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Abstract

This paper focuses on qualitative multi-attribute group decision making (MAGDM) with linguistic infor-

mation in terms of single linguistic terms and/or flexible linguistic expressions. To do so, we propose a

new linguistic decision rule based on the concepts of random preference and stochastic dominance, by a

probability based interpretation of weight information. The importance weights and the concept of fuzzy

majority are incorporated into both the multi-attribute and collective decision rule by the so-called weighted

ordered weighted averaging operator with the input parameters expressed as probability distributions over

a linguistic term set. Moreover, a probability based method is proposed to measure the consensus degree

between individual and collective overall random preferences based on the concept of stochastic dominance,

which also takes both the importance weights and the fuzzy majority into account. As such, our proposed

approaches are based on the ordinal semantics of linguistic terms and voting statistics. By this, on one hand,

the strict constraint of the uniform linguistic term set in linguistic decision making can be released; on the

other hand, the difference and variation of individual opinions can be captured. The proposed approaches

can deal with qualitative MAGDM with single linguistic terms and flexible linguistic expressions. Two ap-

plication examples taken from the literature are used to illuminate the proposed techniques by comparisons

with existing studies. The results show that our proposed approaches are comparable with existing studies.

Keywords: Linguistic MAGDM; Random preference; Weights; Stochastic dominance; Consensus measure.

1. Introduction

A group decision making (GDM) problem is defined as a decision problem where several experts (judges,

decision makers, etc) provide their judgments over a set of alternatives (options, candidates, etc). The aim

is to reconcile the differences of opinions expressed by individual experts to find an alternative (or set of

alternatives) that is most acceptable by the group of experts as a whole [58, 66]. As an important branch

of GDM, multi-attribute GDM (MAGDM) deals with decisions where several experts express their opinions

on a set of possible options with respect to multiple attributes and attempt to find a common solution. In

practice, both GDM and MAGDM require subjective assessments by a set of experts to solve complex and

unstructured problems [19], which are often vaguely qualitative and cannot be estimated by exact numerical

values. Such phenomena may arise from the following two facts [3]: first, the information may be qualitative

due to its nature, and can be stated only in linguistic terms (for example when evaluating the comfort

∗Corresponding author, Tel.: +86-21-64250013.
Email addresses: hbyan@ecust.edu.cn (Hong-Bin Yan), tjma@ecust.edu.cn (Tieju Ma), huynh@jaist.ac.jp (Van-Nam

Huynh)

Preprint submitted to Omega October 25, 2017



or design of a car, terms like “good”, “poor” can be used); second, in other cases, precise quantitative

information may not be stated because either it is unavailable or the cost of its computation is too high, so

an “approximate value” may be tolerated (for example when evaluating a car’s speed, linguistic terms like

“fast”, “slow” can be used instead of numeric values). In this sense, the fuzzy linguistic approach [79, 80, 81]

enhances the feasibility, flexibility, and reliability of decision models when the decision problems are too

complex or ill-defined to be described properly by conventional quantitative expressions [21].

In practice, experts usually use single linguistic terms to provide their opinions. In this case, two

categories of models have been proposed in the literature [25, 51]: the approximate model based on the

extension principle [e.g., 9, 20, 31, 75] and the term index based models [3, 8, 25]. As one model using term

indices, the two-tuple linguistic model [25] has been widely studied in the literature [42], perhaps due to

its no information loss, straightforwardness and convenience in calculation. In some cases, the experts may

have a set of possible linguistic terms about the attributes or alternatives [52, 67]. To provide more flexible

and richer linguistic expressions, three types of models have been proposed in the literature, namely the

interval linguistic model [69], the model based on absolute order of magnitude spaces [60], and the hesitant

fuzzy linguistic term set (HFLTS) [52]. Over the past decades, we have witnessed a lot of studies focusing

on (MA)GDM with single linguistic terms and flexible linguistic expressions. As one process of linguistic

MAGDM, the selection process refers to obtaining the solution set of alternatives and involves two different

steps: the aggregation and exploitation [21, 29], which have been widely studied and reviewed in Subsec. 2.2.

Despite their great advances, most existing studies are based on the term indices, which are only suitable

to the case of symmetric and balanced linguistic term sets. Although the unbalanced linguistic term set

can be transformed into a uniform one by some techniques [10, 26] or directly processed by an ordinal

technique [16], it is still a tedious work which may create an obstacle to use of linguistic approaches in

decision making. Furthermore, the term index based models cannot represent the differences and variations

of individual opinions. Since the evaluation in (MA)GDM is quite subjective and highly individualistic,

it may be inappropriate to perform computations without further considering the variation and difference

in individual opinions. Finally, different approaches have been proposed to solve (MA)GDM with single

linguistic terms and/or flexible linguistic expressions. Since a single linguistic term may be viewed as a

special case of a linguistic interval, a unified approach to MAGDM with single linguistic terms or flexible

linguistic expressions may provide ease of use to the users in practice.

As it is well known, another process of the usual resolution method for a (MA)GDM problem is the

consensus process [28], which consists of obtaining the maximum degree of consensus or agreement among

the experts on their preferences. For an overview of consensus models, please see [6, 27]. It is preferable that

the experts reach a high degree of consensus before applying the selection process. Thus, how to find a group

consensus to represent a common opinion of the group is a valuable and important topic [58]. With single

linguistic terms and flexible linguistic expressions, different approaches have been proposed to address the

issue of consensus measure in (MA)GDM, as reviewed in Subsec. 2.3. Unfortunately, most existing studies

are also based on the term indices. For example, Sun and Ma [58] have extended Xu’s [70] work to propose

a new consensus measure with a threshold value based on the term indices. Since the consensus measure is

closely related to the linguistic representation models, similar problems may arise as the ones in the process

of aggregation and exploitation, i.e., strict constraint of symmetric and balanced linguistic term set, unable

to capture the differences and variations of individual opinions. For example, the consensus measure defined

in [48] depends greatly on the cardinality of a linguistic term set, which means that different cardinalities

may generate different consensus degrees.

Our final motivation comes from the weight information in (MA)GDM. As a basic element underlying

(MA)GDM, the concept of fuzzy majority is accepted by most of its members/attributes in practice, since

it is quite difficult for the solution to be accepted by all members/attributes [32, 33, 34, 49]. The ordered

weighted averaging (OWA) operator [72] and its extensions [3, 25] have been widely applied in linguistic
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(MA)GDM [e.g., 11, 63, 69] to model the fuzzy majority. In (MA)GDM, the experts and/or attributes can

be treated unequally considering their possible importance differences, each of which reflects the reliability

of each information source; the weight information in the OWA operator reflects the reliability of each

value [59]. In this sense, it may be important and necessary to incorporate these two types of weight

information into linguistic MAGDM simultaneously [49, 59]. Unfortunately, most existing studies consider

either the importance weights or the fuzzy majority, but have not take both of them into consideration

simultaneously. There are limited studies involving both the fuzzy majority and importance weights, see

[3, 22, 49]. However, these models are still based on the term indices and cannot deal with (MA)GDM

with flexible linguistic expressions. With the importance weights and fuzzy majority used, different results

may be yielded by the process of aggregation. Consequently, these two types of weight information may

also be necessary and important to be incorporated into the consensus measure and will influence the final

consensus result, which is missed in the literature.

Due to the above observations, the main focus of this paper is to propose alternative approaches to quali-

tative MAGDM with linguistic expressions and its consensus measure, based on the ordinal semantics of the

linguistic term set [29, 36, 37]. The main contributions of this paper are two-fold. First, regarding the process

of aggregation and selection, we propose a new linguistic decision rule for MAGDM problems by means of

the concepts of random preference and stochastic dominance, which is based on a probability interpretation

of weight information. The importance weights and fuzzy majority have been both incorporated into the

multi-attribute decision rule and collective decision rule by means of the so-called weighted ordered weighted

averaging (WOWA) operator with the input parameters expressed as probability distributions. Second, a

new method is proposed to measure the consensus degree between individual and collective overall random

preferences based on the concept of stochastic dominance, which involves the importance weights and the

fuzzy majority. By this, on one hand, the strict constraint of the symmetric and balanced linguistic term set

in linguistic decision making can be released; on the other hand, the difference and variation of individual

opinions can be captured. Moreover, the proposed approaches can deal with qualitative MAGDM with both

single linguistic terms and flexible linguistic expressions.

The outline of this paper is as follows. Sec. 2 begins with a brief review of approaches and consensus

measures in linguistic (MA)GDM, and follows by presenting a general scheme of MAGDM problems. Sec. 3

proposes a probability based approach to aggregation and exploitation in linguistic MAGDM. Sec. 4 applies

the proposed approach to two MAGDM problems with single linguistic terms and flexible linguistic expres-

sions by comparisons with existing studies. Sec. 5 proposes a new consensus measure based on the concept of

stochastic dominance, which takes the importance weights and fuzzy majority into account simultaneously.

Comparisons with existing studies are also provided. Finally, Sec. 6 presents some concluding remarks.

2. Literature review and problem formulation

After reviewing the linguistic term set, linguistic approaches, and consensus measures in linguistic deci-

sion making, this section presents a general scheme of MAGDM problems with linguistic information.

2.1. Fuzzy linguistic approach in decision making

By scanning the literature, one can find extensive applications of linguistic approaches to many different

areas such as new product development [30, 75], Kansei evaluation [74], quality function deployment [76,

77, 78], supply chain management [7, 62], energy planning [13], etc. Essentially, in any linguistic approach

to solving a decision making problem, the term set of a linguistic variable [79, 80, 81] and its associated

semantics must be defined first to supply the users with an instrument by which they can naturally express

their opinions. An important aspect to analyze in this process is the granularity of uncertainty, i.e., the

level of discrimination or the cardinality of the linguistic term set. The cardinality of the linguistic term
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set must be small enough so as not to impose useless precision on the users, and it must be rich enough in

order to allow a discrimination of the assessments in a limited number of degrees [3].

Syntactically, there are two main approaches to generating a linguistic term set. The first one is based

on a context-free grammar [79, 80, 81]. This approach may yield an infinite term set. A similar approach is

to consider primary linguistic terms (e.g., high, low) as generators, and linguistic hedges (e.g., very, rather,

more, or less) as unary operations. Then the linguistic term set can be obtained algebraically [47]. However,

according to observations in [45], the generated language does not have to be infinite, and in practice human

beings can reasonably manage to keep about seven terms in mind. A second approach is to directly supply

a finite term set and consider all terms as primary ones, distributed on a scale on which a total order is

defined [3, 24, 26]. Formally, let

S = {S0, S1, . . . , SG} (1)

be a finite and totally ordered discrete linguistic term set, where Si < Sj ⇐⇒ i < j.

Remark 1. In the literature, the linguistic term set S should satisfy the negation operator: Neg(Si) = Sj
such that i = G − j, which indicates that the linguistic term set S is a uniform scale, i.e., symmetric and

balanced [e.g., 25, 66, 67]. Without loss of generality, we shall assume that the linguistic term set S can be

a uniform or non-uniform scale.

Regarding the semantic aspect, once the mechanism of generating a linguistic term set has been de-

termined, its associated semantics must be defined accordingly. In the literature, there are three main

possibilities for defining the semantics of the linguistic term set (see [21, 29] for more details): (1) Semantics

based on fuzzy membership functions and a semantic rule. Usually, this semantic approach is used when

the term set is generated by means of a generative grammar. (2) Semantics based on the ordered structure

of the term set, which is based on a finite linguistic term set accompanied with an ordered structure which

intuitively represents the semantical order of linguistic terms. (3) The third semantic approach is a mixed

representation of the previous two approaches, that is, an ordered structure of the primary linguistic terms

and a fuzzy set representation of linguistic terms. In this paper, we adopt the ordered structure based

semantics of the linguistic term set.

2.2. Approaches to decision making with linguistic information

In this subsection, we review different approaches to the aggregation and exploitation in MAGDM with

linguistic information in terms of single linguistic terms or flexible linguistic expressions.

2.2.1. Linguistic decision making with single linguistic terms

When using linguistic approaches to solving decision problems, we need linguistic representation models,

which can be roughly divided into two categories [25, 51]: the approximate model based on the extension

principle [e.g., 9, 20, 31, 75] and the term index based models [3, 8, 25]. The models using term indices

make computations based on the indices of linguistic terms and can be divided into two types: the symbolic

model [3, 8] and the two-tuple linguistic model [25]. In linguistic decision making, one has to face the

problem of aggregation of linguistic information, which heavily depends on the semantic description of the

linguistic term set. As mentioned in [25, 51], the results yielded by the approximate model do not exactly

match any of the initial linguistic terms, so a process of linguistic approximation must be applied. This

process causes loss of information and hence a lack of precision. Moreover, the approximate model makes

operations on the fuzzy numbers that support the semantics of the linguistic terms, which will create the

burden of quantifying a qualitative concept [25, 29] and complex mathematical computations [78].

Consequently, we have witnessed a large number of studies on (MA)GDM problems based on the indices

of linguistic terms over the past decades. Under the symbolic model, Herrera et al. [24] have presented a
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linguistic OWA operator; Bordogna et al. [3] have presented an OWA based linguistic MAGDM framework.

However, the result yielded by such a model does not exactly match any of the initial linguistic terms and may

cause loss of information [25, 51]. To avoid the information loss inherent in the symbolic model, Herrera

and Mart́ınez [25] have further proposed a two-tuple linguistic model and developed a two-tuple OWA

operator. Perhaps due to its no information loss, straightforwardness and convenience in calculation, the

two-tuple linguistic model has received great attention in the literature, as reviewed in [42]. For example,

Herrera and Mart́ınez [26] have proposed a model based on linguistic two-tuples for dealing with multi-

granular hierarchical linguistic contexts in GDM. Huynh and Nakamori [30] have proposed a linguistic

two-tuple screening model in new product development. Dhouib [9] has integrated an extended version of

MACBETH methodology and two-tuple linguistic model to solve waste tire related environmental problem

and its recycling alternatives. Recently, Merigó et al. [44] have proposed a linguistic probabilistic weighted

average (WA) aggregation operator in linguistic MAGDM to consider subjective and objective information

in the same formulation.

2.2.2. Linguistic decision making with flexible linguistic expressions

In qualitative decision making, when experts face decision situations with a high degree of uncertainty,

they often hesitate among different linguistic terms and would like to use more complex linguistic expres-

sions [52]. Several attempts have therefore tried to provide more flexible and richer expressions which

can include more than one linguistic term. For a recent overview of fuzzy modeling of complex linguistic

preferences in decision making, please see [50].

As a flexible linguistic expression in decision making, the linguistic interval has received great attention

in the literature. Xu in [69] has proposed an uncertain (also called interval) linguistic decision making

approach, where the evaluation information provided by experts may be between two linguistic phrases.

