintuple 〈ic0, ir0, sc0, sr0, d0〉 where

ic0(A) = 1 for all A ∈ CNpri(T ),

ir0(r) = 1 for all r ∈ RN(T ),

sc0(A,B) = 0 for all (A,B) ∈ CNpri(T )× CNpri(T ),

sr0(r, s) = 0 for all (r, s) ∈ RNpri(T )× RNpri(T ), and

d0(r) = 0.4 for all r ∈ RN(T ),

Intuitively, the default preference profile π0 represents the agent’s preference in the
default manner, i.e. when preferences are not given. That is, every A ∈ CNpri has normal
importance and so does every r ∈ RN. Also, every (A,B) ∈ CNpri×CNpri is totally different
and so does every (r, s) ∈ RNpri×RNpri. Lastly, every r ∈ RN is considered 0.4 importance
for the similarity of two existential restriction information (or two value restriction infor-
mation). It is interesting to note that changes in the definition of the default preference
profile yield different interpretations of the default preference and thereby may produce
a different degree of similarity under the default manner. As for its exemplification, the
value 0.4 is used by d0 to conform with the value of ν used by sim in Chapter 4.

In this work, a preference profile of an agent is denoted by subscribing that agent below
π, e.g. πA represents a preference profile of the agent A.

5.2 From Subsumption Degree to Subsumption De-

gree under Preferences in FL0

Now, we are ready to exemplify how the notion of preference profile can be adopted
toward the development of subsumption degree under preferences in FL0. To exemplify a
development, we generalize the function  s to expose preferential elements of preference
profile. As a result, the new function

π
 s is also driven by the structural subsumption

characterization by means of language inclusion in FL0. It is worth noticing that role
names appearing in FL0 are always primitive. This suggests that both RNpri(T ) and
RN(T ) can be considered identically in Definition 5.6. Furthermore, due to the employed
characterization, the notions ir, sr, and d are not used by this generalization in FL0.
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We start by presenting a relevant aspect of preference profile in terms of “total” func-
tions in order to avoid computing on null values. A total concept similarity function is
also presented as ŝ : CNpri × CNpri → [0, 1] as follows:

ŝ(x, y) =


1 if x = y

sc(x, y) if (x, y) ∈ CNpri × CNpri

and sc is defined on (x, y)

0 otherwise

(5.1)

Intuitively, identical concepts are considered totally similar, i.e. they are set to 1. Other-
wise, in case that they are not defined, different concepts are considered totally dissimilar
by default.

The next step is to generalize the function  s. We rewrite the numerator of  s to:∑
P∈CNpri

max
Q∈CNpri

{ŝ(P,Q) | W(D,P ) ⊆ W(C,Q)} (5.2)

Basically, Equation 5.2 combines value of each maximal primitive concepts similarity
element. Its objective is to also take into account the value of each similar concept pair,
if this value is defined.

We may also put the notion of concept importance into our computational procedure.
As suggested in Section 5.1, this results in the flexibility for weighting on primitive con-
cepts (ranging from having no importance to having the maximum importance).

To achieve this, we continue with a similar attempt. That is, a total concept importance
function is introduced as î : CNpri → [0, 2] as follows:

î(x) =

{
ic(x) if x ∈ CNpriand ic is defined on x

1 otherwise
(5.3)

Basically, the above equation says that each concept has normal importance by default,
if it is not defined.

To take these matters into account, we should rewrite both the numerator and the
denominator such that they expose some rooms for tuning with the concept importance.
Thus, we rewrite each part, respectively, as follows:∑

P∈CNpri

î(P ) · max
Q∈CNpri

{ŝ(P,Q) | W(D,P ) ⊆ W(C,Q)} (5.4)

∑
P∈CNpri

î(P ) (5.5)

Finally, putting each rewritten part together yields a concrete function for concept
subsumption degree under preference profile. We denote this new function by

π
 s (cf.

Definition 5.7) as it presents a generalization of  s w.r.t. preference profile.
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PREFERENCES IN FL0

Definition 5.7 (Skeptical FL0 Subsumption Degree under π). Let C,D ∈ Con(FL0)
be in their normal forms and W(E,A) be a set of words w.r.t. the concept E and the
primitive A. Then, a skeptical FL0 subsumption degree under π from C to D (denoted

by C
π
 s D) is defined as follows:

C
π
 s D =

∑
P∈CNpri

î(P ) · max
Q∈CNpri

{ŝ(P,Q)|W(D,P ) ⊆ W(C,Q)}∑
P∈CNpri

î(P )
(5.6)

Example 5.7. An agent A is searching for a hotel room during his vacation. At that
moment, he prefers to stay in a Japanese-style room or something similar. In the following,
his desired room may be expressed as the concept DesiredRoom. Suppose RoomA and
RoomB are concepts in a room ontology as follows:

DesiredRoom v Room u ∀floor.Tatami
RoomA v Room u ∀floor.Bamboo
RoomB v Room u ∀floor.Marble

To express the agent’s preferences that Bamboo is quite similar to Tatami, we may
express the agent A’s preferences as: sc(Bamboo,Tatami) = 0.8. Following Definition 5.7,
it yields that

DR
π
 s RA =

1 + 0 + 1 + 1 + 1 + 0.8 + 1

|X, Y, Z,R, T,B,M |
=

5.8

7

and

RA
π
 s DR =

0 + 1 + 1 + 1 + 0.8 + 1 + 1

7
=

5.8

7
,

Similarly, it yields DR
π
 s RB = RB

π
 s DR = 5

7
.

It is worth noticing that subsumption degree under preferences for the credulous sub-
sumption degree can also be developed by incorporating with the notions role importance
(ir) and primitive roles similarity (sr) (cf. Definition 5.6). However, it requires us to well
investigate how those elements should be incorporated and we leave this as a future task.

Under a special setting of preference profile i.e. the default preference profile, the
function

π
 s can be reduced backward to  s. This means that

π
 s can be also used for

a situation when preferences are not given. As for its syntactic sugar, let us denote a
setting on

π
 s by replacing the setting with π. For instance, we may write the setting

with π0 as
π0 s. Next, we show that, under this special setting on

π
 s, the computation

produces the same outcome as  s.

Proposition 5.1. For any C,D ∈ Con(FL0), C
π0 s D = C  s D.

Proof. Recall by Definition 5.6 that default preference profile π0 is the quintuple
〈ic0, ir0, sc0, sr0, d0〉. We notice that only ic0 and sc0 are relevant to

π
 . Fix any C,D ∈

Con(FL0), we show that, under this special setting, C
π0 s D = C  s D as follows:
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C
π0 s D =

∑
P∈CNpri

1 · max
Q∈CNpri

{ŝ(P,Q)|W(D,P ) ⊆ W(C,Q)}∑
P∈CNpri

1

=

1 ·
∑

P∈CNpri

max
Q∈CNpri

{ŝ(P,Q)|W(D,P ) ⊆ W(C,Q)}

|CNpri|
Since sc0 maps identity to 1 and else to 0,

∑
P∈CNpri

max
Q∈CNpri

{ŝ(P,Q)|W(D,P ) ⊆ W(C,Q)} =

|{P ∈ CNpri | W(D,P ) ⊆ W(C,P )}|. We have shown that C
π0 s D = C  s D. o

5.3 From Subsumption Degree to Subsumption De-

gree under Preferences in ELH
Generalizing subsumption degree to subsumption degree under preference profile in ELH
is similar to what we have just done in FL0. The main difference, in which we shall see, is
the utilization of every aspect in preference profile. Therefore, the previous total functions
are augmented and the missing total function for the role discount factor is added.

As mentioned, we present each aspect of preference profile in term of “total” functions
in order to avoid computing on null values. A total importance function is firstly intro-
duced as î : CNpri ∪ RN → [0, 2] based on the primitive concept importance and the role
importance.

î(x) =


ic(x) if x ∈ CNpriand ic is defined on x

ir(x) if x ∈ RN and ir is defined on x

1 otherwise

(5.7)

A total similarity function is also presented as ŝ : (CNpri×CNpri)∪(RNpri×RNpri)→ [0, 1]
using the primitive concepts similarity and the primitive roles similarity.

ŝ(x, y) =



1 if x = y

sc(x, y) if (x, y) ∈ CNpri × CNpri

and sc is defined on (x, y)

sr(x, y) if (x, y) ∈ RNpri × RNpri

and sr is defined on (x, y)

0 otherwise

(5.8)

Similarly, a total role discount factor function1 is presented in the following in term of
a function d̂ : RN→ [0, 1] based on the role discount factor.

d̂(x) =

{
d(x) if d is defined on x

0.4 otherwise
(5.9)

1We set the default value to 0.4 to comply with the default value of π0.
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The next step is to generalize the notion of homomorphism degree hd (cf. Definition
4.6). Let C,D ∈ Con(ELH) and r, s ∈ RN. Also, let TC , TD,PC , PD, EC , ED, Rr, and Rs

be as defined in Subsection 4.5.1. The homomorphism degree under preference profile π
from TD to TC can be formally defined in Definition 5.8.

Definition 5.8. Let TELH be a set of all ELH description trees, and π = 〈ic, ir, sc, sr, d〉
be a preference profile. The homomorphism degree under preference profile π is a function
hdπ : TELH ×TELH → [0, 1] defined inductively as follows:

hdπ(TD, TC) = µπ(PD, ED) · p-hdπ(PD,PC) + (1− µπ(PD, ED)) · e-set-hdπ(ED, EC), (5.10)

where µπ(PD, ED) =



1 if
∑

A∈PD
î(A)

+
∑

∃r.X∈ED
î(r) = 0∑

A∈PD
î(A)∑

A∈PD
î(A)+

∑
∃r.X∈ED

î(r)
otherwise;

(5.11)

p-hdπ(PD,PC) =



1 if
∑

A∈PD
î(A) = 0

0 if
∑

A∈PD
î(A) 6= 0

and
∑

B∈PC
î(B) = 0∑

A∈PD
î(A)· max

B∈PC
{ŝ(A,B)}∑

A∈PD
î(A)

otherwise;

(5.12)

e-set-hdπ(ED, EC) =



1 if
∑

∃r.X∈ED
î(r) = 0

if
∑

∃r.X∈ED
î(r) 6= 0

0 and∑
∃s.Y ∈EC

î(s) = 0∑
∃r.X∈ED

î(r)· max
εj∈EC

{e-hdπ(∃r.X,εj)}∑
∃r.X∈ED

î(r)
otherwise;

(5.13)

where εj is an existential restriction; and

e-hdπ(∃r.X,∃s.Y ) = γπ(r, s) · (d̂(r) + (1− d̂(r)) · hdπ(TX , TY )) (5.14)

where γπ(r, s) =


1 if

∑
r′∈Rr

î(r′) = 0∑
r′∈Rr

î(r′)· max
s′∈Rs

{ŝ(r′,s′)}∑
r′∈Rr

î(r′)
otherwise.

(5.15)
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Intuitively, the function hdπ (Equation 5.10) is defined as the weighted sum of the
degree under preferences of the vertex set commonalities (p-hdπ) and the degree under
preferences of edge condition matching (e-set-hdπ). Equation 5.12 calculates the average of
the best matching under preferences of primitive concepts in PD. Equation 5.14 calculates
the degree under preferences of a potential homomorphism of a matching edge. If edge
labels share some commonalities under preferences (Equation 5.15), i.e. 0 < γπ ≤ 1,
then part of the edge matching is satisfied; but the successors’ labels and structures have
yet to be checked. This is defined recursively as hdπ(TX , TY ) in Equation 5.14. Equation
5.13 calculates the best possible edge matching under preferences of each edge in ED and
returns the average thereof.

The weight µπ in Equation 5.10 determines how important the primitive concept names
are to be considered for preference-based similarity. For the special case where D = >,
i.e. PD = ED = ∅, µπ is irrelevant as T> is the smallest ELH description tree and
hdπ(T>, TC) = 1 for all concepts C.

It is to be mentioned that the function hdπ may look similar to simid as both are
recursive definitions for the same DL ELH. However, they are obviously different caused
by the distinction of their inspirations and their viewpoints of the development. While hdπ

is inspired by the homomorphism-based structural subsumption characterization, simid is
inspired by the Jaccard Index [143]. Technically speaking, simid employs t-conorm instead
of fixing an operator. However, unlike simid, the use of µπ for determining how primitive
concepts are weighted and the use of γπ for determining the proportion of shared super
roles are employed. Furthermore, simid is originated from the viewpoint of ordinary
concept similarity measure, thus some aspects of preference profile are missed; though
some may exist. We continue the discussion in Section 5.8.

The function hdπ yields a numerical value that represents structural similarity w.r.t. a
particular profile π of a concept against another concept. We present an example about
the calculation of hdπ in the following.

Example 5.8. (Continuation of Example 5.1) Let enrich the example. Assume the
agent A’s preference profile is defined as follows: (i) ic(Place) = 2; (ii) ir(canWalk) = 2;
(iii) sc(Trekking,Kayaking) = 0.1; (iv) sr(canMoveWithLegs, canTravelWithSails) = 0.1; (v)
d(canWalk) = 0.3 and d(canSail) = 0.3. Let ActivePlace, Mangrove, Beach, Place, Trekking,
Kayaking, canWalk, and canSail are rewritten shortly as AP, M, B, P, T, K, cW, and cS,
respectively. Using Definition 5.8, hdπ(TAP, TM)

= (3
6
) · p-hdπ(PAP,PM) + (3

6
) · e-set-hdπ(EAP, EM)

= (3
6
) · ( i(X)·max{s(X,Y ),s(X,P)}+i(P)·max{s(P,Y),s(P,P)})

i(X)+i(P)
)

+(3
6
) · e-set-hdπ(EAP, EM)

= (3
6
)(1·max{0,0}+2·max{0,1}

1+2
) + (3

6
) · e-set-hdπ(EAP, EM)

= (3
6
)(2

3
) + (3

6
)
[
i(cW)·max{e-hdπ(∃cW.T,∃cW.T)}+1·max{0.019}

i(cW)+i(cS)

]
= (3

6
)(2

3
) + (3

6
)
[

2·max{(1)(0.3+0.7(1))}+1·max{0.019}
i(cW)+i(cS)

]
= (3

6
)(2

3
) + (3

6
)
[

(2)(1)+(1)(0.019)
2+1

]
≈ 0.67
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Similarly, we obtain hdπ(TM, TAP) = 0.80. Furthermore, using Definition 5.8, hdπ(TAP, TB) ≈
0.51 and hdπ(TB, TAP) = 0.75.

Similar to Proposition 5.1, the function hdπ can be used when preferences of the agent
are not given. That is, we tune the function according to the default preference profile
i.e. hdπ0 . We state this property in the following proposition.

Proposition 5.2. For TD, TC ∈ TELH, hdπ0(TD, TC) = hd(TD, TC).
Proof. Recall by Definition 5.6 that the default preference profile π0 is the quintuple
〈ic0, ir0, sc0, sr0, d0〉. Also, suppose a concept name D is of the form: P1 u · · · uPm u∃r1.D1 u
· · · u ∃rn.Dn, where Pi ∈ CNpri, rj ∈ CN, Dj ∈ Con(ELH), 1 ≤ i ≤ m, 1 ≤ j ≤ n,
P1 u · · · uPm is denoted by PD, and ∃r1.D1 u · · · u ∃rn.Dn is denoted by ED. Let d be the
depth of TD. We prove that, for any d ∈ N, hdπ0(TD, TC) = hd(TD, TC) by induction on d.

When d = 0, we know that D = P1u· · ·uPm. To show that hdπ0(TD, TC) = hd(TD, TC),
we need to show that µπ0 = µ and p-hdπ0(PD,PC) = p-hd(PD,PC). Let us derive as
follows:

µπ0 =

∑
A∈PD

î(A)∑
A∈PD

î(A) +
∑

∃r.X∈ED
î(r)

=

m∑
i=1

1

m∑
i=1

1 + 0
=

m

m+ 0
= µ.

Furthermore, we only need to show
∑

A∈PD
max{ŝ(A,B) : B ∈ PC} = |PD ∩ PC | in order

to show p-hdπ0(PD,PC) = p-hd(PD,PC). We know that sc0 maps name identity to 1 and
otherwise to 0. Thus,

∑
A∈PD

max{ŝ(A,B) : B ∈ PC} = |{x : x ∈ PD and x ∈ PC}| =

|PD ∩ PC |.
We must now prove that if hdπ0(TD, TC) = hd(TD, TC) holds for d = h− 1 where h > 1

and D = P1 u · · · uPm u∃r1.D1 u · · · u ∃rn.Dn then hdπ0(TD, TC) = hd(TD, TC) also holds
for d = h. To do that, we have to show e-set-hdπ0(ED, EC) = e-set-hd(ED, EC). This can be
done by showing in the similar manner that γπ0 = γ and hdπ0(TX , TY ) = hd(TX , TY ) from
e-hdπ0(∃r.X,∃s,Y ) = e-hd(∃r.X,∃s.Y ), where ∃r.X ∈ ED and ∃s.Y ∈ EC . Consequently,
it follows by induction that, for TD, TC ∈ TELH, hdπ0(TD, TC) = hd(TD, TC). o

5.4 Concept Similarity under Preference Profile

In this section, we present an “abstract” notion of concept similarity measure under the
agent’s preferences [92, 93] and its desirable properties. As we shall see, the previous
developments on subsumption degree under preference profile can be utilized to develop
concrete measures of this abstract notion. Two “concrete” measures viz.

π∼s and simπ

are introduced by utilizing the functions
π
 and hdπ, respectively. Our first intuition

is to exemplify the applicability of preference profile onto an arbitrary existing measure
of concept similarity. This shows that our proposed notion of preference profile can be
considered as a collection of noteworthy aspects for the development of concept similarity
measure under the agent’s preferences.
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Definition 5.9. Given a preference profile π, two concepts C,D ∈ Con(L), and a TBox
T , a concept similarity measure under preference profile w.r.t. a TBox T is a function
π∼T : Con(L)× Con(L)→ [0, 1].

When a TBox T is clear from the context, we simply write
π∼. Furthermore, to avoid

confusion on the symbols,
π∼T is used when referring to arbitrary measures.

The notion
π∼ may be informally read as “the computation of ∼ is influenced by π”.

That informal interpretation shapes our intuition to consider this kind as a more gen-
eralized concept similarity i.e. not only objective factors but also subjective factors are
considered in the identification of the degree of similarity. With adopting of this view-
point of the interpretation, we can agree that

π∼s and simπ (cf. Subsection 5.4.1) are
informally interpreted as “we compute ∼s and sim (cf. Definition 4.7 and Definition 4.9,
respectively) under an existence of a given preference profile π”.

Basically, the notion
π∼ is a function mapping a pair of two concept descriptions w.r.t. a

particular π to a unit interval. We have identified a property called preference invariance
w.r.t. equivalence in our preliminary study [92]. To identify more important properties of
π∼, we started by investigating important properties of concept similarity measure existing
in the literature (e.g. [87, 88]). Our primary motivation is to identify the properties
of concept similarity measure which are also reasonable for

π∼. The following collects
fundamental properties for the introduced concept similarity measure under preference
profile. They can be used to answer the question “What could be good preference-
based similarity measures?”. In other words, any preference-based measures satisfying
the fundamental properties are considered to be good ones.

Definition 5.10. Let C,D,E ∈ Con(L) and Π be a countably infinite set of preference
profile. Then, we call a concept similarity measure under preference profile

π∼ is:

1. symmetric iff ∀π′ ∈ Π : (C
π′
∼ D = D

π′
∼ C);

2. equivalence invariant iff C ≡ D =⇒ ∀π′ ∈ Π : (C
π′
∼ E = D

π′
∼ E);

3. structurally dependent iff for any finite sets of concepts C1 and C2 with the following
conditions:

• C1 ⊆ C2,

• concepts A,B 6∈ C2,

• ic(Φ) > 0 if Φ is primitive and Φ ∈ C2, and

• ir(ϕ) > 0 if Φ is existential, i.e. Φ := ∃ϕ.Ψ, and Φ ∈ C2,

the concepts C :=
d

(C1 ∪ {A}), D :=
d

(C1 ∪ {B}), E :=
d

(C2 ∪ {A}) and F :=
d

(C2 ∪ {B}) fulfill the condition ∀π′ ∈ Π : (C
π′
∼ D ≤ E

π′
∼ F ); and

4. preference invariant w.r.t. equivalence iff C ≡ D ⇐⇒ ∀π′ ∈ Π : C
π′
∼ D = 1.
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Next, we discuss the underlying intuitions of each property subsequently. We note that
the properties 1 to 3 are adopted from [87, 88]. However, to the best of our knowledge,
the property 4 is first introduced for concept similarity measure under preference profile
in this work (originally introduced in [92]).

Let Π be a countably infinite set of preference profile. In the following, we discuss
the intuitive interpretation of each property. Firstly, symmetry states that an order of

concepts in question does not influence the notion
π′
∼ for any π′ ∈ Π. For instance,

Mangrove
π′
∼ Beach = Beach

π′
∼ Mangrove w.r.t. any particular context π′. This property

is controversial since cognitive science believes that similarity is asymmetric. An example
given in [82] is as follows: People usually speak “the son resembles the father” rather than
“the father resembles the son”. Some work in DLs also prefer asymmetry such as [146,153].
It is worth observing that such a statement is made w.r.t. some particular contexts. Thus,
this work favors on symmetry as it appears more natural to use and gives more intuitive
computational understanding. For example, rather than viewing like “the son resembles
the father”, we would view like “if certain contexts are fixed, then the son and the father
are similar to each other” (cf. [89, 92, 93]). Furthermore, we agree on the symmetry
because axiomatic information in TBox is not dynamically changed; and also, the notion
of preference profile studied in this work is static, i.e. it can be changed merely by tuning.
Some work in DLs which favors on symmetry includes [87–89,92,147,148,150–152].

Secondly, equivalence invariance (alternatively called equivalence soundness [87] in the
context of dissimilarity measure) states that if two concepts C and D are logically equiv-
alent, then measuring the similarity of each toward the third concept E w.r.t. any π′ ∈ Π
must be the same. This property is inspired from a characteristics of synonym concepts,
i.e. concepts that means exactly the same. For instance, let C ≡ ∃canWalk.Trekking and
D ≡ ∃canWalk.Trekking. It is clear that C and D are logically equivalent. Therefore, let

E ∈ Con(L), C
π′
∼ E = D

π′
∼ E for any π′ ∈ Π.

