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Abstract

For the last decade, a collection of combinatorial problems called reconfiguration prob-
lems has been studied extensively. Roughly speaking, a reconfiguration problem is speci-
fied in terms of a given collection of configurations and a reconfiguration rule that describes
how to transform one configuration into another. Several real-world situations involving
movement and change can be modeled as reconfiguration problems. As an example, con-
sider a network that delivers electricity from suppliers to consumers. In such a network, it
may happen that some devices at a power station S is broken and one need to temporarily
shut down S for replacing these broken devices with the new ones. Before shutting down
S, one may need to reroute the transmission lines that go through S to some other power
station in order to maintain the availability of the network. A technician may wonder
which station he/she needs to pick for replacing S such that the network remains active
and, for saving resources when S becomes active again, the chosen station should be as
near S as possible. Such a situation can be modeled as a Path Reconfiguration
problem, where each configuration is a path (transmission line) from the main supplier to
customers, and the rule is to change a node (power station) such that the network remains
connected (active). Another real-world situation where reconfiguration problems arise is
the motion planning of moving objects. For instance, in a 3D printer model where multi-
ple printing heads have been used, one need to plan the printing paths (which the heads
will follow) to avoid collisions and other unwanted interactions, as well as making the
distance traveled by each head as small as possible. Another situation involves multiple
robots moving in an environment and one need to plan their movements such that they
can avoid obstacles and each other. Such problems can be modeled as different variants of
the Token Reconfiguration problem on graphs. A classic variant of Token Recon-
figuration is the so-called 15-puzzle – a research topic since 1879. A configuration of
15-puzzle consists of 15 tokens labeled 1, 2, . . . , 15, placed on a 4×4 grid. The rule is that
a token can only be slid to an unoccupied adjacent vertex. The 15-puzzle problem asks
whether one can transform one configuration into another. 15-puzzle and its generalized
versions can be used as models for the Multi-robot Path Planning problem. For an
overview on both theoretical and practical perspectives of reconfiguration problems, the
readers are referred to the surveys by van den Heuvel [Surveys in Combinatorics 2013,
127–160, 2013] and Nishimura [Algorithms, 11:4, 52, 2018].

Among several reconfiguration problems, the reconfiguration variants of Indepen-
dent Set are of particular interest. In such variants, an independent set (a set of pairwise
non-adjacent vertices of a graph) is often viewed as a set of tokens placing on vertices of
the input graph. In this viewpoint, Independent Set Reconfiguration can be seen
as a restricted version of the Token Reconfiguration problem where distinct unla-
beled tokens are placed on the vertices of a graph and no two tokens are adjacent. Among
different reconfiguration rules, the following three models have attracted the attention
of many theoretical computer scientists: Token Sliding (TS), Token Jumping (TJ), and
Token Addition and Removal (TAR). A TS-step involves moving a token to one of its
adjacent vertices. A TJ-step involves moving a token to any other vertex (not necessarily
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in its neighbors) of the graph. A TAR-step involves either adding or removing a token
such that the number of remaining tokens is at least some threshold k. Typically, we are
interested in determining whether one can transform an independent set I into another
independent set J using TS/TJ/TAR rule such that each intermediate result is also an
independent set. For all three rules, the problem is PSPACE-complete even for planar
graphs of maximum degree 3 and bounded bandwidth/treewidth/pathwidth/cliquewidth.
This raises an open question on whether there exist efficient algorithms for solving the
problem (under TS/TJ/TAR) when the bandwidth/treewidth/pathwidth/cliquewidth of
the input graph is bounded by some practical (small) constant. Interestingly, when com-
paring the three rules, TJ and TAR are equivalent, in the sense that for any sequence
of p TJ-steps between two independent sets I and J of size k, there is also a sequence
of 2p TAR-steps between them whose number of tokens in each member is either k or
k − 1, and vice versa. The TS model seems to be more “restricted”, in the sense that
any sequence of TS-steps can be seen as a sequence of TJ-steps. However, the reverse
direction does not hold. This motivates our study for the TS rule. As a result, in this
thesis, we made a significant contribution to the computational complexity of Indepen-
dent Set Reconfiguration under TS rule via designing polynomial-time algorithms
for solving the problem for different restricted graphs, namely trees, and cactus graphs
(whose treewidth is at most 2). As consequences of our algorithms, we show that one can
construct an actual sequence of TS-steps (if exists) between two given independent sets
using a polynomial number of token-slides.

Key Words. polynomial-time algorithm, computational complexity, combinatorial re-
configuration, sliding token, independent set, tree, cactus graph
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Chapter 1

Introduction

In this chapter, we first give a brief overview on the general framework of reconfigura-
tion problems—a young and growing research area in the field of theoretical computer
science. Then, we introduce different reconfiguration variants of the Independent Set
problem—a classic NP-complete problem in computational complexity theory [1]. Finally,
we briefly announce the main results of this thesis regarding the computational complexity
of a natural reconfiguration variant of Independent Set (called the Sliding Token
problem) for some restricted graphs. For any notation related to graph theory that is not
mentioned here, the readers are referred to [2].

1.1 Reconfiguration Problems

For the last decade, motivated by the purpose of understanding the structure of the
solution space of a computational problem, the reconfiguration problems have been exten-
sively studied in the field of theoretical computer science. In general, a reconfiguration
problem is defined in terms of a collection of configurations and a reconfiguration rule
which describes how one transforms one configuration into another. In most of the recon-
figuration problems considered in the literature, an implicit assumption is that one can
decide in polynomial time whether one configuration can be transformed into another via
a single transformation. Typically, one may ask if there is a sequence of configurations
that transforms some initial configuration A into another configuration B such that each
intermediate member of the sequence is obtained from the previous one by a single trans-
formation. Such a sequence is called a reconfiguration sequence. A classic example of such
problems is the so-called 15-puzzle [3]—a research topic since 1879 (see Figure 1.1). A
configuration of 15-puzzle consists of a placement of 15 tiles numbered 1, 2, . . . , 15 on a
4 × 4 board, leaving one empty square. One can also consider a more general setting in
which a configuration consists of a placement of n2−1 tiles on a n×n board (the (n2−1)-
puzzle). The allowed (reconfiguration) rule is that a tile can move to the empty square if
it is on the left/right/top/bottom of that square. Given a collection of configurations and
the reconfiguration rule, the (n2 − 1)-puzzle (15-puzzle) problem asks whether there
exists a sequence of configurations that transforms one configuration into another, such
that each intermediate member of the sequence is obtained from the previous one by a
single tile-move.

Many real-world problems also fall into the category of reconfiguration. For exam-
ple, in a large network, the following situation may happen: some nodes of the network
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Figure 1.1: An instance of 15-puzzle.

have been broken and one may need to take them down for modification or replacement.
However, taking down a node may cause the system to crash. Therefore, one need to
figure out a way of taking down some nodes and maintaining the network’s quality at the
same time. Clearly, this problem can be modeled as a reconfiguration problem. A typical
problem of this type is the Frequency Assignment problem, in which we aim to assign
frequencies to users of a wireless network in order to minimize the interference between
them and managing to use as less range of frequencies as possible during the process.
This problem can be modeled as a Vertex-Coloring problem on graphs, where each
frequency corresponds to a color. In a real-world situation, one may need to modify an
assignment because of some technical issues while maintaining the network’s activities.
This is where a Vertex-Coloring Reconfiguration model comes in handy. For
a given input graph G, a configuration of Vertex-Coloring Reconfiguration is a
coloring of vertices of G (which indeed corresponds to a frequency assignment) such that
no two adjacent vertices share the same color, and a reconfiguration step involves chang-
ing one vertex-color at a time. Another example is the following generalized version of
15-puzzle called the Pebble Motion problem: Given a graph G on n vertices with
k < n pebbles (tokens) numbered 1, 2, . . . , k on distinct vertices. A pebble can move to
an adjacent unoccupied vertex. The question is to decide if one pebble configuration is
reachable from another configuration via a sequence of pebble-moves. It is well-known
that Pebble Motion can be decided efficiently [4]. Another interesting question is to
decide whether one can find a shortest sequence of pebble-moves between two given con-
figurations for different input graphs (in general, the problem is NP-complete [5, 6]). The
Pebble Motion problem is strongly related to the problem of Multi-robot Path
Planning where multiple robots are moving in an environment and they must avoid ob-
stacles and each other (e.g., see [7]). Several other practical applications of reconfiguration
are reviewed in [8, Section 5].

Over the last decade, researchers have approached reconfiguration problems from dif-
ferent perspectives. The study of reconfiguration problems is, in some sense, the character-
ization of the so-called reconfiguration graph—a graph whose vertices are configurations,
and for any pair A,B of vertices (configurations), B is adjacent to A if it can be obtained
from A via a single transformation. Obviously, it is possible that the transformation goes
one way only (i.e., the reconfiguration graph is directed). However, in most problems
that have been considered so far in the literature, a typical assumption is that we can go
back and forth between configurations (i.e., the reconfiguration graph is undirected). In
general, the size of a reconfiguration graph is exponentially large (e.g., the reconfiguration
graph for 15-puzzle contains 16! vertices). This makes the study of reconfiguration prob-
lems quite challenging. Using the language of reconfiguration graphs, one can formulate
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several problems, some of which are:

• Reachability: Decide if two given vertices of a reconfiguration graph is in the
same component. The (n2 − 1)-puzzle can be categorized as a Reachability
question. It is well-known that (n2 − 1)-puzzle can be decided efficiently [3, 9].

• Connectivity: Given a reconfiguration graph, decide if it is connected. In 1974,
Wilson [10] gave a complete characterization of the connectedness of the reconfigura-
tion graph of (n2−1)-puzzle, which then implies that the Connectivity question
for this reconfiguration graph can be decided in polynomial time.

• Shortest Reconfiguration Sequence: Decide if it is possible to find a shortest
path connecting two vertices in the same component of a reconfiguration graph.
Note that this problem is different from the Shortest Path problem, which asks
for finding a shortest path between two given vertices in the same component of
a graph. The problem of finding a shortest sequence of tile-moves between two
vertices (configurations) in the same component of the reconfiguration graph of
(n2 − 1)-puzzle is NP-complete [5, 6].

• Bounded Reconfiguration Sequence: Decide if there is a path of length
at most ℓ between two vertices of a reconfiguration graph, for some given integer
ℓ. Goldreich [11] showed that Bounded Reconfiguration Sequence is NP-
complete for the reconfiguration graph of (n2 − 1)-puzzle.

• Diameter: Decide if the diameter (i.e., the maximum distance between any two
vertices of a graph) of the reconfiguration graph is bounded. For any two vertices
in the same component of the reconfiguration graph of (n2 − 1)-puzzle, it is well-
known that one can find a path of length O(k3) connecting them [4], where k = n2

is the number of squares in the given n× n board.

In a reconfiguration problem, a configuration is usually given as a feasible solution
of some computational problem, and a transformation rule can be seen as a simple way
of modifying a solution without changing its feasibility. In that manner, for a source
problem P , one can define various reconfiguration variants of P based on different recon-
figuration rules. Recently, many reconfiguration variants of several well-known problems,
including Satisfiability, Independent Set, Vertex Cover, Dominating Set,
Clique, Matching, Matroid Bases, Shortest Path, (List) Vertex-Coloring,
(List) Edge-Coloring, etc., have been extensively studied. For notational convention,
we shall refer to a reconfiguration variant of a problem P with reconfiguration rule R
as the P Reconfiguration problem under R rule. In the literature, the source prob-
lem P is usually a graph problem, and an important task is to draw a line between the
tractability/intractablility of different reconfiguration variants of P via exploring their
computational complexity for several different graph classes. A particular example of
problems in this research direction is the extensive study of reconfiguration variants of
Independent Set (see Section 1.2 and [12, Section 4]). Another task is to charac-
terize the similarity and difference between the source problem and its reconfiguration
variants. For example, many reconfiguration problems are PSPACE-complete while their
source problems are NP-complete [13]. Such a pattern does not always hold. For in-
stance, 3-Coloring is NP-complete [1], however, 3-Coloring Reconfiguration is
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polynomially solvable [14]. On the other hand, Shortest Path Reconfiguration is
PSPACE-complete [15] while the source problem Shortest Path is in P [16]. Another
direction is to study the structural properties of reconfiguration graphs, for example, via
investigating which graph can be a reconfiguration graph. Particularly, several structural
properties of the reconfiguration graphs of k-Coloring (e.g., see [17]) and Dominating
Set (e.g., see [18]) have been characterized. For further details and discussion on this
research area, the readers are referred to the surveys [8, 12].

1.2 Reconfigurability of Independent Set

One of the most basic problem in computational complexity theory is the Independent
Set problem. Given a graph G = (V,E) and an integer k ≤ |V |, the Independent Set
problem asks whether there exists an independent set of G of size at least k, that is, a
vertex-subset V ′ of G such that no two vertices of V ′ are adjacent and |V ′| ≥ k. It is well-
known that Independent Set is NP-complete [1]. Over the years, countless problems
involving Independent Set have been studying. The study of the reconfigurability of
independent set seems to begin with a dynamic version of Independent Set called the
Sliding Token problem. This problem was first introduced by Hearn and Demaine [19]
as an illustration for their Nondeterministic Constraint Logic (NCL) model—a powerful
tool for showing PSPACE-completeness of several computational problems. For a given
graph G and an independent set I of G, imagine that a token is placed at each vertex of I.
For a graph G and two independent sets I, J , the Sliding Token problem asks if there
exists a (reconfiguration) sequence S = 〈I1, I2, . . . , Iℓ〉 between the initial independent
set I = I1 and the target independent set J = Iℓ such that (i) each member of S is an
independent set of G, and (ii) for i ∈ {2, 3, . . . , ℓ}, Ii is obtained from Ii−1 by sliding a
single token along an edge of G. Figure 1.2 illustrates a yes-instance (Figure 1.2(a)) and
a no-instance (Figure 1.2(b)) of Sliding Token where the input graph G is a 3×3 grid.

I = I1 I2 I3 I4 J = I5

(a)

(b)

I J

Figure 1.2: (a) A yes-instance and (b) A no-instance of Sliding Token where the
input graph G is a 3× 3 grid. Tokens are depicted with black circles.

In the language of reconfiguration, each configuration of Sliding Token is an in-
dependent set, and the reconfiguration rule is that one can only slide a token from one
vertex to one if its neighbors along an edge of the given graph. In the literature, we refer
to this reconfiguration rule as the Token Sliding (TS) rule. In a more general setting,
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one can allow a token to move to any vertex of the graph instead of just its neighbors.
Such a reconfiguration rule is called the Token Jumping (TJ) rule and was first studied
by Kamiński et al. [20]. A simple observation is that in both TS and TJ models, if there
exists a reconfiguration sequence between two given independent sets then they must be
of the same size. In a recent research, de Berg et al. [21] considered the Multiple To-
ken Jump (p-MTJ) rule in which at most p tokens are allowed to move simultaneously.
Clearly, TJ is a special case of p-MTJ when p = 1. For p-MTJ, the problem of interest is
to determine the smallest value of p such that there is a reconfiguration sequence under
the p-MTJ rule between any two independent sets of size k. In 2011, Ito et al. [13] in-
troduced a different reconfiguration rule called Token Addition and Removal (TAR). In a
TAR step, one can either add or remove a single token as long as the number of remaining
tokens is at least some threshold k. For convenience, we shall refer to the reconfiguration
sequence under TS (resp. TJ, TAR) rule as the TS-sequence (resp. TJ-sequence, k-TAR-
sequence). Kamiński et al. [20] showed that the TJ and TAR rules are indeed equivalent,
in the sense that for any TJ-sequence of ℓ TJ steps between two independent sets I, J of
size k, there also exists a (k − 1)-TAR-sequence of 2ℓ TAR steps between them, and vice
versa. Regarding TS and TJ, observe that since a maximum independent set is also a
dominating set (i.e., a vertex-subset D such that every vertex not in D is adjacent to at
least one member of D), a TS-sequence between two maximum independent sets I, J is
also a TJ-sequence between them, and vice versa [22]. We note that these reconfiguration
rules (TS, TJ, p-MTJ, TAR) can also be defined for other vertex-subset problems such as
Vertex Cover, Clique, Dominating Set, and so on.

