JAIST Repository

https://dspace.jaist.ac.jp/

Title Functional Scripting - 0O00pO0DODOOOOOOI
gooooooooooooooog s -

Author(s) ooo, O

Citation

Issue Date 2002-03

Type Thesis or Dissertation

Text version aut hor

URL http:/7/7 hdl handle.net/ 10119/ 1543

Rights

Description ooo, oooooon, oo

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Functional Scripting

a study of discipline and implementation for operations of external resources in functional language

YAMATODANTI Kiyoshi (010119)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 15, 2002

Keywords: functional programming, scripting, component, database, polymorphic
type system.

To cope with the complexity in development of large software, a ”component-based”
method is emerging. In this method, applications are built by connecting components.
This innovated method requires new languages that enable the programmer to assembly
components in a systematic way. For this reason, scripting languages are attracting
attentions. They provide powerful foreign function interfaces which makes them ’glue’
of libraries and modules. While this approach works reasonable well for small programs,
it does not scale up well to complex and large software systems. The untyped nature
of those scripting languages makes it difficult to achieve the reliability and robustness
required for large scale software.

A well established method for enhancing software reliability is to impose static type
discipline. Moreover, modern functional languages with advanced static type system also
provide high descriptive power suitable for rapid application development. The underlying
theory of functional language however implicitly assumes that the runtime system is self-
contained and does not provide any mechanism for interfacing with foreign components.
There are some recent researches on foreign language interfaces for functional languages,
but they remain rather low-level and cannot provide the power and flexibility comparable
to those of scripting languages.

The motivation of this thesis is to establish theory and implementation techniques for
combining the safetiness of functional languages and the openness of scripting languages.
To achieve this, we must establish following

e a typing system for external access,

e a method to integrate object oriented type system and a static polymorphic type
system,

e a programming language with the above type system and interfacing scheme for
external libraries,

e an implementation method for the language including compilation scheme and run-
time mechanism for external resources.

Copyright © 2002 by YAMATODANTI Kiyoshi



This thesis attempts to provide solution to the above problems.

I have developed a static polymorphic type system for external access by introducing
‘object type’ which represents properties of external object. An object type is a form
of abstract type hiding its physical structure, but allows pattern-matching with record
patterns . I have carried out the formal development of the type system based on the poly-
morphic record calculus by Ohori. In the resulting type system, functional programs can
import objects exported by external libraries without losing their property by assigning
the object type to those objects.

I have developed a method to encode object oriented class hierarchy in the type system.
The subtype relation in an OO type system is mapped to the combination of object type
with record polymorphism. In this scheme, I have shown that the constraints which OO
type system imposes are preserved by this mapping. This method is more natural and
portable than those developed by other studies which try to merge OO type system and
functional type system.

I have designed an ML-like language ’Amethyst > which embodies above theoretical de-
velopment. Amethyst supports core syntax of Standard ML, and adds some declaration
statements for importing external resources. Type system checks operations on values
imported by these statements and guarantees that assumptions expected by external li-
braries will be satisfied. In addition to the language, I have also designed an abstraction
layer called ’"domain module’ between the language runtime system and external libraries.
Domain modules hide implementation details of external libraries and re-construct ab-
stract interfaces which reflect original data-model of these libraries.

Following above base design, I have implemented Amethyst system which consists of
three subsystems : a compiler, a bytecode interpreter and domain modules. The compiler
performs type inference with external type and translates source programs which oper-
ate values of external types to bytecodes which invoke functions implemented in external
libraries. The bytecode interpreter is an extension of Leroy’s ZINC machine with new in-
structions for operating external data and for invoking external functions. The interpreter
also incorporates heap management system designed for storing the information related
with external resources. Lastly, we designed and implemented two domain modules. One
provides interface to PostgreSQL database, and the other provides interface to Java class
library. These modules demonstrate that our approach can be applied to development of
real applications.