Thirdly, the notion of structural dependence was originally introduced by Tversky in
[82]. Later, the authors of [88] has collected it as another important properties for concept
similarity measure in their work. Basically, in Tversky’s model, an object was considered
as a set of features. Then, the similarity of two objects was measured by the relationship
between a number of common features and a number of different features. Extending this
idea to

π∼ gives the meaning that the similarity of two concepts C,D increases if a more
number of “equivalent” concepts is shared and each is considered “important”.

Lastly, preference invariance w.r.t. equivalence states that if two concepts are logically
equivalent, then the similarity degree of two concepts under preference profile π is always
1 for every π ∈ Π, and vice versa. Taking the negation both sides, this means C 6≡
D ⇐⇒ ∃π′ ∈ Π : C

π′
∼ D 6= 1. For instance, let C ≡ ∃canWalk.Trekking and D ≡

∃canWalk.Parading. It is clear that C and D are not logically equivalent, then taking
π = π0 obtains C

π0∼ D 6= 1; though, taking π = π1 where sc(Trekking,Parading) = 1 is
defined in π1 yields C

π1∼ D = 1.
There are several properties which are not considered as fundamental properties of con-

cept similarity measure under preference profile because the behaviors may not obey their
properties when used under “non-default” preference profiles, e.g. reverse subsumption

85



5.4. CONCEPT SIMILARITY UNDER PREFERENCE PROFILE

preserving. According to [88], a concrete measure ∼ satisfies the reverse subsumption
preserving iff, for any concepts C,D, and E, C v D v E =⇒ C ∼ E ≤ D ∼ E. The
property states that the similarity of D and E is higher than the one of C and E because
E is closer to D than C. To refute it, we need only one preference profile π such that the
implication does not hold (cf. Example 5.9), i.e. to show that (C v D v E) and ∃π′ ∈
Π : (C

π′
∼ E > D

π′
∼ E).

Example 5.9. Suppose concepts A1,A2,A3, and A4 are primitive. Query describes fea-
tures of an item that an agent is searching for. Item1 and Item2 are items, which compose
of features A1,A2,A3 and A1,A2,A3,A4, respectively.

Query ≡ A1 u A2

Item1 ≡ A1 u A2 u A3

Item2 ≡ A1 u A2 u A3 u A4

The ontology shows the hierarchy: Item2 v Item1 v Query. By taking sc(A2,A4) = 1, it is
reasonable to conclude that Item2

π∼ Query > Item1
π∼ Query due to an increased number

of totally similar concepts.

Similarity measures can inherently have different skepticism. We have shown this evi-
dence by introducing two measures in FL0, viz. the skeptical measure ∼s and the cred-
ulous measure ∼c. Understanding the relationship between these two measures provide
a way to personify similarity-based applications w.r.t. the agent’s style. A similar ex-
periment was done in [154] where different measures were used in target ontologies and
obtained the better results than just using a single measure. The following definition
offers another way of personalizing similarity-based applications. That is, different per-
sonalization of

π∼ may contribute different skepticism of an agent.

Definition 5.11. Let Π be a countably infinite set of preference profile and π1, π2 ∈ Π.
For any fixed measure

π∼, the concept similarity measure under π1 is more skeptical than
π2 (denoted by

π1∼ � π2∼) if C
π1∼ D ≤ C

π2∼ D for all C,D ∈ Con(L).

Intuitively, if an arbitrary concept similarity measure under preference profile
π∼ is

fixed, measuring the similarity of two concepts under different preference profiles may
yield different values.

5.4.1 From Subsumption Degree under Preferences to Concept
Similarity under Preferences

The idea of developing “concrete” concept similarity measures under preference profile
can be analogously brought from concept similarity. Indeed, we have pointed out this in
Section 4.3, i.e. the second and the third step of our outlined methodology (cf. page 59).
We formally recast this in the following.

C
π∼T D = 1⇐⇒ C

π
 T D = 1 and D

π
 T C = 1 (5.16)
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where the notion of directional subsumption degree under preference profile is denoted by
π
 T and the binary operator “and” should be generalized to aggregate two unit intervals.
In the following, we show how ones can employ this idea to develop concrete concept
similarity measure under preference profile for the DLs FL0 and ELH in this subsection.

The function
π
 s yields a numerical value that represents structural similarity w.r.t. a

particular profile π of a FL0 concept against another FL0 concept. This knowledge can
be used to develop a concrete measure of FL0 concept similarity under preference profile.

Definition 5.12. Let C,D ∈ Con(FL0) be in their normal forms and π = 〈ic, ir, sc, sr,
d〉 be a preference profile. Then, the skeptical FL0 similarity measure under preference
profile π between C and D (denoted by C

π∼s D) is defined as follows:

C
π∼s D =

C
π
 s D +D

π
 s C

2
(5.17)

Example 5.10. (Continuation of Example 5.7) Using Definition 5.12, it yields that

DR
π∼s RA =

5.8
7

+ 5.8
7

2
=

5.8

7

Similarly, it yields that DR
π∼s RA = 5

7
. Since DR

π∼s RA > DR
π∼s RB, it corresponds to

the agent A’s perception that he may decide to stay in RoomA when his DesiredRoom is
not available.

The function hdπ yields a numerical value that represents structural similarity w.r.t. a
particular profile π of a concept against another concept. We can use this knowledge to
develop a concrete measure of ELH concepts as follows.

Definition 5.13. Let C,D ∈ Con(ELH), TC and TD be the corresponding description
trees, and π = 〈ic, ir, sc, sr, d〉 be a preference profile. Then, the ELH similarity measure
under preference profile π between C and D (denoted by simπ(C,D)) is defined as follows:

simπ(C,D) =
hdπ(TC , TD) + hdπ(TD, TC)

2
(5.18)

Example 5.11. (Continuation of Example 5.8) Using Definition 5.13, it yields that

simπ(M,AP) =
0.67 + 0.80

2
≈ 0.74

Similarly, simπ(B,AP) ≈ 0.63. The fact that simπ(M,AP) > simπ(B,AP) corresponds with
the agent A’s needs and preferences.

The above definitions use the average to aggregate two corresponding unit intervals.
We may also argue to aggregate both values based on alternative operators accepting unit
intervals e.g. the multiplication or the root mean square of both values. Unfortunately,
those give unsatisfactory values for the extreme cases. Similar arguments about this point
has been discussed on page 71. Hence, we believe that the average-based definition given

87



5.4. CONCEPT SIMILARITY UNDER PREFERENCE PROFILE

above is the most appropriate method for aggregating two values of subsumption degree
under preference profile. Based on this form,

π∼s and simπ are basically considered as a
generalization of ∼s and sim, respectively, which determines similarity under preference
profile, i.e. behavioral expectation of the measure will conform to the agent’s perception.
We note that, though we recommend to use the average, its choice of operators may be
changed and it may produce a different behavior.

The following discusses some inherited properties of the measures
π∼s and simπ.

First, both measure
π∼s and simπ can be used in the case that a preference profile is not

defined by the agent. In such a case, we tune the profile setting to π0. That is, computing
π0∼s and simπ0 yields the degree of concept similarity measure merely w.r.t. the structure
of concept descriptions in question.

Theorem 5.1. Let C,D ∈ Con(FL0), C
π0∼s D = C ∼s D.

Proof. It immediately follows from Lemma 5.1, Definition 4.7, and Definition 5.12.
o

Theorem 5.1 tells us that
π∼s is backward compatible in the sense that using ∼s with

π = π0, i.e.
π0∼s, coincides with ∼s. Technically speaking,

π0∼s can be used to handle the
case of similar concepts regardless of the agent’s preferences.

Theorem 5.2. Let C,D ∈ Con(ELH), simπ0(C,D) = sim(C,D).
Proof. It immediately follows from Lemma 5.2, Definition 4.9, and Definition 5.13.

o

Like in the case of
π0∼s, the above theorem shows that simπ is also backward compatible

in the sense that using simπ with π = π0, i.e. simπ0 , coincides with sim.
Next, we show that

π∼s is a symmetric measure and can be computed in polynomial
time.

Theorem 5.3.
π∼s is symmetric.

Proof. Let Π be a countably infinite set of preference profile. Fix any π ∈ Π and
C,D ∈ Con(FL0), we have C

π∼s D = D
π∼s C by Definition 5.12 and the average. o

Theorem 5.4. Assume that a value from any preference functions is retrieved in O(1).
Let L,M be sets of words over the alphabet of role names corresponding to C,D, respec-
tively. Then, C

π∼s D ∈ O(|CNpri|2|L||M |).
Proof. Let C,D ∈ Con(FL0), π be any preference profile; and, let L,M be sets of

words over the alphabet of role names corresponding to C,D, respectively. By Definition
5.12, we need to show that C

π
 s D ∈ O(|CNpri|2|L||M |) and D

π
 s C ∈ O(|CNpri|2|L||M |).

By the average, it suffices to show C
π
 s D ∈ O(|CNpri|2|L||M |) as follows.

Checking the inclusion of finite similar languages can be done in polynomial time i.e.
to decide

∑
P∈CNpri

î(P ) · max
Q∈CNpri

{ŝ(P,Q) | W(D,P ) ⊆ W(C,Q)}, in the worst case we have

to check for all possible pairs P ∈ CNpri and Q ∈ CNpri. Such test can be done in
time |CNpri||CNpri|. To decide W(D,P ) ⊆ W(C,Q) in the inner loop, another polynomial
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time operation is also required i.e. we have to check whether, for all words w ∈ W(D,P ),
w ∈ W(C,Q) for checking the set inclusion. This requires |L||M | numbers of the operation.
The summation (cf. the denominator of Definition 5.7) requires linear time i.e. in the
size of CNpri. o

The above theorem spells out that the measure
π∼s can be computed in polynomial time.

In the following, we show that the measure simπ can also be computed in polynomial time
i.e. there exists an algorithmic procedure whose execution time is upper bounded by a
polynomial expression in the size of the description trees

Theorem 5.5. Assume that a value from any preference functions is retrieved in O(1).
Given C,D ∈ Con(ELH), simπ(C,D) ∈ O(|VC | · |VD|) where VC and VD are set of vertices
of the description trees TC and TD, respectively.

Proof. Let C,D ∈ Con(ELH), C := P1 u · · · u Pm u ∃r1.C1 u · · · u ∃rn.Cn, D :=
Q1 u · · · u Ql u ∃s1.D1 u · · · u ∃ro.Do, π be any preference profile, and TC , TD be cor-
responding description trees. By Definition 5.13, we show hdπ(TC , TD) ∈ O(|VC | · |VD|)
and hdπ(TD, TC) ∈ O(|VD| · |VC |). Without loss of generality, it suffices to show merely
hdπ(TC , TD) ∈ O(|VC | · |VD|). That is, we need to show µπ, γπ, p-hdπ(PD,PC), and
e-set-hdπ(ED, EC) are bounded by O(|VC | · |VD|).

Since the summation, the maximal matching between PD and PC , and the maximal
matching between Rr and Rs can be computed in polynomial time in the worst case, the
functions µπ, γπ, and p-hdπ(PD,PC) are bounded by O(|VC | · |VD|).

Computing e-set-hdπ(ED, EC) requires to call e-hdπ for |ED| · |EC | times. Each call of
e-hdπ will make a recursive call to hdπ and its number of calls is bounded by the height
of TD and TC . Hence, e-set-hdπ(ED, EC) are bounded by O(|VC | · |VD|). o

In the following, we show
π∼s is a procedure which ensures termination and can be used

as an indicator for the degree of commonalities under preference profile π between FL0

concepts. Intuitively, Lemma 5.1 ensures that the positive results are correct and Lemma
5.2 ensures that the negative results are also correct. Termination ensures to provide an
answer in finite time.

Lemma 5.1. Let C,D be FL0 concepts and π′ = 〈ic, ir, sc, sr, d〉 be any preference profile,

where ic(A) ∈ (0, 2] for all A ∈ CNpri(T ). Then, C
π′
∼s D ∈ (0, 1] implies both C and D

share commonalities under π′ among each other.
Proof. Let C,D be FL0 concepts and π′ be any preference profile. By the average, it

suffices to show that if C
π′
 s D ∈ (0, 1], then C is “partially subsumed” under π′ by D.

Assume C
π′
 s D ∈ (0, 1]. By assumption, we know that (cf. Definition 5.7), for some

P ∈ CNpri, for some Q ∈ CNpri, it holds that î(P ) > 0, ŝ(P,Q) > 0, and W(D,P ) ⊆
W(C,Q). This shows that C is partially subsumed under π′ by D based on the charac-
terization of language inclusion. o

89



5.4. CONCEPT SIMILARITY UNDER PREFERENCE PROFILE

Lemma 5.2. Let C,D be FL0 concepts and π′ = 〈ic, ir, sc, sr, d〉 be any preference profile,
where ic(A) ∈ (0, 2] for all A ∈ CNpri(T ). Then, both C and D share commonalities under

π′ implies that C
π′
∼s D ∈ (0, 1].

Proof. Let C,D ∈ Con(FL0) and π′ be any preference profile. We show its contrapo-

sition i.e. if C
π′
∼s D = 0, then both C and D do not share commonalities under π′ to

each other.
Assume C

π′
∼s D = 0. By assumption and the average, we know that C

π′
 s D = 0

and D
π′
 s C = 0. This means that (cf. Definition 5.7), for any P ∈ CNpri, for any

Q ∈ CNpri, it does not hold that î(P ) > 0, ŝ(P,Q) > 0, and W(D,P ) ⊆ W(C,Q). Also,
for any P ∈ CNpri, for any Q ∈ CNpri, it does not hold that î(P ) > 0, ŝ(P,Q) > 0, and
W(C,P ) ⊆ W(D,Q). This means that both C and D do not share any commonalities
under π′ with each other. Hence, both C and D do not share commonalities under π′ to
each other. o

Theorem 5.6. The measure
π∼s is guaranteed for termination and fulfills the condition:

C
π′
∼s D ∈ (0, 1] iff both C and D share commonalities under π′ among each other.

Proof. This is obvious by Lemma 5.1, Lemma 5.2, and Theorem 5.4. o

We can also show simπ is a procedure which ensures termination and can be used as
an indicator for the degree of commonalities under preference profile π between ELH
concepts. That is, we ensure that the correct results are corrects (cf. Lemma 5.3) and
the negative results are also correct (cf. Lemma 5.4). Termination ensures to provide an
answer in finite time.

Lemma 5.3. Let C,D be ELH concepts and π′ = 〈ic, ir, sc, sr, d〉 be any preference profile,
where ic(A) ∈ (0, 2] for all A ∈ CNpri(T ), ir(r) ∈ (0, 2] for all r ∈ RN(T ), d(r) ∈ (0, 1] for
all r ∈ RN(T ). Then, simπ′

(C,D) ∈ (0, 1] implies that both C and D share commonalities
under π′ among each other.

Proof. Let C,D ∈ Con(ELH), TC , TD be their corresponding trees, and π′ be any
preference profile where ic(A) ∈ (0, 2] for all A ∈ CNpri(T ), ir(r) ∈ (0, 2] for all r ∈ RN(T ),
d(r) ∈ (0, 1] for all r ∈ RN(T ). With Lemma 4.3, Theorem 5.2, and the average, it
suffices to show that hdπ

′
(TC , TD) ∈ (0, 1] implies the partial subsumption under π′ from

D to C based on the characterization of homomorphism structural subsumption ⇐⇒
hdπ

′
(TC , TD) ∈ (0, 1] implies p-hdπ

′
(PC ,PD) > 0 or e-set-hdπ

′
(EC , ED) > 0. We show these

cases as follows:

• For any v ∈ VC , for any h(v) ∈ VD, if there exists A ∈ lC(v) and B ∈ lD(h(v)) such
that ŝ(A,B) > 0, then we show that p-hdπ

′
(PC ,PD) > 0. To show this, we fix any

v′ ∈ VC , any h(v′) ∈ VD; and assume A ∈ lC(v′), B ∈ lD(h(v′)), and ŝ(A,B) > 0.
By Definition 5.13, we know p-hdπ

′
(PC ,PD) > 0.

90



5.4. CONCEPT SIMILARITY UNDER PREFERENCE PROFILE

• For any v, w ∈ VC , for any h(v), h(w) ∈ VD, if there exists r ∈ ρC(v, w) and s ∈
ρD(h(v), h(w)) such that ŝ(r, s) > 0, then we show that e-set-hdπ

′
(EC , ED) > 0. To

show this, we fix any v′, w′ ∈ VC , any h(v′), h(w′) ∈ VD; and assume r ∈ ρC(v′, w′),
s ∈ ρD(h(v′), h(w′)), and ŝ(r, s) > 0. By assumptions, we know γπ

′
(r, s) > 0.

Since hdπ
′

cannot be decreased according to Definition 5.13, we conclude that
e-set-hdπ

′
(EC , ED) > 0.

o

Lemma 5.4. Let C,D be any ELH concepts and π′ = 〈ic, ir, sc, sr, d〉 be any preference
profile where ic(A) ∈ (0, 2] for all A ∈ CNpri(T ), ir(r) ∈ (0, 2] for all r ∈ RN(T ), d(r) ∈
(0, 1] for all r ∈ RN(T ). Then, if both C and D share commonalities under π′ among
each other, then simπ′

(C,D) ∈ (0, 1].
Proof. Let C,D ∈ Con(ELH), TC , TD be their corresponding trees, and π′ be any

preference profile where ic(A) ∈ (0, 2] for all A ∈ CNpri(T ), ir(r) ∈ (0, 2] for all r ∈ RN(T ),
d(r) ∈ (0, 1] for all r ∈ RN(T ). We show its contraposition i.e. simπ′

(C,D) = 0 implies
that C and D do not share commonalities under π′ to each other.

By the average, we know that hdπ
′
(TC , TD) = 0 and hdπ

′
(TD, TC) = 0. This means that

both C and D do not share any commonalities under π′ to each other. o

Theorem 5.7. The measure simπ is guaranteed for termination and fulfills the condition:

simπ′
(C,D) ∈ (0, 1] iff both C and D share commonalities under π′ among each other.

Proof. This is obvious by Lemma 5.3, Lemma 5.4, Theorem 5.5. o

5.4.2 Desirable Properties of simπ

Previously, we theorize a set of desirable properties that a concept similarity measure
under preference profile should satisfy and systematically introduce the measures

π∼s and
simπ. Due to the time constraint, we only provide mathematical proofs for the desirable
properties of simπ in this thesis. Understanding the properties gives many benefits to the
users of simπ since they can predict its expected behaviors.

Theorem 5.8. simπ is symmetric.
Proof. Let Π be a countably infinite set of preference profile. Fix any π ∈ Π and

C,D ∈ Con(ELH), we have simπ(C,D) = simπ(D,C) by Definition 5.13. o

Theorem 5.9. simπ is equivalence invariant.
Proof. Let Π be a countably infinite set of preference profile. Fix any π ∈ Π and

C,D,E ∈ Con(ELH), we show C ≡ D =⇒ simπ(C,E) = simπ(D,E).
Suppose C ≡ D, i.e. C v D and D v C, then we know there exists a homomorphism

h1 : TD → TC which maps the root of TD to the root of TC and h2 : TC → TD which maps
the root of TC to the root of TD, respectively, by Theorem 4.3. This means TC = TD.
Thus, simπ(C,E) = simπ(D,E). o
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Theorem 5.10. simπ is structurally dependent.
Proof. Let Π be a countably infinite set of preference profile. Fix any π ∈ Π and any

finite sets of concepts C1 and C2 with the following conditions: (1) C1 ⊆ C2; (2) concepts
A,B 6∈ C2; (3) ic(Φ) > 0 if primitive Φ ∈ C2; (4) ir(ϕ) > 0 if existential ∃ϕ.Ψ ∈ C2.
Suppose C :=

d
(C1 ∪{A}), D :=

d
(C1 ∪{B}), E :=

d
(C2 ∪{A}) and F :=

d
(C2 ∪{B})

where C1 = {P1, . . . , Pm,∃r1.P
′
1, . . . ,∃rn.P ′n} and C2 = {P1, . . . , Pi,∃r1.P

′
1, . . . ,∃rj.P ′j},

w.l.o.g. we show simπ(C,D) ≤ simπ(E,F ) by following two cases.

Suppose m ≤ i, n = j and A,B be primitives, we have p-hdπ(PC ,PD) =

∑
P∈PC

ic(P )∑
P∈PC

ic(P )+ic(A)
,

p-hdπ(PD,PC) =

∑
P∈PD

ic(P )∑
P∈PD

ic(P )+ic(B)
, p-hdπ(PE,PF ) =

∑
P∈PE

ic(P )∑
P∈PE

ic(P )+ic(A)
, and p-hdπ(PF ,PE) =

∑
P∈PF

ic(P )∑
P∈PF

ic(P )+ic(B)
.

Sincem ≤ i, we know p-hdπ(PC , PD) ≤ p-hdπ(PE,PF ) and p-hdπ(PD,PC) ≤ p-hdπ(PF ,PE).
This infers simπ(C,D) ≤ simπ(E,F ).

Suppose m = i, n ≤ j and A,B be existentials, then with the similar manner, we can
show e-set-hdπ(EC , ED) ≤ e-set-hdπ(EE, EF ), e-set-hdπ(ED, EC) ≤ e-set-hdπ(EF , EE). This
also infers simπ(C,D) ≤ simπ(E,F ).

Therefore, we have shown simπ(C,D) ≤ simπ(E,F ). o

Lemma 5.5. Let TD, TC ∈ TELH and Π be a countably infinite set of preference profile.
Then, hd(TD, TC) = 1⇐⇒ ∀π ∈ Π : hdπ(TD, TC) = 1.

Proof. Let Π be a countably infinite set of preference profile and π0 be the default
preference profile. Fix any π ∈ Π, we show hd(TD, TC) = 1⇐⇒ hdπ(TD, TC) = 1.

(=⇒) hd(TD, TC) = 1 implies that there exists a homomorphism h : TD → TC which
maps the root of TD to the root of TC . Consequently, any setting on π does not influence
the calculation on hdπ(TD, TC).

(⇐=) In particular, it suffices to show hdπ0(TD, TC) = 1 =⇒ hd(TD, TC) = 1. By
Lemma 5.2, it is the case that hd(TD, TC) = 1. o

Theorem 5.11. simπ is preference invariant w.r.t. equivalence.
Proof. Let C,D ∈ Con(ELH) and Π be a countably infinite set of preference profile.