Hearn and Demaine [19] showed that Sliding Token is PSPACE-complete even for
planar graphs of maximum degree 3 via a reduction from a variant of their NCL model.
This result was not explicitly stated in [19], but was observed later by Bonsma and Cere-
ceda [23]. Since TAR and TJ are equivalent and their proof uses only maximum indepen-
dent sets, the result can be applied for both TJ and TAR rules. Ito et al. [13] claimed that
Independent Set Reconfiguration under TAR rule is PSPACE-complete by extend-
ing a reduction from the 3-SAT problem to the Independent Set problem. As before,
the result can be applied to TJ and TS too. Kamiński et al. [20] showed that under TS, TJ,
and TAR rules, Independent Set Reconfiguration remains PSPACE-complete for
perfect graphs. The proof was done via a reduction from another PSPACE-complete recon-
figuration problem—the Shortest Path Reconfiguration problem. In Shortest
Path Reconfiguration, the configurations are all shortest paths between two given
vertices s, t of a graph, and a reconfiguration step involves changing a single vertex of a
shortest path. Wrochna [24] proved that the H-Word Reconfiguration problem is
PSPACE-complete and used it as a basis to show that Independent Set Reconfig-
uration under TJ rule is PSPACE-complete for bounded bandwidth graphs, even with
additional assumption that all independent sets are maximum. In H-Word Recon-
figuration, an H-word is a string formed by a given alphabet and a binary relation
between symbols such that any two consecutive symbols in the string are in the relation.
A reconfiguration step consists of changing a single symbol of an H-word. As before, the
result also holds for TS and TAR models. Recall that the bandwidth of a graph G = (V,E)
is defined as minf maxuv∈E |f(u)− f(v)|, where f : V → Z represents a way of labeling
vertices of G with distinct integers. Since a graph of bandwidth b has pathwidth and
treewidth (measuring how path-like and tree-like a graph is) at most b, these results hold
for graphs of bounded pathwidth and graphs of bounded treewidth. Moreover, since any
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graph of treewidth at most c is also of cliquewidth (a notion generalizing treewidth) at
most 2c+1 + 1 (see [25]), these results can be applied for graphs of bounded cliquewidth.
Combining the techniques in [19] and [24], van der Zanden [26] strengthened the known
results by showing the PSPACE-completeness of Independent Set Reconfiguration
under TS, TJ, and TAR rules for planar graphs of maximum degree 3 and bounded band-
width/pathwidth/treewidth/cliquewidth. Very recently, Lokshtanov and Mouawad [27]
settled the complexity of Independent Set Reconfiguration for bipartite graphs by
showing that the problem is PSPACE-complete under TS rule, and NP-complete under TJ
and TAR rules.

On the positive side, polynomial-time algorithms have been designed for Indepen-
dent Set Reconfiguration on several graph classes. Different polynomial-time al-
gorithms have been developed for solving Independent Set Reconfiguration for
even-hole-free graphs (i.e., graphs contain no induced cycles whose number of vertices is
even) under TJ and TAR rules [20, 28–30]. This result implies that Independent Set
Reconfiguration under TJ and TAR can be solved efficiently for several subclasses of
even-hole-free graphs, some of which are chordal graphs, interval graphs, and trees. In-
terestingly, to the best of our knowledge, the complexity of both Independent Set and
Independent Set Reconfiguration under TS rule for even-hole-free graphs remains
open. For cographs (P4-free graphs), polynomial-time algorithms have been developed for
TS model by Kamiński et al. [20] and for TJ and TAR models by Bonsma [30]. Bonsma
et al. [22] claimed that under all TS, TJ, and TAR, Independent Set Reconfigu-
ration can be solved in polynomial time when the input graph is a claw-free graph.
Fox-Epstein et al. [31] developed polynomial-time algorithms for solving Independent
Set Reconfiguration under TS rule for bipartite permutation graphs and bipartite
distance-hereditary graphs. Recently, Bonamy and Bousquet [32] claimed that one can
solve Independent Set Reconfiguration under TS rule for interval graphs in poly-
nomial time.

So far, we have seen several results regarding the Reachability problem for Inde-
pendent Set Reconfiguration (i.e., asking whether there is a reconfiguration se-
quence between two given independent sets). Other problems, including Connectivity,
Shortest Reconfiguration Sequence, Bounded Reconfiguration Sequence,
Diameter, etc., have also been investigated. It is well-known that the Bounded Re-
configuration Sequence problem for Independent Set Reconfiguration under
all TS, TJ and TAR rules is NP-hard, even when the input graph G is a perfect graph,
and the given length ℓ is polynomial in |V (G)| [33]. Kamiński et al. [20] showed that in
an even-hole-free graph, any two independent sets of the same size k are TJ- (TAR-) re-
configurable, i.e., there is a TJ- ((k−1)-TAR-) sequence between them. Moreover, one can
construct in linear time a shortest TJ- ((k−1)-TAR) sequence between them. For cographs,
shortest TS-sequences, if exist, can be found in linear time [20], while under TJ and TAR

models, there exists an upper bound on the diameter of the corresponding reconfiguration
graph [30]. Additionally, Bonamy and Bousquet [34] designed a polynomial-time algo-
rithm for solving the Connectivity problem under TAR rule. When the input graph is
a claw-free graph G, the diameter of the corresponding reconfiguration graph (under TS,
TJ, and TAR) is bounded polynomially in the number of vertices of G [22]. When the
input graphs are either bipartite permutation or bipartite distance-hereditary, it follows
from the algorithms of Fox-Epstein et al. [31] that the diameter of the reconfiguration
graph under TS rule is bounded polynomially in the number of vertices of the input

6



graphs. Polynomial-time algorithms have been designed for finding shortest TS-sequence
in proper interval graphs, trivially perfect graphs, and caterpillars [35]. The algorithm
for caterpillars (a subclass of trees) seems to be the first polynomial-time algorithm that
handles the situation where a token is required to make “detour” in order to maintain the
independence property of the set of tokens. An example of such a situation is illustrated
in Figure 1.2(a): the token of I in the middle of the grid needs to make detour by going
up to let the token on the bottom left passes through to the bottom right, and then mov-
ing back down again. In a recent research, Bonamy and Bousquet [32] showed that the
problem of deciding if the reconfiguration graph of Independent Set under TS model
is connected when the input graph is a split graph is co-NP-hard. Very recently, Fatehi et
al. [36] addressed the question of finding which graph can be a reconfiguration graph of
Independent Set under a modified version of the TAR rule where one can add or remove
a single token at each reconfiguration step as long as the number of remaining tokens is at
most some threshold k. In [36], the authors computed the reconfiguration graphs of Inde-
pendent Set under the described rule for several different input graphs. To the best of
our knowledge, the reconfiguration graphs for k-Coloring and Dominating Set have
been well-studied. However, up to present, for Independent Set, there have been very
limited results. de Berg et al. [21] considered Independent Set Reconfiguration
under the p-MTJ rule and an equivalent variant of the TAR rule where the number of
tokens never exceeds the size k of the initial independent set I and each independent set
in the reconfiguration sequence contains at most p fewer tokens than I. The question is to
determine the minimum value of p (called the reconfiguration threshold) such that there
always exists a reconfiguration sequence under these rules between two given independent
sets I, J of size k. In [21], the authors estimated lower and upper bounds on the value
of p in term of several graph parameters, including the size of a minimum vertex cover,
the size of a minimum feedback vertex set, and pathwidth. Recall that a vertex cover of
a graph G is a vertex-subset V ′ such that every edge of G is incident with a vertex in V ′;
and a feedback vertex set of a graph G is a vertex-subset V ′ such that the graph G− V ′

obtained by removing all vertices in V ′ contains no cycle. They also identified a structure
that causes these reconfiguration thresholds to be large.

Recently, the parameterized complexity of Independent Set Reconfiguration
have been considered in the literature. Parameterized complexity provides a framework
for classifying the intractable problems by investigating their “tractability/intractability”
when some problems’ parameters are given as a part of the input. For more information
on parameterized complexity, see the textbooks [37, 38]. For an overview on the achieved
results and research directions on the parameterized complexity of Independent Set
Reconfiguration and related problems, the readers are referred to [12, Section 5].

1.3 Our Results

In this thesis, we study Sliding Token (i.e., Independent Set Reconfiguration
under TS rule) and related problems for different graph classes. There are several rea-
sons that motivate our study. First of all, Sliding Token (and other variants of In-
dependent Set Reconfiguration) has been used as a basis to prove the PSPACE-
completeness of several other problems, for example, the k-Coloring Reconfigura-
tion problem for k ≥ 4 [39], or the Clique Reconfiguration problem for perfect
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Graph Reachability Diameter Reference
trees O(n) O(n2) [41–43]

cactus graphs O(n2) O(n2) [44]

Table 1.1: Our results for Sliding Token. Here n denotes the number of vertices of the
corresponding graph.

graphs [40], and so on. Another reason is that, in some sense, the TS rule is more
“restricted” than the TJ and TAR rules. As an example, consider the no-instance of
Sliding Token given in Figure 1.2(b). If one uses TJ or TAR rule instead of TS rule,
the instance immediately becomes a yes-instance. Moreover, under TS rule, one may
need to deal with the situation where a token needs to make “detour” in order to maintain
the independence property of the set of tokens. This makes the problems under TS rule
more challenging. Another motivation for our study is that the Sliding Token problem
is PSPACE-complete for graphs of bounded bandwidth/pathwidth/treewidth/cliquewidth
[24]. This raises an open question on whether efficient algorithms exist for Sliding
Token (and other variants of Independent Set Reconfiguration) when the band-
width/pathwidth/treewidth/cliquewidth of the input graph is bounded by some small
constant. Our achieved results partially answer this question.

In this thesis, we made some significant contribution to the structural understanding
of the computational complexity of Sliding Token by showing that the problem can
be solved efficiently for some restricted graphs (see Table 1.1), namely trees, and cactus
graphs (see Section 2.1 for definitions of these graphs). We note that Independent Set
Reconfiguration under TJ and TAR rules can be solved in polynomial-time for trees
[20] (a subclass of even-hole-free graphs) and cactus graphs [28]. As consequences of our
algorithms, we show that one can construct an actual TS-sequence (if exists) between
two given independent sets using a polynomial number of token-slides. We remark that
our constructed TS-sequence is not necessarily of shortest length. Here, the length of a
TS-sequence S is often defined as the number of token-slides described in S.

The main idea of our algorithms is the characterization of all structures that forbid
the existence of a TS-sequence between any two given independent sets. Such a structure
is called a forbidden structure. A trivial forbidden structure is the sizes of the given
independent sets. More precisely, if |I| 6= |J | then there is no TS-sequence between
them. Moreover, we claim that all forbidden structures can be found in polynomial
time, and there must be some TS-sequence between any two independent sets when such
forbidden structures do not exist. We note that similar ideas have been applied for
designing polynomial-time algorithms for solving 3-Coloring Reconfiguration [14]
and Degree-Constrained Subgraph Reconfiguration [45].

The rest of this thesis is organized as follows.

• In Chapter 2, we define some basic notation (Section 2.1) and prove several useful
observations for tackling Sliding Token (Section 2.2).

• In Chapters 3 and 4, we present the main results of this thesis.

– In Chapter 3, we present a linear-time algorithm for solving Sliding Token
for trees. Moreover, given a yes-instance (T, I, J) of this problem, we describe
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how to transform I to J using O(n2) token-slides, where n is the number of
vertices of T .

– In Chapter 4, we present a O(n2)-time algorithm for solving Sliding Token
for cactus graphs. Moreover, given a yes-instance (G, I, J) of this problem,
we describe how to transform I to J using O(n2) token-slides. Here n is the
number of vertices of G.

• In Chapter 5, we summary the contents of this thesis and present some interesting
open problems for future study.
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Chapter 2

Preliminaries

2.1 Basic Terms and Notation

In this section, we define some basic terms and notation. Any graph notation that is not
mentioned here can be found in the textbook [2].

Let G be a (simple, undirected) graph with vertex set V (G) and edge set E(G). We
always use n and m for indicating |V (G)| and |E(G)|, respectively. For a vertex v ∈ V (G),
we denote by NG(v) the set {u ∈ V (G) : uv ∈ E(G)} of neighbors of v, and by NG[v] the
set NG(v)∪{v} of closed neighbors of v. The degree of v in G, denoted by degG(v), is the
size of its neighbors. For a vertex set W ⊆ V (G), we define NG[W ] =

⋃

v∈W NG[v]. For
u, v ∈ V (G), we denote by distG(u, v) the length of a shortest uv-path in G.

A vertex v ∈ V (G) is a cut vertex of G if G − v is not connected; otherwise, v is a
non-cut vertex. For a graph G, a block of G is a maximal connected subgraph with no
cut vertex. A graph G is a tree if it is connected and contains no cycle (i.e., every block
of G is an edge). A graph G is a cactus graph (or cactus for short) if every block of G is
either an edge or a cycle. We note that if G is either a tree, or a cactus graph, then so is
any induced subgraph of G. This property will be used implicitly in several statements
of this thesis.

For a vertex subset W ⊆ V (G), we write W ∩ G and W − G to indicate the sets
W ∩ V (G) and W \ V (G), respectively. The subgraph of G induced by W is denoted by
G[W ]. We write G−W to indicate the subgraph G[V (G) \W ]. Similarly, for an induced
subgraph H of G, G − H indicates the subgraph G − V (H), and we say that G − H is
the graph obtained from G by removing H .

Let I, J be two independent sets of a graph G. Imagine that a token is placed at
each vertex of I. We sometimes identify a token and the vertex where it is placed and
simply say “a token in an independent set I” instead of “a token placed on a vertex in an
independent set I”, and “sliding u to v” instead of “sliding a token on u to v”.

For two independent sets I, J of a graph G, if there exists a TS-sequence between I

and J , we write I
G
! J , and say that S reconfigures I to J in G. For a TS-sequence S, we

say that S slides (or moves) the token t on u to some vertex v if after performing S, t is
placed at v. We write I ∈ S if I is a member of S. The length of S is simply the number of
independent sets in S minus one (i.e., it is the number of token-slides performed in S). We
say that two TS-sequences S and S ′ can be performed independently if S does not move
any token used in S ′, and vice versa. In other words, performing S and then S ′ yields the
same result as performing S ′ and then S. For two TS-sequences S1 = 〈I11 , I

1
2 , . . . , I

1
ℓ 〉 and

10



S2 = 〈I21 , I
2
2 , . . . , I

2
ℓ′〉, if I1ℓ = I21 then one can append S2 to S1 to form a new TS-sequence

S = 〈I11 , I
1
2 , . . . , I

1
ℓ , I

2
2 , . . . , I

2
ℓ′〉 .

For a vertex subset W ⊆ V (G), we say that the token t placed at u ∈ I ∩ W is
(G, I,W )-confined if no TS-sequence in G slides t to a vertex not in W (e.g., the tokens t3
and t5 in Figure 2.1). In other words, t can be slid only along edges of G[W ]. In particular,
if W = {u}, we say that t is (G, I)-rigid (e.g., the tokens t7 and t8 in Figure 2.1). We
say that t is (G, I)-movable if it is not (G, I)-rigid. We denote by R(G, I) the set of
all vertices where (G, I)-rigid tokens are placed. Deciding if a token is (G, I)-rigid is
PSPACE-complete even when G is a planar graph of maximum degree 3 [19].

t1

t2

W
t3

t4 t5

t6

t7

t8

Figure 2.1: The tokens t3 and t5 are (G, I,W )-confined, while t2 and t4 are not. The
tokens t7 and t8 are (G, I)-rigid, and all other tokens are (G, I)-movable.

For an induced subgraph H of G, we say that H is (G, I)-confined if I ∩ H is a
maximum independent set of H and every token in I ∩ H is (G, I, V (H))-confined. In
particular, if H is a path (resp., a cycle), we say that it is a (G, I)-confined path (resp.,
cycle). For example, in Figure 2.1, the induced cycle containing the tokens t3 and t4
is a (G, I)-confined cycle. We denote by C(G, I) the set of all (G, I)-confined (induced)
cycles of G, respectively. For a vertex v ∈ V (H), we denote by Gv

H the component of GH

containing v, where GH is obtained from G by removing all edges of H .
Let B,B′ be two blocks of a graph G. We say that B is a neighbor of B′ if V (B) ∩

V (B′) 6= ∅. A block B is safe if it has at most one cut vertex and at most one neighbor
containing more than one cut vertex. For example, the blocks marked with thick edges in
Figure 2.2 are safe. A vertex v ∈ V (G) is safe if it is a non-cut vertex of some safe block
B of G.

w1

Bw1

w2

w3

Bw3

Bw2

(b)

Bw1

w2

w3

Bw3

(a)

w1

Bw2

Figure 2.2: Examples of safe blocks (marked with thick edges) in (a) a tree, and (b) a
cactus.
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For a cut vertex w of G, denote by Bw the smallest subgraph of G such that Bw

contains all safe blocks of G containing w (see Figure 2.2). Bw can also be viewed as a
collection of safe blocks sharing the same cut vertex w. If no safe block contains w, we
define Bw = ∅. Observe that for two distinct cut vertices w1, w2, V (Bw1

) ∩ V (Bw2
) = ∅.

2.2 Some General Observations

In this section, we prove some general observations regarding the Sliding Token prob-
lem. Throughout this section, let I be an independent set of a given graph G. The next
proposition is immediate from the definition.

Proposition 2.1. Let I be an independent set of a graph G. Let t be a token in I. Then,

for every J such that I
G
! J ,

(i) If t is (G, I,W )-confined for some W ⊆ V (G) then it is also (G, J,W )-confined.

(ii) If t is (G, I)-rigid then it is also (G, J)-rigid.

In the next proposition, we describe a simple property of rigid tokens. We shall employ
this property from [31] and therefore omit its proof.

Proposition 2.2 ([31]). Let I be an independent set of a graph G, and let S ⊆ I. If for
all w ∈ NG(S), |NG(w) ∩ S| > 1 then S ⊆ R(G, I).

The next proposition says that if the given graph G is not connected, then one can
deal with each component separately.

Proposition 2.3. Let I, J be two given independent set of G. Assume that G1, . . . , Gk

are the components of G. Then I
G
! J if and only if I ∩Gi

Gi
! J ∩Gi for i = 1, 2, . . . , k.

Proof. We first show the only-if direction. Assume that S = 〈I1, . . . , Iℓ〉 is a TS-sequence
in G that reconfigures I = I1 to J = Iℓ. For any i ∈ {1, 2, . . . , k} and any independent
set I of G, as I ∩ Gi ⊆ I, I ∩ Gi is also independent. Hence, Si = 〈I1 ∩ Gi, . . . , Iℓ ∩ Gi〉
reconfigures I ∩Gi to J ∩Gi.

