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Abstract It has been clarified that a passive combined rimless wheel (CRW)
that consists of two identical eight-legged rimless wheels can increase the walk-
ing speed either by adjusting the phase difference between the fore and rear legs
or by using a passive wobbling mass that vibrates up-and-down in the body
frame. Towards a further speeding-up of the CRW, this paper investigates the
effect of an active wobbling mass driven by an actuator and the effect of an
indirect excitation control. First, we develop the mathematical model and nu-
merically show that the CRW generates a walking motion, which is entrained
to the up-and-down motion of the active wobbling mass at frequencies higher
than the natural frequency of the CRW. We discuss the gait properties mainly
from the viewpoints of frequency and phase relationships. Second, we conduct
verification experiments using our prototype CRW machine and describe the
results.
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1 Introduction

Limit cycle walking inspired by passive-dynamic walking [1] is a favorable
approach to efficient robotic legged locomotion and various types of limit cycle
walkers such as biped [2][3], quadruped [4], and multilegged robots [5] have
been investigated and developed. The easiest way to achieve efficient level
walking is adding small torque inputs to a passive-dynamic walker and the
generated walking gait in most cases converges to a stationary orbit with
impulsive effects according to the inherent stability. It is empirically known
that generating stable limit cycle walking is not difficult but the mechanisms
necessary to achieve it remain to be elucidated. The motion of a rimless wheel
(RW) is specified as a simple 1-DOF dynamics and therefore is a good example
for investigating the properties and mechanisms of a limit cycle walking such
as stability [1][6][7], efficiency and gait symmetry [8]. The authors started
the study of a combined rimless wheel (CRW) as the simplest multilegged
passive-dynamic walker and have investigated what advantages are produced
by the combined body structure. So far, we clarified the following properties
appearing in the generated gait.

We first showed that the walking speed of the passive CRW can be increased
by adjusting the phase difference between the fore and rear legs through numer-
ical and experimental investigations [9]. The results showed that the walking
speed becomes maximum as the phase difference approaches to half of the hip
angle. The speeding-up mechanism can be explained as resulting from flatten-
ing of the trajectory of the whole center of mass (CoM). After that, we added
a passive wobbling mass that moves up-and-down in the body frame for the
purpose of flattening the CoM trajectory even when the fore-rear phase differ-
ence is zero [10]. Through gait analysis, we clarified that a passive wobbling
mass also increases the walking speed by exhibiting anti-phase oscillations. In
addition, some interesting nonlinear phenomena such as hysteresis and sensi-
tive dependence on initial conditions were also observed. Some related results
were reported in [4][11][12][13].

Limitation of the passive wobbling mass is that it can exhibit anti-phase
oscillations only when its natural frequency is lower than that of the CRW.
Increase in the natural frequency results in an in-phase synchronization, which
slows down the walking. A modified mechanism is needed to further speed up
the walking.

Based on these observations, in this paper, we investigate the effect of a
wobbling mass that actively moves up-and-down in the body frame. The ac-
tive wobbling mass can generate anti-phase oscillations even when its natural
frequency is much higher than that of the CRW. Here, the walking speed is
increased not only by the flattening effect of the CoM trajectory but also by
the fast oscillations of the active wobbling mass. First, we perform numer-
ical simulations to clarify the fundamental gait properties and discuss how
the passive-dynamics and the inherent rhythmical movement of a CRW are
changed according to the active wobbling frequency, especially from the per-
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spective of frequency difference. Second, we conduct verification experiments
using a prototype CRW machine with three different wobbling masses.

This paper is organized as follows. In Section 2, a mathematical model is
developed for a CRW with an active wobbling mass and its reduction to a
model of low degrees of freedom is described. In Section 3, typical walking
gaits with the effect of wobbling motion are observed. In Section 4, gait anal-
ysis is conducted and the possibility of speeding-up by entraining the CRW
to the wobbling motion at high frequencies is numerically demonstrated. In
Section 5, the validity of the numerical results are experimentally-verified us-
ing a prototype CRW machine. Finally, Section 6 concludes this paper and
describes future research directions.

