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Performance Analysis of Distortion-Acceptable
Cooperative Communications in Wireless Sensor

Networks for Internet of Things
Wensheng Lin, Student Member, IEEE, and Tad Matsumoto, Fellow, IEEE

Abstract—This paper analyzes the performance limit of coop-
erative communications in wireless sensor networks (WSNs), with
the aim of utilizing the analytical results to practical applications,
for example, Internet of Things (IoT). The observation of a
primary sensor is not necessarily to be reconstructed losslessly,
as long as the system can still make correct judgements and
operations. First of all, we perform the theoretical analysis to
derive an inner bound on the achievable rate-distortion region
for lossy communications with helpers. The numerical results
precisely match the Wyner-Ziv theorem when there is only one
assisting link and no rate constraint on the assisting link. Then,
we present a distributed encoding and joint decoding scheme
for cooperative communications in WSNs. Moreover, a series
of simulations are conducted for the performance evaluation
and verification. Although there is an obvious gap between the
theoretical and simulation results, the performance curves show
similar tendencies in terms of the signal-to-noise ratio (SNR)
versus bit error rate (BER).

Index Terms—Wireless sensor networks, Internet of Things,
cooperative communications, rate-distortion, side information.

I. INTRODUCTION

Wireless sensor networks (WSNs) are becoming a core part
to support Internet of Things (IoT) and smart societies in the
big data era [1]–[4]. Traditionally, lossless recovery of the
information is needed in various communications scenarios
which require high fidelity and reliability. There are already
some research achievements related to lossless communica-
tions in WSNs. Zou et al. [5] proposed a data coding and
transmission method, which can losslessly recover the original
data despite the data loss occurred during transmissions, for
structural health monitoring by wireless smart sensor network.
In [6], Long and Xiang developed a lossless data compression
algorithm based on run-length encoding and Huffman coding
for energy saving in WSNs. Dedeoglu et al. [7] presented
a distributed optimization algorithm for power allocation in
lossless data gathering WSNs.

However, in the WSNs for IoT, a major task of the systems
is to make a judgement followed by an operation based on
the estimate of the source. Therefore, the system is still
able to make correct judgement and operation, even if the
source estimate is not lossless but is within a specified degree.
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Fig. 1. A scenario of lossy communications in WSNs.

For instance, there is a primary sensor observing an object
as illustrated in Fig. 1; meanwhile, a number of assisting
sensors are deployed to refine the system performance. Due
to the different locations and observing angles among the
sensors, the observations by the assisting sensors are correlated
with that of the primary sensor but not exactly the same.
Then, all sensors transmit their observations to a fusion center
through wireless channels, while the signals of data sequences
suffer from noise. Finally, the fusion center reconstructs the
observation of the primary sensor with the aid of the side
information provided by the assisting sensors. Although the
distortion cannot be completely eliminated in the estimate of
the observation, the fusion center may be able to still make
a right judgement, if the distortion is not too large. Since
the estimate of the object is mainly based on the observation
of the primary sensor, noiseless observation is assumed for
the primary sensor which only suffers from the sensor-center
transmission errors causing in the observation part.

Motivated by the realistic scenario stated above, this paper
focuses on cooperative communications which allows distor-
tions in WSNs. In order to analyze the system performance, we
make our contributions on to the both theoretical analysis and
performance verification through simulations in this paper. In
the theoretical analysis, the distortion resulting from channel
conditions can be handled by Shannon’s lossy source-channel
separation theorem [8], [9]. In this theorem, the sequence is
encoded by lossy source coding such that the corresponding
lossy coding rate times end-to-end coding rate is less than or
equal to the channel capacity, i.e., losslessly transmitting the
lossy version of the sequence via the channel, and thereby
the distortion is evaluated by the rate-distortion function.
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Likewise, we can start theoretical analysis from a problem of
lossy multiterminal source coding, and then take the channel
capacities into account for joint source-channel coding based
on Shannon’s lossy source-channel separation theorem.

Essentially, the theoretical model of Fig. 1 is lossy com-
munications with helpers, i.e., the assisting sensors are the
helpers from the view of the primary sensor. Thus, we begin to
theoretically analyze the system performance by investigating
the achievable rate-distortion region of a lossy source coding
problem with helpers. So far, there are already some theoretical
results related to multiterminal source coding with helpers
or side information. Oohama studied a lossy source coding
problem with many helpers for Gaussian sources in [10],
where conditionally independent side information is assumed
for a target source. For lossy source coding problem with
noncausal side information only available at the decoder,
Wyner and Ziv determined the corresponding rate-distortion
function in [11], where the system model assumes an uncon-
strained full-rate helper helping one source. Ahlswede and
Korner [12] characterized the rate region for estimating a
source in a high fidelity with the assistance of a helper.
Berger [13] and Tung [14] derived an outer bound and an
inner bound of the achievable rate-distortion region if the
full recoveries of the sources are not necessarily required in
the multiterminal source coding problem. Han and Kobayashi
studied a multiterminal source coding problem for losslessly
reconstructing many sources with many helpers in [15], where
an inner bound is derived by utilizing a coding scheme based
on the joint typical sequence [16]. Inspired by these theoretical
works, we have derived an inner bound on the achievable
rate-distortion region of the lossy source coding problem with
helpers for general sources. Subsequently, we determine the
final distortion restricted by the channel conditions, based on
Shannon’s lossy source-channel separation theorem.