Fix any π ∈ Π, we show C ≡ D ⇐⇒ simπ(C,D) = 1.
(=⇒) Assume C ≡ D, we need to show simπ(C,D) = 1. By Theorem 4.4, we know

C ≡ D ⇐⇒ sim(C,D) = 1. With the usage of Lemma 5.5, Definition 4.9, and Definition
5.13, we can derive simπ(C,D) = 1.

(⇐=) This can be shown similarly as in the forward direction. o

Theorem 5.8 to 5.11 spells out that simπ satisfies all fundamental properties of concept
similarity measure under preference profile.

Definition 5.11 suggests that different preference profile settings represent different
types of a rational agent. An easy characterization is observed from the aspect of role
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discount factor (d). Intuitively, when the settings ic, ir, sc, and sr defined by two ra-
tional agents A,B are the same, the agent which defines the lower d on every r ∈ RN
is always more skeptical. For instance, if dA(canWalk) = 0.3 and dB(canWalk) = 0.4,
then simπA(∃canWalk.Trekking,∃canWalk.Parading) = 0.3 and simπB(∃canWalk.Trekking,
∃canWalk.Parading) = 0.4. This is clear that the agent A is more skeptical than the agent
B.

Proposition 5.3. Let Π be a countably infinite set of preference profile and π1, π2 ∈ Π
such that π1 = 〈ic1, ir1, sc1, sr1, d1〉, π2 = 〈ic2, ir2, sc2, sr2, d2〉, and RN be a set of role names. The
following holds:1

∀r ∈ RN : (d1(r) ≤ d2(r)) =⇒ ≡ � simπ1 � simπ2

for fixed functions ic1 = ic2, ir1 = ir2, sc1 = sc2, and sr1 = sr2.

5.5 Finding Suitable Values for Preference Profile

To identify suitable values for preference profile, we have proposed strategies to obtain
such values. With the proposed strategies, we can start with the values obtained from
applying each of them and re-adjust each value where refinement is required.

Intuitively, they can be classified into two underlying basic ideas. First, sub-concepts
and sub-roles can inherit their importance from their super-concepts and super-roles,
by default, respectively. Second, when an ABox is presented, we can use the canonical
interpretation (cf. Definition 3.7 on page 37) to calculate the initial values for similarity
of primitive concept names and similarity of primitive role names.

5.5.1 Tuning ic

This subsection exhibits a strategy for tuning primitive concept importance ic in practice.
Realistic ontologies are generally complex – consisting in plenty of concept names. Hence,
having some strategies of tuning is useful since it helps to pave the way for a more
convenient use of preference profile.

As a starting point, we seek to observe characteristics of realistic ontologies whose
TBox is unfoldable2, e.g. a popular medical ontology Snomed ct, denoted by Omed,
[105]. Figure 5.1 gives an example of concept definitions in Omed and Figure 5.2 shows
the concept hierarchy w.r.t. Omed.

According to the above figures, it is intuitive to express primitive concept importance
through the concept hierarchy. For instance, an agent may say “my concept importance
goes through Disease”; or “my concept importance goes through HeartDisease”. Informally
investigating, let CNpri(Omed) be a set of primitive concept names occurring in Omed. Since
Disease ∈ CNpri(Omed), the former case is simple, e.g. an agent may mean ic(Disease) = 1.2.
The latter case is a bit complicated since HeartDisease 6∈ CNpri(Omed). However, the agent’s

1See Definition 5.11 for the meaning of �
2According to this investigation, we assume an ontology O has an unfoldable TBox T in this section.
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Pericardium v Tissue u ∃partOf.Heart
Endocardium v Tissue u ∃partOf.Heart
Appendicitis ≡ Inflammation u ∃hasLocation.Appendix

Pericarditis ≡ Inflammation u ∃hasLocation.Pericardium
Endocarditis ≡ Inflammation u ∃hasLocation.Endocardium

Inflammation v Disease
HeartDisease ≡ Disease u ∃hasLocation.∃partOf.Heart

Figure 5.1: Example of concept definitions in Omed.

>

Tissue

EndocardiumPericardium

HeartDisease

HeartDisease

EndocarditisPericarditis

Inflammation

Appendicitis

Figure 5.2: The concept hierarchy of Omed.

intention may mean ic(Disease) = 1.2 and ic(Heart) = 1.2. This informal investigation
shapes the development as follows:

Definition 5.14. Let CN(T ) (CNpri(T ) and CNdef(T )) be a set of concept names (primi-
tive concept names and defined concept names, respectively) occurring in T . Then, a prop-
agation for primitive concept importance is a “partial” function Ic : CN(T )∪{>} → [0, 2]
such that a mapping n of Ic on X (i.e. Ic(X) = n) is defined inductively as follows:1.

1. X ∈ CNpri(T ) =⇒ ic(X) = n;

2. X := > =⇒ ∀x ∈ CNpri(T ) : ic(x) = n; and

3. X ∈ CNdef(T ) =⇒ ∀x ∈ RHS(X) : Ic(x) = n.

where RHS(X) is a set of concept names appearing on the right-hand side of X.

Its interpretation is defined in a usual way. That is, for any A ∈ CN(T ), Ic(A) = 1
captures an expression of normal importance on A, Ic(A) > 1 (and Ic(A) < 1) indicates
that A has higher (and lower, respectively) importance, Ic(A) = 0 indicates that A has
no importance to the agent. For the special case, Ic(>) = n indicates that every primitive
concept name occurring on T is of equal importance at n.

Example 5.12. From Figure 5.1, suppose that an agent A is using a concept similarity
measure under preference profile for querying some names that expose the similar charac-
teristics to HeartDisease. Thus, the agent can express a preference Ic(HeartDisease) = 1.2
instead of individually specifying ic(Disease) = 1.2 and ic(Heart) = 1.2.

1Later, we discuss some restrictions the readers should take into account when the notion Ic is em-
ployed.
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There are a few concerns that we should take into account, i.e. (1) inconsistent prefer-
ences of concepts occurring on the same branch of the concept hierarchy; (2) inconsistent
preferences of defined concepts occurring on different branches of the concept hierarchy;
and (3) expressing preferences when a TBox T contains equivalent defined concepts.

Let us take a look on our first concern through the following preference expression: “my
concept importance goes through Disease, especially HeartDisease”. In this example, we
may take Ic(Disease) = 1.2 and Ic(HeartDisease) = 1.3. Here, Disease is redefined on ic

twice. This kind of scenarios is possible to happen because we are extending the aspect
of primitive concept importance toward both types of concept names. There are many
ways to handle this with the use of operators ⊕ : [0, 2]2 → [0, 2].

Definition 5.15. Let A ∈ CNpri(T ) be a set of primitive concept names occurring in T
and x0, x1 ∈ [0, 2]. Also, let ic(A) = x0 be the previous mapping on A. We compute a
new mapping ic(A) = x1 as follows:

ic(A) =

{
x1 if ic is not defined on A

x0 ⊕ x1 otherwise
(5.19)

The notion of the operator remains abstract here as its concrete operators may vary
on the context of use. In the following, we establish some of the abstract notion ⊕, i.e.
⊕max, ⊕first, and ⊕last. Let two real numbers x1, x0 ∈ [0, 2]. Then,

x0 ⊕max x1 = max{x0, x1} (5.20)

x0 ⊕first x1 = x0 (5.21)

x0 ⊕last x1 = x1 (5.22)

Example 5.13. From Figure 5.1, an agent might say “My interest is Disease except
HeartDisease”. That is, we may take Ic(Disease) = 1.2 (i.e. ic(Disease) = 1.2) and
Ic(HeartDisease) = 0 (i.e. ic(Disease) = 1.2 ⊕ 0 and ic(Heart) = 0). Taking ⊕ as ⊕max

yields ic(Disease) = 1.2 and ic(Heart) = 0. It also yields the same results by taking ⊕ as
⊕first.

Example 5.14. From Figure 5.1, an agent might say “My concern is nothing except
HeartDisease”. That is, we may take Ic(>) = 0 (i.e. ic(Disease) = 0, ic(Tissue) = 0, and
ic(Heart) = 0) and Ic(HeartDisease) = 1 (i.e. ic(Disease) = 0 ⊕ 1 and ic(Heart) = 0 ⊕ 1).
Taking ⊕ as ⊕max yields ic(Disease) = 1, ic(Tissue) = 0, and ic(Heart) = 1. It also yields
the same results by taking ⊕ as ⊕last.

Now, we discuss our second concern on the application of Ic. Let us consider the
following preference expression of an agent: Ic(Pericarditis) = 1.2 and Ic(Endocarditis) =
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1.6. One may notice that both use the primitive concept name Disease in common. Now, a
natural question to ask is “how a concept importance value should be propagated” since
a propagation may cause an inconsistency of preference values for a primitive concept
name, such as Disease in this example. This requires further work to study. However, one
simple way for handling this problem is to prevent a mapping leading to this situation.
In other words, an agent has to tune primitive concept names via the primitive concept
importance ic individually.

Lastly, we contemplate our third concern. That is, “what happens if a defined concept
name C1 is defined on Ic and there exists another defined concept name C2 such that
C1 ≡T C2?” A natural way for handling this problem is to treat C2 in the same way
as C1 (because they are equivalent). In particular, ∀C1, C2 ∈ CNdef(T ) : C1 ≡T C2 =⇒
Ic(C1) = Ic(C2). Nevertheless, this also requires further work to explore other possibilities
for coping with this problem and investigate desired properties the notion

π∼T should hold
when it is used with Ic.

5.5.2 Tuning ir

Let us remind that ir is a function which maps a role name r ∈ RN to a value x ∈ [0, 2]. Its
primary motivation is to define a user-identified importance value for an individual role
name. A distinguished characteristic of ir to ic is that, not only restricted to primitive ones,
ones may also define an importance on defined role names. We bear this understanding
on the development of a strategy to tune ir as follows.

Our primary motivation of providing a strategy to help tuning ir is similar to that one
of ic. That is, realistic ontologies are complex – consisting in plenty of role names. An
intuitive way to simplify the task of tuning ir is to proceed on a more general role name.
We note that, suppose r v s ∈ T , a role s is said to be more general than a role r. This
intuition shapes our development as follows:

Definition 5.16. Let RN(T ) be a set of role names occurring in T . Then, a propagation
for role importance is a “partial” function Ir : RN(T ) → [0, 2] such that a mapping n of
Ir on X (i.e. Ir(X) = n) is inductively defined as follows:1.

1. ∀X ′ ∈ RN(T ): (X ′ v X ∈ T =⇒ ir(X) = n and Ir(X ′) = n); and

2. ∀X ′ ∈ RN(T ): (X ′ v X 6∈ T =⇒ ir(X) = n).

There are a few concerns that we should take into account, i.e. (1) inconsistent pref-
erences of roles occurring on the same branch of the role hierarchy; and (2) expressing
preferences when a TBox T contains equivalent role names. We discuss these in order.

Let us take a look on our first concern through the following preference expression
(according to an ontology given in Example 5.1): “my role importance goes through
canMoveWithLegs, especially canWalk”. Suppose we take Ic(canMoveWithLegs) = 1.2 and
Ic(canWalk) = 1.3. Here, canWalk is redefined on ir twice. Similar to Ic, we handle this
problem with the use of operators ⊕ : [0, 2]2 → [0, 2].

1Later, we discuss some restrictions the readers should take into account when the notion Ir is em-
ployed.
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Definition 5.17. Let r ∈ RN(T ) be a set of role names occurring in T and x0, x1 ∈ [0, 2].
Also, let ir(r) = x0 be the previous mapping on r. We compute a new mapping ir(r) = x1

as follows:

ir(r) =

{
x1 if ir is not defined on r

x0 ⊕ x1 otherwise
(5.23)

The operator remains abstract here as its concrete operators may vary on the context of
use and may be defined in the same sense as Ic (e.g. Equation 5.20 to 5.22). For example,
an agent may prefer to take the last mapping when that agent says exceptional cases (e.g.
r except s where r ∈ Rs) in order to suppress the previously propagated value. Also,
an agent may prefer to take the last mapping when that agent would like to emphasize
some special circumstances (e.g. r especially s where r ∈ Rs) in order to suppress the
previously propagated value.

Example 5.15. From Example 5.1, an agent might say “My interest is canMoveWithLegs
except canWalk”. Let us take Ir(canMoveWithLegs) = 1.2 (i.e. ir(canMoveWithLegs) = 1.2
and ir(canWalk) = 1.2) and Ir(canWalk) = 0 (i.e. ir(canWalk) = 1.2⊕ 2). Using ⊕first for
⊕ yields ir(canMoveWithLegs) = 1.2 and ir(canWalk) = 0.

Example 5.16. From Example 5.1, an agent might say “My interest is canMoveWithLegs,
especially canWalk”. Let us take Ic(canMoveWithLegs) = 1.2 (i.e. ir(canMoveWithLegs) =
1.2 and ir(canWalk) = 1.2) and Ic(canWalk) = 1.3 (i.e. ir(canWalk) = 1.2 ⊕ 1.3). Using
⊕last for ⊕ yields ir(canMoveWithLegs) = 1.2 and ir(canWalk) = 1.3.

Lastly, we discuss the second concern. That is, “what happens if a defined role name
r1 is defined on Ir and there exists another defined role name r2 such that r1 vT r2 and
r2 vT r1?” Similar to our basic handling of this case in Ic, we recommend to treat r2 in
the same way as r1 (because they are equivalent). Nevertheless, this also requires further
work to explore other possibilities for coping with this problem and investigate desired
properties the notion

π∼T should hold when it is used with Ir.

5.5.3 Tuning sc

In this subsection, we present a strategy for tuning primitive concepts similarity. If an
ABox A is presented, then we can induce the canonical interpretation IA (cf. Definition
3.7) from A to calculate primitive concepts similarity for all possible primitive concept
pairs. Suppose that IA is constructed and let A,B ∈ CNpri(T ), we establish the following
calculation for the function sc.

sc(A,B) =

{
1 if AIA = BIA = ∅

|AIA∩BIA |
|AIA∪BIA | otherwise

(5.24)

where | · | represents the set cardinality.
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Intuitively, Equation 5.24 computes the commonality of both primitive concept names.
Since Omed does not contain an ABox A, let us use a handcraft ontology to exemplify the
calculation.

Example 5.17. Let a family ontology O = 〈T ,A〉 in which T is defined as follows:

Grandfather ≡ Man u ∃child.Parent
Parent ≡ Person u ∃child.Person

Man ≡ Male u Person

Let an ABox A is defined as follows:

child(john, elise) child(emma,watson)
Person(john) Person(elise)

Person(emma) Person(watson)
Male(john) Male(watson)

Thus, ∆IA = {elise, john, emma, watson}, PersonIA = {john, elise, emma, watson},
MaleIA = {john, watson}, and sc(Person,Male) = |john,watson|

|john,elise,emma,watson| = 1
2

= 0.5.

5.5.4 Tuning sr

This subsection presents a strategy for tuning primitive roles similarity. Indeed, we at-
tempt in the similar fashion as what we do for sc. That is, we use the canonical inter-
pretation IA to obtain primitive roles similarity. Let r, s ∈ RNpri(T ) and define operators
·f and ·s for any primitive role r as rf = {x | (x, y) ∈ rIA} and rs = {y | (x, y) ∈ rIA},
respectively, then:

sr(r, s) =


1 if rIA

= sIA = ∅
λ · |r

f∩sf |
|rf∪sf |

+(1− λ) · |r
s∩ss|
|rs∪ss| otherwise

(5.25)

where 0 < λ < 1 and | · | represents the set cardinality.
Intuitively, Equation 5.25 is defined as the weighted sum of the commonality on the

first arguments of roles and the commonality on the second arguments of roles. It is
recommended to set the weight λ = (|rf ∪ sf |)/(|rf ∪ sf |+ |rs ∪ ss|), i.e. the proportion
of all individuals appearing on the first arguments to all individuals appearing on both
arguments. The following example exemplifies the calculation.

Example 5.18. Let a family ontology O = 〈T ,A〉 in which T is defined as follows:

Parent ≡ Person u ∃child.Person
BrotherSister ≡ Person u ∃sibling.Person
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Let an ABox A is defined as follows:

sibling(john,max) sibling(yok,watson)
child(emma, yok) child(john, elise)

child(emma,watson) Person(john)
Person(elise) Person(emma)

Person(watson) Person(max)
Person(yok)

Thus, ∆IA = {elise, john, emma, watson, max, yok}, childf = {emma, john}, siblingf =
{yok, john}, childs = {yok,watson, elise}, siblings = {watson,max}, and sr(child, sibling) =
3
7
· 1

3
+ 4

7
· 1

4
≈ 0.48.

5.5.5 Tuning d

The primary motivation of this aspect is to capture an expression of total expression on
a role beyond a corresponding nested concept [91]. Hence, tuning this aspect may re-
quires skilled domain expertise. For example, Snomed ct ontology engineers realize that
roleGroup is used to nestedly group existential restrictions; hence, it can unintentionally
increase the degree of similarity due to role commonality. Considering this fact, they may
set d(roleGroup) = 0. This shows that role discount factor of different role names may be
independent. However, the same strategy as Ir can be employed to comfort on configuring
this aspect, i.e. a propagation for role discount factor via a more general role name.

5.5.6 Example: Using The Strategies

Now, we are ready to discuss a simple methodology for reconciling the previously proposed
strategies with the measure simπ (Definition 5.13). Section 5.5 shows that each aspect
of preference profile may need different strategies for tuning. For example, ic may be
tuned via a defined concept name using a propagation for primitive concept importance
Ic whereas ir may be tuned via a more general role name using a propagation for role
importance Ir. Also, both sc and sr may employ the canonical interpretation IA to
initialize values. In the following, we explain procedural steps that the readers may follow
to tune preference profile for their use. These steps also hint a system flow of similarity-
based under the agent’s profile applications, such as the best matching concept under the
agent’s profile application.

1. An agent may start with tuning each aspect of preference profile individually;

2. To help tuning ic, a system may present the concept hierarchy w.r.t. an ontology.
Then, an agent indirectly specifies primitive concept names via a defined concept
name depicted on the hierarchy with the notion Ic (cf. Definition 5.14 and Defini-
tion 5.15). Some patterns of an agent’s utterance may be associated with certain
operators, e.g.
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(a) We may associate “A especially B” with ⊕first, where depth(A) < depth(B)
and depth(X) is the depth of X on the concept hierarchy;

(b) We may associate “A except B” with ⊕first, where depth(A) < depth(B) and
C1 6= >;

(c) We may associate “> except B” with ⊕last; and

(d) Otherwise, the agent-defined default concrete operator is used;

3. To help tuning ir, a system may present the role hierarchy w.r.t. an ontology.
Then, an agent indirectly specifies role names via a more general role name name
depicted on the hierarchy with the noion Ir (cf. Definition 5.16 and Definition
5.17). Similarly, some patterns of an agent’s utterance may be associated with
certain operators, e.g.

(a) We may associate “r especially s” with ⊕last, where r ∈ Rs;

(b) We may associate “r except s” with ⊕last, where r ∈ Rs; and

(c) Otherwise, the agent-defined default concrete operator is used;

4. To help tuning sc and sr, a system may construct the canonical interpretation, which
is induced from A. Then, each initial value for all possible primitive concept pairs
and primitive role pairs is calculated according to Equation 5.24 and Equation 5.25,
respectively;

5. An agent may refine the agent’s preference profile if that agent wishes.

We exemplify the methodology in its applicable use cases, such as trip planning (Ex-
ample 5.19).

Example 5.19. (Continuation from Example 5.1) We expand each definition in T as
follows:

ActivePlace ≡ X u Place u ∃canWalk.Trekking u ∃canSail.Kayaking
Mangrove ≡ Y u Place u ∃canWalk.Trekking

Beach ≡ Z u Place u ∃canSail.Kayaking

whereX, Y , and Z are fresh primitive concept names. Furthermore,RcanWalk = {t, cMWL}1

and RcanSail = {t, cTWS} where t and u are also fresh primitive role names.
Let an ABox A be defined as follows:

cMWL(p2, t1) cTWS(p3, k1)
canWalk(p2, t1) canSail(p3, k1)

Trekking(t1) Kayaking(k1)
Place(p1) Place(p2)
Place(p3) Mangrove(p2)

Beach(p3)

1Obvious abbreviations are used here for the sake of succinctness.
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To query for a desired place, an agent needs to express his preferences. Suppose the
agent says “My interest is a place where I can travel with by feet, especially walking”,
i.e. ic(Place) = 1.5, Ir(canMoveWithLegs) = 1.5, and Ir(canWalk) = 1.8. Also, it yields
ir(canMoveWithLegs) = 1.5 and ir(canWalk) = 1.5⊕last 1.8 = 1.8.

Constructing the canonical interpretation from A, we obtain ∆IA = {p1, p2, p3, t1, k1},
sc(Trekking,Kayaking) = 0, and sr(canMoveWithLegs, canTravelWithSails) = 0.

Let ActivePlace, Mangrove, Place, Trekking, Kayaking, canWalk, and canSail are rewritten
shortly as AP, M, P, T, K, cW, and cS, respectively. Using Definition 5.8, hdπ(TAP, TM)

= (2.5
5.3

) · p-hdπ(PAP,PM) + (2.8
5.3

) · e-set-hdπ(EAP, EM)

= (2.5
5.3

) · ( i(X)·max{s(X,Y ),s(X,P)}+i(P)·max{s(P,Y),s(P,P)})
i(X)+i(P)

)

+(2.8
5.3

) · e-set-hdπ(EAP, EM)

= (2.5
5.3

)(1·max{0,0}+1.5·max{0,1}
1+1.5

)

+(2.8
5.3

) · e-set-hdπ(EAP, EM)

= (2.5
5.3

)(1.5
2.5

) + (2.8
5.3

)
[
i(cW)·max{e-hdπ(∃cW.T,∃cW.T)}+1·0

i(cW)+i(cS)

]
= (2.5

5.3
)(1.5

5.3
) + (2.8

5.3
)
[

1.8·1+1·0
1+1.8

]
≈ 0.623

Following the same step, we obtain hdπ(TM, TAP) ≈ 0.767. Hence, simπ(M,AP) ≈ 0.695
by using Definition 5.13. Also, we obtain hdπ(TAP, TB) ≈ 0.472 and hdπ(TB, TAP) ≈ 0.714.
Hence, simπ(B,AP) ≈ 0.593.