With the linguistic intervals, Xu [69] has developed the uncertain linguistic OWA operator and uncertain

linguistic hybrid aggregation operator, and applied them to MAGDM problems with interval linguistic

information. Later, Xu [71] has developed an approach based on the (induced) uncertain linguistic operator

to GDM with uncertain multiplicative linguistic preference relations. Xu et al. [68] have proposed a two-

stage approach to MAGDM problems under an uncertain linguistic environment. Wang et al. [61] have

proposed a decision making method for MAGDM problems with uncertain linguistic information, in which

the importance weights of experts are obtained by a cloud model.

To help experts elicit interval linguistic information, the absolute order of magnitude spaces [60] has

been widely adapted in uncertain linguistic decision making. For example, Agell et al. [1] have presented

a new approach to representing and synthesizing the information given by a group of evaluators, which is

based on comparing distances against an optimal reference point. Falcó et al. [15] have proposed a three-

stage approach to GDM with linguistic intervals, which is based on the distance function between linguistic

expressions. Roselló et al. [55] have presented a mathematical framework and methodology for GDM under

multi-granular and multi-attribute linguistic assessments.

In their pioneering work, Rodŕıguez et al. [52] have proposed the concept of HFLTS to improve the

elicitation of linguistic expressions by using a context-free grammar [4], which increases the flexibility of the

model by eliciting comparative linguistics expressions. Since its introduction, the HFLTS has attracted more

and more scholars’ attention in the literature. Similar with (MA)GDM with single linguistic terms, there

are three main schools of approaches to (MA)GDM with HFLTSs. Based on the fuzzy extension principle,

Liu and Rodŕıguez [40] have presented a new representation of the HFLTSs by means of a fuzzy envelope

to carry out the process of computing with words (CWW), which aggregates linguistic terms in an HFLTS

into a trapezoidal fuzzy number. There are also some works based on the indices of linguistic terms in

an HFLTS. Beg and Rashid [2] have extended the technique for order preference by similarity to an ideal

solution (TOPSIS) method for HFLTS. Wei et al. [63] have developed some comparison methods and studied
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the WA operators for HFLTSs by possibility degree formulas. Zhu and Xu [84] have developed a hesitant

fuzzy linguistic preference relation concept, which requires that the HFLTSs concerned must have the same

length to carry out the computations correctly [67]. Li et al. [38] have proposed a MAGDM evaluation

approach for the individual research output by context-free grammar judgment description. The two-tuple

linguistic model [25] has also been extended to (MA)GDM with HFLTSs [46, 53]. Taking a different track,

Wu and Xu [67] have developed a possibility distribution based approach for MAGDM with HFLTSs; at the

same time they [66] have also studied GDM with hesitant fuzzy linguistic preference relations.

2.2.3. Summary

It is clearly concluded that existing studies have made great contributions to qualitative (MA)GDM with

single linguistic terms and flexible linguistic expressions. However, there are still several limitations in these

studies. First, most studies are based on the term indices, which are only suitable to the case of symmetric

and balanced linguistic term sets [10]. Within a fuzzy approach, although the unbalanced linguistic term

set can be transformed into the uniform one by some cardinal proposals [10, 26], it is a tedious work which

may create an obstacle to use of linguistic approaches in decision making. Under the ordinal semantics of

linguistic term set, Garćıa-Lapresta and Pérez-Román [16] have introduced ordinal proximity measures in

the setting of unbalanced qualitative scales by comparing the proximities between linguistic terms. However,

their work needs many pairwise comparisons among linguistic terms in a pre-experiment, which is also a

tedious work in practice. Moreover, the studies on the non-uniform scale [10, 16, 26] do not consider flexible

linguistic expressions. In this sense, a unified approach to the uniform or non-uniform linguistic scale may

provide ease of use to users in practice.

Second, despite their no information loss and ease of use in practice, most models using term indices

cannot represent the differences and variations of individual opinions. Since the evaluation in (MA)GDM is

quite subjective and highly individualistic, it may be inappropriate to perform computations without further

considering the variation in individual evaluations, see the illustrative comparisons in [29]. Third, it may

be important and necessary to incorporate both the importance weights and the concept of fuzzy majority

into linguistic MAGDM problems [49]. Unfortunately, most studies consider either the importance weights

or the fuzzy majority, but have not take both of them into consideration simultaneously. There are limited

studies involving both the fuzzy majority and importance weights, see [3, 22]. However, they still have the

same problems as the ones from the term index based models as well as cannot deal with (MA)GDM with

flexible linguistic expressions. Finally, as we have seen, different approaches have been proposed to solve the

decision making with single linguistic terms or flexible linguistic expressions. Since the single linguistic term

is a special case of a linguistic interval [52, 67], a unified approach to MAGDM with either single linguistic

terms or flexible linguistic expressions may provide ease of use to users in practice.

2.3. The consensus measure in qualitative (MA)GDM with linguistic expressions

Consensus is another fundamental issue widely employed in (MA)GDM. Some notable consensus mod-

els have been developed for (MA)GDM problems under linguistic environments. Herrera et al. [23] have

introduced a consensus model for GDM using linguistic preference relations based on the use of a fuzzy

consensus majority. Bordogna et al. [3] have proposed a linguistic consensus model for GDM based on the

OWA operator. Herrera-Viedma et al. [28] have introduced a model of consensus support system to assist

the experts in all phases of the consensus reaching process of GDM problems with multi-granular linguistic

preference relations. Xu [70] have defined the concepts of deviation degree and similarity degree between two

linguistic values, and the ones between two linguistic preference relations. Dong et al. [11] have introduced

another deviation measure using a different distance metric. Wu and Xu [65] have further proposed two con-

sensus models based on the deviation measures given by Xu [70] and Dong et al. [11]. Dong et al. [12] have

proposed a consensus operator as a generalization of the OWA operator and provide an alternative GDM
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consensus model with linguistic information. Pang and Liang in [48] have proposed a closeness measure by

the distance function of two linguistic values. Sun and Ma [58] have extended Xu’s [70] work to propose

a new consensus measure with a threshold value. Dong et al. [10] have proposed a consensus-based GDM

model with multi-granular unbalanced two-tuple linguistic preference relations.

In the context of (MA)GDM with flexible linguistic expressions, some consensus measures have also

been proposed. Xu et al. [68] have proposed a consensus measure based on the distance function of interval

linguistic information. Within the context of absolute order of magnitude spaces [60], Roselló et al. [54] have

presented a proposal to assess the consensus among different evaluators who use ordinal scales in GDM and

evaluation processes, by means of the quantitative entropy. Garćıa-Lapresta and Pérez-Román [17] have

presented a consensus measure based on the distance between two linguistic intervals. Within the context

of HFLTS, Zhu and Xu [84] have investigated the consistency of linguistic preference relations expressed in

terms of HFLTSs. Liao et al. [39] have discussed the distance and similarity measures for decision problems

with HFLTSs. Wu and Xu in [67] have proposed the consensus measure based on the similarity matrix

between two possibility distributions, which is still based on the term indices; at the same time, they [66]

have also studied the consistency and consensus in GDM with hesitant fuzzy linguistic preference relations.

In essence, the consensus measures in (MA)GDM with linguistic expressions are closely related to the

linguistic representation models in the aggregation and exploitation. As we have seen, most existing con-

sensus measures are based on the operations of term indices. Consequently, similar problems may arise as

the ones in the process of aggregation and exploitation, i.e., strict constraint of symmetric and balanced

linguistic term set, unable to capture the differences and variations of individual opinions. In addition, few

studies have incorporated both the importance weights and the concept of fuzzy majority into the consensus

measure in linguistic (MA)GDM, simultaneously. Finally, a unified approach to consensus measure with

either single linguistic terms or flexible linguistic expressions may provide ease of use to users in practice.

2.4. A general scheme of MAGDM problems

Before going into detail, we first introduce some basic notations which will be used through the rest of

this paper. Let S = {S0, S1, . . . , SG} be a finite and totally ordered discrete term set. The HFLTS based

approach provides experts greater flexibility to elicit comparative linguistic expressions and is close to human

being’s cognitive model [40], therefore the HFLTS is used to represent the flexible linguistic expressions,

defined as follows [52].

Definition 1. Let S be a linguistic term set and G be a context-free grammar. Given a comparative

linguistic expression θ generated by the context-free grammar, a transformation function FG : θ −→ H(θ)

is needed to derive an HFLTS, which is an ordered finite subset of the consecutive linguistic terms of S.

For example, a comparative linguistic expression may be “between S1 and S3”, then an HFLTS is derived

as {S1, S2, S3}. Based on the above definition, the empty HFLTS and the full HFLTS for a linguistic term

set S are defined by ∅ and S, respectively.

Let A = {A1, A2, . . . , AM} be a discrete set of options (alternatives, candidates), C = {C1, C2, . . . , CN}
be the set of attributes and µ = (µ1, µ2, . . . , µN ) be the weighting vector of attributes where

∑N
n=1µn =

1, µn ≥ 0. Let E = {E1, E2, . . . , EK} be the set of experts and ν = (ν1, ν2, . . . , νK) be the weighting vector

of experts where
∑K
k=1νk = 1, νk ≥ 0. The general scheme of MAGDM problems considered in this paper

is shown in Table 1, where xkmn is the linguistic assessment of alternative Am on attribute Cn provided by

expert Ek, in terms of a single linguistic term from S or an HFLTS derived from a comparative linguistic

expression which is elicited by the context-free grammar [4]. Note that the comparative linguistic expressions

by the context-free grammar are used to help experts elicit flexible linguistic expressions. Thus, it is natural

to assume that the HFLTSs derived from experts’ comparative linguistic expressions are non-empty. The

empty set is not considered in our current work.
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Table 1: Decision matrix on attribute Cn with linguistic expressions, where n = 1, . . . , N.

Options
Experts

E1 E2 . . . EK

A1 x11n x21n . . . xK1n

A2 x12n x22n . . . xK2n
...

...
...

. . .
...

AM x1Mn x
2
Mn . . . x

K
Mn

Figure 1: Flowchart of the proposed approach to aggregation and exploitation.

3. Aggregation and exploitation: A probability based approach

In linguistic decision analysis, a solution scheme must comply aggregation and exploitation phases [21, 29].

As mentioned in [24], there are two types of basic approaches to aggregation and exploitation: the direct

approach to deriving a solution based on individual decision matrices and the indirect approach to providing

the solution based on an overall decision matrix. In this section, we focus on the direct approach to MAGDM

with linguistic information, which consists of the following four steps (as depicted in Fig. 1): random

preference derivation, multi-attribute decision rule, collective decision rule, and choice function.

3.1. Random preference derivation from HFLTS

In our qualitative MAGDM context, the linguistic assessment xkmn can be either a single linguistic

term or an HFLTS derived from a comparative linguistic expression, which is elicited by the context-

free grammar [4]. As pointed out in [52], a single linguistic term can be expressed by a comparative

linguistic expression and thus be viewed as an HFLTS, i.e., the single linguistic term Sg ∈ S is expressed as

{Sg}. The linguistic assessment xkmn will be expressed in terms of HFLTS and re-denoted as Hkmn, where

m = 1, . . . ,M, n = 1, . . . , N, k = 1, . . . ,K. The HFLTS, Hkmn, is a subset of the linguistic term set S, which

represents expert Ek’s uncertain judgment for alternative Am on attribute Cn. For the sake of convenience,

the family of all the HFLTSs defined over a linguistic term set S is denoted by Ω(S).

Returning back to our qualitative MAGDM context in Table 1, when expert Ek provides his/her judgment

for the performance of alternative Am with respect to attribute Cn, a probability distribution of his/her
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opinion on the family of all the possible HFLTSs, Ω(S), can be derived as

pΩ(S) (H|Am, Cn, Ek) =

{
1, if H = Hkmn;

0, otherwise.
(2)

where m = 1, . . . ,M, n = 1, . . . , N, k = 1, . . . ,K. The probability distribution pΩ(S) (H|Am, Cn, Ek) is

nothing but a basic probability assignment in the sense of Shafer [56]. We then can fortunately use the

so-called pignistic transformation method [57] to obtain the least prejudiced distribution over the linguistic

term set S for alternative Am on attribute Cn under expert Ek as follows:

pS(Sg|Am, Cn, Ek) =
pΩ(S) (H|Am, Cn, Ek)

|Hkmn|

=

{
1/
∣∣Hkmn∣∣, if Sg ∈ Hkmn;

0, otherwise.

(3)

where m = 1, . . . ,M, n = 1, . . . , N, k = 1, . . . ,K, g = 0, . . . , G. For example, with an HFLTS H =

{S0, S1, S2}, a probability distribution over the linguistic term set S is derived as

pS(Sg) =

{
1/3, if Sg ∈ H;

0, otherwise.

Note that the terminology “pignistic probability distribution” has been used in the context of belief

modeling [57]. Here, we borrow this terminology from [36], which we think is more appropriate for our

context. Such a probability distribution can be viewed as the prior probability that the expert Ek believes

that the linguistic term Sg ∈ S is appropriate enough to describe the performance of alternative Am on

attribute Cn. For notational convenience, pS(Sg|Am, Cn, Ek) will be denoted by pkmn(Sg). Under such a

formulation, for each alternative Am, each expert Ek generates a vector of N individual random preferences,

denoted by (Xk
m1, X

k
m2, . . . , X

k
mN ), with respect to the N attributes such that

Xk
mn =

[
pkmn(S0), pkmn(S1), . . . , pkmn(SG)

]
, (4)

where m = 1, . . . ,M, n = 1, . . . , N, k = 1, . . . ,K.

Remark 2. Here, we borrow the terminology of “random preference” from the theory of random pref-

erence [41], which we think is more appropriate for our context. The central assumption of the random

preference theory is that each individual has a set of preference orderings and a probability distribution over

that set. Our research is built on the ordinal semantics of a linguistic term set and the voting statistics [37],

which derives associated probability distributions over that set.

Remark 3. It should be noted here that Zhang et al. [83] have proposed a concept of distribution assessment

in a linguistic term set, in which the distribution assessment is specified by the expert. Wu and Xu [66, 67]

have defined the concept of a possibility distribution from an HFLTS. The background in [66, 67, 83] are

quite different from that in this paper. In addition, a probability based interpretation for the linguistic

expression is proposed in this paper. Finally, the works [66, 67, 83] are also based on the indices of linguistic

terms. As we shall see later, our research is based on the ordinal semantics of linguistic terms.