Now, we show the if direction. Assume that for each i ∈ {1, 2, . . . , k}, there exists a
TS-sequence S ′

i in Gi that reconfigures I ∩ Gi to J ∩ Gi. For any two TS-sequences S ′
i

and S ′
j (i, j ∈ {1, 2, . . . , k}), if the length of S ′

i is smaller than the length of S ′
j then we

can make them equal by appending 〈I ∩Gi, I ∩ Gi, . . . 〉 to the end of S ′
i. Thus, assume

without loss of generality that all S ′
i are of equal length, i.e., any S ′

i can be written
in the form 〈I i1 = I ∩ Gi, . . . , I

i
l = J ∩ Gi〉. Let I i be an independent set of Gi. Since

G1, G2, . . . , Gk are components of G,
⋃k

i=1 I
i forms an independent set of G. Thus, we

can extend any sequence S ′
i (i = 1, 2, . . . , k) to a TS-sequence Si in G as follows.

Si = 〈I i1 ∪
i−1
⋃

j=1

Ijl ∪
k
⋃

j=i+1

Ij1 , . . . , I
i
l ∪

i−1
⋃

j=1

Ijl ∪
k
⋃

j=i+1

Ij1〉. (2.1)

Clearly, the sequence S constructed by first applying S1, then S2, and so on is the one
that reconfigures I to J in G.
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Thus, when dealing with Sliding Token, one can assume without loss of generality
that the given graph is connected. Next, we claim that in certain conditions, one can
“extend” or “restrict” a TS-sequence.

Proposition 2.4. Let W be a vertex subset of a graph G. Let S = 〈I1, I2, . . . , Iℓ〉 be a
TS-sequence in G such that W ⊆ Ii for every Ii ∈ S (1 ≤ i ≤ ℓ). Let G′ = G − NG[W ].

Then I1 ∩ G′ G′

! Iℓ ∩ G′. Moreover, for every TS-sequence S ′ = 〈I ′1, . . . , I
′
l〉 in G′,

I ′1 ∪W
G
! I ′l ∪W .

Proof. Since W ⊆ I for every I ∈ S, the sequence S ′ = 〈I1 \ W, . . . , Iℓ \ W 〉 clearly
reconfigures I1∩G′ = I1 \W to Iℓ∩G′ = Iℓ \W . To see that S ′ is actually a TS-sequence
in G′, note that for some i ∈ {2, 3, . . . , ℓ} with Ii−1 \ Ii = {u} and Ii \ Ii−1 = {v}, the
vertices u and v are either both in NG[W ] or both in V (G) \NG[W ].

Now, let S ′ = 〈I ′1, . . . , I
′
l〉 be a TS-sequence in G′. For every independent set I ′ of

G′, the set I ′ ∪ W forms an independent set of G. Hence, S = 〈I ′1 ∪ W, . . . , I ′l ∪ W 〉
reconfigures I ′1 ∪W to I ′l ∪W .

In the next proposition, we prove some characterization of a (G, I)-confined induced
subgraph. Roughly speaking, the structure of a (G, I)-confined induced subgraph H
guarantees that the tokens “inside” (resp., “outside”) of H cannot be moved “out” (resp.,
“in”). Notice that if I ∩ H is a maximal independent set of H (instead of a maximum
one), it could happen that some token “outside” of H can be moved “in”, even when no
token “inside” of H moves “out.”

Proposition 2.5. Let I be an independent set of a graph G, and let H be an induced
subgraph of G. Then the following conditions are equivalent.

(i) H is (G, I)-confined.

(ii) For every independent set J satisfying I
G
! J , the set J ∩H is a maximum inde-

pendent set of H.

(iii) The set I∩H is a maximum independent set of H and for every J satisfying I
G
! J ,

the token tx placed at x ∈ J ∩H is (Gx
H , J ∩Gx

H)-rigid.

Proof. We show that (i) ⇔ (ii) and (ii) ⇔ (iii).

• (i) ⇔ (ii). It follows immediately from the definition that (i) ⇒ (ii). We show that

(ii) ⇒ (i). Assume that (ii) holds. Since for every J with I
G
! J , the set J ∩H is

always a maximum independent set of H , no token can be slid from a vertex in H
to a vertex in G−H , and vice versa. Thus, a token placed at some vertex in I ∩H
can only be slid along edges of H , i.e., it is (G, I, V (H))-confined. Additionally, as
I is reconfigurable to itself, I ∩ H is a maximum independent set of H . Thus, (i)
holds.

• (ii) ⇔ (iii). We first show (ii) ⇒ (iii). Assume that (ii) holds. It follows immedi-
ately that I ∩H is a maximum independent set of H . Suppose that there exist an

independent set J with I
G
! J and a vertex x ∈ J∩H such that the token tx placed
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at x is (Gx
H , J ∩Gx

H)-movable. Let S = 〈I = I1, . . . , Iℓ = J〉 be a TS-sequence in G
that reconfigures I to J . Let S ′ = 〈I ′1 = J ∩ Gx

H , I
′
2, . . . , I

′
k〉 be a TS-sequence in

Gx
H such that S ′ slides tx to a vertex y ∈ NGx

H
(x). By definition of Gx

H , it follows
that y /∈ V (H). Without loss of generality, assume that no subsequence of S ′ moves
tx to y, and I ′k−1 \ I

′
k = {x} and I ′k \ I

′
k−1 = {y}. For every independent set I of

G, I ∩ Gx
H is also an independent set of Gx

H . Therefore, one can construct the TS-

sequence 〈I1∩Gx
H , I2∩Gx

H , . . . , Iℓ∩Gx
H〉 from S. Thus, I∩Gx

H

Gx
H

! J∩Gx
H

Gx
H

! Ipk−1.
Note that for every independent set I ′ of Gx

H , since V (Gx
H) ∩ (I − Gx

H) = ∅, the

set I ′ ∪ (I − Gx
H) is also independent. Therefore, I

G
! I ′k−1 ∪ (I − Gx

H). Let
J ′ = I ′k−1∪ (I −Gx

H). By our assumption, J ′∩H is a maximum independent set of
H . Let J ′′ = I ′k ∪ (I−Gx

H). Similarly, J ′′∩H must be a maximum independent set
of H . Since J ′′ \ J ′ = {y}, J ′ \ J ′′ = {x}, and y /∈ V (H), we obtain a contradiction.
It remains to show (iii) ⇒ (ii). Suppose that (iii) holds but (ii) does not. Thus,

there must be an independent set J such that I
G
! J and J ∩H is not a maximum

independent set of H . Let S = 〈I1 = I, I2, . . . , Iℓ = J〉 be a TS-sequence in G that
reconfigures I to J . Without loss of generality, we can assume that for 1 ≤ i ≤ ℓ−1,
the set Ii ∩ H is a maximum independent set of H . Let xy be an edge of G such
that Iℓ−1 \ Iℓ = {x} and Iℓ \ Iℓ−1 = {y}. Since Iℓ∩H is not a maximum independent
set of H , |Iℓ ∩H| < |Ii ∩H| for i = {1, 2, . . . , ℓ − 1}. Hence, y /∈ V (H). Since
NG(x) = NGx

H
(x) ∪ NH(x) and NGx

H
(x) ∩ NH(x) = ∅, the vertex y must be in Gx

H .
It follows that S slides a token tx on x to a vertex y ∈ V (Gx

H). As in the previous
part, one can indeed derive a TS-sequence in Gx

H from S that slides tx to y, i.e., it
is (Gx

H , Iℓ−1 ∩Gx
H)-movable, which is a contradiction.
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Chapter 3

Sliding Token for Trees

In this chapter, we prove the following theorem.

Theorem 3.1. Let T be a tree on n vertices. Let I, J be two independent sets of T . Then,

one can decide in O(n) time whether I
T
! J . Moreover, if I

T
! J , one can construct a

TS-sequence S in T between I and J in O(n2) time.

Partial results of this chapter have been presented in [41–43]. The rest of this chapter
is organized as follows. In Section 3.1, we claim that one can find all structures that
forbid the existence of a TS-sequence between two independent sets of a tree (i.e., the
rigid tokens) in linear time. Then, in Section 3.2, we present a linear-time algorithm for
solving Sliding Token for trees. Finally, in Section 3.3, we give an upper bound on the
length of a TS-sequence between any two independent sets of a tree.

Throughout this chapter, T is a tree on n vertices, and I, J are independent sets of
T . For two vertices u and v of a tree T , let T u

v be the subtree of T obtained by regarding
u as the root of T and then taking the subtree induced by v and its descendants. Note
that u /∈ V (T u

v ).

3.1 Rigid Tokens in Trees

We first characterize (T, I)-rigid tokens.

Lemma 3.2. Let I be an independent set of a tree T , and let u be a vertex in I.

(a) Suppose that |V (T )| = |{u}| = 1. Then, the token on u is (T, I)-rigid.

(b) Suppose that |V (T )| ≥ 2. Then, a token on u is (T, I)-rigid if and only if, for all
neighbors v ∈ NT (u), there exists a vertex w ∈ I ∩NTu

v
(v) such that the token on w

is (T v
w, I ∩ T v

w)-rigid.

Proof. Part (a) is trivial by definition of rigid tokens. Assume that |V (T )| ≥ 2, we show
part (b).

We first show the if direction of (b). Assume that for all v ∈ NT (u), there exists
w ∈ I ∩NTu

v
(v) such that the token on w is (T v

w, I ∩ T v
w)-rigid. We show that the token t

on u is (T, I)-rigid. Suppose to the contrary that t is (T, I)-movable, which means that
t can be slid to a vertex v ∈ NT (u). Note that, to slide t to v, we first need to slide the
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u

v

w

T
v
w

T
u
v

u

v

T
v
w

w

(a) (b)

Figure 3.1: (a) A (T, I)-rigid token on u, and (b) a (T, I)-movable token on u.

token t′ on w to one of its neighbors other than v, which is a contradiction because t′ is
(T v

w, I ∩ T v
w)-rigid. Hence, t is (T, I)-rigid.

Next, we show the only-if direction of (b). Suppose that u is (T, I)-rigid, we want to
show that for all neighbors v ∈ NT (u), there exists a vertex w ∈ I ∩NTu

v
(v) such that the

token on w is (T v
w, I ∩ T v

w)-rigid. We will prove the contrapositive that if either

(i) there exists v ∈ NT (u) such that I ∩NTu
v
(v) = ∅, or

(ii) there exists v ∈ NT (u) such that for every w ∈ I ∩ NTu
v
(v), the token on w is

(T v
w, I ∩ T v

w)-movable,

then the token t on u is (T, I)-movable. Clearly, if (i) holds, t can be directly slid to
v. We now consider the case when (ii) holds. Hence, for each w ∈ I ∩NTu

v
(v), there exists

a TS-sequence Sw that reconfigures I ∩ T v
w to some independent set J ⊆ V (T v

w) such that
w /∈ J . Since T v

w is a subtree of T −NT [u], Proposition 2.4 implies that the TS-sequence
Sw in T v

w can be extended to the whole tree T , which implies that, for each w, the token
on w is (T, I)-movable and can be slid to one of w’s neighbors other than v. Hence, the
token on u can finally be slid to v, which means that u is (T, I)-movable.

From Lemma 3.2, one can design a O(n2)-time algorithm that computes the set R(T, I)
of all (T, I)-rigid tokens [41, Lemma 2]. However, we can do better. For an independent
set I of a bipartite graph G, finding R(G, I) can be done in O(n) time [31]. As trees
is a subclass of bipartite graphs, the algorithm for bipartite graphs can also be applied
for trees. However, unlike the case of trees, Sliding Token for bipartite graphs is
PSPACE-complete [27]. In this thesis, we employ the following result (without proof).

Lemma 3.3 ([31]). Let G = (A ∪ B,E) be a bipartite graph (with bipartitions A,B) on
n vertices and I be an independent set of G. In O(n) time, R(G, I) can be computed.

Proof sketch. The general idea is based on the fact that no TS-sequence moves a (G, I)-
rigid token. Thus, starting from any independent set I, it is possible to construct a TS-
sequence that moves all (G, I)-movable tokens. The construction of such a TS-sequence is
based on the property that if I \R(G, I) 6= ∅ then there must be some vertex u satisfying
|NG(u) ∩ I| = 1 (Proposition 2.2). Clearly, if v is such that NG(u) ∩ I = {v} then the
token on v can be slid to u.
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3.2 Sliding Token for trees

Let (T, I, J) be an instance of Sliding Token where I, J are two independent sets of a

tree T on n vertices. The following algorithm decides if I
T
! J .

• Step 1: If R(T, I) 6= R(T, J), return no. Otherwise, go to Step 2.

• Step 2: Let F be the forest obtained by removing all vertices in NT [R(T, I)] =
NT [R(T, J)]. If |I ∩ F ′| = |J ∩ F ′| for every component (tree) F ′ of F then return
yes. Otherwise, return no.

We first analyze the running time of the described algorithm. Lemma 3.3 ensures that
Step 1 can be checked in O(n) time. Step 2 can also be done in O(n) time. In total,
the algorithm can be executed in O(n) time.

Now, we show that the algorithm above correctly decides if I
T
! J . The correctness

of Step 1 is followed from Proposition 2.1. It remains to show the correctness of Step
2. Before showing the correctness of Step 2, we prove the following useful lemma.

Lemma 3.4. Let I be an independent set of a tree T such that all tokens are (T, I)-
movable, and let v be a vertex such that v /∈ I. Then, there exists at most one neighbor
w ∈ I ∩NT (v) such that the token on w is (T v

w, I ∩ T v
w)-rigid.

Proof. Suppose to the contrary that there are two neighbors w,w′ ∈ I ∩NT (v) such that
the tokens on both w and w′ are respectively (T v

w, I ∩ T v
w)-rigid and (T v

w′, I ∩ T v
w′)-rigid.

We claim that the token t on w is (T, I)-rigid.
Suppose to the contrary that t is (T, I)-movable. Since t is (T v

w, I ∩T v
w)-rigid, the only

way to move t is sliding it to v. But, to slide t to v, we need to slide the token t′ on w′

to a vertex of T v
w′. This contradicts our assumption that w′ is (T v

w′, I ∩ T v
w′)-rigid.

Next, we show that deleting the vertices where rigid tokens are placed together with
their neighbors does not affect the reconfigurability. More precisely,

Lemma 3.5. Suppose that R(T, I) = R(T, J) for two given independent sets I and J
of a tree T , and let F be the forest obtained by deleting the vertices in NT [R(T, I)] =

NT [R(T, J)] from T . Then, I
T
! J if and only if I ∩ F

F
! J ∩ F . Furthermore, all

tokens in I ∩ F are (F, I ∩ F )-movable, and all tokens in J ∩ F are (F, J ∩ F )-movable.

Proof. By definition of rigid tokens, for any TS-sequence S between I and J in T ,
R(T, I) = R(T, J) is a subset of each independent set in S. Thus, Proposition 2.4 implies

that I
T
! J if and only if I ∩ F

F
! J ∩ F (regarding W as R(T, I) = R(T, J)).

It remains to show that all tokens in I ∩F are (F, I ∩F )-movable. A similar argument
can be applied for J ∩F . Note that each token t on a vertex v in I ∩F is (T, I)-movable;

otherwise t ∈ R(T, I). Hence, there exists an independent set I ′ of T such that I
T
! I ′ and

v /∈ I ′. As we have shown before, I ∩F
F
! I ′∩F . Therefore, t is (F, I ∩F )-movable.

Next, we show that if R(T, I) = R(T, J) = ∅ then I
T
! J if and only if |I| = |J |.

Lemma 3.6. Let I and J be two independent sets of a tree T such that all tokens in I

and J are (T, I)-movable and (T, J)-movable, respectively. Then, I
T
! J if and only if

|I| = |J |.
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Before proving Lemma 3.6, we show some useful lemmas.

Lemma 3.7. Let I be an independent set of a tree T such that R(T, I) = ∅. Let v /∈ I be

a safe vertex of T . Then, there exists an independent set I ′ such that v ∈ I ′ and I
T
! I ′.

Proof. Let M = {w ∈ I : distT (v, w) = minx∈I distT (v, x)}. Let w be an arbitrary vertex
in M , and let P = p0p1 . . . pℓ (p0 = v, pℓ = w) be the vw-path in T . (See Figure 3.2.)

p0 = v p1 p2 p`−2 p`−1 p` = w

w0

M 0

Figure 3.2: Illustration for Lemma 3.7.

If ℓ = 1 and hence p1 ∈ I, then we can simply slide the token on p1 to v.
We now consider the case ℓ ≥ 2. Since the token on w is closest to v, no token

in I can be placed on the vertices p0, . . . , pℓ−1 and the neighbors of p0, . . . , pℓ−2. Let
M ′ = M ∩NT (pℓ−1). Since pℓ−1 6∈ I, by Lemma 3.4, there is at most one vertex w′ ∈ M ′

such that the token on w′ is (T
pℓ−1

w′ , I ∩ T
pℓ−1

w′ )-rigid. We choose such a vertex w′ if exists,
otherwise choose an arbitrary vertex in M ′ and regard it as w′. Before sliding the token
on w′ to v, we need to slide all tokens on the vertices w′′ in M ′ \ {w′} first. Since all
tokens on the vertices w′′ in M ′ \ {w′} are (T

pℓ−1

w′′ , I ∩ T
pℓ−1

w′′ )-movable, we can slide the
tokens on w′′ to some vertices in T

pℓ−1

w′′ . Now, we can slide the token on w′ to v along the

path P . In this way, we obtain an independent set I ′ such that v ∈ I ′ and I
T
! I ′.