The fact that simπ(M,AP) > simπ(B,AP) corresponds to the agent’s perception.

5.5.7 Relationship to Learning-based Approach

Our proposed development uses the canonical interpretation IA to compute numerical
values for mappings on sc (cf. Subsection 5.5.3) and sr (cf. Subsection 5.5.4). Its drawback
is that an existence of the canonical interpretation IA is required. This section rather
discusses an alternative approach to obtain values for mappings on sc and sr.

In addition to our proposed logic-based approach, another natural way to configure
both sc and sr is to employ existing machine learning techniques on a large corpus. For
example, one may use Word2vec [155] with a large corpus of text to produce a vector space.
Each word in the corpus will be assigned by a corresponding vector in the space. Word
vectors are positioned in the vector space such that words sharing common features in the
corpus are located in close proximity to one another in the space. This characterization
can later be converted into elements of the mapping sc and sr. Reconciling an ontology
with machine learning techniques to improve an application of

π∼T is interesting but is
outside the scope of this work. We leave this as a future task.

5.6 Implementation Methods of simπ

Theorem 5.5 tells us that simπ can be computed in the polynomial time. This section
exhibits two algorithmic procedures of simπ belonging to that class.
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5.6.1 Top-Down Implementation of simπ

Algorithm 1 Pseudo code for hdπ using top-down fashion (Part 1)

1: function hdπ(TD, TC , π)
2: return (µπ(TD, π)× p-hdπ(PD,PC , π)) + ((1− µπ(TD, π))× e-set-hdπ(ED, EC, π))
3: end function
4:

5: function µπ(TD, π)
6: if PD.isEmpty() and ED.isEmpty() then
7: return 1
8: end if
9: return

∑
ic(PD, π) / (

∑
ic(PD, π) +

∑
ir(ED, π))

10: end function
11:

12: function p-hdπ(PD,PC , π)
13: if

∑
ic(PD, π) = 0 then

14: return 1
15: else if

∑
ic(PC , π) = 0 then

16: return 0
17: else
18: w ← 0
19: for A ∈ PD do
20: m← 0
21: for B ∈ PC do
22: v ← ŝ(A,B)
23: if v > m then
24: m← v
25: end if
26: end for
27: w ← w + (m× î(A))
28: end for
29: return w/

∑
ic(PD, π)

30: end if
31: end function

In Definition 5.8, hdπ is established by an inductive procedure. Therefore, it is a very
straightforward way to implement the procedure by recursion (see Algorithm 1).

For the first two parts of Algorithm 1, hdπ is directly followed from Equation 5.10 of
Definition 5.8. That is, it receives three parameters as inputs, viz. a description tree
TD, a description tree TC , and a preference profile π. Suppose TD be defined as PD ∪ ED,
TC be defined as PC ∪ EC , and π = 〈ic, ir, sc, sr, d〉 is given. The function hdπ(TD, TC , π)
computes the function value for a composition in a prescribed way from the function
values of the composing parts, i.e. µπ(TD, π), p-hdπ(PD,PC , π), and e-set-hdπ(ED, EC , π).
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Algorithm 1 Pseudo code for hdπ using top-down fashion (Part 2)

32: function e-set-hdπ(ED, EC , π)
33: if

∑
ir(ED, π) = 0 then

34: return 1
35: else if

∑
ir(EC , π) = 0 then

36: return 0
37: else
38: w ← 0
39: for ∃r.X ∈ ED do
40: m← 0
41: for ∃s.Y ∈ EC do
42: e← e-hdπ(∃r.X,∃s.Y, π)
43: if e > m then
44: m← e
45: end if
46: end for
47: w ← w + (m× î(r))
48: end for
49: return w/

∑
ir(PD, π)

50: end if
51: end function

µπ, p-hdπ, e-set-hdπ are also followed from Equation 5.11, 5.12, and 5.13, respectively,
of Definition 5.8. Each internally uses subfunctions

∑
ic and

∑
ir (see the forth part of

Algorithm 1) to calculate the total number of concept importance and the total number
of role importance, respectively.

For the last two parts of Algorithm 1, e-hdπ is directly followed from Equation 5.14 of
Definition 5.8. To compute the function value e-hdπ, we recursively compute the function
value hdπ on the children of certain nodes (denoted by X and Y ) and π. γπ is directly
followed from Equation 5.15 of Definition 5.8. Also, γπ internally invokes subfunction∑

ir to calculate the total number of role importance.
The reader may easily observe that the time efficiency of Algorithm 1 is quintic because

the computation of p-hdπ is quadratic and e-set-hdπ contains double nested loops which
indirectly make recursive calls to hdπ. It is also not difficult to observe that the number
of recursive calls is upper bounded by the height of the description tree.

It is worth to mention that using hdπ requires concept descriptions to be transformed
into ELH description trees. Taking this as an advantage, the next subsection introduces
an alternative way to compute hdπ from bottom to up, which is approximately three times
faster than the counterpart top-down approach in the worst case (cf. Subsection 5.7.1 for
useful discussion).
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Algorithm 1 Pseudo code for hdπ using top-down fashion (Part 3)

52: function e-hdπ(∃r.X,∃s.Y, π)
53: return γπ(r, s, π)× (d̂(r) + ((1− d̂(r))× hdπ(TX , TY , π)))
54: end function
55:

56: function γπ(r, s, π)
57: if

∑
ir(Rr, π) then

58: return 1
59: else
60: w ← 0
61: for ζ ∈ Rr do
62: m← 0
63: for % ∈ Rs do
64: v ← ŝ(ζ, %)
65: if v > m then
66: m← v
67: end if
68: end for
69: w ← w + (m× î(ζ))
70: end for
71: return w/

∑
ir(Rr, π)

72: end if
73: end function

5.6.2 Bottom-Up Implementation of simπ

Rather than computing (possibly duplicated) value of hdπ again and again, Algorithm 2
employs the classical bottom-up version of dynamic programming technique to compute
hdπ of the smaller subtrees and records the results in a table (see the variable result[·][·]
in Algorithm 2) from which a solution to the original computation of hdπ can be then
obtained (cf. at line no. 20, the function returns value result[0][0]).

To compute hdπ from bottom to up, we need to know the height of the trees in ad-
vance. For Algorithm 2, we employ “breath-first search” algorithm (denoted by BFS) to
determine the height of each description tree (cf. line no. 4 and 5 of the algorithm).
Algorithm 2 reuses the methods µπ, p-hdπ, e-set-hdπ, γπ,

∑
ic, and

∑
ir from Algorithm

1 and provides pseudo code for e-hdπ since it is merely overridden.
What is the time complexity of Algorithm 2? It should be quintic because the algorithm

considers the similarity of all the different pairs of two concept names for h times (cf. line
no. 6). More formally, we know result[Tγ][Tλ] ∈ O(v2) where v denotes the set cardinality
of Px (and Ex) for any description tree x. Let m(i) and n(i) be the number of nodes on
level i of description trees D and C, respectively. Then, the number of times operation
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Algorithm 1 Pseudo code for hdπ using top-down fashion (Part 4)

74: function
∑

ic(PD, π)
75: w ← 0
76: for A ∈ PD do
77: w ← w + î(A)
78: end for
79: return w
80: end function
81:

82: function
∑

ir(ED, π)
83: w ← 0
84: for ∃r.X ∈ ED do
85: w ← w + î(r)
86: end for
87: return w
88: end function
89:

90: function
∑

ir(Rr, π)
91: w ← 0
92: for r ∈ Rr do
93: w ← w + î(r)
94: end for
95: return w
96: end function

result[·][·] is executed (say C) is equal to:

C =
h−1∑
i=0

m(i)∑
j=0

n(i)∑
k=0

v2

= v2
h−1∑
i=0

m(i)∑
j=0

n(i)∑
k=0

1

= v2
h−1∑
i=0

m(i)∑
j=0

(n(i) + 1)

= v2
h−1∑
i=0

(n(i) + 1)(m(i) + 1)

= v2
[
[(n(0) + 1)(m(0) + 1)] + [(n(1) + 1)(m(1) + 1)]

+ · · ·+ [(n(h− 1) + 1)(m(h− 1) + 1)]
]

Thus, the algorithm makes the similar number of operations as Algorithm 1, plus an
additional amount of extra space. On the positive side, the algorithm has never recursively
invoked itself to determine the similarity of different pairs of nested concepts, i.e. it
directly uses values stored in the table. The algorithm also shows that computing the

105



5.6. IMPLEMENTATION METHODS OF SIMπ

Algorithm 2 Pseudo code for hdπ using bottom-up fashion

1: Initialize a global result[·][·] to store the degree of similarity between 2 concepts.
2:

3: function hdπ(TD, TC , π)
4: Map < Z,List < T >> mapD ← BFS(TD) . mapD stores nodes on each level of
TD

5: Map < Z,List < T >> mapC ← BFS(TC) . mapC stores nodes on each level of
TC

6: h← mapD.size()
7: for i = h− 1 to 0 do
8: List < T > listTΓ ← mapD.get(i)
9: List < T > listTΛ ← mapC .get(i)

10: for Tγ ∈ listTΓ do
11: for listTΛ 6= null and Tλ ∈ listTΛ do
12: if i = h− 1 then
13: result[Tγ][Tλ]← p-hdπ(Pγ,Pλ, π)
14: else
15: result[Tγ][Tλ]← (µπ(Tγ, π)× p-hdπ(Pγ,Pλ, π))

+ ((1− µπ(Tγ, π))× e-set-hdπ(Eγ, Eλ, π))
16: end if
17: end for
18: end for
19: end for
20: return result[0][0]
21: end function
22:

23: function e-hdπ(∃r.X,∃s.Y, π)
24: hd′ ← result[TX ][TY ]
25: if hd′ = null then
26: hd′ ← 0
27: end if
28: return γπ(r, s, π)× (d̂(r) + ((1− d̂(r))× hd′))
29: end function
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similarity of nodes from level i, where i is greater than the minimum height of description
trees (cf. the condition listTΛ ! = null at line no. 11), is irrelevant to the computation.

Algorithm 2 does work productively in an environment where recursion is fairly ex-
pensive. For example, imperative languages, such as Java, C, and Python, are typically
faster if using a loop and slower if doing a recursion. On the other hand, for some im-
plementations of functional programming languages, iterations may be very expensive
and recursion may be very cheap. In many implementations of them, recursion is trans-
formed into a simple jump but changing the loop variables (which are mutable) requires
heavy operations. Subsection 5.7.1 reports that the practical performance agrees to this
theoretical analysis that the bottom-up approach is more efficient when implemented by
imperative languages, such as Java.

5.7 Empirical Evaluation

This section evaluates the practical performance of both algorithms against sim1, reassures
pragmatically the backward compatibility of simπ under π0 (Theorem 5.2 already proves
this), and discusses the applicability of simπ in potential use cases.

5.7.1 Performance Analysis and Backward Compatibility of simπ

Both versions of simπ (cf. Subsection 5.6.1 and Subsection 5.6.2) are implemented in Java
version 1.8 with the usage of Spring Boot version 1.3.3.RELEASE. All the dependencies
are managed by Apache Maven version 3.2.5. We also implement unit test cases along
with the development of both versions to verify the correctness of their behaviors. In the
current state (when we are writing this work), there are 111 unit test cases. All of them
are written to cover important parts of both implementations.

To perform benchmarking, we have selected Snomed ct as a test ontology. As men-
tioned in Appendix A, it is one of the largest and the most widely used medical ontologies
currently available, and also, is expressible in ELH. In our experiments, we employ a
Snomed ct ontology version from January 2005 (hitherto referred as OSnomed) which
contains 379,691 concept names and 62 role names. Moreover, each defined concept is
categorized into the 18 mutually exclusive top-level concepts. In the sense of subsump-
tion relation, concepts belonging to the same category should be more similar than those
belonging to different categories.

For our experiments, we used a 2.4 GHz Intel Core i5 with 8 GB RAM under OS X El
Capitan. Unfortunately, the overall number of concept pairs in OSnomed is approximately
1011. Suppose an execution of simπ takes around a millisecond, we still need around 1,158
days in order to complete the entire ontology. According to this reason, we consider 2 out
of 18 categories, viz. Clinical Finding and Procedure, although there are more category
pairs. Then, we randomly select 0.5% of Clinical Finding, i.e. 206 concepts, denoted by
C′1. After that, we randomly select the same number of concepts from Procedure, i.e. 206

1We have re-implemented sim (proposed in [151]) based on the same technologies and techniques as
simπ.
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concepts, denoted by C′2. This sampled set is denoted by O′Snomed, i.e. O′Snomed = C′1∪C′2.
Then, we create three test datasets from this sampled set, viz. C′1 × C′1, C′1 × C′2, and
C′2 ×C′2.

Firstly, we estimate the practical performance of the top-down fashion. For each concept
pair in each set, we 1) employ the default preference profile π0 on (top-down) simπ; 2)
measure the similarity of concepts in O′Snomed by peeking on OSnomed to help unfolding;
3) repeat the previous step with (top-down) sim; 4) repeat steps 2)-3) three times and
calculate the statistical results (in milliseconds). Results are gathered on Table 5.1. We
note that avg, max, and min represent the execution time for measuring similarity of a
concept pair in the average case, in the worst case, and in the best case, respectively.

Table 5.1: Execution time of top-down sim and top-down simπ0 on O′Snomed

Pairs Number of pairs
sim

(avg/max/min)
simπ0

(avg/max/min)

C′1 ×C′1 25 2.280/7.000/0.000 1.800/10.000/0.000

C′1 ×C′2 215 2.291/97.000/0.000 2.278/84.000/0.000

C′2 ×C′2 1,849 3.395/45.000/0.000 3.931/128.000/0.000

Secondly, we estimate the practical performance of the bottom-up fashion by following
the same steps as we did previously. Indeed, we exclude the time used to determine
the height of each description tree, i.e. our benchmark begins from line no. 7 to 21 of
Algorithm 2. Table 5.2 gathers up the results.

Table 5.2: Execution time of bottom-up sim and bottom-up simπ0 on O′Snomed

Pairs Number of pairs
sim

(avg/max/min)
simπ0

(avg/max/min)

C′1 ×C′1 25 2.200/6.000/0.000 1.693/5.000/0.000

C′1 ×C′2 215 2.040/32.000/0.000 1.946/10.000/0.000

C′2 ×C′2 1,849 3.368/55.000/0.000 3.435/45.000/0.000

The experiment shows that the practical performance of simπ is likely equal to the
performance obtained by sim – as ones may not expect. The results show that the bottom-
up simπ performs approximately three times faster that the counterpart top-down simπ

(in the worst case) when implemented by imperative languages (e.g. Java as in our case).
This conforms to our analysis discussed in Subsection 5.6.2.
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Lastly, we evaluate the backward compatibility of simπ with sim. Our goal is to ascertain
that simπ can be used interchangeably as the original sim by setting preference profile to
the default one (Theorem 5.2 already proves this). To this point, we have performed an
experiment on concept pairs defined in O′Snomed. The experiment evaluates results from
sim and simπ0 and found that both coincide, as desired. Table 5.3 gathers the results,
where “td” and “bu” are abbreviation forms of top-down and bottom-up, respectively.

Table 5.3: Results of executing sim and simπ0 on O′Snomed

Pairs
Number
of pairs

td sim
(avg/max

/min)

td simπ0

(avg/max
/min)

bu sim
(avg/max

/min)

bu simπ0

(avg/max
/min)

C′1 ×C′1 25
0.87597/
1.00000/
0.67953

0.87597/
1.00000/
0.67953

0.87597/
1.00000/
0.67953

0.87597/
1.00000/
0.67953

C′1 ×C′2 215
0.57801/
0.66546/
0.24594

0.57801/
0.66546/
0.24594

0.57801/
0.66546/
0.24594

0.57801/
0.66546/
0.24594

C′2 ×C′2 1,849
0.79690/
1.00000/
0.35360

0.79690/
1.00000/
0.35360

0.79690/
1.00000/
0.35360

0.79690/
1.00000/
0.35360

5.7.2 Applicability of simπ

Tuning via ic and d

We show the applicability of ic and d through similarity measuring on Snomed ct. Figure
5.3 depicts an example unfoldable terminology extracted from OSnomed.

Considering merely objective factors regardless of the agent’s preferences, it yields that
simπ0(NAOAF,NAOM) ≈ 0.91 and simπ0(NAOAF,H) = 0.2. The results yielding to the
quite similar concepts NAOAF and NAOM, which reflects the fact that both are resided in
the same cluster of Snomed ct. However, the result yielding that the concepts NAOAF
and H shares a little similarity controverts the fact that both carry neither implicit nor
explicit relationship. This is indeed caused by the usage of the special-purpose role called
roleGroup – informally read as relation group.

In Snomed ct, the use of relation group is widely accepted to nestedly represent a
group of existential information [156]. As a consequence, it increases unintentionally the
degree of similarity due to role commonality (i.e. γπ). Since roleGroup precedes every
existential restriction, it is useless to regard an occurrence of this as being similar. The

1Obvious abbreviations are used here for the sake of succinctness.
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NeonatalAspirationOfAmnioticFluid ≡ NeonatalAspirationSyndromes
u∃roleGroup.(∃causativeAgent.AmnioticFluid)

NeonatalAspirationOfMucus ≡ NeonatalAspirationSyndromes
u∃roleGroup.(∃causativeAgent.Mucus)

Hypoxemia ≡ DisorderOfRespiratorySystem u DisorderOfBloodGas
u∃roleGroup.(∃interprets.OxygenDelivery)
u∃roleGroup.(∃findingSite.ArterialSystemStructure)

BodySecretion v BodySubstance
BodySubstance v Substance

BodyFluid v BodySubstance u LiquidSubstance
AmnioticFluid v BodyFluid

Mucus v BodySecretion
causativeAgent v associatedWith

Figure 5.3: Example of ELH concept definitions defined in OSnomed

importance contribution of roleGroup in OSnomed should be none. Hence, the agent S who
measures similarity on Snomed ct should set dS(roleGroup) = 0.

Furthermore, the Snomed ct top concept SCT-TOP subsumes every defined concept
of each category. This means this special concept is shared by every expanded concept
description. Intuitively, this special top concept is of no importance for measuring sim-
ilarity on Snomed ct and we can treat the top-level concepts as directly subsumed by
>. As a result, the agent S should also set icS(SCT-TOP) = 0.

Tuning the measure with this expertise knowledge yields more realistic result. That is,
the similarity of concepts under the same category which uses roleGroup in their definitions
is slightly reduced. Also, the similarity of concepts under different categories is totally
dissimilar. Continuing the case, simπS(NAOAF,NAOM) ≈ 0.84 and simπS(NAOAF,H) =
0.0, as desired.

Tuning via sr

Let us use the ontology given below to query for places similar to ActivePlace.

ActivePlace v Place u ∃canSail.Kayaking
Mangrove v Place u ∃canWalk.Trekking

Supermarket v Place u ∃canBuy.FreshFood

Suppose the agent feels “walking” and “sailing” are similar and are “still satisfied much”
on both actions. Taking sr(canWalk, canSail) = 0.6 yields simπ(M,AP) > simπ(S,AP),
which conforms to the agent’s preferences and needs.

Tuning via sc

Let us use the ontology given below to query for a product which offers features the agent
is satisfied with most. WantedFeatures v F0 u F1 u F2

Item1 v F0 u F3

Item2 v F0 u F4
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According to the ontology, WantedFeatures represents a collection of desired features
and Fi (where i ∈ N) represents a feature. A purchase decision is sometimes affected
by satisfied alternations, which are varied by different people. Assume that the agent
feels satisfaction to have F3 if the agent cannot have F1. Taking sc(F1,F3) = 0.8 yields
simπ(WF, I1) > simπ(WF, I2), which conforms to the agent’s perceptions.

Tuning via ir

Let us use the ontology given in Example 5.1 to query for places which are most similar to
ActivePlace. Typically, a human decision is affected by a priority of concerns, which are
varied by different people. Suppose that the agent weights more on places which permit
to “walk” more than other activities. Taking ir(canWalk) = 2 yields simπ(M,AP) >
simπ(B,AP), which conforms to the agent’s preferences.

5.8 Related Work

As we develop the notion
π∼T as a generalization of ∼T , this section relates our develop-

ment to others in two areas, viz. ordinary concept similarity measures (which do not take
into account the agent’s preferences) and preference-based concept similarity measures.

5.8.1 Ordinary Concept Similarity Measure

In the standard perception, concept similarity measure refers to the study of similar
concepts inherited by nature, i.e. the ones similar regardless of the agent’s preferences.
Our concrete developments, which employ structural subsumption, can be considered
as the semantic similarity approach (cf. Section 4.1). Hence, we merely compare our
approaches to other approaches of semantic similarity as follows.

A simple method was developed in [143] for the DL L0 (i.e. no use of roles) and
was known as Jaccard Index. Its extension to the DL ELH was proposed in [88]. This
work also introduced important properties of concept similarity measure and suggested a
general framework called simi which satisfied most of the properties. In simi, functions
and operators, such as t-conorm and the fuzzy connector, were to be parameterized and
thus left to be specified. The framework also did not contain implementation details.
This may cause implementation difficulties since merely promising properties were given
and no guideline of how concrete operators are chosen is provided.

In [146], the measure simdlA was proposed for the DL SHI. The measure was not
completely defined in mathematical terms and some text descriptions were not precise.
Roughly, the measure had three stages. First, two concept descriptions in question were
converted into the negation normal form (NNF). A modified version of the tableau was
used to generate a completion tree for each NNF concept. In this modified version, the
t-rule was modified and another ∀-rule was added. Second, a set of proxy models was
generated from the completion tree. A proxy model was a tree where each was labeled
by a role name and each node was labeled by a concept name. Third, both sets of
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proxy models were used to compute the degree of similarity. This was done by measuring
similarity among all pairs of proxy models (using tree similarity). The final result was
evaluated from either the maximum, the minimum, or the average. However, the paper
did not explain the selection rule when more than one tableau rules could be applied.

The notion of skeptical subsumption degree and credulous subsumption degree are
originally introduced in [89]. Also, the skeptical subsumption degree is generalized and
is extended toward the development of

π∼s for the DL FL0 in this chapter. Theorem
5.1 suggests that

π∼s can be used to measure similarity of concepts inherently by nature
through the setting π0, i.e.