3.2. Multi-attribute decision rule

Recall that a set of attributes C is involved in our GDM context. We shall assume a subjective probability

distribution pC defined over the set of attributes, which essentially underlies the calculating basis for the

following proposed multi-attribute decision rule.
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From a practical point of view, given an alternative, if there is an ideal attribute, say CI, which the

expert completely believes in to represent the alternative, then it is enough to use the ideal attribute CI

in GDM. However most decision making problems involve multiple attributes. In this sense, pC may be

interpreted as the probability that the expert randomly selects attribute Cn from the set of attributes C
as a sufficient information source for the purpose of decision making. In other words, the set of attributes

C plays the role of states of the world and the weighting vector µ = (µ1, µ2, . . . , µN ) associated with the

attribute set C plays the role of subjective probabilities assigned to the states such that

pC(Cn) = µn, n = 1, 2, . . . , N. (5)

Such an interpretation has its solid foundation in the striking similarity between decision making under

uncertainty and multi-attribute decision making [14]. In the sequel, we shall propose our multi-attribute

decision rule based on the probabilistic interpretation of weights.

3.2.1. Incorporating importance weights into multi-attribute decision rule

Taking the prior probability distributions (individual random preferences) Xk
mn(m = 1, . . . ,M, n =

1, . . . , N, k = 1, . . . ,K) into consideration, together with the importance weights of attributes, a posterior

probability distribution of alternative Am under expert Ek over the linguistic term set S can be obtained

as follows:

Xk
m = FWA

(
Xk
m1, X

k
m2, . . . , X

k
mN ;µ1, µ2, . . . , µN

)
=

N⊕
n=1

[
Xk
mn � µn

]
=
[
pkm(S0), pkm(S1), . . . , pkm(SG)

] (6)

where

pkm(Sg) =

N∑
n=1

pkmn(Sg) · µn,

and g = 0, . . . , G,m = 1, . . . ,M, k = 1, . . . ,K. The symbols ⊕ and � are, respectively, the addition operation

and product operation of random preferences, which is in fact the weighted combination of probability

distributions, see [18]. The derived random preference Xk
m is used to represent the uncertain performance

of alternative Am with respect to expert Ek, i.e., individual overall random preference. The importance

weights reflect the reliabilities of attributes [59]. The aforementioned multi-attribute decision rule in (6)

is in fact the WA aggregation, which may be linguistically stated as “each expert prefers that important

attributes are satisfied by the alternatives.”

3.2.2. Incorporating fuzzy majority into multi-attribute decision rule

In addition to the importance weights of attributes, we also want to incorporate the concept of majority,

which is a basic element underlying decision making. The term “majority” indicates that an alternative

satisfies most of its attributes, since in practice it is quite difficult for the alternative to satisfy all the

attributes. The concept of “fuzzy majority” is used to make the strict concept of majority more vague so as

to make it closer to its real human perception [34]. A natural manifestation of such a “soft” majority is the

so-called linguistic quantifier Q, e.g., most, at least half, as many as possible. With the linguistic quantifier,

a “fuzzy majority” quantified statement for our multi-attribute decision rule can be linguistically written as

“each expert prefers that Q (of) attributes are satisfied by the alternatives.”

Such a fuzzy majority guided linguistic statement can be solved by an aggregation function. Fortunately

enough, Yager [72] proposed a special class of aggregation operators, called OWA operator, which seems to
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provide an even better and general aggregation in the sense of being able to simply and uniformly model a

large class of fuzzy linguistic quantifiers, see Appendix B. The original OWA operator has been first defined

to aggregate a set of crisp values and later transformed into the case with input parameters expressed

as fuzzy numbers [75]. Here, the OWA operator will be transformed to the case with input parameters

expressed as probability distributions over a linguistic term set, defined as follows.

Definition 2. Let
(
Xk
m1, X

k
m2, . . . , X

k
mN

)
be the vector of individual random preferences of alternative

Am with respect to the N attributes under expert Ek, an OWA operator of dimension N is a mapping

FOWA : SN → S if F is associated with an OWA weighting vector ω = (ω1, ω2, . . . , ωN ) such that: ωn ∈ [0, 1],∑N
n=1 ωn = 1, and

Xk
m = FOWA

(
Xk
m1, X

k
m2, . . . , X

k
mN

)
=

N⊕
n=1

[
Xk
mσ(n) � ωn

]
=
[
pkm(S0), pkm(S1), . . . , pkm(SG)

]
,

(7)

where
(
Xk
mσ(1), X

k
mσ(2), . . . , X

k
mσ(N)

)
is the permutation of

(
Xk
m1, X

k
m2, . . . , X

k
mN

)
such that Xk

mσ(n−1) ≥
Xk
mσ(n) for all n = 2, . . . , N .

The fuzzy majority in terms of linguistic quantifiers can be represented by means of fuzzy sets [82], i.e.

any relative quantifier can be expressed as a fuzzy subset Q of the unit interval [0, 1]. In this representation

for any proportion, r ∈ [0, 1], Q(r) indicates the degree to which r satisfies the concept conveyed by the

linguistic quantifier Q. Yager in [73] further defined a Regular Increasing Monotone (RIM) quantifier to

represent the linguistic quantifier Q. The definition of RIM quantifier and its examples can be referred to

Appendix B. With the quantifier function defined, Yager [73] proposed a method for obtaining the OWA

weighting vector via linguistic quantifiers, especially the RIM quantifiers, which can provide information

aggregation procedures guided by verbally expressed concepts. By using the OWA operator and an RIM

function Q, a posterior probability distribution of an alternative Am under expert Ek over the linguistic

term set S can be obtained as

Xk
m = FQOWA

(
Xk
m1, X

k
m2, . . . , X

k
mN

)
=

N⊕
n=1

[
Xk
mσ(n) �

[
Q
( n
N

)
−Q

(
n− 1

N

)]]
=
[
pkm(S0), pkm(S1), . . . , pkm(SG)

]
,

(8)

where (Xk
mσ(1), X

k
mσ(2), . . . , X

k
mσ(N)) is the permutation of

(
Xk
m1, X

k
m2, . . . , X

k
mN

)
such that Xk

mσ(n−1) ≥
Xk
mσ(n) for all n = 2, . . . , N .

Central to the linguistic quantifier guided OWA operator is the permutation of the vector of probability

distributions
(
Xk
m1, X

k
m2, . . . , X

k
mN

)
, which falls into the category of comparison and ranking techniques of

probability distributions. In this paper, the stochastic dominance based approach (see Appendix A) is used

to rank the vector of probability distributions, defined as follows.

Definition 3. Given two individual random preferencesXk
mn andXk

ml expressed as probability distributions

over a linguistic term set S, the stochastic dominance degree of Xk
mn over Xk

ml is defined as

DXk
mn�Xk

ml
= Pr(Xk

mn ≥ Xk
ml)− 0.5Pr(Xk

mn = Xk
ml). (9)

The comparison operation of Xk
mn over Xk

ml is defined as follows.
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• If DXk
mn�Xk

ml
> 0.5, then it indicates that Xk

mn is preferred to Xk
ml such that Xk

mn > Xk
ml.

• If DXk
mn�Xk

ml
= 0.5, then there is indifference between Xk

mn and Xk
ml such that Xk

mn = Xk
ml.

• If DXk
mn�Xk

ml
< 0.5, then it indicates that Xk

ml is preferred to Xk
mn such that Xk

mn < Xk
ml.

To facilitate the permutation process, a ranking index is defined for each individual random preference as

Indkmn =
1

N − 1

∑N

l=1,l 6=n

[
Pr(Xk

mn ≥ Xk
ml)− 0.5Pr(Xk

mn = Xk
ml)
]
, (10)

where m = 1, . . . ,M, n = 1, . . . , N, k = 1, . . . ,K. With the vector (Indkm1, Indkm2, . . . , IndkmN ) of ranking in-

dices obtained, permutation of individual random preferences
(
Xk
m1, X

k
m2, . . . , X

k
mN

)
can be easily obtained.

3.2.3. Incorporating both importance weights and fuzzy majority into multi-attribute decision rule

Taking both the importance weights of attributes and the concept of fuzzy majority into consideration,

a linguistic statement for our multi-attribute decision rule can be expressed as

“each expert prefers that Q (of) important attributes are satisfied by the alternatives.” (F1)

Such a linguistically quantified statement can be, fortunately enough, dealt with by the WOWA operator [59].

The original WOWA has also been first used to aggregate crisp values. Similar with Definition 2, here the

WOWA operator will be transformed to the case with input parameters expressed as probability distributions

over a linguistic term set, defined as follows.

Definition 4. Let
(
Xk
m1, X

k
m2, . . . , X

k
mN

)
be the vector of individual random preferences of alternative Am

with respect to the N attributes under expert Ek and µ = (µ1, µ2, . . . , µN ) be the importance weights

associated with the set of attributes C. A WOWA operator of dimension N with respect to the vector of

individual random preferences is a mapping, FWOWA : SN → S, defined as

Xk
m = FWOWA

(
Xk
m1, X

k
m2, . . . , X

k
mN ;µ1, µ2, . . . , µN

)
=

N⊕
n=1

Xk
mσ(n) �Wn

=
[
pkm(S0), pkm(S1), . . . , pkm(SG)

]
,

(11)

where
(
Xk
mσ(1), X

k
mσ(2), . . . , X

k
mσ(N)

)
is the permutation of (Xk

m1, X
k
m2, . . . , X

k
mN ) via Definition 3 such that

Xk
mσ(n−1) ≥ X

k
mσ(n) for all n = 2, . . . , N , and the weight Wn is defined as

Wn = W ∗
(∑

l≤n
µσ(l)

)
−W ∗

(∑
l<n

µσ(l)

)
, (12)

with W ∗ a monotonically non-decreasing function that interpolates the points
(
n/N,

∑
l≤n µσ(n)

)
together

with the point (0, 0). The value µσ(l) means the permutation of (µ1, µ2, . . . , µN ) according to the permutated

individual random preferences
(
Xk
mσ(1), X

2
mσ(n), . . . , X

k
mσ(N)

)
.

In this paper, W ∗ is replaced with an RIM linguistic quantifier Q introduced in Appendix B. Together

with the WOWA operator, the individual overall random preference of alternative Am under expert Ek is

derived as

Xk
m = FQWOWA

(
Xk
m1, X

k
m2, . . . , X

k
mN ;µ1, µ2, . . . , µN

)
=

N⊕
n=1

Xk
mσ(n) �

[
Q
(∑

l≤n
µσ(l)

)
−Q

(∑
l<n

µσ(l)

)]
=
[
pkm(S0), pkm(S1), . . . , pkm(SG)

]
.

(13)
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Interestingly enough, our multi-attribute decision rule in (13) generalizes the method in (6) and the one in

(8) as follows.

• When the linguistic quantifier “identity” is used, then Q(x) = x and the individual overall random

preference becomes

Xk
m = F I

WOWA

(
Xk
m1, X

k
m2, . . . , X

k
mN ;µ1, µ2, . . . , µN

)
=

N⊕
n=1

Xk
mσ(n) �

∑
l≤n

µσ(l) −
∑
l<n

µσ(l)


, FWA

(
Xk
m1, X

k
m2, . . . , X

k
mN ;µ1, µ2, . . . , µN

)
.

• If µN = 1
N , n = 1, 2 . . . , N , i.e., all the attributes are equivalently important, then

Xk
m = FQWOWA

(
Xk
m1, X

k
m2, . . . , X

k
mN ;µ1, µ2, . . . , µN

)
=

N⊕
n=1

Xk
mσ(n) �

[
Q
( n
N

)
−Q

(
n− 1

N

)]
, FQOWA

(
Xk
m1, X

k
m2, . . . , X

k
mN

)
.

Remark 4. Essentially, the probabilistic aggregations are based on the assumption that there is mutual

independence among the alternatives, among the experts, and among the attributes. As pointed out in [3],

in any linguistic decision analysis, the procedure of asking each expert to provide his/her absolute linguistic

evaluations for a set of alternatives is based on the mutual independence among the set of alternatives. The

pool of experts is called to provide their opinions on each attribute separately, therefore mutual independence

among the experts and among attributes is assumed naturally.

Remark 5. Fuzzy majority in terms of a linguistic quantifier is applied in the multi-attribute decision rule.

Different experts may specify different linguistic quantifiers according to their knowledge and experiences [7].

For the purpose of illustrative convenience, here, we assume the set of experts will specify the same linguistic

quantifier in this step.

3.3. Collective decision rule

Also note that a set of experts E is called to express their judgments regarding the alternatives, on one

hand, to collect enough information for the decision making problem from various points of view; and on

the other hand, to reduce the subjectivity of the decision making problem. Similar with the multi-attribute

decision rule, we shall also assume a subjective probability distribution pE defined over the set of experts

E . In this regards, pE(Ek), for each k = 1, 2, . . . ,K, may be interpreted as the probability that the expert

Ek would be randomly selected as a sufficient information source for the purpose of decision making. In

addition, a weighting vector ν = (ν1, ν2, . . . , νK) is also often associated with the set of experts such that

νk ∈ [0, 1] and
∑K
k=1 νk = 1. In this sense, the set of experts plays the role of states of the world and the

weighting vector ν serves as the subjective probabilities assigned to the states such that

pE(Ek) = νk, k = 1, 2, . . . ,K. (14)

After the multi-attribute decision rule in Subsec. 3.2, each expert Ek has generated a vector of M

individual overall random preferences with respect to the M alternatives as (Xk
1 , X

k
2 , . . . , X

k
M ), each of

which can be viewed as the uncertain performance of alternative Am under expert Ek such that Xk
m =[

pkm(S0), pkm(S1), . . . , pkm(SG)
]
. With the importance weights of experts and the concept of fuzzy majority

in mind, the collective decision rule may be linguistically stated as
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“Q (of) important experts are satisfied by the alternatives.” (F2)

In this case the goal is to obtain an opinion which can be considered as the opinion of a majority, what we

can call the majority opinion.

Similar with the multi-attribute decision rule, the collective overall random preferences can be derived

by means of the WOWA operator and the RIM linguistic quantifier Q as follows.

Xm = FQWOWA

(
X1
m, X

2
m, . . . , X

K
m ; ν1, ν2, . . . , νK

)
=

K⊕
k=1

Xσ(k)
m �

Q
∑
l≤k

νσ(l)

−Q(∑
l<k

νσ(l)

)
= [pm(S0), pm(S1), . . . , pm(SG)] ,

(15)

where
(
X
σ(1)
m , X

σ(2)
m , . . . , X

σ(K)
m

)
is the permutation of

(
X1
m, X

2
m, . . . , X

K
m

)
such that X

σ(k−1)
m ≥ X

σ(k)
m for

all k = 2, . . . ,K. The value νσ(k) means the permutation of (ν1, ν2, . . . , νK) according to the permutated

individual overall random preferences
(
X
σ(1)
m , X

σ(2)
m , . . . , X

σ(K)
m

)
. Similar with Definition 3, the permutation

of
(
X1
m, X

2
m, . . . , X

K
m

)
is also based on the stochastic dominance degree. Obviously, the following properties

can be easily obtained from our collective decision rule:

• when the linguistic quantifier “identity” is used, then the aggregation function in (15) is the WA

aggregation method;

• if νk = 1
K , k = 1, 2 . . . ,K, i.e., all the experts are equivalently important, then the aggregation function

in (15) reduces to the OWA aggregation method.