We now prove that deleting a safe vertex along with a token on it does not affect
the movability of the other tokens. We note that if v is a safe vertex of a tree T then
degT (v) = 1.

Lemma 3.8. Let v be a safe vertex of a tree T , and let T̄ be the subtree of T obtained
by deleting v, its unique neighbor u, and the resulting isolated vertices. Let I be an
independent set of T such that v ∈ I and all tokens are (T, I)-movable. Then, all tokens
in I \ {v} are (T̄ , I \ {v})-movable.

Proof. Since T u
v consists of a single vertex v, the token on v is (T u

v , I∩T
u
v )-rigid. Therefore,

no token is placed on degree-1 neighbors of u other than v (see Figure 3.3), because
otherwise it contradicts to Lemma 3.4; recall that all tokens in I are assumed to be
(T, I)-movable.

Let Ī = I \ {v}. Suppose for a contradiction that there exists a token in Ī which is
(T̄ , Ī)-rigid. Let wp ∈ Ī be such a vertex closest to v, and let z be the vertex on the
vwp-path right before wp.

• Case 1: z = u. (See Figure 3.3(a).) Recall that the token on v is (T, I)-movable, but
is (T u

v , I∩T
u
v )-rigid. Therefore, by Lemma 3.4 the token on wp must be (T u

wp
, I∩T u

wp
)-

movable. However, this contradicts the assumption that wp is (T̄ , Ī)-rigid, because
T̄ = T u

wp
and Ī = I ∩ T u

wp
in this case.

18



v u = z wp

T
u

wp

T̄

zv u

w2 wp−1

wp

T
z

w2
T

z

wp−1

T
z

wp

T̄

w1

T
z

w1

(b)(a)

Figure 3.3: Illustration for Lemma 3.8.

• Case 2: z 6= u. (See Figure 3.3(b).) Let w1 be the neighbor of z on the vwp-
path other than wp. Let NT (z) = {w1, w2, . . . , wp}. We note that the subtree T z

w1

contains the deleted star T \ T̄ centered at u, because only the neighbor w1 of z is
on the vz-path. We first note that the token tp on wp is (T̄ z

wp
, Ī ∩ T̄ z

wp
)-rigid, because

otherwise tp can be slid to some vertex in T̄ z
wp

and hence it is (T̄ , Ī)-movable. Since

T̄ z
wp

= T z
wp

and Ī ∩ T̄ z
wp

= I ∩ T z
wp

, the token tp is also (T z
wp
, I ∩ T z

wp
)-rigid. For each

j ∈ {2, 3, . . . , p− 1} with wj ∈ I, since tp is (T z
wp
, I ∩T z

wp
)-rigid, by Lemma 3.4 each

token tj on wj is (T z
wj
, I∩T z

wj
)-movable. Then, since T z

wj
= T̄ z

wj
and I∩T z

wj
= Ī∩T̄ z

wj
,

the token tj is (T̄ z
wj
, Ī ∩ T̄ z

wj
)-movable. Therefore, if w1 6∈ Ī or the token t1 on w1

is (T̄ z
w1
, Ī ∩ T̄ z

w1
)-movable, then we can slide tp from wp to z after sliding each token

tj in Ī ∩ {w1, w2, . . . , wp−1} to some vertex of the subtree T̄ z
wj

. This contradicts the

assumption that tp is (T̄ , Ī)-rigid. Therefore, we have w1 ∈ Ī and a token t1 on w1

is (T̄ z
w1
, Ī ∩ T̄ z

w1
)-rigid. However, since tp is (T̄ z

wp
, Ī ∩ T̄ z

wp
)-rigid, this implies that t1 is

(T̄ , Ī)-rigid. Since w1 is on the vwp-path in T , this contradicts the assumption that
tp is the (T̄ , Ī)-rigid token closest to v.

We are now ready to show the proof of Lemma 3.6.

Proof of Lemma 3.6. The only-if direction of this lemma is trivial. We now prove the if
direction.

Suppose that |I| = |J |. We claim that there is an independent set I∗ such that I
T
! I∗

and J
T
! I∗. Since a TS-sequence is reversible, I

T
! I∗ and J

T
! I∗ imply that I

T
! J .

We now describe how to construct I∗. Initially, let I∗ = ∅.

• Pick a safe vertex v of T , and add v to I∗.

• Let I ′ be such that v ∈ I ′ and I
T
! I ′. From Lemma 3.7, such a I ′ exists.

• Let J ′ be such that v ∈ J ′ and J
T
! J ′. From Lemma 3.7, such a J ′ exists.

• Let T ′ be the tree obtained by deleting v, its unique neighbor u, and the resulting
isolated vertices.

• Repeat the above steps with the triple (T ′, I ′ \{v}, J ′\{v}) instead of (T, I, J) until
|I∗| = |I| = |J |.
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Lemma 3.8 and Proposition 2.1 guarantee that after each iteration, |I∗| increases by 1,

and R(T ′, I ′) = R(T ′, J ′) = ∅. Proposition 2.4 and Lemma 3.7 ensure that I
T
! J if and

only if I ′ \ {v}
T ′

! J ′ \ {v}. Put everything together, the correctness of this construction
is now clear.

From Lemmas 3.5 and 3.6, it follows that Step 2 is correct, which implies the cor-
rectness of our described algorithm

3.3 Length of Reconfiguration Sequence

We show that given two independent sets I, J of a tree T such that I
T
! J , one can

construct an actual TS-sequence between I and J using a polynomial number of token-
slides.

Lemma 3.9. Let (T, I, J) be a yes-instance of Sliding Token where I, J are two
independent sets of a tree T on n vertices. Then, one can construct a TS-sequence S of
length O(n2) such that S reconfigures I to J .

Before proving Lemma 3.9, we show the following useful lemma.

Lemma 3.10. Let I be an independent set of a tree T , and let w ∈ I. For a neighbor
z ∈ NT (w), suppose that the token on w is (T z

w, I ∩ T z
w)-movable. Then, there exists

a TS-sequence Sw of length O(|V (T z
w)|) from I to an independent set I ′ of T such that

w /∈ I ′ and J ∩ (T \ T z
w) = I ∩ (T \ T z

w) for all J ∈ Sw. Furthermore, Sw can be output in
O(|V (T z

w)|) time.

z
w

y

x T − T z

w

T z

w

Figure 3.4: Illustration for Lemma 3.10.

Proof. We prove the lemma by induction on the depth of T z
w (regarding w as root), where

the depth of a tree is the longest distance from its root to a leaf. If the depth of T z
w is zero

(and hence T z
w consists of a single vertex w), then the token on w is (T z

w, I ∩ T z
w)-rigid;

this contradicts the assumption. Hence, we may assume that the depth of T z
w is at least

one.

• Base case: If the depth of T z
w is exactly one, then T z

w is a star centered at w, and
no token is placed on any neighbor of w. Thus, we can slide the token on w by 1
(< |V (T z

w)|) token-slides. Then, the lemma holds for trees with depth one.
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• Inductive step: Assume that the depth of T z
w is k ≥ 2, and that the lemma holds

for trees with depth at most k − 1. Since the token on w is (T z
w, I ∩ T z

w)-movable,
by Lemma 3.2, there exists y ∈ NT z

w
(w) such that all tokens on the vertices x in

I ∩NTw
y
(y) are (T y

x , I ∩ T y
x )-movable. (See Figure 3.4.)

Then, we can obtain a TS-sequence which (1) first slides all tokens on the vertices x
in I ∩NTw

y
(y) to some vertices in T y

x , and (2) then slide the token on w to the vertex y.
By applying the induction hypothesis to each subtree T y

x , this TS-sequence is of length

1 +
∑

x∈I∩NTw
y
(y)

|V (T y
x )| =

∣

∣V (Tw
y )

∣

∣,

and can be output in time O(
∣

∣V (Tw
y )

∣

∣). Note that w 6∈ I ′ holds for the obtained
independent set I ′ of T . Thus, the lemma holds for trees with depth k.

We are now ready to prove Lemma 3.9.

Proof of Lemma 3.9. It is sufficient to show Lemma 3.9 for the case when R(T, I) =
R(T, J) = ∅; otherwise, we simply remove NG[R(T, I)] = NG[R(T, I)] and deal with each
component of the resulting graph separately. Let I∗ be an independent set described
in the proof of Lemma 3.6. We now describe how to construct a TS-sequence S1 that
reconfigures I to I∗. A TS-sequence S2 between J and I∗ can be constructed in the same
manner. Clearly, a TS-sequence between I and J in T can be formed by appending S1 to
the TS-sequence obtained by reversing steps in S2.

• Pick a safe vertex v of T in I∗.

• As in the proof of Lemma 3.7, construct an independent set I ′ with v ∈ I ′ and

I
T
! I ′. Indeed, Lemma 3.10 ensures that a token closest to v can be slid to v in

O(n) time.

• Let T ′ be the tree obtained by deleting v, its unique neighbor u, and the resulting
isolated vertices.

• Repeat the above steps with the new triple (T ′, I ′\{v}, I∗\{v}) instead of the triple
(T, I, I∗). The process stops when there is no token left to slide.

Lemma 3.6 guarantees that the described algorithm correctly constructs a TS-sequence
S1 between I and I∗. As for each v ∈ I∗, a token closest to v can be slid to v in O(n)
time, which then implies that the algorithm takes O(n)× |I∗| = O(n2) time.
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Chapter 4

Sliding Token for Cactus Graphs

In this chapter, we prove the following theorem.

Theorem 4.1. Let G be a cactus graph on n vertices. Let I, J be two independent sets of

G. Then, one can decide in O(n2) time whether I
G
! J . Moreover, if I

G
! J , one can

construct a TS-sequence S in G between I and J in O(n2) time.

From Proposition 2.3, it is sufficient to consider connected cactus graphs. Partial
results of this chapter have been presented in [44]. The rest of this chapter is organized as
follows. In Section 4.1, we prove some useful observations for tackling Sliding Token
for cactus graphs. Then, in Section 4.2, we claim that one can find all structures that
forbid the existence of a TS-sequence between any two independent sets of a cactus graph
in polynomial time. We then describe a polynomial-time algorithm for solving Sliding
Token for a cactus graph and show its correctness in Section 4.3. Finally, in Section 4.4,
we give an upper bound on the length of a TS-sequence between any two independent
sets of a cactus graph.

4.1 Some Useful Observations

First of all, we consider Sliding Token for cycles—a subclass of cactus graphs. More
precisely, we claim that for a given instance (C, I, J) of Sliding Token, where I and
J are independent sets of a k-vertex cycle C, if there are no (C, I)-rigid and (C, J)-rigid
tokens, one can reconfigure I to J in O(k2) time if and only if |I| = |J |.

Lemma 4.2. Let I and J be two given independent sets of a k-vertex cycle C. Assume

that R(C, I) = R(C, J) = ∅. Then I
C
! J if and only if |I| = |J |. Moreover, if I

C
! J ,

one can construct a TS-sequence between them in O(k2) time.

Proof. The only-if direction is trivial. We show the if direction, i.e., if |I| = |J |, we

show that I
C
! J . Let C = v1v2 . . . vkv1. Let I ′ be an independent set of C such that

|I ′| = |I| = |J | ≤ ⌊k/2⌋ and vi ∈ I ′ if i is odd (1 ≤ i ≤ 2|I| − 1). We claim that I can be
reconfigured to I ′ in O(k2) time. Consider the following cases:

• Case 1: |I| = ⌊k/2⌋. Since there are no (C, I)-rigid tokens and |I| = ⌊k/2⌋, k
must be odd. Let i be the smallest index such that vi ∈ I \ I ′ for 2 ≤ i ≤ k.
Hence, from the definition of I ′, i must be even. Additionally, vj ∈ I ′ for odd j with
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1 ≤ j ≤ i − 1, and vj ∈ I for even j with i ≤ j ≤ k − 1. Hence, one can slide the
token on vi to vi−1 ∈ I ′ \ I, then slide the token on vi+2 to vi+1, and so on. Let S be
the TS-sequence describing the process above, then clearly it reconfigures I to I ′,
since each sliding step reduces |I ′ \ I|. Clearly, this process takes O(k) token-slides.

• Case 2: |I| < ⌊k/2⌋. For 2 ≤ i ≤ k, let i be the smallest index such that vi ∈ I \ I ′.
If i = 2 and vk ∈ I, we first slide the token on vk to vk−1 recursively as follows: if
vk−2 /∈ I, move the token on vk to vk−1 directly; otherwise, recursively apply the
procedure with vk−2 and vk−3, instead of vk and vk−1. As C is finite and R(C, I) = ∅,
this process eventually moves the token on vk to vk−1 using O(k) token-slides. For
convenience, we call the resulting independent set I. Let j be the smallest index
such that vj ∈ I ′ \ I for 1 ≤ j ≤ k. Since vi /∈ I ′, it follows that i > j. Now, one can
slide the token on vi to vj along the unique vivj-path in C (using O(k) token-slides)
and repeat the process. Let S be the TS-sequence describing the process above,

then clearly I
C
! I ′. Moreover, since each token is moved using O(k) steps, and the

“adjustment” in case i = 2 and vk ∈ I also takes O(k) token-slides, it follows that

the length of S is O(k2). Similarly, one can also show that J
C
! I ′. A TS-sequence

between I and J can be formed by first reconfiguring I to I ′, and then from I ′ to J
by reversing the constructed TS-sequence that reconfigures J to I ′. Thus, one can
indeed construct a TS-sequence of length O(k2) between I and J .

From Proposition 2.2 and Lemma 4.2, it is not hard to desgin an algorithm for solving

Sliding Token for cycles. More precisely, the following algorithm decides if I
C
! J

where I, J are independent sets of a cycle C on k vertices.

• If |I| 6= |J |, return no.

• Otherwise, if k is even and |I| = |J | = k/2 then return no.

• Otherwise, return yes.

4.2 Rigid Tokens and Confined Cycles in Cactus Graphs

In this subsection, we characterize two non-trivial structures, namely rigid token and
confined (induced) cycle, that forbid the existence of a TS-sequence between two indepen-
dent sets of a cactus graph. We shall prove that one can find these forbidden structures
in polynomial time. Throughout this subsection, unless mentioned otherwise, we always
assume that G is a cactus and I is an independent set of G. As we only need to consider
induced cycles, from now on, we shall conveniently assume that any cycle of a cactus
graph G considered in this subsection and the next ones is an induced cycle of G. First
of all, we prove a recursive characterization of (G, I)-rigid tokens in a cactus graph.

Lemma 4.3. Let I be an independent set of a cactus G. For every vertex u ∈ I, the token
t placed at u is (G, I)-rigid (see Figure 4.1(a)) if and only if for every vertex v ∈ NG(u),
there exists a vertex w ∈

(

NG(v) \ {u}
)

∩ I satisfying one of the following conditions:

(i) The token tw on w is (G′, I ∩G′)-rigid, where G′ = G−NG[u].
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(ii) The token tw on w is (G′, I ∩G′)-movable; and there exists a cycle C in G such that
u /∈ V (C), {v, w} ⊆ V (C), and the path P = C − v is (G′, I ∩G′)-confined.

G
0

u

v1 v2
v3

v4v5

w1

w2

w3

w4

w5

G
0

uv1

v2

v3

v4v5

w1

w2

w3

w4

w5

(a) (b)

Figure 4.1: (a) The token placed at u ∈ I is (G, I)-rigid. (The tokens placed at w1, w2, w5

satisfy Lemma 4.3(i), while the one placed at w3 satisfies Lemma 4.3(ii).); (b) The token
placed at u ∈ I is (G, I)-movable. (It can be moved to either v2 or v3.)

Proof. First of all, we show the if direction. Let v ∈ NG(u). Assume that there exists
w ∈

(

NG(v) \ {u}
)

∩ I such that either (i) or (ii) holds. We claim that in both cases,
t cannot be slid to v (see Figure 4.1(a)). Since this claim holds for every v ∈ NG(u), it
follows that t is (G, I)-rigid. Note that by Proposition 2.4, as long as t is placed at u,
every TS-sequence in G′ can be extended to a TS-sequence in G and vice versa.

If (i) holds, then clearly no TS-sequence in G′ slides tw to a vertex in NG′(w) =
NG(w) \ {v}. Hence, t cannot be slid to v.

Now, consider the case when (ii) holds. Since tw is (G′, I ∩G′)-movable, it can be (at
least) slid in G′ to a vertex x ∈ NG′(w) by some TS-sequence S. Since P is (G′, I ∩G′)-
confined, no TS-sequence in G′ slides a token from G′ − P to P and vice versa. Clearly,
this also holds for S. Let w′ ∈ NG(v) ∩ V (C) such that w′ 6= w. Hence, if w′ /∈ I then
before sliding any other token in P , S must move a token in NP (w

′)∩ I (because I ∩P is
a maximum independent set of P ) to w′. It follows that NG(v) ∩ I ′ 6= ∅ for every I ′ such

that I ∩G′ G′

! I ′. Thus, t cannot be slid to v.
Next, we show the only-if direction by contraposition. More precisely, we claim that

if both (i) and (ii) do not hold, then t is (G, I)-movable (see Figure 4.1(b)).