π0∼s.
The notion of homomorphism degree is originally introduced in [145] and is thereof

extended toward the development of simπ for the DL ELH in this chapter. Theorem 5.2
suggests that simπ can be used to measure similarity of concepts inherently by nature
through the setting π0, i.e. simπ0 .

The measures
π∼s and simπ per se are categorized as a structure-based measure; however,

reconciling each one with the strategies (cf. Section 5.5) to help tuning sc and sr may be
considered as the hybrid approach as it uses the canonical interpretation IA for measuring
similarity of primitive concept names and similarity of primitive role names.

As inspired by the tree homomorphism, simπ differs [88] from the use of µπ to determine
how important the primitive concepts are to be considered and the use of γπ to determine
a degree of role commonality between matching edges of the description trees.

5.8.2 Preference-based Concept Similarity Measure

Most concept similarity measures are objective-based. However, there exists work [88,151]
which provides methodologies for tuning. We discuss their differences to our approaches
in the following.

In an extended work of sim [151], a range of number for discount factor (ν) and the
neglect of special concept names were used in the similarity application of Snomed ct.
For instance, when roleGroup was found, the value of ν was set to 0. These ad hoc
approaches can be viewed as specific applications of d and ic, respectively, of preference
profile. Unfortunately, no other aspects of π appear in its use.

In simi [88], the function pm was used to define the similarity degree of primitive
concept pairs and role pairs. Using pm with primitive concept pairs invokes the equivalent
intuition as sc; however, this does not mean so in the aspect sr. Allowing to define the
similarity of defined role names, as in [88], may be not appropriate since defined role
names are contributed by primitive role names. For example, let r1 v s1 and r2 v s2

are defined in T . It is clear that r1, r2 ∈ RNdef . By defining pm(r1, r2), the defined
similarity should be also propagated to the similarity of s1 and s2. However, this point
was not discussed in [88]. In respect of this, RNpri is merely used in sr and γπ is defined
for the similarity of defined role names. The authors of [88] also defined the function
g : NA → R>0 representing the weight for concept names and existential restriction atoms
(based on their definition). Ones may feel the resemblance of g and ic, ir; however, they
are also different in three perspectives. Firstly, the mapping of g is reached to the infinity
whereas ic and ir are bounded. This characteristic of g is impractical to use as it may
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Table 5.4: Concept similarity measures which embed preference elements

Similarity Measure DL ic ir sc sr d

simπ ELH 4 4 4 4 4
π∼s FL0 4 4

the extended work of sim [151] ELH 4 4

simi [88] EL 3 4 3

lead to the unbalance of weight assignments. For instance, one may define g(A1) = 1 but
g(A2) = 1012 where A1, A2 ∈ CNpri. To avoid this situation, the authors should provide
a guideline for weight assignments. Secondly, the mapping of g is lower bounded by one.
This clearly makes an impossibility to define the intuition of having no importance. Thus,
the situation given in Subsubsection 5.7.2 is not expressible. Lastly, the domain of g is
the set of atoms whereas ic (and ir) is the set of primitive concept names (and the set
of role names, respectively). Using the set of atoms as the domain is also impractical
since there can be infinitely many existential restriction atoms and the interpretation of
functions is slightly dubious. For instance, given g(∃r.C) = 2 and g(∃r.D) = 3, do both
r intentionally contribute the equal importance? Thus, this definition is inappropriate to
represent the agent’s perception. Moreover, the aspect d disappeared from [88]. Lacking
of fully ic and d makes the framework inappropriate to use for Snomed ct applications.
These distinctions of simi and ours are radically caused by their different motivations.
Table 5.4 summarizes this discussion, where 4 denotes totally identical to the specified
function whereas 3 denotes partially identical to the specified function.

Not only distinct on the mathematical representation of simi and our measures, the
desired properties presented in each work are also different. While the properties intro-
duced in [88] were motivated for (ordinary) concept similarity measure, our properties are
developed under the consideration of the agent’s preferences (

π∼T ). Hence, some proper-
ties introduced for concept similarity measure are revised in subjective manners and the
new property is introduced.

5.9 Potential Applications

Our proposed approaches have great potential use in knowledge engineering, such as the
development of recommendation systems based on the agent’s preferences, the develop-
ment of domain-specific knowledge bases, and the ontology engineering. We exemplify in
Subsection 5.7.2 a development of recommendation systems based on the agent’s prefer-
ences via the sections about tuning sr, sc, and sr, and a development of the domain-specific
knowledge base in case of Snomed ct (cf. page 109).

Furthermore, our proposed approaches may be also used with heterogeneous ontologies
by identifying duplicated primitive concepts and primitive roles among ontologies via
sc and sr, respectively. It has been revealed in [157] that concepts used by different
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terminologies may unintentionally mean the same. In [157], 30% of Human Phenotype
Ontology (HPO) concepts are semantically duplicated with Snomed ct concepts. For
example, the HPO concept “Multicystic Dysplastic Kidney” (HP:0000003) is identical
to the Snomed ct concept “Multicystic Renal Dysplasia” (SCTID:204962002). In such
a case, a mapping between these two ontologies should be formed. After the mapping,
similar concepts from multiple ontologies can be found out.

Last but not least, the approaches can contribute to the development of several kinds
of similarity-based reasoning such as approximate reasoning (cf. [158, 159]) and analog-
ical reasoning (cf. [95, 96]). We also discuss several approaches to extend the proposed
measures for analogical reasoning in the next chapter.

5.10 Summary

• As aforementioned, when two concepts are not equivalent, subjective factors may
play an important role in identifying the degree of concept similarity. To achieve
this, preferential elements relevant to concept similarity in DLs are defined and are
used in defining concept similarity measure under preference profile. Basically, a
concept similarity measure under preference profile is defined as a function which
maps a concept pair under preference profile π to a unit interval;

• Concrete concept similarity measures under preference profile were developed by
generalizing the approaches for concrete concept similarity measures w.r.t. each
preferential element of preference profile. Then, they were shown to be procedures
which ensure termination and can be used as indicators for similarity under the
agent’s preferences between concepts in an ontology. Their underlying properties
were also clearly investigated;

• As realistic ontologies are generally complex – consisting in plenty of concept names
and role names, having some strategies to tune a measure helps ontology engineers,
researchers, and application users to use a measure for similarity-based under the
agent’s profile applications. That is, instead of specifying each aspect of preference
profile individually and manually, an agent may automatically assign an importance
of each primitive concept name through a defined concept name with Ic. Similarly,
an agent may automatically assign an importance of each role name through a
more general role name with Ir. However, these notions have some restrictions
and we discuss each of them in Subsection 5.5.1 and Subsection 5.5.2, respectively.
If an ABox is presented, the canonical interpretation can be induced and be used
to compute sc and sr for each primitive concept pair and primitive role pair (cf.
Subsection 5.5.3 and Subsection 5.5.4). These strategies are recommended to use
for the initial preference tuning and may be refined wherever the agent wishes; and

• The empirical evaluation was carried out w.r.t. realistic ontologies and their poten-
tial use cases and guidance were suggested and discussed.
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Chapter 6

Application in Analogical Reasoning

6.1 Introduction

Analogical reasoning is a complex process based on a comparison between two pairs of
concepts or states of affairs (aka. the source and the target) sharing some common fea-
tures [160]. This comparison is the ground of a specific type of inference called argument
from analogy, in which the conclusion of an argument attributes to a specific feature char-
acterized from the source to the target (cf. the proposed models in [161–165]). Despite
the diversity, those models can be represented by the generic structure called an argumen-
tation scheme for argument from analogy introduced by Walton [164] (also see Section
C.1) as follows:

Similarity Premise Generally, case C1 is similar to case C2

Base Premise A is true (false) in case C1

Conclusion A is true (false) in case C2

This generic structure can be explained as follows. The similarity is regarded to hold
between two cases. These cases could be two different concepts or states of affairs. Con-
sequently, a property (e.g. a feature A) attributes to both cases. Intuitively, this kind of
structure can be represented as a logic program where A and Ci are appeared at the head
and the body of an inference rule, respectively. Several attempts similar to this approach
were developed in [95,96,158,166]

A fundamental problem for this kind of reasoning is how to evaluate an analogical
argument, i.e. its acceptibility. Basically, this problem amounts to investigations of the
structure of analogical arguments and its defeasibility characteristics. At the abstract
level, critical questions (CQ) [164] associated to the argument scheme outlines several
conditions of defeasibility:

CQ1 Is A true (false) in C1?
CQ2 Are C1 and C2 similar in the respects cited?
CQ3 Are there important differences (dissimilarities) between C1 and C2

CQ4 Is there some other case C3 that is also similar to C1 except that
A is false (true) in C3?
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These critical questions can be used to understand which analogical arguments should
not be accepted. However, they do not address the following three basic problems: (1)
how similarity/dissimilarity should be determined (which amounts to understand the no-
tion of similarity); (2) how an analogical arguments is constructed (which amounts to
understand the structure of an analogical argument); and (3) how a conclusion drawn
from the similarity premise and the base premise is warranted (which amounts to under-
stand the evaluation of analogical arguments). The argumentation scheme and its critical
questions do not involve these aspects concretely.

It is obvious that the approaches we have developed so far for concept similarity mea-
sure under the agent’s preferences can be used to address the first problem if cases (in
the argumentation scheme) are expressible in the form of DL concepts (cf. Chapter 3).
Therefore, we have remained to investigate the second and the third problems, which are
indeed our main focus of this chapter.

It is worth mentioning that analogical reasoning is used quite often by human beings
in real-life situations, especially when humans have to encounter an unseen situation. Its
applications may be also seen in some practical domains such as law and medical diagnosis.
The following example illustrates an application in legal reasoning where attorney Gerry
Spence has involved in the case of Silkwood v. Kerr-McGee Corporation (1984) [167].

Example 6.1. (The Silkwood case) Karen Silkwood was a technician who had the job
of grinding and polishing plutonium pins used to make fuel rods for nuclear reactors.
Tests in 1974 showed that she had been exposed to dangerously high levels of plutonium
radiation. After she died in an automobile accident, her father brought an action against
Kerr-McGee in which the corporation was held to be at fault for her death on the basis
of strict liability. In strict liability, a person can be held accountable for the harmful
consequences of some dangerous activity he was engaged in, without having to prove that
he intended the outcome.

Spence’s closing argument uses the analogy of the escaping lion, which had great rhetor-
ical effect on the jury. According to his speech ([167, p.129]), he emphasized the statement
“If the lion got away, Kerr-McGee has to pay”.

Some guy brought an old lion on his ground, and he put it in a cage – and
lions are dangerous – and through no negligence of his own through no fault
of his own, the lion got away. Nobody knew how – like in this case, “nobody
knew how”. And, the lion went out and he ate up some people – and they
sued the man. And they said, you know: “Pay. It was your lion, and he got
away”. And the man says: “But I did everything in my power – I had a good
cage – had a lock on the door – I did everything that I could – I had security
– I had trained people watching the lion – and it is not my fault that he got
away”. Why should we punish him? They said: “We have to punish him –
we have to punish you – you have to pay”. You have to pay because it was
your lion – unless the person who was hurt let the lion out himself.

Spence was using an analogy to “compare” what happened in the Silkwood case and
what happened in the lion example. In fact, the lion example is the source case in
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argument from analogy to illustrate the jury how cases of this kind had originated in
English common law. The plutonium case is the target case, which is shown to be “similar
to” the source case. Therefore, all Spence had to prove is that Karen Silkwood was harmed
by the plutonium. In his summary argument, Spence reminded the jury that this claim
has been proved during the trial by the evidence brought forward. This argument was
a rhetorically powerful one and it could persuade the jury to find Kerr-McGee liable for
over ten million dollars [168].

This chapter explains two different approaches (cf. Section 6.2 and Section 6.3) which
can be used to reconstruct arguments from analogy. Both are similar to each other in a
sense that models the Walton’s scheme and use the notion

π∼ for identifying the similarity
between the source case and the target case.1 Their usages of the scheme are based on the
assumption that the proponent and the opponent have the same ground-truth preferences.
However, they are different to each other in a way the arguments are represented.

6.2 First Approach: Integrating DLs with Rules

Analogical arguments can be reconstructed and evaluated by a semantics of logic program-
ming. Answer set semantics for logic programs [169] is one of the most widely adopted
semantics for logic programs. It provides the theoretical foundation for answer set pro-
gramming (ASP) (cf. Subsection 6.2.1 for the fundamentals) [170,171] and was proven in
[172] to coincide with the stable semantics of argumentation framework (cf. Section C.2).

An approach developed in this section exploits benefits of two different formalism i.e.
DLs and rules. In particular, DLs are used for extracting information about conceptual
schemata whereas rules are applied to data-centric problems. Both formalisms exhibit
certain shortcomings that can be compensated for by advantages of the other. Using
DLs, situations are defined in form of concept definitions, and similarity premises can be
identified by the use of a concept similarity measure under preference profile e.g. simπ

and
π∼s for ELH and FL0 concepts, respectively.

Concretely, we introduce a knowledge base2 K (cf. Subsection 6.2.2) which makes it
possible to find analogical consequences. We note that, whenever we refer to a knowledge
base K, we mean our setting defined in this section. Informally, K has three components,
viz. a logic program LP , a DL ontology O, an instance of concept similarity measure
under preference profile

π∼T . Subsection 6.2.2 introduces a “declarative language” for the
specification of LP and gives a formal definition of K. Subsection 6.2.3 addresses the
problem of computing conclusions from analogy.

6.2.1 Background: Answer Set Programming

Answer set semantics for logic programs [169] is one of the most widely adopted semantics
for logic programs, i.e. logic programs that allow negation-as-failure in the body of the

1Consequently, their applications are limited to analogical conclusions inferred by the similarity be-
tween two DL concepts.

2This extended definition of knowledge base is mainly used by this section for analogical reasoning.
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rules. This semantics provides the theoretical foundation for ASP which has been proven
to be useful in several applications such as diagnosis, bioinformatics, planning, etc. (see
[173–178] for some applications’ detail)

Answer set semantics is inherently nonmonotonic, i.e. the set of logical consequences
does not necessarily grow monotonically if the size of knowledge base increases. This hap-
pens due to the allowed negation-as-failure. Answer set semantics is defined for extended
logic programs, in which not only negation-as-failure can be used in program rules, but
also strong negation (or “classical negation”) and disjunction are also allowed.

In ASP, the computation of a logic program involves two phases. First, a grounder
constructs a ground instances of program clauses, i.e. replacing variables by grounded
(variable-free) terms (possibly with some further transformation and simplification). Sec-
ond, the resulting grounded program is passed to a solver for computing answer sets.
One of the main reasons for its gaining in popularity is the availability of sophisticated
grounders and solvers, e.g. Smodels1, DLV2, and Clasp3. Figure 6.1 illustrates the
design of an ASP system in general.

Figure 6.1: Architecture of an ASP system

According to the figure, gringo is a grounder and Clasp is a solver. There is also a
utility software e.g. clingo which automatically pipes the output from gringo to Clasp.
Another widely used grounder is lparse which comes with both Smodels and DLV sys-
tems. Let us note that Clasp also supports the result of lparse.

6.2.2 The Knowledge Base Setting

The object language of LP conforms to the familiar logic-programming-like style. That is,
let Σ = 〈C,V ,P〉 be a signature with a finite set of constants C, an infinite set of variables
V , and a finite set of predicate symbols P . Let LΣ be the first-order language constructed
over Σ. There are two types of literals. A strong literal is an atomic first-order formula
A (of LΣ) or such a formula preceded by classical negation, i.e. ¬A. A weak literal is a
literal of the form not A, where A is a strong literal and not denotes negation-as-failure
(or default negation). Informally, not A reads as “there is no evidence that A is the case”
whereas ¬A reads as “A is definitely not the case”. In what follows, we use the standard
typographic conventions of logic programming.

Definition 6.1 (Program Clause). A definite program clause is a clause of the form
A0 ← L1, . . . , Ln where A0 is a strong literal and Li (1 ≤ i ≤ n) is a literal. If n = 0, it
is referred to as a fact. Otherwise, it is referred to as a rule.

1http://www.tcs.hut.fi/Software/smodels/
2http://www.dlvsystem.com/dlv/
3https://potassco.org/clasp/
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Definition 6.2 (Logic Program). A definite logic program LP is a finite set of definite
program clauses.

Example 6.2. (Continuation of Example 6.1) We translate the Silkwood case into our
logic program LP . For the sake of clarity, we distinguish in LP the legal rules LPL, the
hypothetical case LPH , and the current case LPC , i.e. LP = LPL ∪ LPH ∪ LPC . The
literal exception(X) means “X is an exception to inactivate the goal”. To avoid confusion,
we separate each program clause by a semicolon.
LPL = { defendant(X)← owner(X, Y ), danger(Y ), killer(Y, Z);
liable(X)← defendant(X), not exception(X); }
LPH = { danger(X)← lion(X); lion(l1); owner(guy, l1); person(man);
killer(l1,man); }
LPC = { plutonium plant(p1); owner(kerr mcgee, p1); person(silkwood);
killer(p1, silkwood). }

We note that there could be many ways to transform a problem domain into LP .
Addressing this issue is also important but it is outside the scope of this work. Our
intention is to determine the similarity of two predicate symbols from a DL ontology
by using the notion

π∼T . The following gives a formal definition of our knowledge base
setting.

Definition 6.3 (Knowledge Base). A knowledge base K is a triple 〈LP ,O, π∼T 〉, where
LP is a logic program, O is a DL ontology,

π∼T represents an instance of concept similarity
measure under preference profile in DLs.

One may observe that not every knowledge base is meaningful to give conclusions from
analogy, e.g. when the set Pred(LP) of predicate symbols appearing in LP and the set
CN(O) of concept names appearing in O do not intersect.

Example 6.3. (Continuation of Example 6.2) We assume that our working ontology O
has been modeled as follows:

lion v carnivore u wild
plutonium plant v power plant u radiation

carnivore v harm
radiation v harm

A knowledge base K may be represented as a triple 〈LP ,O, simπ〉. We note that simπ is
shown to be an instance of

π∼T (cf. Subsection 5.4.1).

6.2.3 Computing Analogical Conclusions

One may observe from Example 6.3 that K successfully models the decision of the hypo-
thetical case by having logical conclusions “defendant(guy)” and “liable(guy)”. However,
K does not model the decision of the current case stated in Spence’s closing argument. K
can be twisted a bit with additional rules (e.g. rules representing extra evidences) so that
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“liable(kerr mcgee)” is logically concluded. Nevertheless, this approach does not correctly
reconstruct Spence’s analogical argument, which is not based on purely logical models.

In this subsection, we assume that there is no extra evidence about the case. To re-
construct Spence’s argument, we extend K with analogical knowledge extracted from
the ontological component. This extension is technically defined as the operator ·+. In-
tuitively, ·+ provides transforming steps to extend LP with O via

π∼T . The result of
executing ·+ on K, i.e. K+, conforms to the input language of grounder gringo [179] and
can be used with an answer set engine.

Transforming Logic Program LP

We achieve this by transforming each clause of LP as a set of answer set program clauses
in K+. Our transformation uses the predicate symbol atom as a basic predicate symbol.
For each ϕ0 ← ϕ1, . . . , ϕn (0 ≤ i ≤ n) ∈ LP and let ϕ′0 :- ϕ′1, . . . , ϕ

′
n (0 ≤ i ≤ n) be a

corresponding clause in K+, then the transformation is performed as follows:

• If ϕi = Ai(X0, . . . , Xm), then ϕ′i = atom(X0, . . . , Xm, Ai);

• If ϕi = ¬Ai(X0, . . . , Xm), then ϕ′i = -atom(X0, . . . , Xm, Ai);

• If ϕi = not Ai(X0, . . . , Xm), then ϕ′i = not atom(X0, . . . , Xm, Ai).

Extending with Similarity from Ontology O

Let Sim be a set of pairs of predicates whose similarity is maximal among each matching
predicate, i.e. Sim = {(ϕ, ψ) | ∀ϕ ∈ Λ : (ϕ

π∼T ψ = max
ψ∈Λ
{ϕ π∼T ψ})} where Λ =

Pred(LP) ∩ CN(O) and ϕ 6≡ ψ. Let arity(ϕ, ψ) gives the number of arguments that both
ϕ and ψ take. We note that dsim is additionally reserved. For each (ϕ, ψ) ∈ Sim:

• K+ := K+ ∪ {dsim(ϕ, ψ); atom(A1, . . . , Am, ϕ) :- atom(A1, . . . , Am, ψ)
, dsim(ϕ, ψ).} where m = arity(ϕ, ψ).

It is worth to observe that ϕ is fixed for each ϕ ∈ Λ to determine the maximal pair.
Thus, either a symmetric measure or an asymmetric measure can be employed by the
same rule of extending with similarity. We refer the readers to Subsection 5.4.1 for useful
discussion about inherited properties of concept similarity measures in DLs, e.g. simπ and
π∼s are symmetric.

Example 6.4. (Continuation of Example 6.3) Let K+ be the result of transforming the
logic program (i.e. the first step of ·+). Then, we enrich K+ by the following additional
set of clauses. That is, K+ = K+ ∪ {

dsim(lion, plutonium plant);
atom(X, lion) :- atom(X, plutonium plant), dsim(lion, plutonium plant);
dsim(plutonium plant, lion);
atom(X, plutonium plant) :- atom(X, lion), dsim(plutonium plant, lion). }
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Using Critical Questions as Constraints

It is not difficult to see that the first critical question and the second one are automatically
configured by

π∼T and the logic program, respectively. Also, counter-analogies can be
discovered through answer set semantics. These makeK+ to incorporate critical questions.

Finding Logical Entailment

We successfully explain each execution step of ·+. As we can use an answer set engine
(e.g. clasp [179]) to determine answer sets as analogical conclusions from K+, we include
the original definition of entailment w.r.t answer set semantics here for self-containment.
For a logic program Π and a ground atom a, Π entails a w.r.t. answer set semantics (in
symbols, Π |= a) if a ∈ S for every answer set S of Π. Similarly, for a logic program Π
and a ground atom a, Π entails ¬a w.r.t. answer set semantics (in symbols, Π |= ¬a) if
¬a ∈ S for every answer set S of Π. If neither Π |= a nor Π |= ¬a, then we say that a
is unknown w.r.t. Π. Hence, we say an atom A(X0, . . . , Xm) is an analogical conclusion
from K if K+ |= atom(X0, . . . , Xm, A).