In order to evaluate the practical performance of lossy co-
operative communications in WSNs, we present a distributed
encoding and joint decoding scheme, and evaluate its bit
error rate (BER) performance via computer simulations. Since
the data sequences of the sensor observations are binary,
the assisting data sequences can be regarded as a similar
version of the primary data sequence with some bits being
flipped. For binary data gathering in WSNs, We can find
similar simulation system model in [17], i.e., the fusion center
recursively performs soft decoding and updates log-likelihood
ratio (LLR) by exchanging the mutual information among the
data sequences.

The contributions of this paper are summarized as follows:
• Initially, We derive an inner bound on the achievable

rate-distortion region for lossy source coding with helpers
through achievability proof, where the type of distribution
is not specified for the source.

• For the helper information being independent with each
other, given the source, we further calculate the rate-
distortion function for doubly symmetric binary source
(DSBS), and extend the results to joint source-channel
coding. By doing this, we analyze the theoretical per-
formance in terms of binary distortion, or equivalently
BER performance, for lossy cooperative communications

in WSNs. The theoretical results are consistent to the
Wyner-Ziv theorem as the special case in the sense that
there is only one full-rate assisting sensor in the system.

• Finally, we perform a series of simulations to evaluate
the practical performance for lossy cooperative commu-
nications in WSNs. We also discuss the reasons for the
performance gap between the theoretical and simulation
results. This part of the work has intuitive meaning for
the future design of practical cooperative communications
systems in WSNs, when lossless communication is not
necessarily required.

The rest of this paper is organized as follows. Section
II formulates the theoretical model as a problem of lossy
communications with helpers. Section III presents an achiev-
ability proof for the rate-distortion region and derives a single-
letter characterization of the inner bound. In Section IV,
the rate-distortion function is further calculated for binary
sources and extended to joint source-channel coding. Then,
Section V evaluates the practical performance for an instance
of cooperative communications systems in WSNs. Finally,
Section VI concludes this work.

II. SYSTEM MODEL

TABLE I
NOTATIONS

Notation Definition

Uppercase letters X,Y, · · · Random variables

Lowercase letters x, y, · · · Realizations of random variables

Calligraphic letters X ,Y, · · · Finite alphabets of variables

| · | The cardinality of a set

L {1, 2, · · · , L}
S A subset of L
Sc The complementary set of S
Sj The j-th element of the set S
Skj {Sj , Sj+1, · · · , Sk−1, Sk}
t The time index

i The source link index

The superscript of a variable The length of a vector

The random variable with a
finite alphabet as subscript

A set of all random variables with
an index in the finite alphabet, e.g.,

YS = {Yi|i ∈ S}

T (n)
ε

The set of jointly
ε-typical n-sequences

The notations used in this paper are listed in Table I. For the
purpose of simplicity, we assume that all of the sensors trans-
mit data sequences through orthogonal channels1. Therefore,
by Shannon’s lossy source-channel separation theorem, we can
consider a multiterminal source coding problem depicted in

1The transmission orthogonality among the links can be easily satisfied
by time-division multiple access (TDMA) or orthogonal frequency-division
multiple access (OFDMA). Since the link rates are constrained by signal-
to-noise ratio (SNR) or signal-to-interference-plus-noise ratio (SINR) for
orthogonal or non-orthogonal channels, respectively, it is not difficult to extend
the results in this paper to non-orthogonal case, so far as single user detection
is assumed. The use of the multiuser detection schemes is out of the scope
and left as future research.
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Fig. 2. The system model of lossy source coding with helpers. The primary
sensor is regarded as the target source X , while the assisting sensors are
regarded as many helpers Yi.