• Case 1: There exists v ∈ NG(u) such that
(

NG(v) \ {u}
)

∩ I = ∅. Clearly, t can
be slid to v and hence is (G, I)-movable.

• Case 2: For all v ∈ NG(u),
(

NG(v) \ {u}
)

∩ I 6= ∅. Let w ∈
(

NG(v) \ {u}
)

∩ I.
Since (i) does not hold, we can assume that tw is (G′, I ∩ G′)-movable. Since (ii)
does not hold, for every cycle C of G, (at least) one of the following conditions does
not hold: (a) u /∈ V (C); (b) {v, w} ⊆ V (C); (c) P is (G, I)-confined. Note that
by definition, w 6= u. Additionally, since G is a cactus, there is one cycle C that
contains both v and w. Let H(G′, w) be the component of G′ containing w. We
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claim that for such w above, one can slide tw to a vertex in NH(G′,w)(w) without
sliding another token to a vertex in NG(v) beforehand. Eventually, there are no
tokens in NG(v) other than t. Consider the following cases:
Case 2-1: Any cycle C of G contains either v or w but not both of them.
Since tw is (G, I)-movable, it is also (H(G′, w), I∩H(G′, w))-movable. Suppose that
there exists a vertex x ∈ NG(v) ∩ H(G′, w), x 6= w. Since H(G′, w) is connected,
there exists a wx-path Q in H(G′, w). Note that Q, vw and vx form a cycle in G
that contains both v and w, which contradicts our assumption. Hence, NG(v) ∩
H(G′, w) = {w}. Therefore, one can simply slides tw to a vertex in NH(G′,w)(w)
without sliding another token to a vertex in NG(v) beforehand.
Case 2-2: There is a (unique) cycle C that contains both v and w. We
consider the cases when u ∈ V (C) and u /∈ V (C).

– When u ∈ V (C) holds. As before, NG(v) ∩ H(G′, w) = {w}. Otherwise,
using the same argument as before, the wx-path Q, vw and vx form a cycle
C ′ in G that contains both v and w, where x ∈ NG(v) ∩H(G′, w) and x 6= w.
Because Q (a subgraph of G′) does not contain u, it follows that C ′ 6= C, which
is a contradiction. Since NG(v) ∩ H(G′, w) = {w}, one can simply slides tw
to a vertex in NH(G′,w)(w) without sliding another token to a vertex in NG(v)
beforehand.

– When u /∈ V (C) holds. Let w′ ∈ NC(v), w
′ 6= w. By definition of a cactus

and our assumption, NC(v) ∩ H(G′, w) = {w,w′}. Since {v, w} ⊆ V (C), it
must happen that the condition (c) does not hold. By Proposition 2.5, there

exists an independent set I ′ with I ∩ G′ G′

! I ′ such that |I ∩ P | < ⌊k/2⌋,
where P = C − v and k is the length of C. (A maximum independent set
of P must be of size ⌊k/2⌋.) Suppose that both w and w′ are in I ′. Note
that both tw and tw′ are (G′, I ′)-movable. Let Sw be a TS-sequence in G′ that
slides tw to a vertex x ∈ NH(G′,w)(w). Similarly, let Sw′ be a TS-sequence in
G′ that slides tw′ to a vertex y ∈ NH(G′,w)(w

′). Since |I ′ ∩ P | ≤ ⌊k/2⌋ − 1, Sw

(resp., Sw′) does not involve any vertex in I ∩ Gx
C where x ∈ NC [w

′] (resp.,
x ∈ NC [w]). Note that by Proposition 2.4, Sw and Sw′ can indeed be performed
in G. Clearly, after applying both Sw and Sw′, the number of tokens in NG(v)
is reduced. Next, if either w or w′ is in I ′, we can simply perform either Sw

or Sw′, respectively. If none of them is in I ′, nothing needs to be done. We
showed that in each case, the number of tokens in NG(v) is reduced each time
we slide the (G′, I ∩ G′)-movable token in w ∈

(

NG(v) \ {u}
)

∩ I to a vertex
not in NG(v), and all such slidings can be performed independently (in each
component of G′). Eventually, NG(v)∩ I = {u}, and hence we can slide t to v
immediately, which implies that t is (G, I)-movable.

Let P be an induced path of G of even length k. From Proposition 2.5, P is (G, I)-
confined if and only if I ∩ P is a maximum independent set of P and for x ∈ I ∩ P , the
token on x is (Gx

P , I ∩ Gx
P )-rigid. Additionally, since k is even and I ∩ P is a maximum

independent set of P , no token can be slid along any edge of P . Hence, P is (G, I)-
confined if and only if I ∩ P is a maximum independent set of P and for x ∈ I ∩ P , the
token on x is (G, I)-rigid. Now, we consider the case k is odd.
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Lemma 4.4. Let G be a cactus. Let P = p1p2 . . . pl be an induced path in G. Let I be an
independent set of G satisfying that I ∩ P is a maximum independent set of P . Assume
that for x ∈ I ∩ P , the token on x is (G, I)-movable.

Then, P is (G, I)-confined if and only if l is even (i.e., the length k = l − 1 of P is
odd) and there exist two independent sets I ′1 and I ′2 such that

(i) I
G
! I ′, where I ′ ∈ {I, I ′1, I

′
2};

(ii) I ′1 ∩ P = {p1, p3, . . . , pl−1}, I
′
2 ∩ P = {p2, p4, . . . , pl}; and

(iii) for every x ∈ I ′ ∩ P , the token placed at x is (Gx
P , I

′ ∩Gx
P )-rigid.

Proof. We first show the if direction. Assume that l is even and the described independent
sets I ′1, I

′
2 exist. Since I ∩P is a maximum independent set of P , it suffices to show that

all tokens in I∩P are (G, I, V (P ))-confined. By Proposition 2.5, it is equivalent to saying

that for every J satisfying I
G
! J and for x ∈ J ∩ P , the token on x is (Gx

P , J ∩ Gx
P )-

rigid. Let x ∈ J ∩ I ′1 ∩ P for some J such that I
G
! J and suppose that the token tx

placed at x is (Gx
P , I

′
1 ∩Gx

P )-rigid. We claim that it is also (Gx
P , J ∩Gx

P )-rigid. Suppose

to the contrary that there exists an independent set J ′ of Gx
P such that J ∩ Gx

P

Gx
P

! J ′

but x /∈ J ′. For every independent set I of G, note that I ∩ Gx
P is also independent.

Hence, it follows that I ′1 ∩ Gx
P

Gx
P

! J ∩ Gx
P

Gx
P

! J ′, which then implies that tx is not

(Gx
P , I

′
1 ∩ Gx

P )-rigid, a contradiction. Hence, for every independent set J with I
G
! J ,

any token in J ∩ I ′1∩P is (Gx
P , J ∩Gx

P )-rigid. Similarly, for every independent set J with

I
G
! J , any token in J ∩ I ′2 ∩ P is also (Gx

P , J ∩Gx
P )-rigid. Moreover, for every J with

I
G
! J , J ∩ P =

(

J ∩ I ′1 ∩ P
)

∪
(

J ∩ I ′2 ∩ P
)

. Hence, every token placed at x ∈ J ∩ P
is (Gx

P , J ∩Gx
P )-rigid.

Now, we show the only-if direction. Assume that P is (G, I)-confined. Since I ∩ P is
a maximum independent set of P and any token placed at x ∈ I ∩ P is (G, I)-movable,
it follows that l must be even. We show how to construct I ′1 from I using TS rule. A
similar process can be applied for I ′2. Let i be the smallest index such that pi ∈ I \ I ′1.
From the definition of I ′1 ∩ P , i must be even. Since I ∩ P is a maximum independent
set of P , it follows that pj ∈ I ′1 for j odd, j ≤ i− 1, and pj ∈ I \ I ′1 for j even, j ≥ i. By
Proposition 2.5, any token placed at x ∈ I∩P must be (Gx

P , I∩G
x
P )-rigid. Since the token

tpi on pi is (G, I)-movable but (Gpi
P , I∩G

pi
P )-rigid, it can only be slid to pi−1. In other words,

there exists a TS-sequence Spi in G that slides tpi to pi−1. Note that Spi can be constructed
recursively as follows. From Lemma 4.3, if

(

NG(pi−1) \ {pi}
)

∩ I = ∅, Spi contains only a
single step of sliding tpi to pi−1. On the other hand, if

(

NG(pi−1)\{pi}
)

∩I 6= ∅, there must
be a TS-sequence S ′

pi in G′ = G − NG[pi] that slides any token in
(

NG(pi−1) \ {pi}
)

∩ I
to some vertex not in NG(pi−1) \ {pi} without moving a new token to NG(pi−1) \ {pi}
beforehand. From Proposition 2.4, S ′

pi can be extended to a TS-sequence in G. Hence,
Spi is constructed by simply performing S ′

pi first, then performing a single sliding step
which moves tpi to pi−1. Repeat the described steps, we finally obtain an independent set

I ′1 which satisfies I ∩G′ G′

! I ′1 and I ′1 ∩ P = {p1, p3, . . . , pl−1}.

In the next lemma, we prove that, R(G, I) can be computed in polynomial time.
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Lemma 4.5. Let I be an independent set of a cactus G. One can check if the token
t placed at u ∈ I is (G, I)-rigid in O(n) time, where n = |G|. Consequently, one can
determine all (G, I)-rigid tokens in O(n2) time.

Proof. Based on Lemma 4.3, we describe a recursive function CheckRigid(G, I, u) that
will output yes if the token t placed at u ∈ I is (G, I)-rigid. Otherwise, it outputs no
and a TS-sequence Su that moves t to one of its neighbors.

Clearly, if NG(u) = ∅ then (by definition) t is (G, I)-rigid, and the function outputs
yes. We can now assume that NG(u) 6= ∅. We analyze the cases when t is not (G, I)-rigid.
If there exists v ∈ NG(u) such that

(

NG(v)\{u}
)

∩I = ∅ then clearly t is not (G, I)-rigid.
The function outputs no and a TS-sequence Su contains a single step of sliding t to v.
Otherwise, for each w ∈

(

NG(v) \ {u}
)

∩ I, we recursively call CheckRigid(G′, I ∩G′,
w) to check if the token tw at w is (G′, I ∩ G′)-rigid, where G′ = G − NG[u]. It suffices
to use CheckRigid(H(G′, w), I ∩ H(G′, w), w), where H(G′, w) is the component of
G′ containing w. Note that by the definition of a cactus, it must happen that 1 ≤
|NG(v) ∩H(G′, w)| ≤ 2. Consider the following cases.

Case 1: NG(v)∩H(G′, w) = {w}. In this case, the cycle C mentioned in Lemma 4.3(ii)
does not exist. Hence, for every w ∈

(

NG(v) \ {u}
)

∩ I, if CheckRigid(H(G′, w), I ∩
H(G′, w), w) outputs no and a TS-sequence Sw that moves tw to a vertex in NH(G′,w)(w),
we can immediately output no and a TS-sequence Su that slides t to v by first applying
all such Sw, and then applying a single step of sliding t to v.

Case 2: NG(v) ∩H(G′, w) = {w,w′}, (w′ 6= w). In this case, the cycle C mentioned
in Lemma 4.3(ii) does exist. If for all w ∈

(

NG(v) \ {u}
)

∩ I, CheckRigid(H(G′, w),
I∩H(G′, w), w) outputs no, we still need to check if Lemma 4.3(ii) holds. If Lemma 4.3(ii)
does not hold for all component H(G′, w) satisfying NG(v)∩H(G′, w) = {w,w′}, then we
can output no and a TS-sequence Su that slides t to v by first moving all tw to a vertex
in NH(G′,w)(w) (no token is slid to w′ during this process) and slide t to v.

We now describe how to check if Lemma 4.3(ii) holds. Let C be the (unique) cycle
in G (of length k) containing v, w (and also w′). Let P = C − v = p1p2 . . . pk−1 with
p1 = w, pk−1 = w′. Clearly, P is an induced path in G′. By the definition of G′, it follows
that u /∈ V (C) ⊆ V (G′) ∪ {v}. Note that for x ∈ V (C) \ {v} = V (P ), the graph Gx

C

is a subgraph of H(G′, w). If |I ∩ P | < ⌊k/2⌋, Lemma 4.3(ii) clearly does not hold. If k
is even then it also does not hold, since tw is not (H(G′, w), I ∩ H(G′, w))-rigid. Thus,
we now consider the case k is odd and |I ∩ P | = ⌊k/2⌋. First, we call CheckRigid(Gx

C,
I ∩ Gx

C , x) for every x ∈ I ∩ P . If there exists a vertex x ∈ I ∩ P such that the token
tx placed at x is (Gx

C , I ∩ Gx
C)-movable, we can conclude that Lemma 4.3(ii) does not

hold. The reason is that by moving tx to a vertex in Gx
C , we also obtain an independent

set I ′ satisfying I ∩ G′ G′

! I ′ and |I ′ ∩ P | < ⌊k/2⌋ (see Proposition 2.5). Thus, we can
now consider the case when all tx (x ∈ I ∩ P ) are (Gx

C , I ∩ Gx
C)-rigid. Note that from

Lemma 4.3 and the assumption that tw (and tw′ if w′ ∈ I) is (H(G′, w), I ∩ H(G′, w))-
movable, it follows that for every x ∈ I ∩P , tx must be (H(G′, w), I ∩H(G′, w))-movable,
and thus (G′, I ∩G′)-movable. Thus, one can now apply Lemma 4.4. One can construct
the independent sets I ′1, I

′
2 described in Lemma 4.4 from I ∩ G′ by sliding tokens in G′

(which can also be extended to a TS-sequence in G) as follows. Let i be the smallest
index such that pi ∈ I \ I ′1. From the definition of I ′1 ∩ P , i must be even. Since I ∩ P
is a maximum independent set of P , it follows that pj ∈ I ′1 for j odd, j ≤ i − 1, and
pj ∈ I \ I ′1 for j even, j ≥ i. Since the token tpi on pi is (G′, I ∩ G′)-movable but
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(Gpi
P , I ∩Gpi

P )-rigid, it can only be slid to pi−1. In other words, there exists a TS-sequence
Spi in G′ that slides tpi to pi−1. Note that Spi can be constructed recursively as follows.
From Lemma 4.3, if

(

NG′(pi−1) \ {pi}
)

∩ I = ∅, Spi contains only a single step of sliding
tpi to pi−1. On the other hand, if

(

NG′(pi−1) \ {pi}
)

∩ I 6= ∅, there must be a TS-sequence
S ′

pi in G′′ = G′ − NG′ [pi] that slides any token in
(

NG′(pi−1) \ {pi}
)

∩ I to some vertex
not in NG′(pi−1) \ {pi} without moving a new token to NG′(pi−1) \ {pi} beforehand. From
Proposition 2.4, S ′

pi can be extended to a TS-sequence in G′. Hence, Spi is constructed
by simply performing S ′

pi first, then performing a single sliding step which moves tpi to
pi−1. Repeat the described steps, we finally obtain an independent set I ′1 which satisfies

I ∩ G′ G′

! I ′1 and I ′1 ∩ P = {p1, p3, . . . , pk}. Note that the recursive construction of Spi

is indeed included in the results of calling CheckRigid(G′, I ∩G′, pi) (must return no
and Spi), and Spi only involves tpi and the tokens in I ∩ G

pi−1

C . A similar procedure can
be applied for constructing I ′2. Once we constructed I ′1 and I ′2, by Lemma 4.4, we only
need to call CheckRigid(Gy

C, I ′i ∩ Gy
C , y) for all y ∈ P ∩ (I ′i \ I) (i ∈ {1, 2}). If all of

them outputs yes, we conclude that Lemma 4.3(ii) holds.
Next, we analyze the time complexity of our algorithm. Note that the time complexity

of this recursive algorithm is proportional to the number of calls of the CheckRigid
function. Observe that for every u ∈ V (G), the function CheckRigid is called for u
at most once during the process of checking Lemma 4.3(i). Now, consider the process of
checking Lemma 4.3(ii). For each vertex v ∈ V (Gx

C) (x ∈ V (P ) = V (C − v)), because of
the definitions of I ′1, I

′
2, CheckRigid is called for v at most twice: at most once for the

construction of either I ′1 or I ′2, and at most once for checking the conditions described in
Lemma 4.4. Thus, for every vertex u ∈ V (G), CheckRigid is called for u at most three
times. Hence, it takes O(n) time to check if a token is (G, I)-rigid. Therefore, R(G, I)
can be computed in O(n2) time.

We now characterize (G, I)-confined cycles. Analogously to the case of confined (in-
duced) paths (Lemma 4.4), one can also derive (using Proposition 2.5) that if a cycle C is
of even length k, then it is (G, I)-confined if and only if I ∩C is a maximum independent
set of C and any token placed at x ∈ I ∩ C is (G, I)-rigid. We now investigate the case
when k is odd.

Lemma 4.6. Let C = c1c2 . . . ckc1 be a cycle of a cactus G. Let I be an independent set
of G satisfying that I ∩ C is a maximum independent set of C. Assume that for every
x ∈ I ∩ C, the token placed at x is (G, I)-movable.

Then, C is (G, I)-confined if and only if k is odd and there exist three independent
sets I ′1, I

′
2 and I ′3 such that

(i) I
G
! I ′, where I ′ ∈ {I, I ′1, I

′
2, I

′
3};

(ii) I ′1∩C = {c1, c3, . . . , ck−2}, I
′
2∩C = {c2, c4, . . . , ck−1}, and I ′3∩C = {c3, c5, . . . , ck};

and

(iii) for every x ∈ I ′ ∩ C, the token placed at x is (Gx
C , I

′ ∩Gx
C)-rigid.