6.2.4 Relationship to Argumentation Framework

defendant(guy)

killer(l1, man)

true

danger(l1)

lion(l1)

true

owner(guy, l1)

true

liable(guy)

not exception(guy)

T1

defendant(guy)

Figure 6.2: Possible proof trees for defendant(guy) and liable(guy)

Now, our intention is to analyze the underlying mechanisms of K and K+ under the lens
of argumentation framework. It is not difficult to see that logical conclusions obtained
from K and K+ can be seen as proof trees constructed from K and K+, respectively. Each
proof tree represents an argument supporting the conclusion at its root. For instance, pos-
sible proof trees for “defendant(guy)” and “liable(guy)” are depicted on the left-hand side
and the right-hand side of Figure 6.2, where T1 denotes a proof tree for “defendant(guy)”.
This explains that the guy is a defendant for the lion case and the guy is liable for the
case.

As discussed in Subsection 6.2.3, the knowledge base K cannot successfully model the
legal rules with the current case. To achieve this, K must be extended to K+ so that
K+ |= atom(ker mcgee, defendant). Figure 6.3 depicts a proof tree for “atom(ker mcgee,
defendant)” from K+, where T ′1 denotes a proof tree for “atom(p1, danger)”. Such trees
represent arguments from analogy supporting the conclusion at their roots.
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atom(ker mcgee, defendant)

killer(p1, silkwood)

trueT ′1

atom(p1, danger)atom(ker mcgee, p1, owner)

true

atom(p1, danger)

atom(p1, lion)

dsim(lion, plutonium plant)

true

atom(p1, plutonium plant)

true

Figure 6.3: Proof trees for atom(ker mcgee, defendant) and atom(p1, danger)

It is not difficult to see that our proposed operator formalizes the form of Walton’s
scheme. That is, when desired conclusions cannot be logically inferred from a knowledge
base, that knowledge base can be extended with similarity information. Conclusions
obtained from the extended one are called analogical conclusions.

6.3 Second Approach: Argument-based Logic Pro-

gramming

The first approach may seem rather easy to be implemented due to the availability of an-
swer set engines in the current state-of-the-art technologies and our developed application
programming interfaces (APIs) for concept similarity measures under preference profile
(cf. Appendix B). However, it does not preserve similarity degrees on the computation
of analogical conclusions. This ignorance may cause the system to behave w.r.t. the dif-
ferent degrees of similarity premises equally. Regarding this, ones may consider the first
approach as a rough-and-ready implementation method.

On the other hand, the second approach considers to model the notion of an argument’s
structure and proposes a computational method to decide an “acceptable” analogical
argument. Basically, a formalism proposed in the section has adopted from an approach
of combining logic programming with argumentation called Defeasible Logic Programming
(DeLP) in [180] (see also Section C.2). We note that the representational language of
DeLP is defined as an extension of a logic programming language that considers two
types of rules viz. strict and defeasible and allows for both strong and default negation.
Providing a capability of constructing analogical arguments, this section extends DeLP
with similarity rules and a new dialectical analysis is developed to evaluate the constructed
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arguments.

6.3.1 The Language

Our object language conforms to the familiar logic-programming-like style. That is, let
Σ = 〈C,V ,P〉 be a signature with a finite set of constants C, an infinite set of variables V ,
and a finite set of predicate symbols P . Let LΣ be the first-order language constructed
over Σ. There are two types of literals. A strong literal is an atomic first-order formula
A (of LΣ) or such a formula preceded by the classical negation, i.e. ¬A. A weak literal is
a literal of the form not A, where A is a strong literal and not denotes negation-as-failure
(or default negation). Informally, not A reads as “there is no evidence that A is the case”
whereas ¬A reads as “A is definitely not the case”. In what follows, we use the standard
typographic conventions of logic programming.

Definition 6.4 (Strict Rule). A strict rule is an expression of the form L0 ← L1, . . . , Ln
where n ≥ 0 and Li (0 ≤ i ≤ n) is a strong literal. If n = 0, it is referred to as a fact.

Definition 6.5 (Defeasible Rule). A defeasible rule is an expression of the form L0 ⇐
L1, . . . , Ln where n ≥ 0, L0 is a strong literal, and Li (1 ≤ i ≤ n) is a literal. If n = 0, it
is referred to as a presumption.

Defeasible rules are used to represent tentative information which will be used if no one
could disprove it whereas strict rules are used to represent strict information. For example,
fly(X) ⇐ bird(X) expresses “usually, a bird can fly” whereas bird(X) ← penguin(X)
expresses “all penguins are birds”.

It is worth noting that in general account of defeasible logic, particularly Nute’s d-Prolog
[181], it contains a facility to define defeater rules, e.g. “sick birds do not fly”. The purpose
of defeater rules is to express exceptions to defeasible rules. However, [182] shows that
defeater rules can be simulated by means of strict and defeasible rules (in Nute’s sense).
As we will also show soon, our system does not need to supply with defeater rules. The
system will find counter-arguments, including counter-analogies, among arguments it is
able to build.

Definition 6.6 (Similarity Rule). A similarity rule is an expression of the form L0

x

⇔ L1
1

where L0, L1 are first-order predicates and 0 < x ≤ 1 for any real number x, such that

L0

x

⇔ L1 means L1 is similar to L0 at x degree (but, not vice versa) and L0

1

⇔ L1 indicates
L1 is totally similar to L0, i.e. L1 ≡ L0.

Similarity rules are used to form similarity premises, e.g. plutonium plant
1

⇔ lion
expresses “lions are totally similar to plutonium plants”. One methodology for building
similarity rules is to query similarity information of corresponding concepts defined in

DL ontologies (Definition 5.9). To the best of our knowledge,
x

⇔ is first introduced for
analogical reasoning in this work.

1When x = 1, we may remove it.
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Definition 6.7 (Logic Program). A logic program P is a triple 〈SR,DR, SIM〉 where SR
is a finite set of of strict rules, DR is a finite set of defeasible rules, and SIM is a finite set
of similarity rules.

We assume that every rule of P is grounded. Nevertheless, our examples may use the
usual convention, i.e. schematic rules with variables, in logic programs.

Definition 6.8 (Derivation). Let P be a logic program and L be a ground literal. A

derivation for L from P with an analogy degree w, in symbols P
w

` L1, is a finite sequence
L1, . . . , Ln of ground literals such that Ln = L and each literal Li (1 ≤ i ≤ n) satisfies
the following conditions:

1. Li is a fact or a presumption;

2. There exists a rule Ri of P (strict or defeasible) with head Li and body L1, . . . , Lj
such that every literal of the body, except ones preceded by negation-as-failure, is
an element of the sequence appearing before Li (j < i);

3. There exist similarity rules A′1
x1

⇔ L′1, . . . , A
′
k

xk
⇔ L′k of P and another rule Ri of P

(strict or defeasible) with head Li and body L1, . . . , Lk, . . . , Lj such that the predi-
cate of L1, . . . , Lk are L′1, . . . , L

′
k, respectively. The substitution on each predicate of

L1, . . . , Lk with A′1, . . . , A
′
k, respectively, and other non-substituted literals, except

ones preceded by negation-as-failure, is an element of the sequence appearing before
Li (k ≤ j < i).

4. w =
⊗

A′
i

xi
⇔L′

i

{xi}, where
⊗

is a triangular norm (t-norm)2 and A′i
xi
⇔ L′i is used to

derive L. Otherwise, we set w = 1 as the default value.

Basically, P
1

` L means that L may be derived without any use of analogies. Condition
2 to 3 assume two implicit inference rules, viz. a rule of defeasible modus ponens (MP)
and a rule of defeasible analogical rule (AR) as follows:

L1, . . . , Lj Li ⇐ L1, . . . , Lj, not Lm, . . . , not Ln
Li

MP

A′1
x1

⇔ L′1 . . . A′k
xk
⇔ L′k Li ⇐ L1, . . . , Lk, . . . , Lj, not Lm, . . . , not Ln

Li ⇐ A1, . . . , Ak, . . . , Lj, not Lm, . . . , not Ln
AR

Since this work employs the notion of t-norm, we include its definition here for self-
containment. A function ⊗ : [0, 1]2 → [0, 1] is called a t-norm iff it fulfills the following

1When w = 1, we may remove it.
2The precise definition of t-norm is given later.
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properties for all x, y, z, w ∈ [0, 1]: (1) x ⊗ y = y ⊗ x (commutativity); (2) x ≤ z and
y ≤ w =⇒ x ⊗ y ≤ z ⊗ w (monotonicity); (3) (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z) (associativity);
(4) x ⊗ 1 = x (identity). A t-norm is called bounded iff x ⊗ y = 0 =⇒ x = 0 or y = 0.
There are several reasons for the use of a t-norm. Firstly, it is the generalization of the
conjunction in propositional logic. Secondly, the operator min (i.e. x ⊗ y = min{x, y})
is an instance of a bounded t-norm. This reflects an intuition on the use of analogical
reasoning that the strength of a consequence depends upon the use of similarities. Lastly,
1 acts as the neutral element for t-norms. Table 6.1 shows other instances of ⊗.

Table 6.1: Some instances of the operator ⊗

Name Notation x1 ⊗ x2 =

Minimum ⊗min min{x1, x2}
Product ⊗prod x1 · x2

Hamacher product ⊗H0 0 if x1 = x2 = 0; otherwise x1·x2

x1+x2−x1·x2

Example 6.5. (Continuation of Example 6.1) We translate the Silkwood case into our
logic program P as follows. The literal exception(X) means “X is an exception to inacti-
vate the goal”. To avoid confusion, we separate each rule by a semicolon.

SR = {defendant(X) ← owner(X, Y ), danger(Y ), killer(Y, Z); lion(l1); owner (guy, l1);
plutonium plant(p1); owner(kerr mcgee, p1); person(man); killer(l1,man); person(silkwood);
killer(p1, silkwood)};

DR = {liable(X)⇐ defendant(X), not exception(X); danger(X)⇐ lion(X)};

SIM = {plutonium plant
0.8

⇔ lion}1.

Let
⊗

be the min operator, we have P
0.8

` liable(kerr mcgee).

6.3.2 Structured Argument

We are ready to extend the notion of derivation (Definition 6.8) for constructing argu-
ments. As aforementioned, our notion of building arguments is adapted from DeLP (cf.
[180,183,184] for the similar notion of arguments’ structure) for discovering inconsistency
in the strict knowledge base.

Definition 6.9 (Argument). Let P = 〈SR,DR, SIM〉 be a logic program and Q be a
ground literal. A structure of an argument A for Q is a quadruple 〈D, S, Q, w〉, where
D ⊆ DR and S ⊆ SIM such that:

1. There exists a derivation for Q from 〈SR,D, S〉, i.e. 〈SR,D, S〉
w

` Q;

2. If L is a literal in the derivation for Q, then there is no defeasible rule in D containing
not L in the body;

1We may employ the notion of
π∼T to obtain 0.8 from realistic ontologies.
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3. 〈SR,D, S〉 is consistent, i.e. 〈SR,D, S〉 6
w

` A,A for some ground literal A;

4. A is minimal, i.e. there is no D′ ∪ S′ ⊆ D ∪ S such that 〈D′, S′, Q, w〉.

It is worth noting that Condition 2 helps avoiding an introduction of a self-conflicting
argument. For example, let P = 〈SR,DR, SIM〉 where SR = ∅, DR = {a⇐ b; b⇐ not a},
and SIM = ∅. Without Condition 2, it is possible to derive a from P , i.e. assuming not a
obtains a.

By distinguishing a set of defeasible rules of DR and a set of similarity rules of SIM in
an argument’s structure, we can clearly identify analogical arguments (or arguments from
analogy) apart from standard arguments.

Definition 6.10. An argument A = 〈D, S, Q, w〉 is called an analogical argument if S 6= ∅
and is called a standard argument if otherwise. Alternatively, A is called a strict argument
if D = S = ∅ and is called a defeasible argument if otherwise.

From the definition, A1 = 〈∅, S1, Q1, 0.8〉, where S1 = {plutonium plant
0.8

⇔ lion} and
Q1 = danger(kerr mcgee), is an analogical argument. Observe that an analogical argu-
ment is also a defeasible argument (such as A1).

Definition 6.11. Let P = 〈SR,DR, SIM〉 be a logic program and A1 = 〈D1, S1, Q1, w1〉,
A2 = 〈D2, S2, Q2, w2〉 be arguments. Then, we say that A1 attacks A2 iff one of the
following conditions hold:

1. 〈SR,D1, S1〉
w′

1

` A and 〈SR,D2, S2〉
w′

2

` A for some ground literal A;

2. 〈SR,D1, S1〉
w′

1

` A and there exists r ∈ D2 which contains not A in the body;

Definition 6.11 does not include ways of comparing which arguments are better. It only
says which arguments are in conflict. We illustrate this in Example 6.6.

Example 6.6. (Continuation of Example 6.5) Let us enrich the example that
SR = {defendant(X) ← owner(X, Y ), danger(Y ), killer(Y, Z); lion(l1); owner (guy, l1);

plutonium plant(p1); owner(kerr mcgee, p1); person(man); killer(l1,man); person(silkwood);
killer(p1, silkwood); ¬danger(X)← green environment(X)};

DR = {liable(X)⇐ defendant(X), not exception(X); danger(X)⇐ lion(X);
green environment(X)⇐ wind turbine(X);
federal law(X)⇐ owner(X, Y ), plutonium plant(Y ); ¬liable(X)⇐ federal law(X)};

SIM = {plutonium plant
0.8

⇔ lion; plutonium plant
0.4

⇔ wind turbine}.

We note that federal law(X) refers to “the federal preemption of state regulation of the
safety aspects of nuclear energy”. Hence, we can find that:
A1 = 〈{danger(X)⇐ lion(X); liable(X)⇐ defendant(X), not exception(X)},

{plutonium plant
0.8

⇔ lion}, liable(kerr mcgee), 0.8〉 as an analogical argument,
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A2 = 〈{federal law(X)⇐ owner(X, Y ), plutonium plant(Y );
¬liable(X) ⇐ federal law(X)}, ∅,¬liable(kerr mcgee), 1〉 as a defeasible argument, and

A3 = 〈{green environment(X)⇐ wind turbine(X)}, {plutonium plant
0.4

⇔ wind turbine},
¬danger(p1), 0.4〉 as an analogical argument. Thus, we have A1 attacks A2 and A2 attacks
A1 by Condition (1). In addition, A1 attacks A3 and A3 also attacks A1 by Condition
(1).

The argument A1 attacks A2 since it satisfies the first condition, i.e. 〈SR,D1, S1 〉
w′

1

`

liable(kerr mcgee) and 〈SR,D2, S2〉
w′

2

` ¬liable(kerr mcgee). This way of attack is called
rebuttal. Basically, a rebuttal attacks an argument by drawing the complement of a
derived literal. On the other hand, the second condition is called undercut. An undercut
attacks by showing an exceptional situation without drawing the complement of a literal.

Formalizing the scheme makes a special way of comparing arguments. This is because
use of the scheme imposes some specialties (from the critical questions) for adjudicating
conflicting arguments. There are three kinds of the comparison as discussed following.

Firstly, we consider the case of a standard argument A1 attacking another standard
argumentA2, i.e. A1 = 〈D1, S1, Q1, w1〉, A2 = 〈D2, S2, Q2, w2〉, and S1, S2 = ∅. Comparing
arguments is treated in usual ways, e.g. some preference criteria are required to compare
which argument is better for the rebuttal case. Such criteria can be defined as a relation
>⊆ DR × DR in a standard way, i.e. r1 > r2 means r1 is preferred over r2 for any
r1, r2 ∈ DR. Then, we say an argument A1 = 〈S1,D1, Q1, w1〉 is better than A2 =
〈S2,D2, Q2, w2〉 (denoted by A1 � A2

1) if (1) ∃r1 ∈ D1.∃r2 ∈ D2 : r1 > r2; and (2)
∀r1 ∈ D1.∀r2 ∈ D2 : r2 ≯ r1. We also establish that an argument structure based on facts
is preferable to an argument structure based on presumptions.

Secondly, we consider the case of an analogical argument A1 attacking another analog-
ical argument A2, i.e. A1 = 〈D1, S1, Q1, w1〉, A2 = 〈D2, S2, Q2, w2〉, and S1, S2 6= ∅. In
these cases, we compare the analogy degrees of both arguments. To defeat another, the
degree must be at least equal to one’s another.

Lastly, we consider the case of an analogical argument A1 attacking another standard
argument A2, i.e. A1 = 〈D1, S1, Q1, w1〉, A2 = 〈D2, S2, Q2, w2〉, S1 6= ∅, and S2 = ∅. In
these cases, we base our reasoning on the use of argumentation schemes. Uttering an
instance of Argument from Analogy like this in a dialogue creates a presumption in favor
of the conclusion from analogy and a corresponding proof for the other side in the dialogue
to defeat the conclusion by asking critical questions. This also conforms to Waller’s use
of analogical arguments [185] in the way of persuasion. Thus, an analogical argument is
preferable.

In the following, conditions 1 to 3 capture these three kinds of comparing for rebuttal.
Conditions 4 to 6 capture these three kinds of comparing for undercut.

Definition 6.12. Let A1 = 〈D1, S1, Q1, w1〉 and A2 = 〈D2, S2, Q2, w2〉 be two arguments.
Then, A1 defeats A2 iff one of the following holds:

1Later, this definition is used by Definition 6.12 for comparing between rebuttal attacks.
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1. A1 attacks A2 under Condition (1) of Definition 6.11, (S1, S2 = ∅), A2 � A1, and
A2 does not attack A1 under Condition (2) of Definition 6.11;

2. A1 attacks A2 under Condition (1) of Definition 6.11, (S1, S2 6= ∅), w1 ≥ w2, and
A2 does not attack A1 under Condition (2) of Definition 6.11;

3. A1 attacks A2 under Condition (1) of Definition 6.11, S1 6= ∅, S2 = ∅, and A2 does
not attack A1 under Condition (2) of Definition 6.11;

4. A1 attacks A2 under Condition (2) of Definition 6.11 and (S1, S2 = ∅);

5. A1 attacks A2 under Condition (2) of Definition 6.11, (S1, S2 6= ∅), and w1 ≥ w2;
and

6. A1 attacks A2 under Condition (2) of Definition 6.11, S1 6= ∅, and S2 = ∅.

We say that A1 strictly defeats A2 iff A1 defeats A2 and A2 does not defeat A1.

We note that many researchers in the area of argumentation with priority have defined
many ways to compare arguments. Addressing this issue is outside the scope and is
irrelevant to the Condition 1. We leave this as a future task.

Example 6.7. (Continuation of Example 6.6) We have that A1 strictly defeats A2 and
also strictly defeats A3.

Theorem 6.1. There does not exist an argument which attacks an argument A =
〈∅, ∅, Q, w〉, where Q is a ground literal and w ∈ (0, 1].

Proof. Let P = 〈SR,DR, SIM〉 be a logic program and suppose that there exists an
argument B = 〈Db, Sb, Qb, wb〉 which attacks A. By Definition 6.11, we show contradiction
by cases:

• (Rebuttal) We have 〈SR,Db, Sb〉
wb
` A and 〈SR, ∅, ∅〉

wa
` A for some ground literal A.

This means 〈SR,Db, Sb〉 is inconsistent and B is not an argument.

• (Undercut) We have 〈SR,Db, Sb〉
wb
` A and there exists r ∈ ∅ which contains not A

in the body. This case is trivial.
o

Corollary 6.1. Strict arguments always strictly defeat defeasible arguments, including
analogical arguments.

Proof. This immediately follows from Theorem 6.1 and Definition 6.12. o
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Corollary 6.1 exhibits that any conclusions drawn from analogy cannot strictly defeat
conclusions drawn from the use of only strict rules. This shows that our system conforms
to how the legal (and similar) uses analogy in reasoning.

6.3.3 Justification through Dialectical Analysis

In this work, we base our semantics on the grounded semantics of Dung’s theory (cf.
Section C.2 for the formal definition). A sound and complete calculus under the grounded
semantics has a form of the dialectical style between a proponent (P) and an opponent
(O) of an argument. A proponent starts with an argument to be justified and then the
players take turn (cf. the first condition of Definition 6.13). An opponent must defeat
or strictly defeat a proponent’s last argument (cf. the forth condition of Definition 6.13)
while a proponent must strictly defeat opponent’s last argument (cf. the third condition
of Definition 6.13). Moreover, a proponent is not allowed to repeat his arguments (cf. the
second of Definition 6.13).

Definition 6.13 ([186]). A dialogue is a finite nonempty sequence of moves movei =
〈Playeri,Ai〉 where i > 0 such that:

1. (Playeri = P ⇐⇒ i is odd) and (Playeri = O ⇐⇒ i is even);

2. (Playeri = P and Playerj = P and i 6= j) =⇒ Ai 6= Aj;

3. Playeri = P (i > 1) =⇒ Ai strictly defeats Ai−1;

4. Playeri = O =⇒ Ai defeats Ai−1.

Definition 6.14 ([186]). A dialogue tree is a finite tree of moves such that:

1. Each path of the tree is a dialogue;

2. If Playeri = P , then children of movei are all defeaters of Ai.

A player wins a dialogue if there are no moves for another player. Furthermore, a player
wins a dialogue tree iff that player wins all paths of the tree.

Definition 6.15. An argument A = 〈D, S, Q, w〉 is a justified argument from a logic
program P (in symbols, P ` A) iff there exists a dialogue tree which A appears at the
root and is won by the proponent. If A is justified, then Q is called a justified conclusion
of A. The justification degree, denoted by |A|, is defined as follows:

|A| =
⊕

Ai=〈Di,Si,Qi,wi〉

{wi}, for all Ai of each P along the tree and

an accumulator
⊕

1 : [0, 1]n → [0, 1] holds the following properties where n is the cardi-
nality of the set {wi}:

1This definition is used by this chapter only.
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• Identity closed: ∀a, . . . , z ∈ {wi} :
⊕
{a, . . . , z} = 1⇐⇒ a = · · · = z = 1;

• Monotonicity: ∀a, . . . , z, a′, . . . , z′ ∈ {wi} : a ≤ a′ ∧ · · · ∧ z ≤ z′ =⇒
⊕
{a, . . . , z}

≤
⊕
{a′, . . . , z′}.