2 Modeling and control

2.1 Equations of motion and its reduction

Fig. 1 shows the model of a passive CRW with an active wobbling mass. This
walker consists of two identical eight-legged RWs, a body frame, and the active
wobbling mass in the body. The model is based on the following assumptions.

– The two RWs perfectly synchronize with no phase difference between the
fore and rear RWs. Under this condition, our quadruped system can be
considered as a single RW. They always contact with the ground without
slipping.

– The two RWs are connected to the body frame without incorporating joint
friction. They rotate passively.

L3

L3

L1 Lc u
θ1

θ2

θ3

2α

m3

m1

m2

(x1, z1)

(x2, z2)

(x3, z3)

φ

g

L2
mc

Fig. 1 Model of combined rimless wheel with active wobbling mass
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– The configuration of the RW is symmetric and all the relative angles be-
tween any two adjacent leg frames are 2α = 45 [deg].

Let q =
[
x1 z1 θ1 x2 z2 θ2 x3 z3 θ3 Lc

]T
be the generalized coordinate

vector. As indicated in Fig. 1, (x1, z1) and (x2, z2) are the end positions of the
rear and fore RWs’ stance legs. (x3, z3) is the CoM position of the body frame.
θ1 and θ2 are the angular positions of the rear and fore RWs with respect to
the vertical. θ3 is the angular position of the body frame with respect to the
horizontal. Lc is the length of the active wobbling mass attached quartering
to the body frame.

The other parameters are defined as follows. m1 = m2 [kg] is the mass of
each RW. m3 [kg] is the mass of the body frame. mc [kg] is the mass of the
wobbling mass. L1 = L2 = L [m] are the radius or the leg length of each RW.
2L3 [m] is the length of the body frame. The CoM is located at the central
position.

The equation of motion then becomes

M(q)q̈ + h(q, q̇) = Su+ J(q)Tλ, (1)

J(q)q̇ = 08×1, (2)

where S =
[
01×9 1

]T
and u [N] is the actuator force to control the wobbling

mass. The time-derivative of Eq. (2) becomes

J(q)q̈ + J̇ (q, q̇) q̇ = 08×1. (3)

Then we can solve the system of equations (1) and (3) for the holonomic
constraint force term, λ, as follows.

λ = −X(q)−1
(
J(q)M(q)−1 (Su− h(q, q̇)) + J̇(q, q̇)q̇

)
(4)

X(q) := J(q)M(q)−1J(q)T (5)

By substituting Eq. (4) into Eq. (1) and arranging it, we get

M (q)q̈ = Y (q) (Su− h(q, q̇))− J(q)TX(q)−1J̇(q, q̇)q̇, (6)

Y (q) := I10 − J(q)TX(q)−1J(q)M (q)−1. (7)

In the case that the fore and rear legs perfectly synchronize with each other
with a zero phase difference, the velocity vector has the form

q̇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

02×1

θ̇1
02×1

θ̇1
Lθ̇1 cos θ1
−Lθ̇1 sin θ1

0

L̇c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)
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By using this relation, we can derive the acceleration vector as follows.

q̈ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

02×1

Nθ1/Dθ1

02×1

Nθ1/Dθ1

Nx3/Dx3

Nz3/Dz3

0
NLc/DLc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

All the numerators and denominators are functions only of the rear RW’s
dynamics, θ1 and θ̇1, and the control force, u. The dynamics of the body
frame is not related to the generated motion and all the necessary variables
for numerical integral are only θ1, Lc, and their time-derivatives. Therefore we
can reduce the 10-DOF redundant system to the following 2-DOF one.

θ̈1 =
Nθ1

Dθ1

, L̈c =
NLc

DLc

(10)

The terms in Eq. (10) are detailed as follows.