Proof. First, we show the if direction. Assume that k is odd and the described independent

sets I ′1, I
′
2, I

′
3 exist. As in Lemma 4.4, it suffices to show that for every J with I

G
! J

and for x ∈ J ∩ C, the token placed at x is (Gx
C , J ∩ Gx

C)-rigid. For i ∈ {1, 2, 3}, let
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x ∈ J ∩ I ′i ∩ C for some J such that I
G
! J and assume that the token tx placed

at x is (Gx
C , I

′
i ∩ Gx

C)-rigid. Using a similar argument as in the proof of Lemma 4.4,

one can show that tx is also (Gx
C , J ∩ Gx

C)-rigid. Moreover, for every J with I
G
! J ,

J ∩ C =
⋃3

i=1(J ∩ I ′i ∩ C). Hence, for every x ∈ J ∩ C, the token placed at x is
(Gx

C , J ∩Gx
C)-rigid.

It remains to show the only-if direction. Assume that C is (G, I)-confined. Since I∩C
is a maximum independent set of C and any token placed at x ∈ I ∩C is (G, I)-movable,
it follows that k must be odd. The construction of I ′1 and I ′2 can be done similar as in
the proof of Lemma 4.4. For constructing I ′3, instead of starting from I, we start from
I ′1 as the only TS-sequence we need is the one that slides the token at c1 to ck, which can
be obtained from the result of checking if the token placed at c1 is (G, I ′1)-rigid.

In the next lemma, we claim that, given R(G, I) = ∅, one can compute C(G, I) in
polynomial time.

Lemma 4.7. Let G be a cactus. Let I be an independent set of G. Assume that R(G, I) =
∅. Then for every cycle C in G, one can decide if C is (G, I)-confined in O(n) time, where
n = |G|. Consequently, computing C(G, I) takes O(n2) time.

Proof. We describe a recursive algorithm that will return yes if C is (G, I)-confined and
return no otherwise.

The idea of our algorithm comes from Lemma 4.6. Let k be the length of C. If k is
even or |I ∩ C| < ⌊k/2⌋ then clearly we can return no. Otherwise, for each x ∈ I ∩C, we
first check if the token tx placed at x is (Gx

C , I ∩Gx
C)-rigid. If at least one of them is not

(Gx
C , I ∩Gx

C)-rigid, then we can return no, because some token tx can be slid to a vertex
in Gx

C . Otherwise, we call the CheckRigid(G, I, x) function for each vertex x ∈ I ∩ C.
Since R(G, I) = ∅, it must return no and a TS-sequence which then can be used for
constructing the described sets I ′1, I

′
2 and I ′3 in Lemma 4.6. For constructing I ′3, we

start from I ′1 instead of I and hence need to check if the token placed at c1 is (G, I ′1)-rigid
or not beforehand. Next, after constructing these three independent sets, we check for all
y ∈ C ∩ (I ′i \ I) (i ∈ {1, 2, 3}) whether the token ty placed at y is (Gy

C , I
′
i ∩ Gy

C)-rigid.
If all of such ty are (Gy

C , I
′
i ∩ Gy

C)-rigid, by Lemma 4.6, we return yes. Otherwise, we
simply return no.

We now analyze the time complexity of the described algorithm. Note that, for each
vertex u ∈ V (G), the CheckRigid function is called for u at most three times: at most
once during the process of checking if it is (G, I)-rigid (and should return no because of
our assumption) and constructing I ′1, I

′
2; at most once during the process of checking

if the token placed at c1 is (G, I ′1)-rigid and constructing I ′3; and at most once during
the process of checking the conditions described in Lemma 4.6. Thus, it takes O(n) time
to decide if a cycle C is (G, I)-confined. Consequently, computing C(G, I) takes O(n2)
time.

4.3 Sliding Token for cactus graphs

In this subsection, we design a polynomial-time algorithm for solving Sliding Token for
cactus graphs and prove its correctness. Let (G, I, J) be an instance of Sliding Token
where G is a cactus and I, J are two independent sets of G. The following algorithm

decides if I
G
! J .
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• Step 1:

– Step 1-1: If R(G, I) 6= R(G, J), return no.

– Step 1-2: Otherwise, remove all vertices in NG[R(G, I)]. Let G′ be the result-
ing graph, and go to Step 2.

• Step 2:

– Step 2-1: If C(G′, I ∩G′) 6= C(G′, J ∩G′), return no.

– Step 2-2: Otherwise, remove all cycles in C(G′, I ∩G′). Let G′′ be the result-
ing graph, and go to Step 3.

• Step 3: If |I ∩ F | 6= |J ∩ F | for some component F of G′′ then return no. Other-
wise, return yes.

We now estimate the running time of this algorithm. Lemma 4.5 ensures that Step
1-1 can be performed in O(n2) time. Step 1-2 clearly can be performed in O(n) time.
Thus, Step 1 takes O(n2) time. Step 2 also takes O(n2) time because by Lemma 4.7,
Step 2-1 takes O(n2) time, and Step 2-2 can be performed in O(n) time. Finally, Step
3 clearly runs in O(n) time. In total, the algorithm runs in O(n2) time.

It remains to show the correctness of our algorithm. An immediate observation is that
the correctness of Step 1-1 and Step 2-1 are direct consequences of Proposition 2.1 and
Proposition 2.5. Thus, it remains to show the correctness of Step 1-2, Step 2-2, and
Step 3.

First, we prove an useful lemma.

Lemma 4.8. Let I be an independent set of a cactus G. Let v /∈ I. Assume that
R(G, I) = ∅, and NG(v) ∩ I 6= ∅. Then, there is at most one (G′, I ∩ G′)-rigid token in
NG(v) ∩ I, where G′ = G − v. On the other hand, if there exists a cycle C containing v
such that the path P = C − v is (G′, I ∩G′)-confined, then all tokens in NG(v) ∩ I must
be (G′, I ∩G′)-movable. Moreover, if C(G, I) = ∅ then there is at most one cycle C with
the described property.

Proof. Suppose to the contrary that there are two vertices w and w′ in NG(v) ∩ I such
that the tokens tw and tw′ placed at w and w′, respectively, are both (G′, I ∩ G′)-rigid
(see Figure 4.2(a)). From the assumption, tw and tw′ must be (G, I)-movable. Therefore,
tw (at least) can be slid to v. However, this can happen only when tw′ can be slid to
a vertex in NG′(w′), i.e., tw′ is (G′, I ∩ G′)-movable, which contradicts our assumption.
Hence, there is at most one (G′, I ∩G′)-rigid token in NG(v) ∩ I.

Assume that there exists a cycle C containing v such that the path P = C − v is

(G′, I ∩G′)-confined. By Proposition 2.5, for every independent set I ′ with I ∩G′ G′

! I ′,
|I ∩ P | = ⌊k/2⌋, where k is the length of C. Hence, for every x ∈ I∩C, the token on x is at
least (Gx

C , I∩G
x
C)-rigid. Hence, if k is even, it follows that no token can be slid (in G) along

edges of C, i.e., all tokens in I ∩ C are (G, I)-rigid, which is a contradiction. Therefore,
k must be odd. It follows that the tokens in NG(v)∩ I ∩C must be (G′, I ∩G′)-movable.
Now, suppose to the contrary that the token tw′ at some vertex w′ ∈ (NG(v) ∩ I)− C is
(G′, I∩G′)-rigid. Since tw′ is (G, I)-movable, it can at least be slid to v, which contradicts
Lemma 4.3(ii). Hence, all tokens in NG(v) ∩ I must be (G′, I ∩G′)-movable.
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Figure 4.2: Illustration for Lemma 4.8.

Finally, we claim that if C(G, I) = ∅ then there are at most one cycle C containing
v such that the path P = C − v is (G′, I ∩ G′)-confined. Suppose to the contrary that
there are two cycles C1 and C2 satisfy the described property (see Figure 4.2(b)). For
i ∈ {1, 2}, since v /∈ I and I ∩ (Ci − v) is a maximum independent set of Ci − v, it follows
that I ∩ Ci is a maximum independent set of Ci. Additionally, note that C(G, I) = ∅.
Thus, no (G, I, V (Ci))-confined token (i ∈ {1, 2}) is placed at any vertex of I ∩Ci. From
the assumption, all tokens in I ∩ (Ci − v) = I ∩ Ci are (G, I, V (Ci − v))-confined. On
the other hand, since I ∩ C1 is a maximum independent set of C1, there exists a token
t1 at some vertex v1 ∈ NC1

(v). As before, t1 must be (G, I, V (C1 − v))-confined and not
(G, I, V (C1))-confined. Therefore, it can be slid to v. Similarly, there exists a token t2 at
some vertex v2 ∈ NC2

(v) such that t2 is (G, I, V (C2 − v))-confined and not (G, I, V (C2))-
confined. Clearly, t2 must also be slid to v, but this is a contradiction since one needs to
slide t1 to a vertex not in NG(v) first, which can be done (at least) when t2 has been moved.
Note that since I∩C2 is a maximum independent set of C2, there always exists some token
in NC2

(v) while no token in I ∩C2 is moved to a vertex not in V (C2). Therefore, there is
at most one cycle C containing v such that the path P = C−v is (G′, I∩G′)-confined.

The next lemma ensures the correctness of Step 1-2 and Step 2-2.

Lemma 4.9. Suppose that R(G, I) = R(G, J) for two given independent sets I and J of a
cactus G, and let G′ be the graph obtained from G by deleting the vertices in NG[R(G, I)] =

NG[R(G, J)]. Then I
G
! J if and only if I ∩G′ G′

! J ∩G′. Furthermore, R(G′, I ∩G′) =
R(G′, J ∩G′) = ∅.

Suppose that C(G′, I ∩G′) = C(G′, I ∩G′) 6= ∅. Let G′′ be the graph obtained by

removing all cycles in C(G′, I ∩G′). Then I∩G′ G′

! J∩G′ if and only if I∩G′′ G′′

! J∩G′′.
Furthermore, R(G′′, I ∩G′′) = R(G′′, J ∩G′′) = ∅ and C(G′′, I ∩G′′) = C(G′′, J ∩G′′) =
∅.

Proof. Assume that there exists a TS-sequence S = 〈I = I1, I2, . . . , Ir = J〉 in G that

reconfigures I to J , and R(G, I) = R(G, J). We show that I ∩ G′ G′

! J ∩ G′. Since no
tokens can be placed at any neighbor of R(G, I) = R(G, J) = R(G, Ii) (i ∈ {1, 2, . . . , r}),
for every independent set I of G, I \ R(G, I) is indeed an independent set of G′. For
i ∈ {2, . . . , r}, let Ii−1 \ Ii = {u} and Ii \ Ii−1 = {v}, for some edge uv ∈ E(G). Since
u /∈ Ii and v /∈ Ii−1, both u and v are not in R(G, I). Thus, uv ∈ E(G′). Therefore,
S ′ = 〈I1 \ R(G, I), I2 \ R(G, I), . . . , J \ R(G, I)〉 is a TS-sequence in G′ that reconfigures
I \ R(G, I) = I ∩G′ to J \ R(G, I) = J ∩G′.
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Assume that there exists a TS-sequence S ′ = 〈I ′1 = I ∩ G′, I ′2, . . . , I
′
s = J ∩ G′〉

in G′ that reconfigures I ∩ G′ to J ∩ G′. By definition of G′, it follows that for every
independent set I ′ of G′, I ′ ∪ R(G, I) forms an independent set of G. Hence, S = 〈I ′1 ∪
R(G, I), I ′2∪R(G, I), . . . , I ′s∪R(G, I)〉 is a TS-sequence that reconfigures I ′1∪R(G, I) = I
to Is ∪ R(G, I) = J .

We now show that R(G′, I ∩G′) = ∅. Let v ∈ I ∩ G′. Then, the token tv placed at
v is (G, I)-movable, because otherwise v ∈ R(G, I). Hence, there exists a TS-sequence
S in G that slides tv to a vertex w ∈ NG(v). Note that w ∈ V (G′). As before, from
S, one can construct a TS-sequence S ′ in G′ that slides tv to w, hence it implies tv is
(G′, I ∩ G′)-movable. Therefore, R(G′, I ∩G′) = ∅. Similarly, one can also show that
R(G′, J ∩G′) = ∅.

Suppose that C(G′, I ∩G′) = C(G′, I ∩G′) 6= ∅ and there exists a TS-sequence S ′ =
〈I ′1 = I∩G′, I ′2, . . . , I

′
s = J∩G′〉 in G′ that reconfigures I∩G′ to J∩G′. For j ∈ {2, . . . , s},

let I ′j−1 \ I
′
j = {u} and I ′j \ I

′
j−1 = {v} for some edge uv ∈ E(G′). Since all tokens in

I ∩C are (G′, I ∩G′, V (C))-confined, u and v must be either both in G′′ or both in some
cycle C ∈ C(G′, I ∩G′). Hence, S ′′ = 〈I ′1 ∩G′′ = I ∩G′′, I ′2 ∩G′′, . . . , I ′s ∩G′′ = J ∩G′′〉
is a TS-sequence in G′′ that reconfigures I ∩G′′ to J ∩G′′.

Assume that there exists a TS-sequence S ′′ = 〈I ′′1 = I ∩G′′, I ′′2, . . . , I
′′
t = J ∩G′′〉 in

G′′ that reconfigures I ∩ G′′ to J ∩ G′′. We claim that one can construct a TS-sequence
S ′ in G′ that reconfigures I ∩ G′ = (I ∩ G′′) ∪ (I ∩ C(G′, I ∩G′)) to J ∩ G′ = (J ∩
G′′) ∪ (J ∩ C(G′, I ∩G′)). Note that for a given independent set I ′′ of G′′ and a cycle
C ∈ C(G′, I ∩G′), I ′′∪

(

I∩C
)

may not be an independent set of G′. The same observation
holds for every independent set reconfigurable from I. Let F be the set of all components
of G′′. From the previous part, one can construct a TS-sequence S ′′

F = 〈I ′′1 ∩ F, I ′′2 ∩
F, . . . , I ′′t∩F 〉 for each component F ∈ F . Let A =

⋃

C∈C(G′,I∩G′)

⋃

x∈I∩C

(

NG′(x)\V (C)
)

.
For a given component F of G′′, consider the following cases.

Case 1: S ′′
F involves no vertex in A. For an independent set IF ∈ S ′′

F and a
cycle C of G′, IF ∪ (I ∩ C) forms an independent set of G′. It follows that S ′′

F can be
extended to a TS-sequence in G′.

Case 2: S ′′
F involves vertices in A′ = A ∩ F (see Figure 4.3 ).

A0

F

u2

v1

C1

C2

u1

v2

u3 u4

Figure 4.3: S ′′
F involves vertices in A′ ⊆ A (Lemma 4.9).

Let C ∈ C(G′, I ∩G′). Since G′ is a cactus, there is at most one vertex v ∈ I ∩ C
such that NG′(v) ∩ V (F ) 6= ∅. Moreover, if there are two vertices u1, u2 ∈ V (F ) such
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that NG′(ui) ∩ V (C) 6= ∅ (i ∈ {1, 2}) then they must both adjacent to v. By definition of
(G′, I ∩ G′, V (C))-confined tokens, for such a cycle C above, there exists a TS-sequence
S(C, v) that slides the token tv at v ∈ I ∩ C (NG′(v) ∩ V (F ) 6= ∅) to some vertex w in
NC(v). Now, if there are two of such cycle C, say C1 and C2, let v1 (resp., v2) be a vertex
in I ∩C1 (resp., I ∩C2) such that NG′(v1)∩V (F ) 6= ∅ (resp., NG′(v2)∩ V (F ) 6= ∅). Since
G is a cactus, V (Gx

C1
) ∩ V (Gy

C2
) = ∅, where x ∈ V (C1) \ {v1} and y ∈ V (C2) \ {v2}. It

follows that S(C1, v1) and S(C2, v2) can be performed independently.
The TS-sequence S ′ thus can be constructed as follows. First of all, we perform any

sequence S ′′
F that does not involve vertices of A. Next, for a component F such that

S ′′
F involves some vertex of A, let C ∈ C(G′, I ∩G′) be such that there exists a vertex

v ∈ I ∩ C satisfying NG(v) ∩ V (F ) ⊆ A. As observed before, such a vertex v is uniquely
determined. Then, we perform S(C, v), then perform S ′′

F , and then perform S(C, v) in
reverse order. If the vertex w ∈ NC(v) where the token tv is slid to after performing
S(C, v) is also in J then in the step of reversing S(C, v), we do not reverse the step of
sliding tv to w. At this moment, we have reconfigured I ∩ G′′ to J ∩ G′′ in G′. The
remaining problem is to reconfigure I∩C to J ∩C in G′ for every cycle C ∈ C(G′, I ∩G′).
This can be done using Lemma 4.2 and the observation that for every vertex v ∈ V (C),
if v ∈ J then NG(v) ∩ J = ∅.

Using a similar argument as before (based on the fact that if I ′ is an independent set
of G′ then I ′ ∩G′′ is also an independent set of G′′), one can show that R(G′′, I ∩G′′) =
R(G′′, J ∩G′′) = ∅, and C(G′′, I ∩G′′) = C(G′′, J ∩G′′) = ∅.