3.4. Choice function

After the collective decision rule, we have a vector of M collective overall random preferences with respect

to the M alternatives as (X1, X2, . . . , XM ), each of which can be viewed as the uncertain performance of

alternative Am with a probability distribution

Xm = [pm(S0), pm(S1), . . . , pm(SG)]

over the linguistic term set S. By accepting the mutual independence among all alternatives, we are now

able to define a choice function based on the stochastic dominance, as introduced in Appendix A.

Definition 5. Let {A1, A2, . . . , AM} be the set of alternatives with a vector of collective overall random

preferences (X1, X2, . . . , XM ), each of which is represented by a probability distribution over the linguistic

term set S = {S0, S1, . . . , SG}. Given two alternatives Am and Al, the stochastic dominance degree of Am
over Al is defined as

Dml = Pr(Xm ≥ Xl)− 0.5Pr(Xm = Xl).

Then we have the following properties:

• when 0.5 < Dml ≤ 1, it indicates that Am is preferred to Al, i.e., Xm is greater than Xl;

• when Dml = 0.5, there is no difference between Am and Al, i.e., Xm is equivalent to Xl;

• when 0 ≤ Dml < 0.5, it indicates that Al is slightly preferred to Am, i.e., Xm is less than Xl.

The overall stochastic dominance degree of alternative Am can be obtained as

Vm =
1

M − 1

M∑
l=1,l 6=m

Dml, (16)

where m = 1, . . . ,M. The vector V = (V1, V2, . . . , VM ) will be used to rank the alternatives.
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3.5. Summary

As a conclusion, the proposed approach to the aggregation and exploitation in our linguistic MAGDM

problem can be summarized as the following steps.

• Step 1) Random preference derivation. To derive an individual random preference for each alter-

native on each attribute with respect to each expert via (3) asXk
mn =

[
pkmn(S0), pkmn(S1), . . . , pkmn(SG)

]
,

where m = 1, . . . ,M , n = 1, . . . , N , k = 1, . . . ,K.

• Step 2) Multi-attribute decision rule. To derive an individual overall random preference for

each alternative with respect to each expert via (13) as Xk
m =

[
pkm(S0), pkm(S1), . . . , pkm(SG)

]
, where

m = 1, . . . ,M , k = 1, . . . ,K.

• Step 3) Collective decision rule. To derive a collective overall random preference for each alter-

native via (15) as Xm = [pm(S0), pm(S1), . . . , pm(SG)] , where m = 1, . . . ,M.

• Step 4) Choice function. Ranking the alternatives via (16).

4. Comparative illustrative examples

In this section, two examples with single linguistic terms and flexible linguistic expressions will be used

to illustrate the effectiveness and efficiency of our approach by comparisons with existing studies.

4.1. Qualitative MAGDM with single linguistic terms

First, let us suppose a risk investment company wants to invest a sum of money in the best option [64].

This investment problem involves the evaluation of four possible options denoted as A = {A1, A2, A3, A4}
according to seven attributes: C1–the ability of sale, C2–the ability of management, C3–the ability of

production, C4–the ability of technology, C5–the ability of financing, C6–the ability to resist venture, and

C7–the consistency of corporation strategy. A set of three experts E = {E1, E2, E3} was selected and asked

to evaluate the four options on the seven attributes by using the following linguistic term set

S = {S0 = Extremely poor, S1 = Very poor, S2 = Poor, S3 = Slightly poor, S4 = Fair,

S5 = Slightly good, S6 = Good, S7 = Very good, S8 = Extremely good},
(17)

the decision matrix is shown in Table 2. In [64], the importance weights of the seven attributes were derived

by a maximizing deviation method and expressed as µ = (0.1154, 0.0216, 0.2452, 0.0481, 0.1875, 0.1178, 0.2644).

Moreover, the three experts were assumed to be equivalently important such that ν = (1/3, 1/3, 1/3).

Now let us use our approach to solve this problem, which is summarized as follows.

Step 1) Random preference derivation. From the information given to the problem, we obtain an indi-

vidual random preference for each alternative on each attribute with respect to each expert via (3). Since

single linguistic terms were provided by the experts, each individual random preference is a probability

distribution with a probability 1.0 on the selected linguistic term. For example, the evaluation of alternative

A1 on attribute C1 with respect to expert E1 is “S5 = Slightly good”, the associated individual random

preference is derived as X1
11 = [0, 0, 0, 0, 0, 1, 0, 0, 0].

Step 2) Multi-attribute decision rule. Assume each expert prefers that “as many as possible impor-

tant attributes should be satisfied by the alternatives”. Taking expert E1 as an example, the result

yielded by the multi-attribute decision rule with respect to alternative A1 is derived via (13) as X1
1 =

[0, 0, 0, 0, 0.096, 0.606, 0.298, 0, 0], which indicates that the aggregated result is a probability distribution

with the highest probability 0.606 on “S5 = Slightly good”. Similarly, the results of the four alternatives

yielded by the multi-attribute decision rule under linguistic quantifier “as many as possible” are derived, as

shown in Table 3.
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Table 2: Decision matrix with single linguistic terms: The risk investment problem [64].

Experts Options
Attributes

C1 C2 C3 C4 C5 C6 C7

E1

A1 S5 S7 S7 S4 S5 S6 S6

A2 S7 S6 S4 S6 S7 S5 S3

A3 S6 S6 S7 S5 S8 S7 S6

A4 S6 S6 S3 S5 S7 S5 S6

E2

A1 S5 S6 S7 S4 S6 S6 S8

A2 S4 S5 S4 S5 S6 S6 S5

A3 S7 S5 S6 S6 S8 S8 S5

A4 S4 S5 S4 S5 S4 S5 S3

E3

A1 S4 S6 S6 S5 S7 S6 S3

A2 S6 S5 S5 S6 S4 S6 S3

A3 S6 S5 S6 S6 S6 S7 S6

A4 S4 S5 S3 S5 S4 S4 S5

Table 3: Results of multi-attribute decision rule under linguistic quantifier “as many as possible”: The risk investment problem.

Options
Experts

E1 E2 E3

A1 [0, 0, 0, 0, 0.096, 0.606, 0.298, 0, 0] [0, 0, 0, 0, 0.096, 0.231, 0.654, 0.019, 0] [0, 0, 0, 0, 0.231, 0.096, 0.673, 0, 0]

A2 [0, 0, 0, 0.529, 0.471, 0, 0, 0, 0] [0, 0, 0, 0, 0.721, 0.279, 0, 0, 0] [0, 0, 0, 0.529, 0.375, 0.096, 0, 0, 0]

A3 [0, 0, 0, 0, 0, 0.096, 0.803, 0.101, 0] [0, 0, 0, 0, 0, 0.572, 0.428, 0, 0] [0, 0, 0, 0, 0, 0.043, 0.957, 0, 0]

A4 [0, 0, 0, 0.49, 0, 0.51, 0, 0, 0] [0, 0, 0, 0.529, 0.471, 0, 0, 0, 0] [0, 0, 0, 0.49, 0.51, 0, 0, 0, 0]

Step 3) Collective decision rule. Assume linguistic quantifier “most” is utilized in this step. Since all the

three experts are equivalently important, the linguistic quantifier guided statement can be written as “most

experts are satisfied by the alternatives”. Accordingly, the collective overall random preferences of the four

alternatives can be obtained via (15) as

X1=[0, 0, 0, 0, 0.186, 0.241, 0.572, 0.001, 0], X2=[0, 0, 0, 0.494, 0.424, 0.083, 0, 0, 0]

X3=[0, 0, 0, 0, 0, 0.188, 0.806, 0.007, 0], X4=[0, 0, 0, 0.501, 0.465, 0.034, 0, 0, 0]

which are probability distributions over the linguistic term set S in (17).

Step 4) Choice function. With the choice criterion of stochastic dominance degree, it is easy to obtain

the choice values as V = (0.748, 0.196, 0.876, 0.180) via (16), which indicates that A3 � A1 � A2 � A4.

4.1.1. Solution based on two-tuple linguistic model

As reviewed in Subsec. 2.2, there are three types of approaches to decision making with single linguistic

terms, namely, the approximate one based on fuzzy extension principle, the symbolic one, and the two-tuple

linguistic model. Since it outperforms other linguistic models [51], the two-tuple linguistic model will be

used to compare with our approach and briefly recalled as follows.

In the two-tuple linguistic model, information is represented by means of two-tuples of the form (Sg, α),

where Sg ∈ S and α ∈ [−0.5, 0.5), i.e., linguistic information is encoded in the space S × [−0.5, 0.5). Under

such a representation, if a value representing the result of a linguistic aggregation operation, then the two-

tuple that expresses the equivalent information to β is obtained by means of the following transformation:

∆ : [0, G]→ S × [−0.5, 0.5)

β 7→ (Sg, α)
(18)
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with g = round(β) and α = β − g. Inversely, a linguistic two-tuple (Sg, α) ∈ S × [−0.5, 0.5) can be

equivalently represented by a numerical value in [0, G] by the following transformation

∆−1 : S × [−0.5, 0.5)→ [0, G]

(Sg, α) 7→ ∆−1(Sg, α) = g + α
(19)

Furthermore, traditional numerical aggregation operators have been extended for dealing with linguistic

two-tuples in [25, 30]. For example, let y = ((r1, α1), . . . , (rN , αN )) be a vector of linguistic two-tuples, the

two-tuple arithmetic mean is computed as

y = ∆

(
N∑
n=1

1

N
∆−1(rn, αn)

)
. (20)

The comparison of linguistic two-tuples is defined as follows. Let (Sg1 , α1) and (Sg2 , α2) be two linguistic

two-tuples, if g1 < g2, then (Sg1 , α1) is less than (Sg2 , α2); if g1 = g2,

• if α1 = α2, then (Sg1 , α1) and (Sg2 , α2) represent the same information;

• if α1 < α2, then (Sg1 , α1) is less than (Sg2 , α2);

• if α1 > α2, then (Sg1 , α1) is greater than (Sg2 , α2).

Now let us apply the two-tuple linguistic model to the above problem. For the sake of illustration,

linguistic quantifier “identity” is assumed in both the multi-attribute decision rule and the collective decision

rule. The procedure of the two-tuple linguistic model is summarized as follows.

Step 1) Conversion function. Transform the linguistic values in Table 2 into the form of two-tuples as

ykmn = (xkmn, 0), where m = 1, . . . ,M , n = 1, . . . , N , k = 1, . . . ,K.

Step 2) Multi-attribute decision rule. With the importance weights of attributes, the individual overall

performance values are defined as ykm = ∆(
∑N
n=1 µn ·∆−1(ykmn)) and obtained as follows.

y11 = (S6,−0.1323), y21 = (S7,−0.4376), y31 = (S6, 0.173)

y12 = (S5,−0.0985), y22 = (S5,−0.0553), y32 = (S5,−0.435)

y13 = (S7,−0.3101), y23 = (S6, 0.44), y33 = (S6, 0.0962)

y14 = (S5, 0.0216), y24 = (S4,−0.0769), y34 = (S4, 0.0889)

Step 3) Collective decision rule. With the importance weights of experts, the collective overall per-

formance values are defined as ym = ∆(
∑K
k=1 νk · ∆−1(ykm)) and obtained as y1 = (S6, 0.2011), y2 =

(S5,−0.1963), y3 = (S6, 0.4087), y4 = (S4, 0.3446).

Step 4) Choice function. According to the comparison rules of linguistic two-tuples, the ranking of the

four alternatives is A3 � A1 � A2 � A4.

4.1.2. Comparative analysis

With linguistic quantifier “identity” used in both the multi-attribute decision rule and the collective

decision rule, our approach derives the same ranking as the one generated by the two-tuple linguistic model.

Detailed comparisons will be conducted in terms of uniform scale, variation of individual opinions, weight

information, comprehension and interpretation, as summarized in Table 4.

• Uniform scale. The two-tuple linguistic model is not suitable to the case of asymmetric and unbal-

anced linguistic term set [51]. Instead, the strict constraint of symmetric and balanced linguistic term

set is released in our approach.
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Table 4: Comparative analysis of aggregation and exploitation: Single linguistic terms.

Criteria Two-tuple model Proposed approach

Uniform scale Uniform only Uniform or non-uniform

Variation of individual opinions No Yes

Weight information Extendable Both importance weights and fuzzy majority

Comprehension Easy to understand Understandable

Interpretation Fuzzy Probability

• Variation of individual opinions. Assume that the seven attributes are equivalently important,

i.e., µn = 1/7(n = 1, . . . , 7). Taking alternative A2 as an example, the results of the multi-attribute

decision rule yielded by the two-tuple linguistic model are y1
2 = (S5, 0.4286), y2

2 = (S5, 0), y3
2 = (S5, 0),

which indicate that experts E2 and E3 generate the same individual overall performance value as

(S5, 0). The results of the multi-attribute decision rule yielded by our approach are obtained as

X1
2=[0, 0, 0, 0.1429, 0.1429, 0.1429, 0.2857, 0.2857, 0]

X2
2=[0, 0, 0, 0, 0.2857, 0.4286, 0.2857, 0, 0]

X3
2=[0, 0, 0, 0.1429, 0.1429, 0.2857, 0.4286, 0, 0]

which indicate that experts E2 and E3 generate different individual overall random preferences. Thus,

the two-tuple linguistic model cannot capture such differences and variations.

• Weights information. Since the two-tuple linguistic model is based on term indices, which may be

viewed as crisp values [25, 30], the original WOWA operator introduced in Appendix C can be easily

extended for dealing with linguistic two-tuples. Our approach can directly take both the importance

weights and the fuzzy majority into account simultaneously.

• Comprehension and interpretation. The linguistic decision making falls into the process of CWW.

As mentioned by Mendel in [43], the output from CWW must be at least a word and not just a number.

The CWW also produces a decision or output based on these words. The two-tuple linguistic model

results with a linguistic two-tuple expressed by a linguistic term and a numerical value, which assign

(inherent) fuzzy semantics and syntax. Due to its straightforwardness, the result by the two-tuple

linguistic model is easy to understand. Our approach yields a probability distribution over a linguistic

term set, which reflects the uncertainty of decision making and is understandable by decision makers.