Nθ1 = (2mw +mc)g sin θ1 −mcg sin(θ1 − 2θ3) +mcLθ̇
2

1 sin(2(θ1 − θ3))

−2 sin(θ1 − θ3)u

Dθ1 = 2L(mw +mc cos
2(θ1 − θ3))

NLc = (mw +mc)
(
u+mc

(
g cos θ1 − Lθ̇

2

1

)
cos(θ1 − θ3)

)

DLc = mc(mw +mc cos
2(θ1 − θ3))

Here, mw := 2m1+m3 [kg] is the total mass of the CRW except the wobbling
mass. Note that θ3 is equal to the slope angle, φ [rad], and is constant. The
vertical ground reaction force, λ2, is also derived as follows.

λ2 = −Nλ2

Dλ2

Nλ2 = cos θ1

(
mw(Lθ̇

2

1 − g cos θ1) + cos(θ1 − θ3)u
)

× ((mw +mc)L3 −mcLc tan(θ1 − θ3))

Dλ2 = 2L3

(
mw +mc cos

2(θ1 − θ3)
)

Then we can check the condition for unilateral constraint by observing λ2. A
stable walking is achieved when λ2 is always positive.
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2.2 Collision equations and its analysis

In this paper, we assume that the rear legs of both RWs at impact leaves the
ground immediately after landing of the fore legs according to the inelastic
collision model which is specified as

M(q)q̇+ = M(q)q̇− + JI(q)
TλI , (11)

JI(q)q̇
+ = 08×1. (12)

Note that q+ = q− = q holds in these equations. JI(q) ∈ R
8×10 and its

elements are detailed as follows.

JI(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 JI(13) 0 0 0 0 0 0 0
0 1 JI(23) 0 0 0 0 0 0 0
0 0 0 1 0 JI(36) 0 0 0 0
0 0 0 0 1 JI(46) 0 0 0 0
1 0 L cos θ−1 0 0 0 −1 0 −L3 sin θ

−
3 0

0 1 −L sin θ−1 0 0 0 0 −1 −L3 cos θ
−
3 0

0 0 0 1 0 L cos θ−2 −1 0 L3 sin θ
−
3 0

0 0 0 0 1 −L sin θ−2 0 −1 L3 cos θ
−
3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

JI(13) = L
(
cos θ−1 − cos

(
θ−1 − 2α

))

JI(23) = −L (
sin θ−1 − sin

(
θ−1 − 2α

))

JI(36) = L
(
cos θ−2 − cos

(
θ−2 − 2α

))

JI(46) = −L (
sin θ−2 − sin

(
θ−2 − 2α

))

By solving Eqs. (11) and (12) for q̇+, we can obtain the velocity vector imme-
diately after impact as follows.

q̇+ =
(
I10 −M (q)−1JI(q)

T
(
JI(q)M(q)−1JI(q)

T
)−1

JI(q)
)
q̇− (13)

Elements of q̇+ are detailed as follows. Note, however, that the relations of
θ−1 = φ+ α and θ−3 = φ were considered.

ẋ+1 = ẋ+2 =
2L sinα sinφ

(
mw cos(2α) +mc cos

2 α
)

mw +mc cos2 α
θ̇
−
1 (14)

ż+1 = ż+2 =
2L sinα cosφ

(
mw cos(2α) +mc cos

2 α
)

mw +mc cos2 α
θ̇
−
1 (15)

θ̇
+

1 = θ̇
+

2 =
mw cos(2α) +mc cos

2 α

mw +mc cos2 α
θ̇
−
1 (16)

ẋ+3 =
L cos(α− φ)

(
mw cos(2α) +mc cos

2 α
)

mw +mc cos2 α
θ̇
−
1 (17)

ż+3 =
L sin(α− φ)

(
mw cos(2α) +mc cos

2 α
)

mw +mc cos2 α
θ̇
−
1 (18)

θ̇
+

3 = 0 (19)

L̇+
c = L̇−

c +
(mw +mc)L sin(2α) cosα

mw +mc cos2 α
θ̇
−
1 (20)
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From the above equations, we can understand that all the velocities imme-

diately after impact can be specified as functions only of θ̇
−
1 and L̇−

c . The
necessary state variables at impact therefore are only θ1 and Lc as in the
equation of motion.