Theorem 6.2. If an argument A = 〈D, S, Q, w〉 is justified and its dialogue tree does not
use analogical arguments, then |A| = 1.

Let us illustrate this based on our motivative example. In the following, we define
⊗

as the min operator and
⊕

as the arithmetic mean.

Example 6.8. (Continuation of Example 6.7) There are 10 arguments from the logic pro-

gram, i.e. A1 = 〈{danger(X) ⇐ lion(X)}, {plutonium plant
0.8

⇔ lion} , danger(p1), 0.8〉,
A2 = 〈{green environment(X)⇐ wind turbine(X)},

{plutonium plant
0.4

⇔ wind turbine}, green environment(p1), 0,4〉,
A3 = 〈{danger (X)⇐ lion(X)}, ∅, danger(l1), 1〉,
A4 = 〈AD

3 , ∅, defendant (guy), 1〉1,
A5 = 〈AD

1 , AS
1, defendant (kerr mcgee), 0,8〉,

A6 = 〈AD
3 ∪ {liable(X)⇐ defendant(X), not exception(X)}, ∅, liable(guy), 1〉,

A7 = 〈AD
1 ∪ {liable(X)⇐ defendant(X), not exception(X)},AS

1, liable(kerr mcgee), 0,8〉,
A8 = 〈{federal law(X) ⇐ owner(X , Y ), plutonium plant(Y )}, ∅, federa law(kerr mcgee),
1〉, A9 = 〈AD

8 ∪ {¬liable(X) ⇐ federal law(X)}, ∅,¬liable(kerr mcgee), 1〉,
A10 = 〈AD

2 ,AS
2,¬danger(p1), 0,4〉.

We can show that A7 is a justified argument through the dialectical analysis by starting
a dispute with A7. Now, the opponent has to defeat this argument. However, there are no
arguments defeating A7. Since the opponent runs out of moves, A7 is a justified argument
with the degree |A7| = 0.8/1 = 0.8.

The following definition identifies components for the implementation of an analogical
reasoner. Intuitively, we would like to make the reasoner possible to be also fine tuned
with a user-defined similarity threshold. Hence, we include a relevant degree s where
s ∈ (0, 1] apart from the logic program.

Definition 6.16 (Analogical Reasoner). An analogical reasoner R is a pair 〈P , s〉 where
P = 〈SR,DR, SIM〉 is a logic program and s ∈ (0, 1] is a relevant degree. An argument A
is justified by P under s iff A is a justified argument of P ′ where P ′ = 〈SR,DR, SIM′〉 and

SIM′ = {L0

x

⇔ L1 ⊆ SIM : x ≥ s}.

6.3.4 Guideline of Choosing Operator ⊗ and ⊕
The following theorems are aids to help deciding which operator⊗ and⊕ should be chosen.
We remind that ⊗ determines the analogy degree of an argument and ⊕ determines the
overall degree of a justified conclusion.

1For the sake of succinctness, ·D (and ·S) indicates a duplicated set of defeasible rules (and similarity
rules, respectively) from a specified argument structure.
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Table 6.2: Some instances of the operator ⊕

Name Notation x1 ⊕ · · · ⊕ xn =

Minimum ⊕min min{x1, . . . , xn}
Product ⊕prod x1 · x2 · · · · · xn
Average ⊕avg x1+···+xn

n

Theorem 6.3. From Table 6.1 and let x1, x2 ∈ (0, 1]. Then, ⊗prod ≤ ⊗H0 ≤ ⊗min.
Proof. We show the following inequality:

x1 · x2 ≤
x1 · x2

x1 + x2 − x1 · x2

≤ min{x1, x2}

That is, we show x1 · x2 ≤ x1·x2

x1+x2−x1·x2
as follows:

x1 · x2 ≤
x1 · x2

x1 + x2 − x1 · x2

⇐⇒ 1 ≤ 1

x1 + x2 − x1 · x2

⇐⇒ x1 + x2 − x1 · x2 ≤ 1

⇐⇒ x2 − x1 · x2 ≤ 1− x1 ⇐⇒ (1− x1) · x2 ≤ 1− x1 ⇐⇒ x2 ≤ 1 (by assumption)

Lastly, we show x1·x2

x1+x2−x1·x2
≤ min{x1, x2} in the similar fashion. o

Theorem 6.4. From Table 6.2 and let x1, . . . , xn ∈ (0, 1]. Then, ⊕prod ≤ ⊕min ≤ ⊕avg.
Proof. (Sketch) We show x1⊕prod · · ·⊕prodxn ≤ x1⊕min · · ·⊕minxn ≤ x1⊕avg · · ·⊕avgxn

in the similar fashion of Theorem 6.3 by induction on n. o

Theorem 6.3 and Theorem 6.4 shows ordering of those instances of ⊗ and ⊕. This
suggests that we can choose specific operators based on an application domain. For an
analogical reasoner which strongly recognizes analogical principles, we may choose the
weakest operators for both (i.e. ⊗min and ⊕avg). On the other hand, we may choose the
strongest ones (i.e. ⊗prod and ⊕prod) for an analogical reasoner which weakly recognizes
analogical principles. We generalize this observation toward the nature of pessimistic
in analogical reasoning. For the sake of succinctness, we may simply denote the chosen
operators with superscripts, e.g. P⊗min,⊕avg and | · |⊗min,⊕avg .

Definition 6.17. Let P be a logic program and ⊗1,⊗2,⊕1,⊕2 be concrete operators.
Let A∗ be the set of all arguments from P . Then, P⊗1,⊕1 is more pessimistic than P⊗2,⊕2

if ∀a ∈ A∗ : (P⊗1,⊕1 ` a and P⊗2,⊕2 ` a =⇒ |a|⊗1,⊕1 < |a|⊗2,⊕2).

Dually, the nature of optimistic analogical reasoning is defined in the opposite direction,
i.e. P⊗1,⊕1 is more optimistic than P⊗2,⊕2 if ∀a ∈ A∗ : (P⊗1,⊕1 ` a and P⊗2,⊕2 ` a =⇒
|a|⊗1,⊕1 > |a|⊗2,⊕2).
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6.3.5 Implementation Design: Analogist

Analogist is an inference system which reasons from analogy. Basically, it is a hybrid
reasoner of concept similarity measure under preference profile in DLs and the argument-
based logic program. We discusses a design sketch of the system in this section. It is
also worth to mention that the argument from analogy has a great importance in legal
practice, both in common law (because of the stare decisis principle, which implies that a
court should use precedents to guide new decisions) and in civil law [187]. Unfortunately,
this canon is prohibited in criminal law as it is the shared idea that judges shall not create
new law in criminal matters.

The framework presented in Section 6.3 supplies the mechanism to define knowledge
base in declarative ways. Taking this as advantage, we employ concept similarity measure
techniques in DLs (cf. Chapter 4 - 5) to induce similarity rules used in Analogist. Figure
6.4 depicts this conceptual idea.

Figure 6.4: The design of Analogist

With the use of DLs, the semantics of each axiomatic information is formally defined.
Traditional work on analogical reasoning indicates that, to measure similarity between
two situations, both mapping of relation among objects and mapping of individual objects
should take into account. Choosing appropriate measures can remedy this difficulty. For
example, the measure simπ [92] determines the similarity of ELH concepts based on
axiomatic information in TBox. Preference profile (Definition 5.6) may be also used to
define the preferred aspects for similarity identification at stake. For instance, Spence may
define a highly importance on Danger and omit to consider other aspects, i.e. ic(Danger) =
2 and ic(A) = 0 for A ∈ CNpri(T ) \ {Danger}, and thereby Lion is totally similar to

PowerPlant, i.e. Lion
π∼T PowerPlant = 1. This adds a similarity rule plutonium plant

1

⇔
lion (and vice versa) into the program.
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6.4 Related Work

After surveying the literature on Argument from Analogy in many fields, such as logic,
law, philosophy of science, and computer science, it appears to us that there are two
different forms of Argument from Analogy. The first form (cf. Section 6.1), on which our
two approaches are based, is the most widely accepted version whereas the second one
compares factors of two cases (e.g. [188, 189]), which may be regarded as an instance of
the first form. As the second one makes no reference to the notion of similarity, it becomes
simpler to use, such as in standard case-based reasoning. The method of evaluating an
argument from analogy in case-based reasoning (CBR) uses respects (i.e. dimensions
and factors) in which two cases are similar or different. In CBR, the decision in the
best precedent case is then taken as the decision into the current case. A dimension is
a relevant aspect of the case whereas a factor is an argument favoring one side or the
other in relation to the issue being disputed. The HYPO system [188] used dimensions.
CATO [189] was a simpler CBR system that used factors. Systems which employ factors
use pro factors to represent similarities for supporting an argument whereas con factors
representing dissimilarity to undermine the argument. Factors may be weighted. In
contrast, our approaches formalize the first form of Argument from Analogy in which

π∼T
is used to identify similarity premises. This creates an advantage, i.e. many aspects of
preference profile can be exploited.

ASPIC+ [190] was also a framework which constructed an argumentation framework
based on the notion of proof tree with strict rules and defeasible rules. According to
our literature, there are two common methodologies for building arguments, i.e. proof
tree and the similar notion to our approach (e.g. [180, 183, 184]). The motivation of
the notion used in [180, 183, 184] was to discover inconsistency in the strict knowledge
base. For instance, let P = 〈SR,DR, SIM〉 be a program where SR = {a ← b;¬a ← b},
DR = {b ⇐}, and SIM = ∅. Those approaches which build arguments based on proof
tree will accept an argument {b}; however, there will be no arguments for those systems
similar to us since accepting b will derive inconsistency in the strict knowledge base via
a← b and ¬a← b.

There were also substantial efforts of linking analogical reasoning to existing logical
models of non-monotonic reasoning. For example, [191] proposed a form of analogical
reasoning based on hypothetical reasoning. In that approach, similarity was expressed
as an equality hypothesis and a goal-directed theorem prover was used to search relevant
hypotheses. In [192,193], an analogical reasoning was considered as deductive reasoning by
inserting the rule (in our language): has property(t, p)← has property(s, p), similar(s, t)
as a strict rule to be used in deriving analogical conclusions.

Regarding the first approach, our operator ·+ also has a rule similar to the above.
However, its approach is different to others on the constraint and similarity identifica-
tion. Existing logical approaches require consistency on logic programs and employs a
preference, i.e. maximizing the number of common properties. In contrast, the ap-
proach relies on the notion of counter-analogy and exploits the notion of preference pro-
file for specifying preferences over similarity. Using consistency as the only constraint
is not sufficient. For instance, let us exemplify a counter-example (in its language):
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LP = {danger(X) ← lion(X);¬danger(X) ← solar plant(X); plutonium plant(p1).} and
O = {lion v harmuwild; plutonium plant v power plantuharm; solar plant v power plantu
green environment}. Most of existing approaches would conclude either “danger(p1)” or
“¬danger(p1)” from the logic program. However, this approach concludes nothing as a
counter-analogy is discovered. Using the number of common properties to identify pre-
ferred similarity also has less flexibility than using preference profile, e.g. it cannot express
importance over different names.

Definition 6.8 of the second approach also uses a rule which functions similar to the
above. Like the first approach, it also differs from the others on constraint checking
and similarity identification. As aforementioned, existing logical approaches require con-
sistency on logic programs and uses the number of common properties (in the model
theory) for similarity identification. This approach also relies on the notion of counter-
analogy and uses similarity rules to define similarity of two predicates. Using only con-
sistency for constraint checking is not enough. We exemplify this case in the language
of our argument-based logic programming. For instance, let P = 〈SR,DR, SIM〉 be a
program where SR = {plutonium plant(p)}, DR = {danger(X)⇐ lion(X);¬danger(X)⇐
solar plant(X)}, and SIM = {plutonium plant ⇔ lion; plutonium plant ⇔ solar plant}.
Most existing approaches would conclude either “danger(p)” or “¬danger(p)” from logic
programs. However, our approach concludes nothing as a counter-analogy is discovered.
Using similarity rules is also a pro since it enables integration with external systems
for building similarity rules, as designed in Analogist. This creates more dimensions of
configurable aspects for evaluating the similarity of concepts.

The main differences between the proposed two approaches are the notion of their
argument’s structure and the used semantics for their argument’s evaluation. While the
second approach considers on the notion of arguments’ structure, the first approach relies
on proof trees (cf. Subsection 6.2.4). Furthermore, the second approach employs the
grounded semantics whereas the first approach employs the stable semantics. Due to
these differences, their practical applications can be different.

Finally, we remark that there are extremely interesting relations between analogical
reasoning and defeasible argumentation. We have covered some of them in this chapter.

6.5 Summary

• Analogical reasoning is a form of non-deductive reasoning in which a conclusion is
inferred base on the similarity of concepts or states of affairs; and

• Two formalisms were proposed based on concept similarity measure under preference
profile introduced in Chapter 5. Their relationship to defeasible argumentation were
also discussed. Finally, we showed that analogical arguments driven by the similarity
of concepts can be reconstructed from the proposed formalisms.
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Chapter 7

Concluding Remarks

This thesis investigated and formally defined the notion of concept similarity measure (in
Description Logics), which can also be used when the agent’s preferences are provided.
The main objectives of this work were to investigate the computational approaches for
identifying the degree of similarity between two concept descriptions and to demonstrate
their applicability on several areas such as recommendation systems based on the agent’s
preferences, domain-specific knowledge base, and analogical reasoning.

To achieve these goals, we tool a look into the classical notion of concept equivalence
in Description Logics because concept equivalence can be seen as the basis operation for
comparing concepts. Since concept equivalence of concepts can be determined by evalu-
ating concept subsumption of concepts w.r.t. the two corresponding directions, existing
and efficient subsumption checking algorithms have been investigated and generalized for
our proposed notion of concept similarity measure under the agent’s preferences. In the
following sections, major technical and empirical results of this thesis are discussed.

7.1 Discussion of Achieved Results

The major results achieved in this thesis can be classified as follows:

• The development of concept similarity measure under preference profile in Descrip-
tion Logics (with its emphasis on sub-Boolean logics);

• The design of algorithmic procedures for our proposed measure simπ and their em-
pirical evaluation w.r.t. realistic ontologies; and

• The extended development for computational approaches of analogical reasoning
based on our proposed concept similarity measure under preference profile.

7.1.1 The Development of Concept Similarity Measure under
Preference Profile in Description Logics

Concept similarity measure can be regarded as a generalization of the classical reasoning
problem of equivalence. That is, any two concepts are equivalent if and only if their
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similarity degree is one (cf. Equation 4.22). Regarding this observation, we have inves-
tigated several approaches to compute the degree of subsumption between concepts in
sub-Boolean DLs since their subsumption reasoning problems are tractable and they are
expressive enough to formulate realistic ontologies. Several results according to this step
included two subsumption degree algorithms for the DL FL0 (cf. Chapter 4). Using
these results, we can compute the degree of concept similarity based on the degree of
subsumption degrees w.r.t. two corresponding directions. For instance, the measures ∼s,
∼c, and sim are defined as the average of the two corresponding subsumption degrees of
FL0 concepts, FL0 concepts, and ELH concepts, respectively. These results are capable
of providing the degree of relation w.r.t. their common and different features even though
the concepts are not in equivalence relationship. Accordingly, they play a major role
in the discovery of similar concepts in an ontology and are often employed by ontology
alignment algorithms.

The existence of having two proposed measures for the same DL FL0 corresponds to
an experiment in [154] that similarity measure might depend on target applications and
should be personalized to the agent’s similarity judgment style. Our investigation on
the relationship between these two measures (cf. Proposition 4.2) guides an approach to
apply a suitable measure for an applying agent. For example, when applying a similarity
measure for building a query answering system and an agent would like to see many
possible matching results, the measure ∼c could be applied.

It is obvious that choosing the right measure is one way of representing the agent’s
preferences. Fortunately, the definition of concept similarity measure is extended and
generalized in Chapter 5 in such a way that the degree of concept similarity is also
identified w.r.t. subjective factors (e.g. the agent’s preferences). This generalized notion
is called concept similarity measure under preference profile. In Section 5.1, a formalism
for expressing the agent’s preferences in concept similarity called preference profile was
developed. Two existing measures viz. ∼s and sim are refined according to each aspect of
preference profile and result in

π∼s for the DL FL0 and simπ for the DL ELH, respectively.
Apart from the definition of concept similarity measure under preference profile, Chap-

ter 5 also identified a set of desirable properties that any concrete measures of this notion
should satisfy. We have provided proofs of satisfied properties for the developed concrete
measures. Understanding their satisfied properties is important for employing the mea-
sures in any applicable areas since their users can predict the expected behaviors. The
measures can also be used regardless of the agent’s preferences. In such cases, both

π∼ s
and simπ can be tuned with the special preference profile called the default preference
profile π0. We have also provided several guidance to identify suitable values of prefer-
ence profile (cf. Section 5.5). Finally, we have provided proofs that when the TBox is
unfoldable, both

π∼s and simπ can be computed in polynomial time.
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7.1.2 The Design of Algorithmic Procedures for simπ and Their
Empirical Evaluation w.r.t. Realistic Ontologies

In Section 5.6, two concrete algorithms viz. the top-down approach and the bottom-up
approach for implementations of simπ were developed. The computational complexity of
each algorithm was clearly analyzed. Concretely, both algorithms make the similar num-
ber of executions; however, the bottom-up additionally requires an amount of extra space
due to the employed dynamic programming technique. Unlike the top-down approach,
the bottom-up approach has never recursively invoked itself to determine the similarity of
different pair of nested concepts. The algorithm directly uses values stored in the table.
Both approaches have different benefits and drawbacks. On the one hand, the bottom-
up requires an additional extra space. On the other hand, it does work productively an
environment where recursion is fairly expensive.

In Section 5.7, our defined notion
π∼ has been evaluated with realistic ontologies w.r.t.

several use cases. In this thesis, we used simπ to show the practical performance of both
developed algorithms and usefulness of tuning the measure via preference profile. Both
algorithms of simπ were implemented using Java version 1.8 with the usage of Spring Boot
version 1.3.3.RELEASE as application programming interfaces (APIs). These APIs can
also be used by application developers to use simπ with their working ontologies. Results
of the empirical evaluation are summarized as follows:

1. We compared the practical performance of the top-down simπ and the bottom-up
simπ w.r.t. the medical ontology Snomed ct. The experiment showed that the
bottom-up simπ performs approximately three times faster than the top-down simπ.
This result conforms to our theoretical analysis as discussed earlier;

2. We re-implemented the existing measure sim based on the same technologies and
techniques as simπ. Then, we compared the practical performance of simπ and sim
w.r.t. Snomed ct and found that they perform equally.;

3. We evaluated the backward compatibility of simπ with sim. This experiment would
like to ensure that the default preference profile can be used when preferences are
not given by the agent. Our experiment has guaranteed this;

4. We showed the usefulness of our defined notion through measuring the similarity
of Snomed ct concepts. Due to its special characteristics, measuring similarity
of Snomed ct concepts requires special ways of tuning the measure. We showed
that tuning simπ under the special setting yields the more intuitive results. We also
compared the use of simi, which is another measure for the same ELH, and found
that lacking (even some) aspects of preference profile may not be suitable to use
with an ontology where some special cases of tuning are required; and

5. We also showed the usefulness of our defined notion in several use cases of query
answering systems with realistic ontologies. The discussion showed that

π∼ is appro-
priate to identify the degree of similarity w.r.t. the agent’s preferences.
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Our defined notion has great potential use in knowledge engineering, such as the de-
velopment of recommendation systems based on the agent’s preferences, the development
of domain-specific knowledge bases, and the ontology engineering. Moreover, it may
be used with heterogeneous ontologies by identifying duplicated primitive concepts and
primitive roles among ontologies via sc and sr (cf. Section 5.9), respectively, and used in
the implementation of an analogical inference engine. We summarize our study on the
computational approaches for analogical reasoning in the next subsection.

7.1.3 Extending Concept Similarity Measure under Preference
Profile for Analogical Reasoning

Reasoning by analogy is a form of non-deductive reasoning in which we infer a conclusion
based on similarity of two concepts or states of affairs. Two formalisms were proposed
in Chapter 6 based on the argumentation scheme for argument from analogy. However,
their approaches of development were different. The first approach has exploited benefits
of extensive tools from answer set programming together with our developed notions (and
our developed APIs). This provides a rough-and-ready method for building an analogical
inference engine. On the other hand, the second approach developed an argument-based
logic-programming-like language which provides the possibility of representing informa-
tion in terms of strict, defeasible, and similarity rules in a declarative manner. In this
formalism, critical questions can be reconfigured as the defeating relation and the accept-
ability of constructed arguments is evaluated w.r.t. the grounded semantics.

A realistic argument in a legal case, which was made from analogies between concepts,
was shown to be “reconstructible” by the proposed formalisms to show their applicability.
For other viewpoints, ones may concern only the precedent is applicable to the current
case or not – but do not concern if the precedent is similar to the current case or not.
This in fact reflects to the two different phases of an analogical reasoning system, viz.
the similarity phase and the applicability phase. Based on this viewpoint, our proposed
system is positioned in the similarity phase in which the system will suggest the reasoning
by analogy to a target situation (e.g. the legal field) and the expert (e.g. the law people)
may consider the applicability after our suggestion; this is at their disposal.

7.2 Directions of Future Research

Several directions for further research on computational approaches of concept similarity
measure in DLs and analogical reasoning are in order:

• Our proposed measures in this thesis are not meant to be the universal measures.
Indeed, they are restricted to the DLs FL0 and ELH with an unfoldable TBox.
While they came with the limitation in terms of expressivity, their computations
were proven to be tractable; thereby, provided practically acceptable response time
which is a key requirement in the design and the development of large-scale ontolo-
gies. As for future work, we are interested in exploring other techniques of concept
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similarity measure under preference profile for more expressive DLs;

• The current structure of preference profile also restricts its expressivity on sub-
Boolean logics, particularly ELH. Hence, it appears to be a natural step to extend
preference profile to support more expressive DLs e.g. concept negation, and also,
to support capabilities to express preferences on an ABox;

• As reported in [154] about the need of having multiple measures, we are interested
to investigate the possible classes of similarity measures w.r.t. their potential use
cases and applications. Understanding this would help the agent to select the right
measure for a dealing situation;

• The proposed approaches of concept similarity measure under preference profile has
an advantage of computing the degree of commonalities under the agent’s prefer-
ences. On the other hand, they do not provide a good reason why two concepts are
considered as “being similar”. As for future work, we are interested in extracting
the computational content which makes two concepts considered as being similar.
To do this, we may investigate the deduction systems e.g. a sequent calculus and a
natural deduction system as developed in [69].