4.2. Qualitative MAGDM with flexible linguistic expressions

Now let us consider a qualitative MAGDM problem with flexible linguistic expressions: evaluation of

university faculty for tenure promotion [63]. The attributes used at some universities were: C1–teaching,

C2–research, and C3–service, whose importance weighting vector was µ = (0.4, 0.3, 0.3). There were five

candidates A = {A1, A2, A3, A4, A5} to be evaluated. A set of three experts E = {E1, E2, E3} was selected

and asked to evaluate the alternatives on the seven attributes with the following linguistic term set

S = {S0 = Nothing, S1 = Very low, S2 = Low, S3 = Medium, S4 = High, S5 = Very high, S6 = Perfect}, (21)

the decision matrix is shown in Table 5. The procedure of our approach is summarized as follows.

Step 1) Random preference derivation. From the information given to the problem, we obtain an individ-

ual random preference for each alternative on each attribute with respect to each expert via (3). For example,

the evaluation of candidate A1 on attribute C1 with respect to expert E1 is {S4, S5}, which generates the

individual random preference as X1
11 = [0, 0, 0, 0, 0.5, 0.5, 0].
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Table 5: Decision matrix with flexible linguistic expressions: The tenure promotion [63].

Experts Candidates Attributes C
E A C1 C2 C3

E1

A1 {S4, S5} S3 S4

A2 S2 S5 S3

A3 S1 {S3, S4} {S1, S2}
A4 {S5, S6} S4 S3

A5 S1 {S1, S2} S5

E2

A1 {S5, S6} S2 {S3, S4}
A2 {S3, S4} {S4, S5} S2

A3 S2 {S2, S3} S1

A4 {S5, S6} {S4, S5, S6} {S3, S4, S5}
A5 S2 S1 S4

E3

A1 S5 {S4, S5} S6

A2 S4 {S3, S4} S3

A3 S3 {S1, S2} S2

A4 S5 S6 S4

A5 {S1, S2} S3 S4

Table 6: Results of multi-attribute decision rule under linguistic quantifier “identity”: The tenure promotion.

Candidates
Experts

E1 E2 E3

A1 [0, 0, 0, 0.3, 0.5, 0.2, 0] [0, 0, 0.3, 0.15, 0.15, 0.2, 0.2] [0, 0, 0, 0, 0.15, 0.55, 0.3]

A2 [0, 0, 0.4, 0.3, 0, 0.3, 0] [0, 0, 0.3, 0.2, 0.35, 0.15, 0] [0, 0, 0, 0.45, 0.55, 0, 0]

A3 [0, 0.55, 0.15, 0.15, 0.15, 0, 0] [0, 0.3, 0.55, 0.15, 0, 0, 0] [0, 0.15, 0.5, 0.4, 0, 0, 0]

A4 [0, 0, 0, 0.3, 0.3, 0.2, 0.2] [0, 0, 0, 0.1, 0.2, 0.4, 0.3] [0, 0, 0, 0, 0.3, 0.4, 0.3]

A5 [0, 0.55, 0.15, 0, 0, 0.3, 0] [0, 0.3, 0.4, 0, 0.3, 0, 0] [0, 0.2, 0.2, 0.3, 0.3, 0, 0]

Step 2) Multi-attribute decision rule. Similar with [63], linguistic quantifier “identity” is used in this

step. The individual overall random preferences are obtained via (13) and shown in Table 6, each of which

is a probability distribution over the linguistic term set S.

Step 3) Collective decision rule. Since the importance weights of the three experts were not provided

in this example, it is natural to assume that the three experts are equivalently important such that ν =

(1/3, 1/3, 1/3). Similar with [63], linguistic quantifier “as many as possible” is utilized in this step. Then,

the linguistic statement can be written as “as many as possible experts are satisfied by the candidates”. We

can obtain the collective overall random preferences via (15) as follows.

X1=[0, 0, 0.1, 0.25, 0.3833, 0.2, 0.0667], X2=[0, 0, 0.3667, 0.2667, 0.1167, 0.25, 0],

X3=[0, 0.4667, 0.2833, 0.15, 0.1, 0, 0], X4=[0, 0, 0, 0.2333, 0.2667, 0.2667, 0.2333],

X5=[0, 0.4667, 0.2333, 0, 0.1, 0.2, 0].

Step 4) Choice function. According to the choice criterion of stochastic dominance degree, it is easy to

obtain a vector of choice values via (16) as V = (0.6677, 0.5248, 0.2016, 0.7987, 0.3072), which indicates that

A4 � A1 � A2 � A5 � A3.

4.2.1. Solutions based on existing studies

As a comparative analysis, we briefly recall four existing methods: interval linguistic model [46, 53, 69],

fuzzy envelope model [40], symbolic hesitant model [63], and possibility distribution based model [67].
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(1) Interval linguistic model. The two-tuple linguistic model has been applied to (MA)GDM with

HFLTSs [46, 53]. Xu in [69] has proposed an interval linguistic MAGDM model, which involves both the

importance weights and fuzzy majority. To be consistent with the comparison study of MAGDM with

single linguistic terms, the two-tuple linguistic model will be incorporated into the interval linguistic model,

summarized as follows.

Step 1) Conversion function. The HFLTS is transformed into a linguistic interval in terms of two-tuples,

denoted as ykmn = [ykmn(L), ykmn(R)]. For example, the evaluation of candidate A4 on attribute C2 with

respect to expert E2 was provided as {S4, S5, S6} and transformed into [(S4, 0), (S6, 0)].

Step 2) Multi-attribute decision rule. With the importance weights of attributes and linguistic quantifier

“identity”, the individual overall linguistic intervals are derived via the uncertain hybrid linguistic average

operator and obtained as follows.

A1: y11 = [(S4,−0.3), (S4, 0.1)], y21 = [(S4,−0.5), (S4, 0.2)], y31 = [(S5, 0), (S5, 0.3)]

A2: y12 = [(S3, 0.2), (S3, 0.2)], y22 = [(S3, 0), (S4,−0.3)], y32 = [(S3, 0.4), (S4,−0.3)]

A3: y13 = [(S2,−0.4), (S2, 0.2)], y23 = [(S2,−0.3), (S2, 0)], y33 = [(S2, 0.1), (S2, 0.4)],

A4: y14 = [(S4, 0.1), (S5,−0.5)], x24 = [(S4, 0.1), (S6,−0.3)], y34 = [(S5, 0), (S5, 0)],

A5: y15 = [(S2, 0.2), (S3,−0.5)] y25 = [(S2, 0.3), (S2, 0.3)] y35 = [(S3,−0.5), (S3,−0.1)]

Step 3) Collective decision rule. With the importance weights of experts and linguistic quantifier “as

many as possible”, the collective overall linguistic intervals are derived via the uncertain hybrid linguistic

average operator and obtained as follows.

y1=[(S4,−0.4333), (S4, 0.1667)], y2=[(S3, 0.1333), (S4,−0.3)], y3=[(S2,−0.3333), (S2, 0.0667)],

y4=[(S5,−0.3), (S5,−0.1667)], y5=[(S2, 0.4333), (S3,−0.3)].

Step 4) Choice function. A possibility based method is defined to rank the linguistic intervals as follows.

Poss(ym ≥ yl) = min

{
max

(
∆−1(ym(R))−∆−1(yl(L))

∆−1(ym(R))−∆−1(ym(L)) + ∆−1(yl(R))−∆−1(yl(L))
, 0

)
, 1

}
, (22)

wherem, l = 1, . . . ,M . By pairwise comparisons, the choice values are derived as (3.3857, 2.6143, 0.5, 4.5, 1.5),

which indicates A4 � A1 � A2 � A5 � A3.

(2) Fuzzy envelope model. Liu and Rodŕıguez [40] have developed a fuzzy envelope model, in which the

linguistic terms in an HFLTS are aggregated into a fuzzy envelope based on the extension principle. The

following fuzzy numbers are used to represent the fuzzy semantics of the linguistic term set in (21).

S = {(0, 0, 0.17), (0, 0.17, 0.33), (0.17, 0.33, 0.5), (0.33, 0.5, 0.67), (0.5, 0.67, 0.83), (0.67, 0.83, 1), (0.83, 1, 1)}. (23)

Here, the fuzzy envelope model is revised to fit our context as follows.

Step 1) Aggregation function. Aggregate the linguistic terms in an HFLTS into a fuzzy envelope based

on the fuzzy numbers defined in (23). The fuzzy envelope is a trapezoidal fuzzy number such that ỹkmn =

(akmn, b
k
mn, c

k
mn, d

k
mn). For example, the evaluation of candidate A1 on attribute C1 with respect to expert

E1 was provided as {S4, S5} and is transformed into a fuzzy envelope as ỹ1
11 = (0.5, 0.67, 0.83, 1.0).

Step 2) Multi-attribute decision rule. With the importance weights of attributes, the individual overall

fuzzy envelopes are defined as ỹkm =
∑N
n=1 µn · ỹkmn. For example, the individual overall fuzzy envelope of

alternative A1 with respect to expert E1 is derived as ỹkm = (0.50, 0.619, 0.683, 0.85).

Step 3) Collective decision rule. With the importance weights of experts, the collective overall fuzzy en-

velopes of the four alternatives are defined as ỹm =
∑K
k=1 νk·ỹkm and obtained as ỹ1 = (0.511, 0.697, 0.755, 0.883),

ỹ2 = (0.366, 0.533, 0.589, 0.755), ỹ3 = (0.134, 0.300, 0.366, 0.533), ỹ4 = (0.567, 0.803, 0.832, 0.933), ỹ4 =

(0.223, 0.390, 0.428, 0.593).

Step 4) Choice function. Obtain the distances of each alternative relative to the fuzzy positive ideal

solution and fuzzy negative ideal solution, respectively. The closeness indices are calculated as CC1 =

0.711,CC2 = 0.561,CC3 = 0.333,CC4 = 0.784,CC5 = 0.409, which indicate A4 � A1 � A2 � A5 � A3.
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(3) Symbolic hesitant model. Recently, Wei et al. in [63] have proposed operators and comparisons of

HFLTSs. According to different situations where importance weights are known or unknown, the hesitant

linguistic WA operator or the hesitant linguistic OWA operator is used, which is summarized as follows.

Step 1) Multi-attribute decision rule. Since the importance weights of attributes are provided, the hesitant

linguistic WA operator is utilized to derive the individual overall HFLTSs of the five candidates with respect

to the three experts and obtained as follows.

E1: H1
1 = {S4}, H1

2 = {S3}, H1
3 = {S2}, H1

4 = {S4, S5}, H1
5 = {S2, S3}

E2: H2
1 = {S4}, H2

2 = {S3, S4}, H2
3 = {S2}, H2

4 = {S4, S5, S6}, H2
5 = {S3}

E3: H3
1 = {S5, S6}, H3

2 = {S3, S4}, H3
3 = {S2}, H3

4 = {S5}, H3
5 = {S3}

Step 2) Collective decision rule. Since the weights of experts are unknown, the hesitant linguistic OWA

operator with linguistic quantifier “as many as possible” is used to derive the collective overall HFLTSs of

the five candidates and obtained as H1 = {S4}, H2 = {S3}, H3 = {S2}, H4 = {S4, S5}, H5 = {S2, S3}.
Step 3) Choice function. With a possibility based method to compare the HFLTSs using the term indices,

the ranking of the five candidates is obtained as A4 � A1 � A2 � A5 � A3.

(4) Possibility distribution based model. Wu and Xu in their very recent pioneering work [67] have

proposed a possibility distribution based hesitant linguistic model. Let H = {SL, . . . , SR} be an HFLTS

with several possible linguistic terms, where SL and SR are the lower and upper bounds of H, respectively.

Then a possibility distribution Π = [π(S0), . . . , π(SG)] is generated from the H, defined as

π(Sg) =

{
1

R−L+1 , if g = L,L+ 1, . . . , R;

0, otherwise.
(24)

Based on this possibility distribution, the mean and variance values of the possibility distribution Π are

used to compare and rank the possibility distributions, defined as follows.

EV =

G∑
g=0

g · π(Sg), Var =

G∑
g=0

(g − EV)2 · π(Sg) (25)

Given two HFLTSs, H1 and H2, the comparison of H1 over H2 is performed by the following formulas.

• If EV1 < EV2, then H1 < H2.

• If EV1 = EV2, then (1) if Var1 < Var2, then H1 > H2; (2) if Var1 = Var2, then H1 = H2.

Then, the procedure of the possibility distribution based model is summarized as follows.

Step 1) Conversion function. The flexible linguistic expressionHkmn is transformed into the corresponding

possibility distribution Πk
mn via (24), where m = 1, . . . ,M, n = 1, . . . , N, k = 1, . . . ,K.

Step 2) Multi-attribute decision rule. Since the importance weights of attributes are provided, a hesitant

linguistic WA operator is utilized to derive the individual overall performance Πk
m, where m = 1, . . . ,M, k =

1, . . . ,K. The mean and variance values in (25) are used to permutate the possibility distributions.

Step 3) Collective decision rule. Since the importance weights of experts are unknown, a hesitant

linguistic OWA operator is used to derive the collective overall performance Πm, where m = 1, . . . ,M . The

mean and variance values in (25) are used to permutate the possibility distributions.

Step 4) Choice function. By the mean and variance values of the possibility distributions in (25), the

choice values with respect to the five candidates are obtain as follows.

EV1 = 3.8667 EV2 = 3.25 EV3 = 1.8667 EV4 = 4.5 EV5 = 2.3167

Var1 = 1.7156 Var2 = 1.4208 Var3 = 0.7156 Var4 = 1.1833 Var5 = 1.9831

which generate the ranking list as A4 � A1 � A2 � A5 � A3.
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Table 7: Comparative analysis of aggregation and exploitation: Flexible linguistic expressions.

Criteria Our approach Interval linguistic

model

Fuzzy envelope

model

Symbolic hesitant

model

Possibility distribu-

tion based model

Uniform scale Uniform or non-

uniform

Uniform only Uniform or

non-uniform

Uniform only Uniform only

Quantification No need No Need Need No need No need

Variation of individual

opinions

Yes No Yes No Yes

Weight information Both importance

weights and fuzzy

majority

Both importance

weights and fuzzy

majority

Only impor-

tance weights

Either impor-

tance weights or

fuzzy majority

Either importance

weights or fuzzy

majority

Comprehension Easy to under-

stand

Easy to under-

stand

Difficult to un-

derstand

Understandable Easy to understand

Interpretation Probability Fuzzy Fuzzy HFLTS Possibility

4.2.2. Comparative analysis

It is obvious that the ranking result generated by our approach is consistent with the ones generated

by the four existing approaches. Comparisons with the four approaches will be conducted in terms of

uniform scale, quantification of qualitative concepts, variations of individual opinions, weight information,

comprehension and interpretation, as summarized in Table 7.

• Uniform scale.