Before proving the correctness of Step 3, we need some extra definitions. Let w
be a cut vertex of a cactus G such that Bw 6= ∅. For every block B ∈ Bw, since
each block of G is either K2 or a simple cycle and all blocks in Bw share the same
(unique) cut vertex w, without loss of generality, assume that the vertices of B are
labeled as v0[B], v1[B], . . . , v|B|−1[B] so that v0[B] = w; vi[B] is adjacent to vi+1[B],
i ∈ {1, 2, . . . , |B| − 2}; and v0[B] is adjacent to v|B|−1[B].

Lemma 4.10. Let I be an independent set of a given cactus G. Assume that R(G, I) = ∅
and C(G, I) = ∅. Let w be a cut vertex of G such that Bw 6= ∅. Assume that |I| ≥
∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

.

(i) If
∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

= 0, then there is an independent set I ′ satisfying that

I
G
! I ′ and v ∈ I ′, where v ∈ V (Bw) is some safe vertex of G.

(ii) If
∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

≥ 1, then there is an independent set I ′ satisfying that

I
G
! I ′, NBw

(w) ∩ I ′ = ∅, and |I ′ ∩ (Bw − w)| =
∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

.

Proof. We first prove several useful claims.

Claim 4.10.1. If NBw
(w) ∩ I = ∅ then one can slide a closest token in G∗ to w, where

G∗ is the graph obtained from G by removing all vertices in Bw−w. In other words, there

exists an independent set J such that I
G
! J and w ∈ J .

Proof. If w ∈ I then we are done. Thus, we can assume that w /∈ I. Let w′ ∈ I ∩ G∗

be a vertex with distG∗(w,w′) = minw′′∈I∩G∗ distG∗(w,w′′). Let P = w1 . . . wp (p ≥ 3)
be a shortest ww′-path with w1 = w and wp = w′. Let M = NG∗(wp−1) ∩ I. Since
NBw

(w) ∩ I = ∅, it follows that M = NG∗(wp−1) ∩ I = NG(wp−1) ∩ I for p ≥ 3. The
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definition of w′ implies that no tokens are placed at NG[wi] for i ∈ {1, 2, . . . , p− 2}. We
claim that a token on some vertex of M can be slid to w. If |M | = 1, i.e., M contains only
w′, then one can slide (in G) the token on w′ to w directly. If |M | ≥ 2, then by Lemma 4.8,
there exists at most one vertex z in M such that the token on z is (G′, I∩G′)-rigid, where
G′ = G−wp−1 (see Figure 4.4(a)). On the other hand, if there exists a cycle D containing
wp−1 such that the path Q = D−wp−1 is (G′, I ∩G′)-confined, then all tokens in M must
be (G′, I ∩ G′)-movable (see Figure 4.4(b)). Note that because C(G, I) = ∅, such a cycle
D above (if exists) must be unique. Also note that by Lemma 4.3 and the assumption
that R(G, I) = ∅, both z and D cannot exist at the same time. If both of them do not
exist, we can slide the token tw′ placed at w′ to w by first sliding all tokens in M − w′

(which are clearly (G′, I ∩G′)-movable) to some vertices in G′, and then slide tw′ to w. If
z exists, we first reduce the number of tokens in M by sliding all tokens in M − z (which
are clearly (G′, I ∩G′)-movable) to some vertices in G′ (using Lemma 4.5), and then slide
the token tz on z to w. On the other hand, if D exists (uniquely), then one can slide
a token tz′ on z′ ∈ M ∩ D to w by first sliding all tokens in M − C (which are clearly
(G′, I ∩ G′)-confined) to some vertices in G′ (using Lemma 4.7), then sliding tz′ to wp−1

(which, by Lemma 4.8, is the only way of moving tz′ “out of” D), and finally to w.

w w2 w3 w4 wp−2

wp−1

wp

M

z

w w2 w3 w4 wp−2

wp−1

wp

D

(a)

(b)

Bw

Bw M

Figure 4.4: (a) The token tz at z is (G′, I ∩ G′)-rigid; (b) The cycle D containing wp−1

such that the path Q = D − wp−1 is (G′, I ∩G′)-confined.

Claim 4.10.2. The maximum number of tokens that can be placed at vertices of Bw is
∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

+ 1.

Proof. Observe that for every block B ∈ Bw, since B is either K2 or a cycle, B−w is indeed
a path. Moreover, the path P = B − w satisfies that any token tx placed at x ∈ I ∩ P
is (Gx

P , I ∩ Gx
P , V (P ))-confined, simply because in this case Gx

P is the graph contains a
single vertex x. By Lemma 4.8, there is at most one block B ∈ Bw that contains ⌊|B|/2⌋
token(s), while all other blocks B′ 6= B must contain at most ⌊|B′|/2⌋−1 token(s). Thus,
|I ∩ Bw| ≤

∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

+ 1.
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Claim 4.10.3. If |I ∩ Bw| ≤
∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

, then one can “arrange” the token(s)
in I∩Bw such that no token is placed at any vertex in NBw

[w]. More formally, there exists

an independent set J such that I
G
! J and NBw

[w] ∩ J = ∅.

Proof. If there exists a block B ∈ Bw such that |I ∩ B| = ⌊|B|/2⌋ then since |I ∩ Bw| ≤
∑

B∈Bw

(

⌊|B|/2⌋−1
)

, there must be another block B′ ∈ Bw where |B′ ∩ I| < ⌊|B′|/2⌋−1.
Since R(G, I) = ∅ and C(G, I) = ∅, if w /∈ I ∩ B, one can slide a token from B to w and
then slide it to a vertex in B′. On the other hand, if w ∈ I ∩ B, we slide the token on
w to a vertex in B′ (other than w) directly. Since C(G, I) = ∅, by Lemma 4.8, at most
one such block B exists. Thus, we can now assume that |I ∩B| ≤ ⌊|B|/2⌋ − 1 for every
block B ∈ Bw. Clearly, a block B ∈ Bw contains a token only when |B| ≥ 4, i.e., it is a
cycle of length at least 4. Thus, using Lemma 4.2 and note that all blocks B ∈ Bw are
safe, one can “arrange” the tokens in each B ∈ Bw so that no token is placed at NB[w].
The resulting independent set is our desired set J .

We now prove Lemma 4.10.

(i) Assume that
∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

= 0. Since |B| ≥ 2 for every block B of G, it
follows that for all B ∈ Bw, 2 ≤ |B| ≤ 3, i.e., B is either K2 or a cycle of length
3. Clearly, NBw

(w) = V (Bw) \ {w}. Now, for a safe vertex v ∈ V (Bw), one must
have that v ∈ NBw

(w) ⊆ NG(w). If v ∈ I then we are done. Therefore, assume that
v /∈ I. Note that in this case |I ∩ Bw| ≤ 1. If |I ∩ Bw| = 0 then by Claim 4.10.1, one
can slide a token to w, and then to v. Otherwise, if w ∈ I, then clearly the token
placed at w can be slid to v. On the other hand, if there is a vertex v′ /∈ {v, w}
where v′ ∈ I ∩ Bw then since R(G, I) = ∅ and C(G, I) = ∅, it follows that the token
placed at v′ can be slid to a vertex outside the block containing v′ and w, therefore
must be slid to w (which is the unique cut vertex of G in Bw), and then can be slid
to v from w.

(ii) Assume that
∑

B∈Bw

(

⌊|B|/2⌋− 1
)

≥ 1. If |I ∩ Bw| =
∑

B∈Bw

(

⌊|B|/2⌋− 1
)

then we
can just simply use Claim 4.10.3 to “arrange” the tokens in I ∩ Bw. If |I ∩ Bw| =
∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

+ 1 then there must exist a unique token t in NBw
[w] which

cannot be “arranged” using Claim 4.10.3. Note that in this case |I ∩ (Bw − w)| =
∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

. If t is placed at w then NBw
(w) ∩ I = ∅ and we are done. If

t is placed at some vertex in NBw
(w) then it can be slid to w because R(G, I) = ∅

and C(G, I) = ∅. By sliding t to w, there is now no token placed at any vertex
in NBw

(w), and the resulting independent set is the set I ′ we need. It remains to
consider the case |I ∩ Bw| <

∑

B∈Bw

(

⌊|B|/2⌋−1
)

. We claim that one can construct

an independent set I ′ such that I
G
! I ′, NBw

(w) ∩ I ′ = ∅, and |I ′ ∩ (Bw − w)| =
∑

B∈Bw

(

⌊|B|/2⌋−1
)

. Using Claim 4.10.3, we can assume without loss of generality
that NBw

[w] ∩ I = ∅. We construct the set I ′ using TS rule as follows. While the
number of tokens in Bw−w is smaller than

∑

B∈Bw

(

⌊|B|/2⌋−1
)

, we use Claim 4.10.1
to move some token t not in Bw −w to w, then move t to some block B ∈ Bw which
contains less than ⌊|B|/2⌋−1 token(s), then using Claim 4.10.3 to “arrange” the set
of tokens in Bw so that NBw

[w] contains no token. Repeat the steps above until the
number of tokens in Bw is equal to

∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

, we finally obtain I ′.
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Lemma 4.11. Let I be an independent set of a given cactus G. Assume that R(G, I) = ∅,
and C(G, I) = ∅. Let w be a cut vertex of G such that Bw 6= ∅.

(i) When
∑

B∈Bw

(

⌊|B|/2⌋−1
)

= 0. Let v ∈ V (Bw) be a safe vertex of G. Suppose that
v ∈ I. Then, R(G∗, I∗) = ∅, where G∗ is the graph obtained from G by removing all
vertices in Bw and I∗ = I ∩G∗. Moreover, C(G∗, I∗) = ∅.

(ii) When
∑

B∈Bw

(

⌊|B|/2⌋−1
)

≥ 1. Assume that I ∩(Bw−w) = I∩
⋃

B∈Bw
{vi[B] : 2 ≤

i ≤ |B| − 2, and i is even}. Let G∗ be the graph obtained from G by removing all
vertices in NG[I∩(Bw−w)] and I∗ = I∩G∗. Then R(G∗, I∗) = ∅ and C(G∗, I∗) = ∅.

Proof. We prove the lemma using case-analysis.

(i) First of all, we claim that R(G∗, I∗) = ∅. Suppose to the contrary that R(G∗, I∗) 6= ∅.
Let w′ ∈ I∗ be a vertex where a (G∗, I∗)-rigid token is placed. Let P = w1w2 . . . wp

be a vw′-path with w1 = v, w2 = w and wp = w′.

Case (i-1): wp−1 = w. (See Figure 4.5.) In this case, it is clear that distG(w,wp) = 1.
From Lemma 4.10, any block B ∈ Bw is either K2 or a cycle of length 3. Let B be the safe
block containing v. If B is K2 then clearly the token tv placed at v is (G−w, I∩(G−w))-
rigid. On the other hand, if B is a cycle of length 3 then the path B − w is clearly
(G − w, I ∩ (G − w))-confined. By Lemma 4.8, in any of these two cases, the token twp

placed at wp = w3 ∈ NG(w) must be (G− w, I ∩ (G− w))-movable. By definition, G∗ is
indeed a connected component of G−w and I∗ = I ∩G∗ = (I − v)∩ (G−w). Hence, twp

must be (G∗, I ∩G∗)-movable, which is a contradiction.

v
w

wp

G∗

Figure 4.5: Illsutration of Case (i-1) of Lemma 4.11(i).

Case (i-2): wp−2 = w. (See Figure 4.6.) In this case, we can assume that any (G∗, I∗)-
rigid token is of distance (in G) at least 2 from w (which then implies distG(w,wp) =
2 in this case); otherwise, we back to Case (i-1) and show that there must be some
contradiction.

Before analyzing Case (i-2), we show some useful claims.

Claim 4.11.1. There exists a vertex wp above such that there is no cycle C1 in G∗ such
that wp−1 ∈ V (C1), wp /∈ V (C1), and the path P1 = C1−wp−1 is (G∗−NG∗ [wp], I

∗∩ (G∗−
NG∗ [wp]))-confined.

Proof. Suppose that such C1 exists. Let H(G∗ −NG∗ [wp], P1) be the component of G∗ −
NG∗ [wp] containing P1. Since G is a cactus, it follows that NG(w)∩H(G∗−NG∗ [wp], P1) =
∅. Hence, H(G∗ − NG∗ [wp], P1) must also be a component of G− NG[wp]. Therefore, C1

satisfies that wp−1 ∈ V (C1), wp /∈ V (C1), and the path P1 = C1−wp−1 is (G−NG[wp], I ∩
(G − NG[wp]))-confined. It follows that the token twp

placed at wp cannot be slid in

36



v
w wp−1

wp

x1

x2

x3
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x
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Figure 4.6: Illsutration of Case (i-2) of Lemma 4.11(i).

G to wp−1. Note that Lemma 4.8 implies that C1 is uniquely determined. Since twp
is

(G, I)-movable, it follows that there exists a vertex x1 ∈ NG(wp) \ {wp−1} such that twp

can be slid in G to x1. Since twp
is (G∗, I∗)-rigid, it follows that

(

NG∗(x1) \ {wp}
)

∩ I∗ =
(

NG(x1) \ {wp}
)

∩ I 6= ∅.
Let x2 ∈ NG∗(x1)\{wp}

)

∩I∗. Now, if there exists a cycle C2 in G∗ such that {x1, x2} ⊆
V (C2), wp /∈ V (C2), and the path P2 = C2 − x1 is (G∗ − NG∗ [wp], I

∗ ∩ (G∗ − NG∗ [wp]))-
confined, then using the same argument as with P1, it follows that twp

cannot be slid in
G to x1, which contradicts our assumption. Therefore, for x2 ∈ NG∗(x) \ {wp}

)

∩ I∗, such
a cycle C2 does not exist.

Hence, there must be some x2 ∈ NG∗(x) \ {wp}
)

∩ I∗ such that the token tx2
placed at

x2 must be (G∗ −NG∗ [wp], I
∗ ∩ (G∗NG∗ [wp]))-rigid, and hence also (G∗, I∗)-rigid since twp

is also (G∗, I∗)-rigid. On the other hand, since tx2
is (G, I)-movable, it follows that the

component H(G∗−NG∗ [wp], x2) of G∗−NG∗ [wp] containing x2 must not be a component of
G−NG[wp], which then implies that w ∈ V (H(G−NG[wp], x2)), where H(G−NG[wp], x2)
is the component of G − NG[wp] containing x2. Hence, there exists a cycle C in G
containing w,wp−1, wp, x1 and x2. As G is a cactus, the cycle C is unique.

Let x3 6= x1 be another neighbor of x2 in C. Using a similar argument as with C1, one
can show that there does not exist any cycle C3 in G∗ such that x3 ∈ V (C3), x2 /∈ V (C3),
and the path P3 = C3−x3 is (G∗−NG∗ [y], I∗∩(G∗−NG∗ [x2]))-confined. Note that in such
cycle C3 above, V (C3)∩V (C) = {x3}. Hence, there must be some x4 ∈

(

NG∗(x3)\{x2}
)

∩
I∗ such that the token tx4

placed at x4 is (G∗−NG∗ [x2], I
∗∩(G∗−NG∗ [x2]))-rigid, and hence

(G∗, I∗)-rigid as tx2
is also (G∗, I∗)-rigid. On the other hand, since tx4

is (G, I)-movable,
it follows that the component H(G∗ − NG∗ [x2], x4) of G∗ − NG∗ [x2] containing x4 must
not be a component of G − NG[x2], which then implies that w ∈ V (H(G− NG[x2], x4)),
where H(G − NG[x2], x4) is the component of G − NG[x2] containing x4. Since G is a
cactus, it must happen that x4 ∈ V (C). Repeat the arguments with vertices of C, we
finally obtain that there must be some (G∗, I∗)-rigid token placed at a vertex u ∈ V (C)
of distance 1 or 2 from w (in G). Since distG(w,wp) = 2 and twp

is a closest (G∗, I∗)-rigid
token to w, no (G∗, I∗)-rigid token can be placed at some vertex of distance 1 from w.
Thus, distG(w, u) = 2. Therefore, we can now simply regard u as wp.

Claim 4.11.2. Assume that wp satisfies Claim 4.11.1. Then, there exists a (unique) cycle
C in G containing w and wp.
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Proof. Since twp
is (G∗, I∗)-rigid and C1 does not exist, there must be some vertex x ∈

(

NG∗(wp−1) \ {wp}
)

∩ I∗ such that the token tx placed at x is (G∗ −NG∗ [wp], I
∗ ∩ (G∗ −

NG∗ [wp]))-rigid, and hence also (G∗, I∗)-rigid as twp
is (G∗, I∗)-rigid. Thus, both twp

and
tx are (G∗ − wp−1, I

∗ ∩ (G∗ − wp−1))-rigid. Since all tokens in I are (G, I)-movable and
wp−1 /∈ I, Lemma 4.8 implies that at most one of the two tokens twp

and tx is (G−wp−1, I∩
(G−wp−1))-rigid. Without loss of generality, assume twp

is not (G−wp−1, I∩(G−wp−1))-
rigid. Hence, it must happen that w ∈ V (H(G − wp−1, wp)), where H(G − wp−1, wp) is
the component of G − wp−1 containing wp. Thus, there exists a (unique) cycle C in G
containing w and wp.