• Apart from our developed Java APIs, we intend to extend our development as a
plug-in of ontology editors such as Protégé. Doing this would undoubtedly spread
out their usability to a wider group of users;

• The current usage of preference profile appears only in the task of concept similar-
ity measure, which is a TBox-related problem. Now, we are interested in exploring
ways to adopt preference profile on ABox-related problem e.g. non-standard in-
stance checking under preference profile. The idea in the nutshell is to use concept
similarity measure under preference profile for ABox instance checking rather than
using the standard instance checking techniques. This may also involve extending
the structure of preference profile with some capabilities of defining preferences over
each instance in the ABox;

• Concept similarity measure is the core functionality of various problems. Analogical
reasoning is one of such problems and we demonstrated in Chapter 6 how ones could
build an inference engine based on our proposed measures. However, there were still
problems and open questions remained for further investigation. This might involve
continuously study in the area of argumentation and structured argumentation.
According to this point, we are interested to investigate how ones can construct
(and reconstruct) analogical arguments based on other formalisms in structured
argumentation such as ASPIC+ [190] and ABA [194].
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Appendix A

The Systematized Nomenclature of
Medicine: Snomed ct

The Systematized Nomenclature of Medicine, Clinical Terms (aka. Snomed ct)2 is one
of the largest and the most widely used medical ontologies currently available. Figure
A.1 depicts its web interface which can be accessed via the link given at the footnote. It
was produced by merging Snomed Reference Terminology (rt) [195, 196] with Clinical
Terms version 3 (CTV3) [197].

Historically, Snomed rt was developed by the College of American Pathologists (CAP)
with the aim to be a comprehensive clinical reference terminology e.g. the retrieval and
analysis of data relating the causes of diseases, the treatment of patients, and retrieval
of health care information [195]. The rt version was the first generation of the Snomed
terminology to use the formal semantics through the KRSS syntax [198].

In 1993, the UK National Health Service (NHS) has adopted the Read codes, which
had been developed by a medical practitioner Read, for health electronic records. Later
on, the terminology has been expanded and enhanced to become Clinical Terms version
3 (CTV3).

Between 1999 and 2002, CAP and the UK NHS together with Keiser Permanente have
jointly worked to merge Snomed rt and CTV3. Its resulting Snomed ct contained 55%
of the source concepts from CTV3 and 31% from rt. Moreover, the ontology become freely
available in both the US and UK.

Nowadays, Snomed ct is already used by more than 50 countries. Furthermore, it is
the most comprehensive, multilingual clinical health-care terminology in the world and
is mapped to other international standards. As reported in [105, 106], Snomed ct can
be seen as the DL ELH with an unfoldable TBox. Snomed ct has several inherent
characteristics. We discuss several of them in the following.

Firstly, Snomed ct purposefully uses the special role roleGroup to group two or more
existential quantifications in a definition. Spackman et al. has illustrated the use of
roleGroup for the concept “Tetralogy of Fallot” in [199] as follows.

2http://bioportal.bioontology.org/ontologies/SNOMEDCT
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Figure A.1: Snomed ct BioPortal (accessed on February 21, 2018)

TetralogyOfFallot ≡ ∃rG.(∃s.RightVentricle u ∃m.Hypertrophy) u
∃rG.(∃s.Aorta u ∃m.Overriding) u
∃rG.(∃s.Pulmonary u ∃m.Stenosis) u
∃rG.(∃s.InterventricularSeptum u ∃m.IncompleteClosure)

where rG, s, and m are abbreviations for roles roleGroup, site, and morphology, respectively.
Secondly, individuals (i.e. the ABox) are omitted. On the other hand, Snomed con-

cepts such as Germany, Japan, and Thailand are used to represent unique individuals.
Indeed, they are seen as “instances” of the concept GeographicLocation.

Thirdly, Snomed ct has 18 mutually exclusive top-level concepts for dividing the entire
ontology into disjoint categories. However, the disjointness is not logically specified as
axioms; hence, some concept names may happen to belong to more than one category.

Lastly, the Snomed ct top concept SCT-Top subsumes every defined concept of each
category. This means this special concept is shared by every expanded concept.

In this thesis, we use Snomed ct ct ontology version from January 2005 which con-
tains 13 role inclusions, 38,719 concept definitions, 340,972 primitive concept definitions,
379,691 concept names and 62 role names.
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Appendix B

Implementation of The Measure simπ

We have implemented simπ as a collection of application programming interfaces (APIs)
as well as command-line interfaces (CLIs) using Java version 1.8 with the usage of Spring
Boot version 1.3.3.RELEASE. The ultimate goal of these APIs is to provide a tool for
identifying the degree of concept similarity under preference profile for the DL ELH. As
shown in Theorem 5.5, the computation of simπ can be performed in polynomial time.

Since simπ is targeted on ELH, we summarize the provided constructors as follows:

• top concept “>”,

• conjunction “C uD”, and

• full existential quantification “∃r.C”; and

the following means of expressivity to construct an ontology as follows:

• primitive concept definition “A v D”,

• concept definition “A ≡ D”, and

• role hierarchy axiom “r v s”.

Currently, simπ accepts two formats of inputs viz. in KRSS2 (Knowledge Representation
System Specification) [198], OWL (Web Ontology Language), and OWL 23. Our APIs
wrap OWL API4 version 3.4.4. In the following, we have summarized shortly both KRSS
and OWL syntaxes only the parts relevant to our APIs for self-containment of the thesis.

In KRSS, an ontology contains the following sorts of statements:

• primitive concept definition “(define-primitive-concept CN C)”,

• concept definition “(define-concept CN C)”, and

• role hierarchy axiom “(define-primitive-role RN1 RN2)”,

2http://dl.kr.org/krss-spec.ps
3https://www.w3.org/TR/owl2-overview/
4http://semanticweb.org/wiki/OWL_API.html
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where CN be a concept name, RN1 and RN2 be two different role names, and concept C
can be either CN, TOP, or formed as follows:

• conjunction “(and C1 . . . Cn)”,

• full existential quantification “(some RN C)”,

where concept C,C1, . . . ,Cn are recursively defined as above.
Figure B.1 depicts an overview of OWL 2. In the center, the ellipse represents the

abstract notion of an ontology, which can be thought of as an abstract ontology structure
or an RDF graph. The top of the figure shows each concrete syntax based on the abstract
notion which can be serialized and exchanged. The bottom shows the two specification
of semantics defining the meaning of an ontology. As aforementioned, our APIs wrap the
OWL API, which can handle these various syntaxes and semantics. Thus, this capability
automatically transfer to our APIs for free. We refer the readers to check the official
documentation for the full descriptions of each syntax and semantics.

Figure B.1: The structure of OWL 2
(source: https://www.w3.org/TR/owl2-overview/OWL2-structure2-800.png)

To use our APIs in Java, four classes may be involved viz. “KRSSServiceContext”,
“OWLServiceContext”, “PreferenceProfile”, and “SimilarityService”. First, KRSSSer-
viceContext and OWLServiceContext are used to initialize the ontology from a given file
path. Initializing the ontology is mandatory and is required to do once prior to the query
of concept similarity. Second, PreferenceProfile is used to configure each aspect of pref-
erence profile (cf. Section 5.1). If this class is not explicitly used, it will automatically
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use the default value (cf. the default preference profile). Third, SimilarityService encap-
sulates functionalities to compute the degree of concept similarity based on a syntax and
a computational approach (cf. Section 5.6) as follows:

• measureOWLConceptsWithTopDownSimPi(conceptName1 : String, conceptName2
: String) : BigDecimal;

• measureOWLConceptsWithDynamicProgrammingSimPi(conceptName1 : String, con-
ceptName2 : String) : BigDecimal;

• measureKRSSConceptsWithTopDownSimPi(conceptName1 : String, conceptName2
: String) : BigDecimal; and

• measureKRSSConceptsWithDynamicProgrammingSimPi(conceptName1 : String,
conceptName2 : String) : BigDecimal.

The following demonstrates how ones can use our APIs in Java.

public class Example {

... // Initialize logger, owlServiceContext and similarityService

private void run(String... args) {

String owlFilepath = StringUtils.trimWhitespace(args[0]);

String conceptName1 = StringUtils.trimWhitespace(args[1]);

String conceptName2 = StringUtils.trimWhitespace(args[2]);

owlServiceContext.init(owlFilepath);

BigDecimal value =

similarityService.measureOWLConceptsWithTopDownSimPi(conceptName1,

conceptName2);

logger.info("Done! The similarity between " + conceptName1 + " and " +

conceptName2 + " is " + value.toPlainString() + " %.");

}

}

Listing B.1: Example of using simπ APIs in Java

We have also implemented several batch programs based on the APIs and used them
on the part of our empirical evaluation of the thesis (cf. Section 5.7). For the current
implementation, each program stores each concept pair in question as a text file separated
by a space. Each aspect of preference profile is stored on its own file but is collectively
kept together in the same folder. Their outputs after the execution is stored in another
text file. Figure B.2 depicts the idea as described above. We also implemented other batch
programs based on the same techniques for the measure sim (as discussed in Section 5.7)
with the purpose of benchmarking. In total, we have implemented 8 programs. Each uses
the same structure as shown in the figure.
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Figure B.2: Our batch program’s structure

To run each batch program, we have to execute the command “mvn spring-boot:run”.
When the program is run, it will take each concept pair defined in a given ontology (such
as “family.owl” in this case), compute the degree of similarity under a defined preference
profile, and pipe the results to output file. Figure B.3 illustrates an example after the
execution. The figure shows that the degree of similarity between both concepts is 0.96.

Figure B.3: The degree of similarity between Son and SonInLaw

Finally, we have written 111 unit test cases to ensure that all batch programs and the
core APIs function correctly. These test cases were written to cover important parts of
the implementation. Concepts in both the family ontology (family.owl) and Snomed ct
were used by the test cases. To execute the test, we use the command “mvn test”. Figure
B.4 depicts the results.

Figure B.4: Results of unit tests
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Appendix C

Defeasible Argumentation

C.1 Argumentation Schemes

Argumentation schemes [164] are stereotypical non-deductive patterns of reasoning, con-
sisting of a set of premises and a conclusion that is “presumed” to follow from the premises.
Many of important schemes have been identified and analyzed by Hastings in 1963 [200],
Perelman and Olbrechts-Tyteca in 1969 [201], Kienpointner in 1992 [202], Walton in 1996
[203], and Grennan in 1997 [204].

Nowadays, there have been considerable interest on argumentation schemes in the filed
of artificial intelligence, particularly in agent reasoning (cf. [205, 206]). In the area of
argumentation study, schemes can be used to identify arguments, find missing premises,
analyzing arguments, and finally evaluate them. Use of argumentation schemes is evalu-
ated by a specific set of critical questions corresponding to each scheme. If such questions
have not been answered adequately, conclusions drawn by the schemes will fail to hold.
Since Chapter 6 uses a scheme called argument from analogy, we illustrate how this argu-
mentation scheme works as follows:

Similarity Premise Generally, case C1 is similar to case C2

Base Premise A is true (false) in case C1

Conclusion A is true (false) in case C2

This generic structure can be explained as follows. The similarity is regarded to hold
between two cases. These cases could be two different concepts or states of affairs. Con-
sequently, a property (e.g. a feature A) attributes to both cases.

As aforementioned, any arguments fitting the scheme for argument from analogy are
evaluated in a dialogue framework in which another party can ask critical questions. Ba-
sically, this amounts to investigate its acceptability. Following outlines critical questions
(CQ) associated to the scheme.

CQ1 Is A true (false) in C1?
CQ2 Are C1 and C2 similar in the respects cited?
CQ3 Are there important differences (dissimilarities) between C1 and C2

CQ4 Is there some other case C3 that is also similar to C1 except that
A is false (true) in C3?
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C.2. ARGUMENTATION FRAMEWORK

The first critical question nicely ensures the right conclusion. The second and the
third critical questions relate to differences between the two cases that could detract
from the strength of the argument from analogy. Lastly, the forth critical question is
associated with a familiar type of counter-analogy. The function of this critical question
is to suggest doubt that could possibly lead to a plausible counter-argument that could
be used to attack the original conclusion.

Argument from analogy is immensely employed in the procedure of analogical reasoning
and case-based reasoning [188, 189]. Several concrete representations of the above struc-
ture are studied in [168] and are demonstrated in practical areas e.g. laws and clinical
practices in [168, 207]. However, due to its generality, the argumentation scheme and its
critical questions do not deal with the three basic questions (as mentioned in Chapter 6),
we have tackled those in the thesis.

C.2 Argumentation Framework

An abstract argumentation framework (AF) [172] is a pair (A,R) where A is a set of
arguments and R ⊆ A × A is called an attack relation. Arguments may attack each
other; hence, it is clear that they may not stand together and their statuses are subject
to an evaluation. In this sense, semantics for AF returns sets of arguments called exten-
sions, which are conflict-free and defend themselves against attacks [172]. Their formal
definitions are given as follows:

Definition C.1. Let (A,R) be an AF. An argument a ∈ A is acceptable w.r.t. a set
S ⊆ A iff ∀b ∈ A : (b, a) ∈ R =⇒ (S, b) ∈ R. Also, let S be conflict-free, i.e. 6 ∃a, b ∈ S :
(a, b) ∈ R1. Then, S is called:

• an admissible extension iff x ∈ S =⇒ x is acceptable w.r.t. S;

• a complete extension iff x ∈ S ⇐⇒ x is acceptable w.r.t. S;

• a preferred extension iff S is a set inclusion maximal complete extension;

• a grounded extension iff S is a set inclusion minimal complete extension;

• a stable extension iff ∀x ∈ A : x 6∈ S =⇒ (S, x) ∈ R.

It its worth noting that argumentation framework is another line of research which
has its root in the study of logic programming and non-monotonic reasoning. Concerning
logic programming, it has been also shown in [172] that different semantics of the abstract
framework e.g. grounded extensions and stable extensions correspond to the well-founded
and answer set semantics of normal logic programs.

Unfortunately, the structure and meaning of arguments and attacks are abstract in
AF. On the one hand, these characteristics enable the study of properties which are

1With a little abuse of notation, we define (S, b) ∈ R as ∃a ∈ S : (a, b) ∈ R. Similarly, we define
(b, S) ∈ R as ∃a ∈ S : (b, a) ∈ R.
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C.2. ARGUMENTATION FRAMEWORK

independent of any specific aspects [208]. On the other hand, this generality features a
limited expressivity and can be hardly adopted to model practical target situations. To
fill out this gap, less abstract formalisms were considered, dealing in particular with the
construction of arguments and the conditions for an argument to attack another, such as
ASPIC+ [209], DeLP [180], and assumption-based argumentation (ABA) [194].

Research on the relation between logic programming and argumentation has been fruit-
ful and compensated for each other, i.e. some argumentation formalisms were used to
define semantics for logic programming, and also, logic programming was used to pro-
vide an underlying representational language for non-abstract argumentation formalisms
(similar to the mentioned above). In the following, we give a brief description of DeLP.

DeLP (Defeasible Logic Programming) is a formalism that combines techniques of both
logic programming and defeasible argumentation. The representational language of DeLP
is defined as an extension of a logic programming language that considers two types of
rules viz. strict and defeasible rules. A DeLP program is denoted by a pair (Π,∆) where
Π is a set of strict rules (representing facts and non-defeasible knowledge) and ∆ is a set
of defeasible rules. Rules in a DeLP program must be ground.

Defeasible rules allow to infer tentative conclusions. A defeasible derivation of a literal
Q from a DeLP program (Π,∆) (denoted by (Π,∆) ` Q) is a finite sequence of ground
literals L1, L2, . . . , Ln = Q where either:

1. Li is a fact in Π; or

2. There exists a rule Ri in (Π,∆) with head Li and body B1, B2, . . . , Bk and every
literal of the body is an element Lj of the sequence appearing before Li(j < i).

Unlike ASPIC+ and ABA, DeLP considers the notion of arguments’ structure other than
proof trees as follows.

Definition C.2. Let H be a ground literal, (Π,∆) a DeLP program, and A ⊆ ∆. The
pair 〈A, H〉 is an argument structure if:

1. There exists a defeasible derivation for H from (Π,A);

2. There is no defeasible derivation from (Π,A) of contradictory literals; and

3. There is no proper subset A′ of A such that A′ satisfies (1) and (2).

A DeLP query is a ground literal that DeLP will try to warrant, i.e. evaluate its accept-
ability. Basically, a query will succeed if it is possible to build an argument that supports
the query and this argument is also found to be undefeated by a warrant procedure. This
process implements an exhaustive dialectical analysis that involves the construction and
evaluation of arguments. The DeLP dialectical analysis is formally described in [180].
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nology for health care.,” in Proceedings of the AMIA annual fall symposium, p. 640,
American Medical Informatics Association, 1997.

[196] A. Rector, “Medical informatics,” in The description logic handbook, pp. 406–426,
Cambridge University Press, 2003.

[197] M. O’Neil, C. Payne, and J. Read, “Read codes version 3: a user led terminology.,”
Methods of information in medicine, vol. 34, no. 1-2, pp. 187–192, 1995.

[198] P. F. Patel-Schneider and B. Swartout, “Description-logic knowledge representation
system specification from the krss group of the arpa knowledge sharing effort,” KRSS
group of the ARPA, 1993.

[199] K. A. Spackman, R. Dionne, E. Mays, and J. Weis, “Role grouping as an extension
to the description logic of ontylog, motivated by concept modeling in snomed.,” in
Proceedings of the AMIA Symposium, p. 712, American Medical Informatics Asso-
ciation, 2002.

[200] A. C. Hastings, “A reformulation of the modes of reasoning in argumentation,”
1963.

[201] C. Perelman and L. Olbrechts-Tyteca, “The new rhetoric, notre dame,” IN: Uni-
versity of Notre Dame, 1969.

[202] M. Kienpointner, “Alltagslogik struktur und funktion von argumentationsmustern,”
1992.

[203] D. Walton, “Argumentation schemes for presumptive reasoning lawrence erlbaum
associates mahwah,” 1996.

[204] W. Grennan, Informal logic. Kingston: McGill-Queen?s University Press, 1997.

[205] C. Reed and T. Norman, Argumentation machines: New frontiers in argument and
computation, vol. 9. Springer Science & Business Media, 2003.

[206] B. Verheij, “Dialectical argumentation with argumentation schemes: An approach
to legal logic,” Artificial intelligence and Law, vol. 11, no. 2, pp. 167–195, 2003.

163



BIBLIOGRAPHY

[207] N. Guallart, “Analogical reasoning in clinical practice,” Systematic Approaches to
Argument by Analogy, pp. 257–273, 2014.

[208] P. Baroni and M. Giacomin, Semantics of abstract argument systems, pp. 25–44.
Boston, MA: Springer US, 2009.

[209] S. Modgil and H. Prakken, “The ASPIC+ framework for structured argumentation:
A tutorial,” Argument and Computation, vol. 5, no. 1, pp. 31–62, 2014.

164



Publications

International Journal

[1] Teeradaj Racharak, Boontawee Suntisrivaraporn, and Satoshi Tojo, Personalizing
a concept similarity measure in the description logic ELH with preference
profile, Computing and Informatics (accepted).

Proceeding International Conferences

[2] Teeradaj Racharak and Satoshi Tojo, Concept similarity under the agent’s
preference for the description logic FL0 with unfoldable TBox, in Pro-
ceedings of the 10th International Conference on Agents and Artificial Intelligence
(ICAART), Madeira, Portugal, pp. 201-210, 2018.

[3] Teeradaj Racharak and Satoshi Tojo, Tuning agent’s profile for similarity
measure in description logic ELH, in Proceedings of the 9th International
Conference on Agents and Artificial Intelligence (ICAART), Porto, Portugal, pp.
287-298, 2017.

[4] Teeradaj Racharak, Satoshi Tojo, Nguyen Duy Hung, Prachya Boonkwan, Com-
bining answer set programming with description logics for analogical rea-
soning under an agent’s preferences, in Proceedings of International Conference
on Industrial, Engineering and Other Applications of Applied Intelligent Systems
(IEA/AIE), Arras, France, pp. 306-316, 2017.

[5] Teeradaj Racharak, Boontawee Suntisrivaraporn, and Satoshi Tojo, simπ: a con-
cept similarity measure under an agent’s preferences in description logic
ELH, in Proceedings of the 8th International Conference on Agents and Artificial
Intelligence (ICAART), Rome, Italy, pp. 480-487, 2016.

[6] Teeradaj Racharak, Boontawee Suntisrivaraporn, and Satoshi Tojo, Identifying
an agent’s preferences toward similarity measures in description logics, in
Proceedings of the 5th Joint International Semantic Technology Conference (JIST),
Yichang, China, pp. 201-208, 2015.

Peer-reviewed International Workshop (Post-proceeding in Parenthesis)

165



[7] Teeradaj Racharak, Satoshi Tojo, Nguyen Duy Hung, Prachya Boonkwan, Argument-
based logic programming for analogical reasoning, In Proceedings of the 10th
International Workshop on Juris-Informatics (JURISIN), Kanagawa, Japan, 2016
(Kurahashi S., Ohta Y., Arai S., Satoh K., Bekki D. (eds) New Frontiers in Arti-
ficial Intelligence, JSAI-isAI 2016, Lecture Notes in Computer Science, vol 10247,
Springer, Cham).

Post-proceeding International Conference

[8] Teeradaj Racharak and Satoshi Tojo, Inherited Properties of FL0 Concept
Similarity Measure under Preference Profile, In Agents and Artificial Intelli-
gence (submitted), Lecture Notes in Computer Science.

Related Post-proceeding International Conference which is not in the thesis

[9] Teeradaj Racharak and Satoshi Tojo, Analogical reasoning in clinical prac-
tice with description logic ELH, In Jaap van den Herik, Ana Paula Rocha and
Joaquim Filipe (eds) Agents and Artificial Intelligence, Lecture Notes in Computer
Science.

166