– Our approach can deal with uniform or non-uniform linguistic term set, since it is based on the

ordinal semantics of linguistic term set. The fuzzy envelope model is also suitable to the uniform

or non-uniform scale since it makes computations on the fuzzy numbers.

– The revised interval linguistic model is based on the two-tuple linguistic model, which is strictly

constrained by the symmetric and balanced linguistic term set. Therefore, the interval linguistic

model is only suitable to the uniform scale. The symbolic hesitant model makes operations and

comparisons based on the term indices, which is only suitable to the uniform scale. The possibility

distribution based model is also based on the indices of linguistic terms. As pointed out by the

authors in [67, Discussion part], a drawback of the possibility distribution based model is that it

depends on the numerical scale of a linguistic term set. If the linguistic term set is uniformly and

symmetrically distributed, it is easy to get the numerical scale; otherwise, it has proved difficult.

• Quantification.

– Similar with the approximate model based on the extension principle in the context of decision

making with single linguistic terms, the fuzzy envelope model makes operations on fuzzy numbers

that support the fuzzy semantics of linguistic terms, which will create the burden of quantifying

a qualitative concept [25, 29] and complex mathematical computations [78].

– Our approach eliminates the burden of quantifying a qualitative concept, since it is based on the

ordinal semantics of the linguistic term set. There is no need to quantify a qualitative concept

in the revised interval linguistic model, symbolic hesitant model, and the possibility distribution

based model, since they are based on the term indices.

• Variation of individual opinions.
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– As already illustrated in Subsubsec. 4.1.2, the two-tuple linguistic model cannot reflect the varia-

tions and differences of individual opinions. The revised interval linguistic model cannot capture

such variations and differences, since it is based on the two-tuple linguistic model. The symbolic

hesitant model [63] is similar with the symbolic model [3, 8], and consequently will generate the

problems of information loss and lack of precision. Moreover, this model cannot represent the

differences and variations of individual opinions. For example, the aggregation results of candi-

date A1 with respect to experts E1 and E2 after the multi-attribute decision rule are H1
1 = {S4}

and H2
1 = {S4}, respectively. In other words, there is no difference between the aggregated result

of A1 under E1 and the one under E2. However, the information in Table 5 is quite different and

our approach generates the individual overall random preferences as X1
1 = [0, 0, 0, 0.3, 0.5, 0.2, 0]

and X2
1 = [0, 0, 0.3, 0.15, 0.15, 0.2, 0.2], which are quite different.

– Our approach can represent the variations and differences of individual opinions. The fuzzy

envelope model can also capture such variations and difference, since it makes computations

on fuzzy numbers associated with the linguistic terms. The possibility distribution based model

derives a possibility distribution from an HFLTS and thus can reflect the variations and differences

of individual opinions.

• Weight information.

– The importance weights and fuzzy majority are incorporated into both our approach and the

revised interval linguistic model simultaneously.

– The fuzzy envelope model only considers the importance weights, it cannot take the fuzzy majority

into account. Both the symbolic hesitant model and possibility distribution based model can

model either the importance weights or the fuzzy majority in linguistic MAGDM; unfortunately,

they cannot take both of them into account simultaneously.

• Comprehension and interpretation.

– The fuzzy envelope model results with a fuzzy number, where the accuracy outweighs inter-

pretability; thus the result of this model is difficult to understand. The symbolic hesitant model

results with an HFLTS which has a subset of linguistic terms without numerical values; the result

of this model is not easy to understand.

– Our approach results with a probability distribution over the linguistic term set, which involves

several linguistic terms and their associated probabilities. The interval linguistic model results

with a linguistic interval expressed by linguistic two-tuples, which assign fuzzy semantics and

syntax. The possibility distribution based model results with a possibility distribution over the

linguistic term set, which involves several linguistic terms and their associated possibilities. The

results of our approach, interval linguistic model, and the possibility distribution based model

are easy to understand.

4.3. Summary

As a conclusion, our approach to the procedure of aggregation and exploitation performs computations

based on the ordinal semantics of linguistic information and the probability distributions over the linguistic

term set, it is quite natural in terms of interpretation. As such, the strict constraint of symmetric and

balanced linguistic term set can be released. The quantification of qualitative concepts can also be eliminated.

Moreover, it can capture the differences and variations of individual opinions as well as incorporates both

the importance weights and the concept of fuzzy majority simultaneously. Compared with the two-tuple

linguistic model in the context (MA)GDM with single linguistic terms, the result of our approach is a little
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complex and understandable. However, in the context of (MA)GDM with flexible linguistic expressions, our

approach may be the most suitable one. Finally, it can be easily seen that a unified approach is provided to

qualitative MAGDM with both single linguistic terms and flexible linguistic expressions.

5. Consensus measure: A probability based approach

Recently, evaluating the effect of linguistic MAGDM has become an important research topic [48, 58].

Effective decision making indices are required to evaluate the results of MAGDM with linguistic expres-

sions [67]. It is very rare when all experts in a group share the same opinion about the alternatives, since

a diversity of opinions commonly exists. The consensus reaching process is a necessity of all (MA)GDM

processes, because to achieve a general consensus about selected options is a desirable goal. Consensus is

traditionally meant as a full and unanimous agreement of all individuals’ opinions, which is an ideal con-

sensus and very difficult to achieve. It is thus quite natural to look for the highest consensus, that is, the

maximum possible consensus. Consensus makes it possible for a group to reach a final decision that all group

members can support among these differing opinions. There are two categories for computing consensus

measures [67]: (1) consensus measure between individual and collective preferences [48, 58]; (2) consensus

measure among the experts [17, 67]. This paper follows the former definition for the consensus measure.

In this section, based on the procedure of aggregation and exploitation introduced in Sec. 3, a probability

based approach is proposed to evaluate the consensus degree in MAGDM with linguistic expressions.

5.1. A probability based approach to consensus measure

Based on the proposed approach to aggregation and exploitation introduced in Sec. 3, the concept of

deviation degree of any two random preferences will be first presented and defined as follows.

Definition 6. Let X1 and X2 be two independent discrete random variables with respective probability dis-

tributions p1 and p2 defined over a finite and totally ordered discrete linguistic term set S = {S0, S1, . . . , SG}
with S0 < S1 < · · · < SG, where

G∑
g=0

p1 (Sg) = 1 and

G∑
g=0

p2 (Sg) = 1.

Based on the concept of stochastic dominance introduced in Appendix A, the stochastic dominance degrees

of X1 over X2 and X2 over X1 are derived as{
D12 = Pr(X1 ≥ X2)− 0.5 Pr(X1 = X2)

D21 = Pr(X2 ≥ X1)− 0.5 Pr(X2 = X1)
(26)

which have the following properties: (1) D12 +D21 = 1; (2) 0 ≤ D12 ≤ 1; (3) 0 ≤ D21 ≤ 1.

Then, the deviation degree of X1 relative to X2 is defined as

Dev(X1, X2) = |D12 −D21|
, |Pr(X1 ≥ X2)− Pr(X2 ≥ X1)|

(27)

Based on the properties of the stochastic dominance introduced in Appendix A, it is easily to obtain the

following properties of the deviation degree:

(1) 0 ≤ Dev(X1, X2) ≤ 1;

(2) Dev(X1, X2) = 1 =⇒ Pr(X1 ≥ X2) = 1 or Pr(X2 ≥ X1) = 1;

(3) Dev(X1, X2) = 0⇐⇒ X1 = X2, i.e., the deviation degree between X1 and X2 is zero if and only if X1

is equivalent to X2; and
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(4) Dev(X1, X2) = Dev(X2, X1).

We now present a new consensus measure based on the deviation degree of any two random preferences.

After the multi-attribute decision rule in Subsec. 3.2, expert Ek generates an individual overall random

preference for alternative Am such that

Xk
m = [pkm(S0), pkm(S1), . . . , pkm(SG)],

where m = 1, . . . ,M, k = 1, . . . ,K. Also, after the collective decision rule in Subsec. 3.3, a collective overall

random preference with respect to alternative Am is obtain as

Xm = [pm(S0), pm(S1), . . . , pm(SG)],

where m = 1, . . . ,M. We now present the definition of consensus degree between individual and collective

overall random preferences as follows.

Definition 7. Let Xk
m be the individual overall random preference of alternative Am with respect to expert

Ek, and Xm be the collective overall random preference of alternative Am, respectively. Then, the individual

consensus degree of Xk
m relative to Xm is defined by

ρmk = 1−Dev
(
Xk
m, Xm

)
= 1−

∣∣Pr
(
Xk
m ≥ Xm

)
− Pr

(
Xm ≥ Xk

m

)∣∣ (28)

where m = 1, . . . ,M, k = 1, . . . ,K.

Such a consensus measure between Xk
m and Xm is also based on the deviation degree and has a definite

implication. Obviously, the smaller the value of Dev(Xk
m, Xm), the greater the value ρmk, and the more

similar these two random preferences Xk
m, Xm. Since Dev(Xk

m, Xm) ∈ [0, 1], it is easy to get ρmk ∈ [0, 1]. It

is easily found that:

• if ρmk = 1, then expert Ek fully agrees with the collective overall random preference with respect to

alternative Am, which indicates that there is no difference between Xk
m and Xm such that Xk

m = Xm;

• if ρmk = 0, then expert Ek fully disagrees with the collective overall random preference with respect

to alternative Am, i.e., the two random preferences Xk
m and Xm are absolutely different such that

Pr
(
Xk
m ≥ Xm

)
= 1 or Pr

(
Xm ≥ Xk

m

)
= 1.

Next, we aggregate these individual consensus degrees to obtain an individual overall consensus degree

of each expert relative to the collective overall random preference, defined as follows.

Definition 8. Let (ρ1k, ρ2k, . . . , ρMk) be a vector of individual consensus degrees of expert Ek with respect

to the M alternatives, then the individual overall consensus degree of expert Ek relative to the collective

overall random preferences is defined as

ρk =
1

M

M∑
m=1

ρmk, (29)

where k = 1, . . . ,K. It is obvious that ρk ∈ [0, 1] is also based on the concept of deviation degree between

two random preferences. Moreover, the closer ρk to 0, the poorer the consensus; conversely, the closer ρk to

1, the better the consensus. In particular, if ρk = 1, expert Ek can be said to fully agree with the collective

overall random preferences.

Recall that the set of experts is associated with an importance weighting vector (ν1, ν2, . . . , νK). More-

over, the concept of fuzzy majority is also incorporated in the collective decision rule. Similar with the

decision rule in Sec. 3, the linguistic quantifier guided collective decision rule with respect to the consensus

measure can be verbally expressed as
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“The collective random preferences are agreed by Q (of) important experts.” (F3)

In the following, we present the definition of collective overall consensus degree based on the WOWA

operator.

Definition 9. Let (ρ1, ρ2, . . . , ρK) be the vector of individual overall consensus degrees with respect to the

set of experts E = {E1, E2, . . . , EK}. Let ν = (ν1, ν2, . . . , νK) be the importance weights associated with

the experts, and Q be a linguistic quantifier used in the collective decision rule. Then the collective overall

consensus degree is obtained as

ρ = FQWOWA(ρ1, ρ2, . . . , ρK ; ν1, ν2, . . . , νK)

=

K∑
k=1

ρσ(k) ·

Q
∑
l≤k

νσ(l)

−Q(∑
l<k

νσ(l)

) (30)

where (ρσ(1), ρσ(2), . . . , ρσ(K)) is the permutation of (ρ1, ρ2, . . . , ρK) such that ρσ(k−1) ≥ ρσ(k) for all k =

2, . . . ,K. The value νσ(k) means the permutation of (ν1, ν2, . . . , νK) according to the permutated vector of

individual overall consensus degrees
(
ρσ(1), ρσ(2), . . . , ρσ(K)

)
.

With respect to the consensus analysis of the evaluation results, the experts may assign a consensus level

required for the solution in advance [28]. This analysis is intended to make consistent decisions [58, 67].

When the consensus degree obtained in the analysis reaches the consensus level, the evaluation results are

sufficiently accurate and reliable for consistent decision making [58], i.e., the consensus reaching process is

completed if the experts accept the evaluation results. If this is not the case, the process must return to

the initial stage to gather additional information on the evaluation problem, i.e., to revise the linguistic

judgements or change the linguistic quantifiers.

5.2. Comparative analysis of consensus measure: MAGDM with single linguistic terms

In this section, the MAGDM example with single linguistic terms [64] in Subsec. 4.1 will be used to

illustrate the effectiveness and efficiency of the our consensus measure by comparisons with existing studies.

First, let us consider the consensus measure of the example used in Subsec. 4.1 by our approach. With

linguistic quantifier “as many as possible” in the multi-attribute decision rule, the individual overall random

preferences are shown in Table 3.

Step 1) As for the collective decision rule where linguistic quantifier “most” is used, the collective overall

random preferences can be obtained. The individual overall consensus degrees of the three experts relative

to the collective overall random preferences are derived via (28)-(29) and obtained as ρ1 = 0.8312, ρ2 =

0.7217, ρ3 = 0.9420.

Step 2) With the importance weights of the three experts ν = (1/3, 1/3, 1/3) and the linguistic quantifier

“most” in the collective decision rule, we can obtain the collective overall consensus degree via (30) as 0.8094.

With combinations of different quantifiers in the processes of multi-attribute decision rule and collective

decision rule, different collective overall consensus degrees can be obtained, as shown in Table 8. Suppose

the set of experts has assigned a consensus level CL, if 0.8094 ≥ CL, then the consensus reaching process

is completed since the three experts accept the evaluation results. Otherwise, this decision problem has to

return back to the initial stage to gather additional information on the evaluation problem. The experts

may revise their evaluations on the performances of alternatives or change the linguistic quantifiers.

5.2.1. Consensus degrees based on existing approaches

Here, we shall briefly recall two existing methods using term indices: Pang and Liang [48]’s measure

(Pang-Liang for short) and Sun and Ma [58]’s measure (Sun-Ma for short). The results yielded by the two-

tuple linguistic model in Subsubsec. 4.1.1 are used, where the individual overall performance with respect to
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Table 8: Collective overall consensus degrees under different scenarios: The risk investment problem.

Multi-attribute Collective decision rule

decision rule There exist At least half Identity Most As many as possible For all

There exist 0.75 0.6389 0.5556 0.6156 0.4167 0.25

At least half 0.7787 0.7072 0.6905 0.6809 0.547 0.441

Identity 0.895 0.8639 0.8696 0.8689 0.797 0.7438

Most 0.7902 0.7537 0.7765 0.7988 0.6975 0.667

As many as possible 0.8006 0.825 0.8112 0.8094 0.7616 0.7488

For all 1.0 0.8889 0.8889 0.9256 0.8333 0.75

expert Ek is obtained as
(
yk1 , y

k
2 , . . . , y

k
M

)
and the collective overall performance is derived as (y1, y2, . . . , yM ),

respectively. Then, the consensus measures by Pang-Liang [48] and Sun-Ma [58] are summarized as follows.