We now consider Case (i-2). Let H(G∗ − wp−1, x) and H(G∗ − wp−1, wp) be the
components of G∗−wp−1 containing x and wp−1, respectively. As H(G∗−wp−1, wp) is not
a component of G−wp−1, it follows that H(G∗−wp−1, x) is a component of G−wp−1, i.e.,
H(G∗ − wp−1, x) = H(G− wp−1, x) because if otherwise, w ∈ V (H(G− wp−1, x)), which
contradicts to the fact that G is a cactus. Hence, tx is indeed (G−wp−1, I ∩ (G−wp−1))-
rigid, which means that twp

cannot be slid in G to wp−1.
Let x1 ∈ NG(wp) \ {wp−1} be a neighbor of wp such that twp

can be slid in G to x1.
If x1 /∈ V (C) then since twp

is (G∗, I∗)-rigid and (G, I)-movable, it must happen that
w ∈ H(G − wp, x1), which is a contradiction because G is a cactus. Hence, x1 ∈ V (C).
As before, one can show that there exists a vertex x2 ∈

(

NG∗(x1) \ {wp}
)

∩ I∗ which is
(G∗, I∗)-rigid and (G, I)-movable, and hence must be in V (C). Repeat the arguments,
we finally obtain that there must be some (G∗, I∗)-rigid token placed at some vertex,
say u, in V (C) of distance 2 (in G) from w which is different from wp and x. Now, let
y be the common neighbor of w and u. As the token tu placed at u is (G∗, I∗)-rigid,
there exists some vertex y′ ∈

(

NG∗(y) \ {u}
)

∩ I∗ such that the token ty′ placed at y′ is
(G∗ − NG∗ [u], I∗ ∩ (G∗ − NG∗ [u]))-rigid, and hence (G∗, I∗)-rigid as tu is (G∗, I∗)-rigid.
Let H(G∗ − NG∗ [u], y′) be the component of G∗ − NG∗ [u] containing y′. Since ty′ is
(G, I)-movable, H(G∗ − NG∗ [u], y′) is not a component of G − NG[u], which means that
w ∈ H(G−NG[u], y

′). But this is a contradiction because G is a cactus.
Case (i-3): wp−1 6= w and wp−2 6= w. (See Figure 4.7.) As before, one can assume

that any (G∗, I∗)-rigid token is of distance (in G) at least 3 from w. Before analyzing
Case (i-3), we prove some useful claims.

wpwp−1wp−2wp0

x

v

G
w

p0

C2

G∗

C

w

C1

C2

Figure 4.7: Illsutration of Case (i-3) of Lemma 4.11(i).

Claim 4.11.3. There does not exist a cycle C1 such that wp−1 ∈ V (C1), wp /∈ V (C1),
wp−2 /∈ V (C1), and the path P1 = C1−wp−1 is (G∗−NG∗ [wp], I

∗∩(G∗−NG∗ [wp]))-confined.
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Proof. Assume C1 exists. As in Case (i-2), one can show that there must be a (G∗, I∗)-
rigid token placed at some vertex of distance 1 or 2 (in G) from w, which then leads to a
contradiction. Hence, such a cycle C1 does not exist.

Claim 4.11.4. Assume that Claim 4.11.3 holds. There is a (unique) cycle C2 such that
{wp−1, wp−2} ⊆ V (C2), wp /∈ V (C2), and the path P2 = C2 − wp−1 is (G∗ −NG∗ [wp], I

∗ ∩
(G∗ −NG∗ [wp]))-confined.

Proof. Assume that C2 does not exist. Since twp
is (G∗, I∗)-rigid, there must be some

vertex x ∈
(

NG∗(wp−1)\{wp}
)

∩I∗ such that the token tx placed at x is (G∗−NG∗ [wp], I
∗∩

(G∗ −NG∗ [wp]))-rigid, and hence also (G∗, I∗)-rigid as twp
is (G∗, I∗)-rigid. As before, at

most one of the two tokens twp
and tx is (G − wp−1, I ∩ (G − wp−1))-rigid. Without

loss of generality, assume that twp
is not (G − wp−1, I ∩ (G − wp−1))-rigid. Hence, it

must happen that w ∈ V (H(G−wp−1, wp)), where H(G−wp−1, wp) is the component of
G−wp−1 containing wp. Thus, there exists a (unique) cycle C in G containing w and wp.
Using a similar argument as in the previous part, one can show that this will lead to a
contradiction.

We now consider Case (i-3). Let C2 be the cycle described in Claim 4.11.4. Let p′ be
the smallest index (1 ≤ p′ ≤ p− 1) such that wp′ ∈ V (C2)∩ V (P ). Using Lemma 4.6 and
the fact that for x ∈ V (C2)\{wp′}, G

∗x
C2

= Gx
C2

(i.e., w ∈ G
wp′

C2
), we can thus assume that

wp′ ∈ I and the token twp′
placed at wp′ is (G∗wp′

C2
, I∗ ∩ G∗wp′

C2
)-rigid and (G

wp′

C2
, I ∩ G

wp′

C2
)-

movable. Replace G by G
wp′

C2
, the independent set I by I ∩ G

wp′

C2
, and wp by wp′ in the

previous arguments, one can then either obtain a contradiction (when distG(w,wp′) ≤ 2)
or repeat the arguments one more time (when distG(w,wp′) ≥ 3). Hence, we can now
conclude that R(G∗, I∗) = ∅.

Next, we claim that C(G∗, I∗) = ∅. Suppose that it is not empty, i.e., there exists a
cycle C∗ ∈ C(G∗, I∗). Note that C∗ is also a cycle of G, and I∩C∗ = I∗∩C∗, which means
that I ∩ C∗ is also a maximum independent set of C∗. Without loss of generality, using
Lemma 4.6, we can assume that there is some token tx placed at a vertex x ∈ I ∩C∗ such
that tx is (Gx

C∗ , I∩Gx
C∗)-movable but (G∗x

C∗ , I∗∩G∗x
C∗)-rigid. It follows that w ∈ V (Gx

C∗).
Since any TS-sequence in Gx

C∗ can indeed be extended to a TS-sequence in G (see the
proof of Proposition 2.5), it follows that R(Gx

C∗ , I ∩Gx
C∗) = ∅. Additionally, using the

previous part, one can show that the removal of vertices in Bw from Gx
C∗ does not result

any new rigid token in the obtained graph G∗x
C∗ , which clearly contradicts the assumption

that tx is (G∗x
C∗ , I∗ ∩G∗x

C∗)-rigid.

(ii) We first show that R(G∗, I∗) = ∅. Note that, from the assumption, it follows that
|I ∩ (Bw − w)| =

∑

B∈Bw

(

⌊|B|/2⌋−1
)

and NBw
(w)∩I = ∅. Toward a contradiction,

suppose that R(G∗, I∗) 6= ∅. Let w′ ∈ I∗ be a vertex where a (G∗, I∗)-rigid token is
placed. Let Q = w1w2 . . . wq be a ww′-path with w1 = w and wq = w′ (q ≥ 1).

Case (ii-1): wq = w. First, consider the case NBw
(w) ⊆ NG[I ∩ (Bw − w)]. Also

note that in this case |I ∩ Bw| =
∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

+ 1. It follows that the token tw
placed at w cannot be slid (in G) to any vertex in NBw

(w). Since tw is (G, I)-movable,
there must be some TS-sequence S = 〈I1 = I, I2, . . . , Iℓ〉 in G that slides tw to some
vertex in NG∗(w). Since w is the unique cut vertex in Bw and |I ∩ Bw| is maximum, S
does not involve any vertex in I ∩ (Bw − w), i.e., for every J ∈ S, (I ∩ (Bw − w)) ⊆
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J . (Roughly speaking, no token in Bw can “move out” while tw “stay” in w.) Hence,
S ′ = 〈I1 \ (I ∩ (Bw − w)), I2 \ (I ∩ (Bw − w)), . . . , Iℓ \ (I ∩ (Bw − w))〉 is a TS-sequence
in G∗ that slides tw to a vertex in NG∗(w), which is clearly a contradiction. Hence,
NBw

(w) * NG[I∩(Bw−w)]. It follows that there exists some vertex x ∈ NBw
(w)∩V (G∗).

From the definition of G∗ and I ∩NBw
(w) = ∅, we must have NG∗(x) ∩ I = {w}, i.e., tw

can be directly slid to x in G∗, which is a contradiction.
Case (ii-2): wq−1 = w. Without loss of generality, we assume that no (G∗, I∗)-rigid

token is placed at w. Assume that there exists a cycle C1 in G∗ such that wq /∈ V (C1),
wq−1 ∈ V (C1), and the path P1 = C1−wq−1 is (G∗−NG∗ [wq], I∩(G

∗−NG∗ [wq]))-confined.
Let H(G∗−NG∗ [wq], P1) be the component of G∗−NG∗ [wq] containing P1. Since all vertices
in NG[I ∩ (Bw −w)] are non-cut, H(G∗−NG∗ [wq], P1) is also a component of G−NG[wq],
i.e., the token twq

placed at wq cannot be slid to w in G. Using a similar argument as
in Case (i-2), one can indeed assume that such cycle C1 does not exist and then derive
some contradiction.

Case (ii-3): wq−2 = w. Similar as in Case (i-3), one can argue that there does
not exist any cycle C1 such that wq−1 ∈ V (C1), wq /∈ V (C1), wq−2 /∈ V (C1), and the
path P1 = C1 − wq−1 is (G∗ − NG∗ [wq], I ∩ (G∗ − NG∗ [wq]))-confined. On the other
hand, there must be some C2 with {wq−1, wq−2} ⊆ V (C2), wq /∈ V (C2) and the path
P2 = C2 − wq−1 is (G∗ − NG∗ [wq], I ∩ (G∗ − NG∗ [wq]))-confined. As in Case (i-3), we
assume that R(Gw

C2
, I ∩Gw

C2
) = ∅ and argue with the triple (Gw

C2
, I ∩ Gw

C2
, w) instead of

(G, I, wq) and immediately derive the contradiction because of Case (ii-1).
Case (ii-4): wq−1 6= w and wq−2 6= w. One can use a similar argument as in Case

(i-3) to claim that some contradiction must happen.
Using a similar argument as in part (i), one can also show that C(G∗, I∗) = ∅.

The next lemma ensures the correctness of Step 3.

Lemma 4.12. Let G be a cactus. Let I and J be two given independent sets of G.

Assume that R(G, I) = R(G, J) = ∅ and C(G, I) = C(G, J) = ∅. Then I
G
! J if and only

if |I| = |J |.

Proof. The only-if direction is trivial. We claim the if direction, i.e., if |I| = |J | then

I
G
! J . It suffices to show that there is some independent set I∗ such that I

G
! I∗ and

J
G
! I∗. The following algorithm constructs such I∗. The same process can be applied

for J . Initially, let I∗ = ∅.

• Pick a cut vertex w with Bw 6= ∅. It follows from the definition of a cactus that
such w always exists.

• If
∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

= 0, pick a safe vertex v ∈ V (Bw), slide a token in I
to v using Lemma 4.10(i). Let I1 and J1 be the resulting independent sets. Let
I ′ = I1 \ {v} and J ′ = J1 \ {v}. Add v to I∗. Remove all vertices in Bw and let G′

be the resulting graph.

• If
∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

≥ 1, we use Lemma 4.10(ii) and Lemma 4.2 to slide at

most
∑

B∈Bw

(

⌊|B|/2⌋ − 1
)

tokens of I to vertices of Bw so that for every block
B ∈ Bw, the tokens are exhaustively placed at the vertices in {vi[B] : 2 ≤ i ≤
|B| − 2, and i is even}. The same procedure is applied for J . Let I1 and J1 be the
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resulting independent sets. Let I ′ = I1 \ (Bw −w) and J ′ = J1 \ (Bw −w). Add the
vertices in Bw where tokens are placed to I∗. Remove all vertices in NG[I

∗∩(Bw−w)]
and let G′ be the resulting graph.

• Repeat the steps above with the new triple (G′, I ′, J ′). Note that Proposition 2.4
implies that a TS-sequence in G′ can be extended to a TS-sequence in G. On the
other hand, Lemma 4.11 guarantees that R(G′, I ′) = R(G′, J ′) = ∅ and C(G′, I ′) =
C(G′, J ′) = ∅. The algorithm stops when there are no tokens to move.

4.4 Length of Reconfiguration Sequence

In this subsection, we show an upper bound on the length of a TS-sequence (if exists)
between any two independent sets of a cactus.

Lemma 4.13. Let (G, I, J) be a yes-instance of Sliding Token for cactus graphs.
Then, one can reconfigure I to J (and vice versa) using O(n2) token-slides, where n = |G|.

Proof. By Lemma 4.9, it is sufficient to show Lemma 4.13 for the case R(G, I) = R(G, J) =
∅ and C(G, I) = C(G, J) = ∅. The idea of constructing a TS-sequence S between I and
J comes from Lemma 4.12. More precisely, the outline of this construction is as follows.

• Construct a TS-sequence S1 from I to I∗, and S2 from J to I∗, as described in
Lemma 4.12.

• The TS-sequence S can be formed by performing S1 first, and then perform S2 in
reverse order.

Clearly, S reconfigures I to J . It suffices to show that S1 (as well as S2, and hence
S) uses O(n2) token-slides. We note that in Lemma 4.10, each time a (chosen) token t is
moved from the original vertex to some vertex a safe block of G, it performs O(n) steps of
token sliding. In case the set M described in Claim 4.10.1 is of size at least 2, the process
of “moving away” all tokens in M other than t (and then we can move t) uses O(n) steps,
since the number of steps of moving a token t′ 6= t in M is bounded by the time of either
checking the rigidity of t′ itself or checking the confining of a path in a component of a
subgraph of G (namely the graph G′ described in Claim 4.10.1), which is O(n). In total, t
can be moved to some vertex of a safe block using O(n) token-slides. The “arrangement”
(if necessary) using Claim 4.10.3 can be done with O(n2) token-slides in total, because
for a safe cycle C, the arrangement takes O(|V (C)|2) token-slides (Lemma 4.2). Hence,
the construction of S1, and then S2 and S, uses O(n2) token-slides.
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Chapter 5

Conclusion and Future Works

In this thesis, we have shown that Sliding Token can be solved efficiently for trees, and
cactus graphs (whose treewidth is at most 2). Since Independent Set Reconfigu-
ration under TJ/TAR can be solved efficiently for trees [20] and cactus graphs [28], it
follows that under TS, TJ, and TAR rules, Independent Set Reconfiguration for
cactus graphs can be solved efficiently. Moreover, for a yes-instance, one can construct in
polynomial time a TS-sequence between two given independent sets. The results presented
in this thesis partially answered the open question of whether efficient algorithms exist
for Sliding Token (and more generally, for Independent Set Reconfiguration)
when the input graph is of small bandwidth/treewidth/pathwidth/cliquewidth. For in-
vestigating this open question, the next interesting targets may be series-parallel graphs
[46] (graphs of treewidth at most 2), distance-hereditary graphs [47] (whose cliquewidth
is at most 3) and its subclasses, and bandwidth-2 graphs [48, 49]. Especially, from the
structure of a bandwidth-2 biconnected graph [48], we conjecture that the algorithm for
solving Sliding Token for cycles (see Section 4.1) can be used as a basis for design-
ing a polynomial-time algorithm for solving Sliding Token for banwidth-2 biconnected
graphs. Consequently, one may use a similar approach as in the case of cactus graphs
for solving Sliding Token for banwidth-2 graphs. In a bandwidth-2 graph G, a key
structure that forbids the existence of a TS-sequence between two independent sets of G
seems to be its confined biconnected components, where a biconnected component of G is
a maximal subgraph of G that is biconnected. Thus, we conjecture that for bandwidth-2
graphs, Sliding Token can be solved in polynomial time.

u1 u2 u3 u4 u5 u6 u7

Figure 5.1: An example of a banwidth-2 biconnected graph.

Another problem that is closely related to Sliding Token is the Shortest Sliding
Token problem. Given a yes-instance (G, I, J) of Sliding Token, Shortest Sliding
Token asks whether there exists a TS-sequence of shortest length between I and J .
Shortest Sliding Token remains open even for trees. To the best of our knowledge,
the first positive result regarding this problem is achieved when the input graph is a
caterpillar [35] (a subclass of trees). Given a yes-instance (T, I, J) of Sliding Token
where I, J are independent sets of a tree T , one can define an auxiliary directed graph
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A(T, I, J) with vertex set V (A(T, I, J)) = V (T ) and there is a directed egde between
x, y ∈ V (A(T, I, J)) if xy ∈ E(T ) and

∣

∣I ∩ T x
y

∣

∣ ≤
∣

∣J ∩ T x
y

∣

∣. Recall that T x
y is the subtree

of T induced by y and its descendants when regarding x as the root. Intuitively, if there
is a directed edge between x and y then a TS-sequence between I and J may, at some
point, move a token from x to y. We conjecture that the structure of A(T, I, J) can be
used to design a polynomial-time algorithm for finding a TS-sequence of smallest length
between two independent sets I, J of a tree T .

I

J

(a)

(b)

Figure 5.2: (a) A yes-instance (T, I, J) of Sliding Token for trees and (b) the corre-
sponding auxiliary graph A(T, I, J).

In a more general viewpoint, one may investigate the structural properties of the
corresponding reconfiguration graph of Sliding Token. A fundamental question is given
a graph G, which graph is isomorphic to the corresponding reconfiguration graph of
Sliding Token with input G. Fatehi et al. [36] investigated the same question for
Independent Set Reconfiguration under TJ/TAR with different input graphs. To
the best of our knowledge, up to present, determining which graph can be a reconfiguration
graph of Sliding Token remains open.
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