After calculating θ̇
+

1 and L̇+
c , we should reset θ1 and Lc as follows.

θ+1 = θ−1 − 2α = φ− α, L+
c = L−

c (21)

By performing the calculations of Eqs. (16), (20) and (21), stance-leg exchange
can be completed.

Here, let us revisit the collision equation of Eq. (16). This can be arranged
to

θ̇
+

1 = R(α, β)θ̇
−
1 , R(α, β) =

cos(2α) + β cos2 α

1 + β cos2 α
, (22)

where β := mc/mw [-] is the ratio of the wobbling mass to that of the CRW.
Note that the value of R(α, β) is larger than 0 and is smaller than 1 and
that decrease in angular velocity can be suppressed as R(α, β) becomes larger.
R(α, β) = 1 implies that there is no rotational energy loss at impact, and this
is achieved by α→ 0 or β → ∞. In addition, R(α, 0) = cos(2α) holds and this
is identical to the case of a single RW without inertia moment. The partial
derivatives of R(α, β) with respect to α and β respectively become

∂R(α, β)

∂α
=

−2(1 + β) sin(2α)

(1 + β cos2 α)2
< 0,

∂R(α, β)

∂β
=

sin2(2α)

2(1 + β cos2 α)2
> 0.

From these equations, we can understand that rotational energy loss at impact
monotonically decreases as α decreases or as β increases. Fig. 2 plots the value
of R(α, β) for 0 ≤ α ≤ π/4 [rad] and 10−3 ≤ β ≤ 103 [-]. Note that β is
represented in a logarithmic plot. We can confirm the property of R(α, β).

Small α implies that the RWmotion approaches to a rolling motion without
energy loss. Large β, i.e. a heavy wobbling mass, makes a kinetic energy loss
at impact smaller. This is because, without going into detail, the most kinetic
energy in the wobbling mass can be stored in the direction of the wobbling
motion.

On the other hand, we can understand that, from Eq. (20), L̇+
c > L̇−

c

always holds because θ̇
−
1 is positive. This will be confirmed through numerical

simulations in the next section.
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Fig. 2 R(α, β) with respect to α and β

2.3 Trajectory tracking control

Let Lc [m] be the control output. This can be written as Lc = STq and its
second-order derivative with respect to time becomes

L̈c = STq̈

= M (q)−1Y (q) (Su− h(q, q̇)) +M(q)−1J(q)TX(q)−1J̇(q, q̇)q̇

= A(θ1)u+B(θ1, θ̇1) (23)

where

A(θ1) =
mw +mc

mc(mw +mc cos2(θ1 − θ3))
,

B(θ1, θ̇1) =
(mw +mc)

(
g cos θ1 − Lθ̇

2

1

)
cos(θ1 − θ3)

mw +mc cos2(θ1 − θ3)
.

Then we can consider the control input for achieving Lc → Ld(t) as

u = A(θ1)
−1

(
v −B(θ1, θ̇1)

)
, (24)

v = L̈d(t) +KD

(
L̇d(t)− L̇c

)
+KP (Ld(t)− Lc) , (25)

where KP and KD are PD gains and are positive constants. Ld(t) is the
desired-time trajectory of Lc and is given as

Ld(t) = Am sin (2πfct) . (26)

Here, fc [Hz] is the desired frequency of the wobbling mass and Am [m] is the
desired amplitude of the pumping motion.
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3 Typical walking gaits

First, we perform numerical simulations using the derived equations to observe
typical walking gaits. The physical parameters are chosen as listed in Table 1.
These parameters are close to those of the experimental machine introduced
in Section 5. The initial conditions are also chosen as follows.