(1) Pang-Liang’s measure [48]

Step 1) The individual overall consensus degree of expert Ek relative to the collective overall performance

is defined as

ρk =

√∑M
m=1 (δkm − |S| − 1)

2√∑M
m=1 (δkm − |S| − 1)

2
+
√∑M

m=1 (δkm)
2

(31)

where δkm is the absolute difference between ykm and ym such that δkm = |∆−1(ykm) −∆−1(ym)|, and |S| is

the cardinality of the linguistic term set S. The individual overall consensus degrees of the three experts

are obtained as ρ1 = 0.9497, ρ2 = 0.9644, ρ3 = 0.9707.

Step 2) The collective overall consensus degree is defined as ρ =
∑K
k=1 ρk ·νk and obtained as ρ = 0.9616.

(2) Sun-Ma’s measure [58]

Step 1) To derive the min and max information for the individual and collective overall performance as

ykm(min) = min
{
ykm|m = 1, . . . ,M

}
, ykm(max) = max

{
ykm|m = 1, . . . ,M

}
ym(min) = min {ym|m = 1, . . . ,M} , ym(max) = max {ym|m = 1, . . . ,M}

(32)

where k = 1, . . . ,K.

Step 2) The individual overall consensus degree of expert Ek relative to the collective overall performance

is defined as ρk = 1−
∣∣∣Possykm≥ym − Possym≥ykm

∣∣∣ , where

Possykm≥ym = min

{
1,max

{
∆−1(ykm(max))−∆−1(ym(min))

∆−1(ykm(max))−∆−1(ykm(min)) + ∆−1(ym(max))−∆−1(ym(min))

}}
, (33)

the value Possykm≥ym means the possibility that the individual overall performance ykm is greater than or

equal to collective overall performance ym. The individual overall consensus degrees of the three experts are

obtained as ρ1 = 0.7824, ρ2 = 0.9431, ρ3 = 0.8816.

Step 3) The collective overall consensus degree is defined as ρ =
∑K
k=1 ρk · νk and obtained as ρ = 0.869.

5.2.2. Comparative analysis

When linguistic quantifier “identity” is used by both the multi-attribute decision rule and collective

decision rule in our approach, the collective overall consensus degree is obtained as ρ = 0.8696 (see Table 8),

which is almost the same as the one generated by Sun-Ma’s measure. Whereas, the consensus degree

generated by Pang-Liang’s measure is higher with a degree 0.9616. Comparisons with these two existing

consensus measures will be conducted in terms of uniform scale, variation of individual opinions, and weight

information, as summarized in Table 9.
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Table 9: Comparative analysis of consensus measure: Single linguistic terms.

Criteria Pang-Liang [48] Sun-Ma [58] Our measure

Uniform scale Uniform only Uniform only Uniform or non-uniform

Variation of individual opinions No No Yes

Weight information Only importance weights Only importance weights Both importance weights

and fuzzy majority

• (1) Uniform scale. The above two consensus measures are based on the distance function of linguistic

two-tuples by using term indices. Since the two-tuple model is strictly constrained by the uniform scale,

these two consensus measures are only suitable to the uniform scale. Moreover, Pang-Liang’s measure

depends heavily on the cardinality of the linguistic term set.

• (2) Variation of individual opinions. In the above two consensus measures, the individual and

collective overall performance values are expressed in terms of linguistic two-tuples, which cannot

represent the differences and variations of individual opinions. Therefore, these two consensus measures

can not capture such differences and variations.

• (3) Weight information. Both of these two approaches neglect the concept of fuzzy majority in the

consensus measure.

Instead, our consensus measure can release the constraint of uniform scale, represent differences and varia-

tions of individual opinions, and take both the importance weights and fuzzy majority into account.

5.3. Comparative analysis of consensus measure: MAGDM with flexible linguistic expressions

In this section, the MAGDM example [63] with flexible linguistic expressions in Subsec. 4.2 will be

utilized to illustrate the effectiveness and efficiency of the proposed consensus measure by comparisons with

existing studies. First, let us consider the consensus measure of the example in Subsec. 4.2 by our approach.

Step 1) With the importance weights of attributes and linguistic quantifier “identity” in the multi-

attribute decision rule, the individual and collective overall random preferences can be obtained. Then,

the individual overall consensus degrees of the three experts are derived via (28)-(29) as ρ1 = 0.9603, ρ2 =

0.9207, ρ3 = 0.6798.

Step 2) With the importance weights of experts and linguistic quantifier “as many as possible” in the

collective decision rule, we can obtain the collective overall consensus degree via (30) as 0.7601, which is

quite low.

5.3.1. Consensus measure based on existing approaches

In the literature, different consensus measures have been proposed in different research contexts [e.g.,

48, 58, 66, 67]. There is no direct consensus measure between individual and collective preferences in our

context of MAGDM with flexible linguistic expressions. To illustrate the effectiveness and efficiency of our

proposed measure, two consensus measures [67, 68] will be used and slightly revised to fit our context.

(1) Consensus measure based on interval linguistic model. Xu et al. in [68] have built their consen-

sus measure based on the deviation degree of any two linguistic intervals. In their measure, the smaller the

deviation degree, the higher consensus degree. With the results obtained by the interval linguistic model in

Subsubsec. 4.2.1, Xu et al.’s deviation measure is used to build the consensus measure and summarized as

follows.

28



Table 10: Comparative analysis of consensus measure: Flexible linguistic expressions.

Criteria Xu et al.’s measure [68] Wu and Xu’s measure [67] Our measure

Uniform scale Uniform only Uniform only Uniform or non-uniform

Variation of individual opinions No Yes Yes

Weight information Only importance weights Only importance weights Both importance weighs and

fuzzy majority

Step 1) The individual overall deviation degree of expert Ek relative to the collective overall performance

is defined as

Devk =
1

M

M∑
m=1

Dev
(
ykm, ym

)
, (34)

where k = 1, . . . ,K, and

Dev
(
ykm, ym

)
=

∣∣∆−1(ykm(L))−∆−1(ym(L))
∣∣+
∣∣∆−1(ykm(R))−∆−1(ym(R))

∣∣
2|S| (35)

By this, the individual overall deviation degrees of the three experts are obtained as Dev1 = 0.16667,Dev2 =

0.1667,Dev3 = 0.3095. It is easily seen that Dev1 = Dev2 < Dev3, whereas our approach generates ρ1 >

ρ2 > ρ3. In this sense, our approach provides more differentiated information than the consensus measure

based on the deviation degree of interval linguistic information.

Step 2) The collective overall deviation degree is defined as Dev =
∑K
k=1 Devk ·νk and obtained as 0.2143.

(2) Consensus measure based on possibility distribution model. Wu and Xu in [67] have built the

consensus measure based on the similarity between two possibility distributions.

Step 1) The individual overall similarity degree of expert Ek relative to the collective overall performance

is defined as

ρk =
1

M

M∑
m=1

ρmk, k = 1, . . . ,K, (36)

where

ρmk = 1− 1

G

∣∣∣∣∣
G∑
g=0

g · πkm(Sg)−
G∑
g=0

g · πm(Sg)

∣∣∣∣∣ (37)

By this, the individual overall similarity degrees of the three experts are obtained as ρ1 = 0.9883, ρ2 =

0.9817, ρ3 = 0.905, which is consistent with ranking list generated by our approach, i.e., ρ1 > ρ2 > ρ3.

Step 2) The collective overall similarity degree is defined as ρ =
∑K
k=1 ρk ·νk and obtained as ρ = 0.9583.

5.3.2. Comparative analysis

It is seen that the collective overall consensus degree obtained by Wu and Xu’s measure [67] is much higher

than the ones derived by our consensus measure and the one based on interval linguistic model. Comparisons

with these two existing measures are conducted in terms of uniform scale, variation of individual opinions,

and weight information, as summarized in Table 10. The above two measures are based on the distance

function of linguistic values by using term indices. It can be easily concluded that these two consensus

measures are strictly constrained by the symmetric and balanced linguistic term set. Xu et al.’s measure

cannot reflect the difference and variation of individual opinions, since it is based on the two-tuple linguistic

model. Wu and Xu’s measure can capture such difference and variation since it is based on the possibility

distribution over the linguistic term set. Finally, these two measures neglect the concept of fuzzy majority.
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5.4. Summary

As a conclusion, our consensus measure performs computations based on the ordinal semantics of lin-

guistic information and probability distributions over the linguistic term set. As such, the strict constraint

of symmetric and balanced linguistic term set can be released. Our consensus measure can capture the

difference and variation of individual opinions as well as incorporate both the importance weights and

the concept of fuzzy majority. Finally, it is easily seen that a unified consensus measure is proposed for

qualitative MAGDM with both single linguistic terms and flexible linguistic expressions.

6. Concluding remarks

In summary, in this paper we have studied qualitative MAGDM with linguistic information in terms

of single linguistic terms and/or flexible linguistic expressions. First, we have proposed a new linguistic

decision rule for MAGDM problems by making use of the random preferences and the concept of stochastic

dominance, which is based on a probability interpretation of weight information. The importance weights

and the concept of fuzzy majority have been incorporated into both the multi-attribute decision rule and

collective decision rule by the so-called WOWA operator with the input parameters expressed as probability

distributions. Moreover, a new method has been proposed to measure the consensus degree between the

individual overall random preferences and the collective overall random preference based on the concept of

stochastic dominance, which takes both the importance weights and the fuzzy majority into account. As

such, our proposed approaches are based on the ordinal semantics of linguistic terms and voting statistics.

By this, on one hand, the strict constraint of symmetric and balanced linguistic term set in linguistic

decision making can be released; on the other hand, the difference and variation of individual opinions can

be captured. Two application examples taken from the literature have been used to illuminate the proposed

approaches, which show that our proposed approaches are comparable with existing studies.

Perhaps the biggest drawback to the proposed approaches is the information scarce problem, since

probability distributions are derived from experts’ judgments. Fortunately, in linguistic decision analysis,

several experts are always selected and asked to provide their assessments to reduce the subjectiveness

and collect enough information. The first direct potential research is to apply our approaches to social

networks [5] or online reviews of products, since there are thousands of users and linguistic evaluations,

which are suitable to a probability based perspective. Moreover, this paper adopts the absolute linguistic

judgments to represent the performance of alternatives. It is necessary and possible to consider the case where

the performance and/or importance weights are expressed by linguistic expressions in terms of preference

relations and other new preference structures [5]. In addition, a fundamental aspect of (MA)GDM is

the importance of looking for approaches to reach consensus [28, 67], in which a consensus process is

defined as a dynamic and iterative group discussion process, coordinated by a moderator [28]. The third

interesting direction is to investigate the dynamic and iterative consensus reaching process based on our

proposed consensus measure in great detail. Finally, our proposed approach to aggregation results with a

probability distribution over a linguistic term set, which may be viewed as a problem of decision making

under uncertainty. In essence, the exploitation phase orders the collective overall preferences according

to a given criterion. Our approach is based on the stochastic dominance degree. Recently, the decision

maker’s psychological preferences have played an important role in practice [46, 53]. Therefore, the final

interesting direction is to investigate the decision makers’ psychological preferences [35] in decision making

with linguistic expressions.
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Appendix A. Stochastic dominance degrees of random variables

In this appendix, we will introduce an approach to derive stochastic dominance degrees from uncertain

profiles, which is based on our previous work [78].

Let Z1 and Z2 be two independent discrete random variables with respective probability distributions

p1 and p2 defined over a finite set of linguistic terms S = {S0, S1, . . . , SG} with S0 < S1 < · · · < SG, where∑G
g=0p1 (Sg) = 1 and

∑G
g=0p2 (Sg) = 1. Let Sg1 ∈ S and Sg2 ∈ S be possible outcomes of Z1 and Z2,

respectively. Let Pr(Z1 ≥ Z2), Pr(Z1 = Z2), and Pr(Z1 ≤ Z2) denote the probabilities of Z1 ≥ Z2, Z1 = Z2,

and Z1 ≤ Z2, respectively. Since the two random variables Z1 and Z2 are stochastically independent, we

have the following functions.

Pr (Z1 ≥ Z2) =
∑G

g1=1

∑g1

g2=1
p1 (Sg1) · p2(Sg2)

Pr (Z1 = Z2) =
∑G

g1=0
p1(Sg1) · p2(Sg1)

Pr (Z1 ≤ Z2) =
∑G

g1=0

∑G

g2=g1
p1(Sg1) · p2(Sg2)

(A.1)

Accordingly, we have

Pr(Z1 > Z2) = Pr (Z1 ≥ Z2)− Pr (Z1 = Z2)

Pr(Z1 < Z2) = Pr (Z1 ≤ Z2)− Pr (Z1 = Z2)
(A.2)

The case Z1 = Z2 can be regarded as a situation where Z1 ≥ Z2 and Z1 ≤ Z2 occur with the same probability

simultaneously.

Due to the above analysis, we give the definition of stochastic dominance degree of two random variables

with discrete probability distributions defined over a set of linguistic terms as follows. Let Z1 and Z2 be two

independent discrete random variables with (discrete) probability distributions p1 and p2 over a finite set of

linguistic labels S = {S0, S1, . . . , SG} with S0 < S1 < · · · < SG, then the stochastic dominance degrees of

Z1 over Z2 (Z2 over Z1) are given by

D12 = DZ1�Z2 = Pr(Z1 ≥ Z2)− 0.5 Pr(Z1 = Z2)

D21 = DZ2�Z1 = Pr(Z2 ≥ Z1)− 0.5 Pr(Z1 = Z2)
(A.3)

Extending two random variables to a vector of N random variables Z = (Z1, Z2, . . . , ZN ), we are able

to derive a matrix D of stochastic dominance degrees of the N discrete random variables as

D =

Z1 Z2 . . . ZN
Z1 D11 D12 . . . D1N

Z2 D21 D22 . . . D2N

...
...

...
. . .

...

ZN DN1 DN2 . . . DNN

(A.4)

Such a matrix of stochastic dominance degrees has the following interesting properties: (1) Dnl + Dln =

1,∀n, l = 1, . . . , N ; (2) Dnn = 0.5, n = 1, . . . , N ; (3)
∑N
n=1

∑N
l=1Dnl = N2/2; and (4) 0 ≤ Dnl ≤ 1,∀n, l =

1, . . . , N .

Interestingly, the matrix D of stochastic dominance degrees with respect to a vector of N random

variables Z = (Z1, Z2, . . . , ZN ) satisfies the following properties of fuzzy preference relations:
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(1) when Dnl = 1, it indicates that Zn is absolutely preferred to Zl, i.e., indicates the maximum degree of

preference of Zn over Zl;

(2) when 0.5 < Dnl < 1, it indicates that Zn is slightly preferred to Zl;

(3) when Dnl = 0.5, there is indifference between Zn and Zl;

(4) when 0 < Dnl < 0.5, it indicates that Zl is slightly preferred to Zn;

(5) when Dnl = 0, it indicates that Zl is absolutely preferred to Zn.

