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Map-Reduce Gaussian Process (MR-GP) for Multi-UAV based
Environment Monitoring with Limited Battery

Kshitij Tiwari†, Sungmoon Jeong and Nak Young Chong
School of Information Science,

Japan Advanced Institute of Science and Technology (JAIST), Ishikawa 923-1292, Japan
(Tel: +81-761-51-1248; E-mail: {kshitij.tiwari,jeongsm,nakyoung}@jaist.ac.jp)

Abstract: Environment monitoring is a challenging task owing to its ever changing dynamics. Furthermore, deploying
a team of resource constrained robots to persistently monitor the environment encompasses intelligently selecting the
training samples which are spread across a significantly large area to conservatively spend the resources allocated. In
order to accomplish this using a team of fully autonomous self-reliant robots, we pose this problem as a map-reduce
architecture: Map phase involves each individual member gathering its training samples and generating the best possible
model of the environment followed by the Reduce phase where we merge all these models into a single globally consistent
model to infer the environment dynamics. Our preliminary contributions to both these phases have shown significant ease
to parallelize the process of gathering training samples whilst reducing the over-all model uncertainty. We demonstrated
these results in a communication devoid simulated environment using publicly available datasets.
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1. INTRODUCTION

In recent times, the domain of robotics and machine
learning have evolved significantly, thereby allowing us
to develop intelligent and autonomous robots. Robots
have shown to be useful in battlefields [1], assembly lines
[2], environment monitoring [3] and a plethora of such
application. Amidst these, our main focus will be en-
vironment monitoring since the growing environmental
pollution is an alarming concern and must be paid heed
to.

Environment monitoring in itself is a conglomeration
of several robotics (wide-area coverage, path planning)
and machine learning (big data processing, inference,
modeling) problems and still has a lot of scope for im-
provements. An example situation could be to monitor
the aquatic pollution levels of a reservoir, the water from
which is then used for agricultural purposes by farmers
in surrounding areas. High levels of pollution could in-
fect the crops which in turns populates up the food-chain.
Measurement samples could be in terms of measuring
harmful chemicals like Mercury, pesticides, etc. Other
related application could be in monitoring the pollution
caused by motor vehicles on the road or atmospheric
pollutants that remain suspended in the air like ozone
amongst many others. The aim of this paper is to present
a technique generic enough which not only fits any het-
erogenous team of mobile robots but also is not limited to
any specific application. Since most of the environmen-
tal phenomenon demonstrate temporally evolving spa-
tial variations thus, developing a precise spatiotemporal
model is preliminary challenge which is complicated by
the fact that we have to rely on mobile robots which have
limited resources (fight time, travel time, travel distance,
payload capacity etc.). Thus, our task is two fold: re-
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source constrained path planning and accurate modeling.

Previously the problem of gathering measurement
samples was solved using static sensors [4] but while
monitoring spatiotemporal environmental phenomenon
the area to be monitored is significantly large and not all
locations can be observed at the same time. Since, the
dynamics of the field are evolving temporally, we cannot
rely on static sensors for long term persistent monitor-
ing. If we had to do this, we would need a significantly
large amount of sensors to envelop the entire area [5].
This problem can easily be tackled by robots equipped
with appropriate sensors which can autonomously deduce
the best locations to observe. Thus, the robot can help
gather the training samples but the choice of machine
learning model which they are fed too plays a key role
in understanding the environment. This is solved using
a non-parametric class of Bayesian models called Gaus-
sian Process (GP) [6] which elegantly infers the underly-
ing environmental dynamics whilst simultaneously tak-
ing into account the prediction uncertainty in inference.
Although, these models have proven to be significantly
successful in the machine learning literature, when apply-
ing them to robotics domain we are faced with a dilemma:
these models are highly data driven models and their pre-
diction performance is closely coupled to the size of the
training set. However, owing to limited resources allo-
cated, a robot can only gather a handful samples from the
field, thus, the model performance can be compromised
if the training samples are not chosen wisely.

The main contribution of this paper is to extend the
distributed GP [7] framework, such that multiple robots
can individually generate models of the environment
without having to communicate either with the base sta-
tion or amongst the team. In doing so, we enforce re-
source utilization constraints from [8] to ensure conser-
vative resource utilization and then fuse all the indepen-



dent models into a globally consistent model by point-
wise weighted fusion of individual predictions based on
the responsibility of each of the experts. We pose this
is a fully decentralized exploration with centralized data
fusion problem for communication devoid environments.
Although, communication between robots can lead to
better models but in doing so, the robots would need
to take care of network connectivity and message filter-
ing. These have already been considered by researchers
in [9,10] and hence we do not intend on considering such
parameters and design our approach for extremely harsh
environment settings.

2. RELATED WORK

Existing research in environment monitoring focuses
on mainly two areas: Efficient modeling of spatio-
temporal phenomena and Informative sensing for gath-
ering informative samples.

2.1. Spatiotemporal Modeling

Inference and prediction of values in spatiotemporal
domain has been studied previously in the machine learn-
ing literature and GP regression [6] have been shown to
perform significantly well. Their strength is not only
the non-parametric nature but also the ability to quantize
the uncertainty of model. Some people have studied en-
hancements of GPs like a linear opinion pool of experts
called Mixture of Experts [11] or Kernel DM+V/W al-
gorithms for inferring environment dynamics whilst tak-
ing wind disturbances into account which in turn affect
the gas distribution [12]. Other researchers tend to focus
more on enhancing the kernels. For e.g., in [13], the re-
searchers develop a non-stationary non-separable space-
time covariance kernel since the dynamics in spatial do-
main and temporal domain may not show similar varia-
tions and in [14], the researchers propose area kernels to
deal with continuous measurements instead of point mea-
surements.