θ1(0) = φ− α, Lc(0) = 0, θ̇1(0) = 4.0, L̇c(0) = 2πfcAm (27)

The walker therefore starts walking from the impact posture with a suffi-
cient initial angular velocity for overcoming the potential barrier. The ini-
tial wobbling velocity, L̇c(0), is also set to be the same as the desired one,
L̇d(0) = 2πfcAm, to avoid excessive initial control input at the beginning of
walking. A large control input causes violent changes of acceleration, which
may easily violate unilateral constraint condition.

Fig. 3 shows the simulation results of dynamic walking where fc = 1.0 [Hz].
As described later, in this case, the wobbling motion has little effect on the
dynamics of the CRW (generated gait). Fig. 3 (c) supports that the tracking
error increases immediately after every impact.

Fig. 4 shows the simulation results of dynamic walking where fc = 3.0 [Hz].
In this case, as discussed in the next section, the dynamics of the wobbling mass
has a strong influence on the CRW and the walking pattern is entrained to the
wobbling motion. This is confirmed by seeing the convergence of the instant
of discontinuous change in L̇c. It is also confirmed that L̇c discontinuously
increases immediately after every impact as shown in the previous section.

Fig. 5 shows the time evolutions of the angular positions where (a) fc =
1.85 [Hz], (b) fc = 1.90 [Hz], and (c) fc = 1.95 [Hz]. Fig. 5 (b) shows that
the walker cannot overcome the potential barrier at mid-stance and falls back-
ward. Destabilization of the generated gait is mainly caused by the failure to
overcome the potential barrier. This is analyzed in more detail later. As the
simulation results suggest, the limit cycle stability is highly sensitive to the
initial conditions.

Table 1 Parameter settings for simulation model

m1(= m2) Mass of each RW 1.0 kg
m3 Mass of body frame 1.0 kg
mc Wobbling mass 1.0 kg

L(= L1 = L2) Leg length 0.15 m
L3 Half length of body frame 0.20 m
φ Slope angle 0.07 rad
Am Amplitude of pumping motion 0.03 m
KD Derivative gain 100
KP Proportional gain 2500
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4 Gait analysis

4.1 Gait descriptors

We consider two criteria for understanding the gait properties; one is the
frequency of walking gait and the other is the phase difference between the
CRW and the wobbling mass. Let T [s] be the step period. The frequency of the
CRW is then determined as the reciprocal of the step period, fw = 1/T [Hz].
This is in other words the cadence of walking motion. The phase difference, ψ



Title Suppressed Due to Excessive Length 13

[rad], is also defined as

ψ :=
2π(tc − tw)

T
.

Here, tw [s] is the instant, at which the perpendicular distance between the
CoM position of the CRW body and the floor is maximized. tc [s] is the in-
stant, at which Lc reaches minimum or the relative position of the wobbling
mass from the body frame reaches to the topmost height. A negative phase
implies that a movement of the wobbling mass is advanced to that of the CRW,
whereas a positive phase indicates a reversed relationship.

4.2 Effect of wobbling frequency

We studied dependence of dynamic walking on the slope angle φ [rad] for four
values of mc [kg] according to the following procedure. In the case that λ2 is
not always positive, we decided that a stable gait could not be successfully
generated.

(A1) Set the slope angle and the desired wobble frequency to φ = 0.07 [rad]
and fc = 0 [Hz].

(A2) Set the initial conditions to the values of Eq. (27), and start dynamic
walking.

(A3) After 100 [s] from the start, save the gait descriptors for 20 steps.
(A4) Increase fc by 0.05 [Hz] and return to (A2).
(A5) Repeat from (A2) to (A4) until fc = 5.0 [Hz].