Therefore, the matrix of stochastic dominance degrees of the random variable set Z is in fact a matrix of

fuzzy preference relations formulated as µD : Z×Z −→ [0, 1] with µD : (Zn, Zl) = Dnl, where n, l = 1, . . . , N,

and Dnl reflects the degree of fuzzy preference of Zn over Zl. Moreover, it is obvious that the matrix of fuzzy

preference relations satisfies the condition of fuzzy reciprocity such that Dnl +Dln = 1,∀n, l = 1, . . . , N .

Appendix B. The OWA operator and linguistic quantifiers

The notion of OWA operator was first introduced in [72] regarding the problem of aggregating multi-

attribute values to form an overall decision function. Since its invention, the OWA operator has been

extensively studied, and has been found useful in many applications of information fusion and decision

making. By definition, an OWA operator of dimension N is a mapping F : RN → R associated with a

weighting vector ω = (ω1, . . . , ωN ) such that: 1) ωn ∈ [0, 1] and 2)
∑N
n=1 ωn = 1, and

FOWA(V1, V2, . . . , VN ) =
∑N

n=1
ωn · Vσ(n)

where Vσ(n) is the nth largest element in the vector (V1, V2, . . . , VN ) such that Vσ(1) ≥ Vσ(2) ≥ · · · ≥ Vσ(N).

The symbol R means the universe/domain of discourse (a set of real numbers, e.g. R = [0, 1]). Obviously,

the key step of this aggregation is reordering of arguments Vn in a non-increasing order so that the weight

ωn is associated with the ordered position of the argument, rather than associated with the argument itself.

The OWA operator provides a type of aggregation operator between the“AND” and the “OR” aggre-

gations. As suggested by [72], there exist at least two methods for obtaining the OWA weight information

ωn, n = 1, . . . , N. The first approach is to use some kind of learning mechanism, i.e., we use some sample

data, arguments, and associated aggregate values, and try to fit the weights to this collection of sample

data. The second approach is to give some semantics or meaning to the weights. Then, based on these

semantics, we can directly provide the values for the weights. For the purpose of this paper, let us introduce

the semantics based on fuzzy linguistic quantifiers for the weights.

The fuzzy linguistic quantifiers were introduced by Zadeh [82]. According to Zadeh, there are basically

two types of quantifiers: absolute and relative. Here, we focus on the relative quantifiers typified by terms

such as most, at least half, and as many as possible. A fuzzy subset Q of the universe domain [0, 1] is called a

relative quantifier if Q(0) = 0, Q(1) = 1, and Q(x) ≥ Q(y) for x ≥ y. Then, Yager [72] proposed to compute

the OWA weights based on the linguistic quantifier Q as ωn = Q
(
n
N

)
−Q

(
n−1
N

)
, n = 1, . . . , N. Table B.11

provides typical examples of linguistic quantifiers associated with their membership functions.

Appendix C. The WOWA operator

The OWA operator only considers the weights of values in the aggregation. In order to incorporate the

importance weights of information sources, Torra [59] has proposed a WOWA operator, defined as follows.

Let (V1, V2, . . . , VN ) be a set of values, µ = (µ1, µ2, . . . , µN ) be the importance weights of the values such

that: µn ∈ [0, 1] and
∑N
n=1 µn = 1. In this case, a mapping FWOWA : RN → R is a WOWA operator of

dimension N if
FWOWA(V1, V2, . . . , VN ;µ1, µ2, . . . , µN ) =

∑N

n=1
Wn · Vσ(n) (C.1)
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Table B.11: Typical examples of linguistic quantifiers associated with their membership functions.

Linguistic quantifier Membership function

there exists Q(x) =

{
0 if x = 0

1 if x > 0

at least half Q(x) =

{
2x if 0 ≤ x ≤ 0.5

1 if 0.5 < x ≤ 1

identity Q(x) = x

most Q(x) =


0 if 0 ≤ x ≤ 0.3

2x− 0.6 if 0.3 < x ≤ 0.8

1 if 0.8 < x ≤ 1

as many as possible Q(x) =

{
0 if 0 ≤ x ≤ 0.5

2x− 1 if 0.5 < x ≤ 1

for all Q(x) =

{
1 if x = 1

0 if x 6= 1

where (Vσ(1), Vσ(2), . . . , Vσ(N)) is a permutation of (V1, V2, . . . , VN ) such that Vσ(n−1) ≥ Vσ(n) ∀n = 2, . . . , N ,

i.e., Vσ(n) is the nth largest element in the vector (V1, V2, . . . , VN ), and the weight Wn is defined as

Wn = W ∗

∑
l≤n

µσ(l)

−W ∗

(∑
l<n

µσ(l)

)
(C.2)

with W ∗ a monotone increasing function that interpolates the points
(
n/N,

∑
l≤n µσ(n)

)
together with the

point (0, 0). The value µσ(l) means the permutation according to (Vσ(1), Vσ(2), . . . , Vσ(N)).

When W ∗ is replaced with an RIM linguistic quantifier Q, then

Wn = Q

∑
l≤n

µσ(l)

−Q(∑
l<n

µσ(l)

)
, n = 1, . . . , N,

which indicates that the WOWA operator becomes the importance weighted quantifier guided aggrega-

tion [73]. With the WOWA operator and the fuzzy linguistic quantifier, the overall value is derived by

V = FWOWA(V1, V2, . . . , VN ;µ1, µ2, . . . , µN )

=
∑N

n=1

Q
∑
l≤n

µσ(l)

−Q(∑
l<n

µσ(l)

) · V σ(n)m

(C.3)

where
(
Vσ(1), Vσ(2), . . . , Vσ(N)

)
is a permutation of (V1, V2, . . . , VN ) such that Vσ(n−1) ≥ Vσ(n),∀n = 2, . . . , N .
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[17] Garćıa-Lapresta, J. L., & Pérez-Román, D. (2016). Consensus-based clustering under hesitant qualitative assessments.

Fuzzy Sets and Systems, 292 , 261–273.

[18] Genest, C., & Zidek, J. V. (1986). Combining probability distributions: A critique and an annotated bibliography.

Statistical Science, 1 , 114–135.

[19] Gong, Z., Zhang, H., Forrest, J., Li, L., & Xu, X. (2015). Two consensus models based on the minimum cost and maximum

return regarding either all individuals or one individual. European Journal of Operational Research, 240 , 183–192.

[20] Hatami-Marbini, A., & Tavana, M. (2011). An extension of the Electre I method for group decision-making under a fuzzy

environment. Omega, 39 , 373–386.

[21] Herrera, F., & Herrera-Viedma, E. (2000). Linguistic decision analysis: steps for solving decision problems under linguistic

information. Fuzzy Sets and Systems, 115 , 67–82.

[22] Herrera, F., Herrera-Viedma, E., & Mart́ınez, L. (2000). A fusion aproach for managing multigranularity linguistic term

sets in decision making. Fuzzy Sets and Systems, 114 , 43–58.

[23] Herrera, F., Herrera-Viedma, E., & Verdegay, J. L. (1996). A model of consensus in group decision making under linguistic

assessments. Fuzzy Sets and Systems, 78 , 73–87.

[24] Herrera, F., Herrera-Viedma, E., & Verdegay, J. L. (1996). Direct approach processes in group decision making using

linguistic OWA operators. Fuzzy Sets and Systems, 79 , 175–190.

[25] Herrera, F., & Mart́ınez, L. (2000). A 2-tuple fuzzy linguistic representation model for computing with words. IEEE

Transactions on Fuzzy Systems, 8 , 746–752.

[26] Herrera, F., & Mart́ınez, L. (2001). A model based on linguistic 2-tuples for dealing with multigranular hierarchical

linguistic contexts in multi-expert decision-making. IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, 31 , 227–234.

[27] Herrera-Viedma, E., Cabrerizo, F. J., Kacprzyk, J., & Pedrycz, W. (2014). A review of soft consensus models in a fuzzy

environment. Information Fusion, 17 , 4–13.

[28] Herrera-Viedma, E., Mart́ınez, L., Mata, F., & Chiclana, F. (2005). A consensus support systems model for group decision

making problems with multigranular linguistic preference relations. IEEE Transactions on Fuzzy Systems, 13 , 644–658.

[29] Huynh, V.-N., & Nakamori, Y. (2005). A satisfactory-oriented approach to multi-expert decision-making under linguistic

assessments. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35 , 184–196.

[30] Huynh, V.-N., & Nakamori, Y. (2011). A linguistic screening evaluation model in new product development. IEEE

Transactions on Engineering Management , 58 , 165–175.
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[60] Travé-Massuyés, L., & Piera, N. (1989). The orders of magnitude models as qualitative algebras. In Proceedings of the

11th International Joint Conference on Artificial Intelligence-Volume 2 IJCAI’89 (pp. 1261–1266). San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.

[61] Wang, J.-Q., Peng, J.-J., Zhang, H.-Y., Liu, T., & Chen, X.-H. (2015). An uncertain linguistic multi-criteria group

decision-making method based on a cloud model. Group Decision and Negotiation, 24 , 171–192.

[62] Wang, S.-Y., Chang, S.-L., & Wang, R.-C. (2009). Assessment of supplier performance based on product-development

strategy by applying multi-granularity linguistic term sets. Omega, 37 , 215–226.

[63] Wei, C., Zhao, N., & Tang, X. (2014). Operators and comparisons of hesitant fuzzy linguistic term sets. IEEE Transactions

on Fuzzy Systems, 22 , 575–585.

[64] Wu, Z., & Chen, Y. (2007). The maximizing deviation method for group multiple attribute decision making under linguistic

environment. Fuzzy Sets and Systems, 158 , 1608–1617.

[65] Wu, Z., & Xu, J. (2012). Consensus reaching models of linguistic preference relations based on distance functions. Soft

Computing, 16 , 577–590.

[66] Wu, Z., & Xu, J. (2016). Managing consistency and consensus in group decision making with hesitant fuzzy linguistic

preference relations. Omega, http://dx.doi.org/10.1016/j.omega.2015.12.005 .

[67] Wu, Z., & Xu, J. (2016). Possibility distribution-based approach for MAGDM with hesitant fuzzy linguistic information.

IEEE Transactions on Cybernetics, 46 , 694–705.

35



[68] Xu, J., Wu, Z., & Zhang, Y. (2014). A consensus based method for multi-criteria group decision making under uncertain

linguistic setting. Group Decision and Negotiation, 23 , 127–148.

[69] Xu, Z. (2004). Uncertain linguistic aggregation operators based approach to multiple attribute group decision making

under uncertain linguistic environment. Information Sciences, 168 , 171–184.

[70] Xu, Z. (2005). Deviation measures of linguistic preference relations in group decision making. Omega, 33 , 249–254.

[71] Xu, Z. (2006). An approach based on the uncertain LOWG and induced uncertain LOWG operators to group decision

making with uncertain multiplicative linguistic preference relations. Decision Support Systems, 41 , 488–499.

[72] Yager, R. R. (1988). On ordered weighted averaging operators in multi-criteria decision making. IEEE Transactions on

Systems, Man and Cybernetics, 18 , 183–190.

[73] Yager, R. R. (1996). Quantifier guided aggregation using OWA operators. International Journal of Intelligent Systems,

11 , 49–73.

[74] Yan, H. B., Huynh, V. N., & Nakamori, Y. (2012). A group nonadditive multiattribute consumer-oriented Kansei evaluation

model with an application to traditional crafts. Annals of Operations Research, 195 , 325–354.

[75] Yan, H.-B., & Ma, T. (2015). A fuzzy group decision making approach to new product concept screening at the fuzzy

front end. International Journal of Production Research, 53 , 4021–4049.

[76] Yan, H.-B., & Ma, T. (2015). A group decision-making approach to uncertain quality function deployment based on fuzzy

preference relation and fuzzy majority. European Journal of Operational Research, 241 , 815–829.

[77] Yan, H.-B., Ma, T., & Huynh, V.-N. (2014). Coping with group behaviors in uncertain quality function deployment.

Decision Sciences, 45 , 1025–1052.

[78] Yan, H.-B., Ma, T., & Li, Y. (2013). A novel fuzzy linguistic model for prioritising engineering design requirements in

quality function deployment under uncertainties. International Journal of Production Research, 51 , 6336–6355.

[79] Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning–Part I. Information

Sciences, 8 , 199–249.

[80] Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning–Part II. Information

Sciences, 8 , 301–357.

[81] Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning–Part III. Information

Sciences, 9 , 43–80.

[82] Zadeh, L. A. (1983). A computational approach to fuzzy quantifiers in natural languages. Computers and Mathematics

with Applications, 9 , 149–184.

[83] Zhang, G., Dong, Y., & Xu, Y. (2014). Consistency and consensus measures for linguistic preference relations based on

distribution assessments. Information Fusion, 17 , 46–55.

[84] Zhu, B., & Xu, Z. (2014). Consistency measures for hesitant fuzzy linguistic preference relations. IEEE Transactions on

Fuzzy Systems, 22 , 35–45.

36


	Introduction
	Literature review and problem formulation
	Fuzzy linguistic approach in decision making
	Approaches to decision making with linguistic information
	Linguistic decision making with single linguistic terms
	Linguistic decision making with flexible linguistic expressions
	Summary

	The consensus measure in qualitative (MA)GDM with linguistic expressions
	A general scheme of MAGDM problems

	Aggregation and exploitation: A probability based approach
	Random preference derivation from HFLTS
	Multi-attribute decision rule
	Incorporating importance weights into multi-attribute decision rule
	Incorporating fuzzy majority into multi-attribute decision rule
	Incorporating both importance weights and fuzzy majority into multi-attribute decision rule

	Collective decision rule
	Choice function
	Summary

	Comparative illustrative examples
	Qualitative MAGDM with single linguistic terms
	Solution based on two-tuple linguistic model
	Comparative analysis

	Qualitative MAGDM with flexible linguistic expressions
	Solutions based on existing studies
	Comparative analysis

	Summary

	Consensus measure: A probability based approach
	A probability based approach to consensus measure
	Comparative analysis of consensus measure: MAGDM with single linguistic terms
	Consensus degrees based on existing approaches
	Comparative analysis

	Comparative analysis of consensus measure: MAGDM with flexible linguistic expressions
	Consensus measure based on existing approaches
	Comparative analysis

	Summary

	Concluding remarks
	Stochastic dominance degrees of random variables
	The OWA operator and linguistic quantifiers
	The WOWA operator