2.2. Information-theoretic Path Planning

Information-theoretic path planning refers to planning
paths such that maximal information about the environ-
ment can be acquired during exploration. Thus, people
tend to use a chosen measure of information like entropy
[4], mutual information gain [15] etc. to drive their path
planning strategy. In recent times, researchers have also
started to investigate the Orienteering Problem [16,17] in
terms of spatially correlated network of nodes like [18]
where they use Mixed Integer Quadratic Programming.
In [19], the researchers proposed a fully Bayesian frame-
work for allowing the robots to autonomously infer the
most important regions to monitor by defining the appro-
priate acquisition function. In doing so, the researchers
can deduce that it is more beneficial to monitor areas
of high measurements than areas of more information in
most environment monitoring settings.

3. PROBLEM FORMULATION
In this section, we formally define the scenario in

which we plan on deploying our robot team and our Map-
Reduce System.

3.1. Sensing Scenario
Our sensing scenario is shown in Fig. 1: We want

to monitor a large scale spatiotemporal environmental
phenomenon using a budget constrained team of mobile
robots like UAV’s which have limited battery life restrict-
ing their flight time. The problem then becomes to ob-
serve as many informative samples as possible in order to
generate the best possible model by the end of the mis-
sion time.

3.2. Formal Definition
We wish to model a spatio-temporal environment

z=f(x)+ε, where x∈D⊂Rd are inputs and ε ∼
N (0,σ2

n) is i.i.d. Gaussian measurement noise. We
place a Gaussian process (GP) prior on the spatio-
temporal phenomenon f and write f ∼ GP . We also
define zx; ∀x∈O as the observed measurements and
zx∗ ; ∀x∗∈U as the corresponding predictions at the un-
observed locations. Then, zx∗ is a GP, and any of its
finite subsets is a multivariate Gaussian distribution [6].
We also define O ⊂ D as the set of observed inputs
and U ⊂ D as the set of unobserved inputs such that
U ∩ O = ∅ and U ∪ O = D. For k ∈ {1, . . . ,K} rep-
resenting the robot-index, we represent the total number
of observations by Oglobal =

∆ (
⋃K

k=1 Ok). We associate
a sensing cost CS(x

∗) and a travel cost CT (x,x
∗) for

observing measurements at new location x∗. We define a
maximum sampling budget as B and the remaining avail-
able budget as Bres.

3.3. System Architecture
Our architecture is shown in Fig. 2: During the Map

phase each robot utilizes our resource constrained active
sensing framework from [8] in order to plan the most
informative trajectories with homing guarantees. Every
time a new measurement is gathered we update our pre-
diction model and repeat this cycle until the budget is
critically low. When all robots reach this termination
condition, they pass on their learnt models to the base
station, which then is tasked with the integration of all
models into a globally consistent model which we refer
to as the Reduce phase. This phase performs weighted fu-
sion of individual predictions from each expert for each
test point by evaluating the corresponding responsibilities
which are then normalized to serve as weights for point-
wise fusion. We refer to this as Fusion of Distributed
Gaussian Process Experts (FuDGE).

4. CONCLUSION AND FUTURE WORKS
In this paper, we posed the environment monitoring

problem as a Map-Reduce architecture, where during the
Map phase each robot individually generates the model of
the spatiotemporal environment which are fused together



Fig. 1: (Sensing Scenario) Each robot is gathering its own observations which are then fed to a GP model to predict the
dynamics of the environment. Multiple robots generate slightly conflicting models and off-load them to the base station
at the end of the respective mission times. Then it is a challenge for the base station to integrate all models into a globally
consistent model in order to be able to compare the performance to the ground truth.

Fig. 2: (System Architecture) Here, we demonstrate the overall flow of our MR-GP architecture. During the Map phase
each robot individually gathers training samples to generate predictions which during the Reduce Phase are integrated
together to obtain a globally consistent model.

during the Reduce phase. In doing so, we not only solve
the wide area monitoring problem by using a fully de-
centralized team of robots but simultaneously, split the
computational load over the entire team such that consid-
erably large areas of the environment can be observed.

We have only just begun to solve this problem and the
solution is far from complete. We have proposed a sur-
rogate function to solve the multi-objective optimization
problem of trading off model performance to resource
utilization. However, there may be better cost functions



which further enhance the model performance by also
considering the robot dynamics and external disturbances
which may prevent the robot from actually approaching
the chosen next-best-location. As far as the choice of
weights is concerned, we have adopted a rather deter-
ministic approach but in reality uncertainty in resource
utilization should be considered for which probabilistic
battery consumption model must be developed. We have
considered a situation similar to the work of [18] where
the locations are pre-defined and discrete collection of
nodes however, in real life, the measurements are con-
tinuous and the robot has the capability of flying from
its current location to any other location within the sens-
ing boundary. Thus, we should replace our current ker-
nel with area kernels [20] for making the situation more
realistic. Currently, we assume lack of all sorts of com-
munications to develop our approach for extremely harsh
environment. However, in doing so, we are still incur-
ring some resource wastage since more than one robot
may want to gather overlapping training samples owing
to uncoordinated exploration. Thus, we need to further
investigate and reduce such losses.
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