Figs. 6 and 7 respectively show dependence of the frequency of the CRW,
fw [Hz], and the phase difference, ψ [rad], on the frequency of the wobbling
mass, fc [Hz]. By focusing mainly on Fig. 6 (c), a typical transition from desyn-
chronization to synchronization between the CRW and the wobbling mass can
be observed [14]. For a small frequency of fc < 1.0 [Hz], the CRW is only
weakly influenced by the wobbling mass and it oscillates with its own natural
frequency of around 1.87 [Hz]. As fc is increased from 1.0 [Hz], the motion
of the CRW is more strongly modulated by the up-and-down movement of
the wobbling mass and fw takes different values in every walking step. Here,
the dense plots of fw represent a sign of quasi-periodic motion. The averaged
frequency of fw, however, remains in a similar range to the natural frequency.
As fc becomes close to 1.75 [Hz], fw shows a periodic motion, whose value
coincides with fc (fw grows on a diagonal line of fw = fc). This indicates
that the motion of the CRW is entrained to the up-and-down movement of
the wobbling mass [14].

As seen in a range of small fc in Fig. 6 (a)-(d), we can see that the natural
frequency of the CRW is slightly increased as the wobbling mass is increased.
That is, the moving speed in passive dynamic walking monotonically increases
as mc increases. This is because kinetic energy loss at impact decreases with
the increase of mc as shown in the previous section.
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Fig. 7 ψ for four values of mc with respect to fc

As indicated by positive phase difference, ψ, in Fig. 7, initially, the os-
cillatory phase of the wobbling mass is delayed from that of the CRW (i.e.,
anti-phase synchronization), since fc is smaller than the natural frequency of
the CRW. As fc grows large, the two frequencies become similar to each other
and the in-phase synchronization takes place. As fc grows larger than the nat-
ural frequency of the CRW, the phase of the wobbling mass is advanced to that
of the CRW (i.e., anti-phase synchronization) as confirmed by negative phase
difference in Fig. 7. This represents a desired state of walking, because (1)
trajectory of the CoM is flattened by the anti-phase synchronization between
the CRW and the wobbling mass, which was proved optimal for walking in
[10], and (2) the frequency of the CRW is accelerated by the wobbling mass.

It should be noted that for a small wobbling mass (mc = 0.1 [kg]), the
1:1 entrainment (i.e., fc = fw) is broken around fc = 1.8 [Hz], giving rise
to regime of desynchronization as shown in Fig. 7 (a). This implies that the
small wobbling mass cannot entrain the CRW so strongly compared to larger
masses. For fc > 3.0 [Hz], however, the CRW is entrained to a half value of
the wobbling frequency (fw = fc/2). As shown in Fig. 8, during one walking
step, the wobbling mass moves up-and-down twice, giving rise to two sorts of
phase differences with respect to tc1 and tc2 that appear before and after tw
(indicated by “©” and “×” in Fig. 7 (a)). This represents 1:2 entrainment
widely observed in coupled nonlinear oscillators [14]. The maximum walking
speed is not so high compared with those at the low frequency. This is because
the effect of indirect excitation in this case is small due to the light weight.

Fig. 9 plots the cause of unsteady gait for four values of mc. Here, “×”
represents the case of falling backward whereas “�” represents that of negative
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λ2. We can see that most of the unsteady gaits are caused by the failure to
overcome the potential barrier.

4.3 Effect of slope

We also investigated how the generated gait properties change with respect
to the slope and performed numerical simulations according to the following
procedure.

(B1) Set the slope angle and the desired wobble frequency to φ = 0.06 [rad]
and fc = 3.5 [Hz].

(B2) Set the initial conditions to the values of Eq. (27), and start dynamic
walking.

(B3) After 100 [s] from the start, save the gait descriptors for 20 steps.
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(B4) Increase φ by 0.001 [rad] and return to (B2).
(B5) Repeat from (B2) to (B4) until φ = 0.18 [rad].

Figs. 10 and 11 respectively show dependence of the frequency of the CRW,
fw [Hz], and the phase difference, ψ [rad], on the slope, φ [rad].

As in Figs. 6 and 7, transitions from desynchronization to synchronization
between the CRW and the wobbling mass are discernible. In this case, increase
in the slope angle φ monotonically increases the walking frequency fw of the
CRW. As the walking frequency fw crosses the modulation frequency fc of
the wobbling mass, fw is locked to fc, showing a flat regime of fw = fc. Here,
the CRW is entrained to the dynamics of the wobbling mass. The range of
entrainment is increased as the size of the wobbling mass is increased from (a)
to (d). This indicates that the wobbling mass entrains the CRW more strongly
as the mass size is increased.

For a small mass shown in (a), 1:2 entrainment appears in the range of
a small slope (φ ≤ 0.073 [rad]). The generated gait converges to a periodic
motion with fw = fc/2 = 1.75 [Hz]. As the slope angle is increased from this
range, the 1:2 entrainment is broken at φ = 0.073 [rad] and 1:1 entrainment
appears for 0.097 ≤ φ ≤ 0.107 [rad].

Fig. 11 shows that the phase difference ψ takes different values in every
walking step when the CRW and the wobbling mass are not synchronized
with each other. When they are synchronized, on the other hand, the phase
difference is locked to a constant value. Here, the phase difference increases
monotonically as the natural frequency of the CRW is increased by the inclined
slope angle φ. When the natural frequency of the CRW exceeds fc, the CRW
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becomes phase-advanced from the wobbling mass, resulting in a positive phase
difference (ψ > 0). This sort of phase relationship is commonly observed in
forced self-sustained oscillators [14].

5 Experimental case study

5.1 Specifications of experimental machine

Fig. 12 shows an overview of our prototype CRW machine with the drive unit
and the wobbling mass. The wobbling mass consists of three weight plates
whose mass is 450 [g], and the whole moving weight is 1508 [g]. It moves up-
and-down along the guide rail according to the piston crank mechanism driven
by a maxon DC motor. It is also connected to a constant force spring from
above to reduce the load of the DC motor.

The total mass of the drive unit is 3070 [g]. Other parameters are also
listed in Table 2. The fore and rear RWs are connected by a rigid rod so that
they move in a complete synchronization.

The motor driver controls the DC motor in speed-control mode so that it
rotates at a constant rotating speed under load. The generated up-and-down
motion of the wobbling mass represents an almost sinusoidal waveform. The
amplitude of the motion can be adjusted by changing the mounting position
to the crankshaft. In this paper, we chose the amplitude as Am = 35 [mm].

5.2 Experimental results

We performed walking experiments on an inclined treadmill where the slope
angle was set to 3.9 [deg]. We changed the frequency of the wobbling mass, fc
[Hz], from zero to 3.0 [Hz] and recorded the steady treadmill speeds five times
for each frequency to compute average walking speeds.

Fig. 13 plots the experimental results of the walking speed with respect to
the desired wobble frequency. We can see that the generated walking speed
shows only a little change from fc = 0 to 1.5 [Hz], whereas it begins to mono-
tonically increase in the range of fc ≥ 2.0 [Hz]. With the increase of fc, fre-
quency entrainment occurs and indirectly-excited walking motion is generated.
Note that the driving system has a little back-drivability and this is the largest
difference between experiments and numerical simulations. This also causes the

Table 2 Physical parameters of experimental CRW machine

Total mass of drive unit 3070 g
Wobbling mass 1508 g
One weight plate 450 g
One rimless wheel 800 g
Body frame 1300 g
Leg length (radius) 150 mm
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difference of the impact dynamics. The experimental result agrees well with
the numerical analysis in spite of the high rigidity of the driving system.

Wobbling mass

Rod

Drive unit

Body frame

(a) Side view

Crankshaft

Constant force spring

Wobbling mass

(b) Front view

Fig. 12 Overview of experimental CRW with active wobbling mass



Title Suppressed Due to Excessive Length 19

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0  0.5  1  1.5  2  2.5  3

W
al

ki
ng

 s
pe

ed
 [m

/s
]

fc [Hz]

1 plate

2 plates

3 plates

Fig. 13 Experimental result of controlled walking speed with respect to fc

6 Conclusion and future work

In this paper, we investigated the effect of indirect excitation control of the
active wobbling mass moving up-and-down in the body frame. Through nu-
merical simulations and experiments, we clarified that frequency entrainment
occurs and speeding-up is accordingly achieved at the high frequencies of the
wobbling mass. One of the strong advantages of our indirectly-excited motion
generation is the easiness of its implementation, which may enlarge its wide
applicability. For instance, we can easily generate or enhance performance of
dynamic walkers by simply attaching the drive unit afterward.

Currently we are investigating the potentiality of level dynamic walking
using the principle of indirect excitation. Unlike the continuous control of the
active wobbling mass studied in this paper, phase resetting would be neces-
sary to successfully restore mechanical energy lost by collision. The use of a
wobbling mass with multi-DOF that can allow translational and rotational
movements is also an interesting subject for study. The ultimate objective of
our study is to develop a design method for passive/active wobbling masses
that optimize the gait efficiencies of general legged locomotion robots.
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Appendix A

The details of the matrixM(q) and the vector h (q, q̇) in Eq. (1) are as follows.

M(q) =

⎡
⎣
M1(q) 03×3 03×4

03×3 M2(q) 03×4

04×3 04×3 M3(q)

⎤
⎦ (28)

M 1(q) =

⎡
⎣

m1 0 m1L1 cos θ1
0 m1 −m1L1 sin θ1

m1L1 cos θ1 −m1L1 sin θ1 m1L
2
1 + I1

⎤
⎦ (29)

M 2(q) =

⎡
⎣

m2 0 m2L2 cos θ2
0 m2 −m2L2 sin θ2

m2L2 cos θ2 −m2L2 sin θ2 m2L
2
2 + I2

⎤
⎦ (30)

M 3(q) =

⎡
⎢⎢⎣

m3 +mc 0 −mcLc cos θ3 −mc sin θ3
0 m3 +mc mcLc sin θ3 −mc cos θ3

−mcLc cos θ3 mcLc sin θ3 mcL
2
c 0

−mc sin θ1 −mc cos θ3 0 mc

⎤
⎥⎥⎦ (31)

h (q, q̇) =

⎡
⎣
h1 (q, q̇)
h2 (q, q̇)
h3 (q, q̇)

⎤
⎦ (32)

h1 (q, q̇) =

⎡
⎢⎣

−m1L1θ̇
2

1 sin θ1

m1

(
g − L1θ̇

2

1 cos θ1

)

−m1gL1 sin θ1

⎤
⎥⎦ (33)

h2 (q, q̇) =

⎡
⎢⎣

−m2L2θ̇
2

2 sin θ2

m2

(
g − L2θ̇

2

2 cos θ2

)

−m2gL2 sin θ2

⎤
⎥⎦ (34)

h3 (q, q̇) =

⎡
⎢⎢⎢⎢⎢⎢⎣

mcθ̇
2

3

(
Lcθ̇3 sin θ3 − 2L̇c cos θ3

)

(m3 +mc)g +mcθ̇3

(
Lcθ̇3 cos θ3 + 2L̇c sin θ3

)

mcLc

(
g sin θ3 + 2L̇cθ̇3

)

−mc

(
g cos θ3 + Lcθ̇

2

3

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(35)

Note that we added inertia moments for the fore and rear RWs, I1 and I2, as
indicated in Eqs. (29) and (30). This is necessary to calculate M(q)−1 in the
derivations of λ and q̈. After that, we finally took the limits of I1 → 0 and
I2 → 0 for deriving Eq. (9).
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