Fig. 2 for the first step. The primary sensor is regarded as
the target source X , while the assisting sensors are regarded
as many helpers Yi. Although the number of the helpers
may be limited by space and channel resources in practical
scenario, we do not constrain it in theoretical analysis. In total,
there are (L + 1) memoryless sources (X,Y1, · · · , YL), with
X and Yi taking values from corresponding finite alphabets
X and Yi at each time slot, respectively. xn = {x(t)}nt=1

and yni = {yi(t)}nt=1 indicate independent and identically
distributed (i.i.d.) sequences from the sources X and Yi,
respectively. Then, the sequences xn and yni are observed and
transmitted to a common receiver, i.e., the fusion center, after
compression by encoder 0 and encoder i, respectively. Due to
some restrictions in practice, e.g., the deployment of encoders
is distributed and located at different places, the observed
sequences xn and yni have to be encoded into codewords
separately. The encoders compress the sequences xn and yni
at rates R0 and Ri, respectively, by assigning an index to each
sequence according to the following mapping rules:

ϕ0 : Xn 7→ M0 = {1, 2, · · · , 2nR0}, (1)

ϕi : Yni 7→ Mi = {1, 2, · · · , 2nRi}, for i ∈ L. (2)

Without loss of generality, we assume that 2nR0 and 2nRi are
integer numbers.

After receiving all of the encoding outputs ϕ0(xn), ϕ1(yn1 ),
· · · , ϕL(ynL), a joint decoder constructs the estimate x̂n of xn

by jointly utilizing the received codewords in contrast to the
distributed compression at the encoders. The reconstruction
process is expressed by the mapping as:

ψ :M0 ×M1 × · · · ×ML 7→ Xn. (3)

Generally, distortion happens when the estimate x̂n does not
fully contain the information of xn. The distortion measure
d : X × X 7→ [0,∞) is defined to describe the degree
of distortion between x and x̂. For the entire sequence, the
average distortion between the sequences xn and x̂n is defined
as

d(xn, x̂n) =
1

n

n∑
t=1

d (x(t), x̂(t)) . (4)

For given distortion requirement D, the achievable rate-
distortion region R(D), consisting of all achievable rate tuple

of (R0, RL), is defined as

R(D) = {(R0, RL) : (R0, RL) is admissible such that
lim
n→∞

E (d(xn, x̂n)) ≤ D + ε,

for any ε > 0}. (5)

Since the channels are assumed to be orthogonal, according
to Shannon’s lossy source-channel separation theorem, the link
rates are constrained by:{

R0(D) · r0 ≤ C(γ0),

Ri · ri ≤ C(γi), for i ∈ L,
(6)

where r0 and ri denote the end-to-end coding rates; moreover,
C(γ0) and C(γi) represent the Shannon capacity using Gaus-
sian codebook with γ being the SNR of the wireless channel.

III. LOSSY SOURCE CODING WITH HELPERS

Initially, we derive a single-letter characterization of an
inner bound on the achievable rate-distortion region for lossy
source coding with helpers.

Proposition 1: Let (X,YL) be a (L+1)-component discrete
memoryless source and d(x, x̂) be distortion measure. A rate
tuple (R0, RL) is achievable with distortion requirement D for
distributed lossy source coding with more-than-one helpers if

R0 > I(X;U |VL), (7)∑
i∈S

Ri > I(YS ;VS |VSc), (8)

for some conditional probability mass function (PMF) p(u|x) ·∏L
i=1 p(vi|yi) and function x̂(u, vL) such that E(d(X, X̂)) ≤

D, with U → X → Yi → Vi and Vi → Yi → X → Yj → Vj
forming Markov chains for i, j ∈ L and i 6= j.

Proof of Proposition 1: We use a (L + 1)-dimension dis-
tributed compress-bin scheme for lossy source coding, and an-
alyze the expected distortion of this scheme with respect to rate
constraints. In the following, we assume that ε1 < ε2 < ε3 < ε.

Codebook generation. Fix a conditional PMF p(u|x) ·∏L
i=1 p(vi|yi) and a function x̂(u, vL) such that E(d(X, X̂))
≤ D/(1 + ε). Let R̃0 ≥ R0 and R̃i ≥ Ri for i ∈ L. Ran-
domly and independently generate 2nR̃0 sequences un(k0) ∼∏n
t=1 pU (u), k0 ∈ K0 = {1, 2, · · · , 2nR̃0}. Similarly, for

i ∈ L, randomly and independently generate 2nR̃i sequences
vni (ki) ∼

∏n
t=1 pVi(vi), ki ∈ Ki = {1, 2, · · · , 2nR̃i}. Partition

the set of indices k0 ∈ K0 into equal-size bins B0(m0) =

{(m0 − 1)2n(R̃0−R0) + 1, · · · ,m02n(R̃0−R0)} for m0 ∈ M0,
and also partition the set of indices ki ∈ Ki into equal-size
bins Bi(mi) = {(mi − 1)2n(R̃i−Ri) + 1, · · · ,mi2

n(R̃i−Ri)}
for mi ∈ Mi, i ∈ L. This codebook structure is utilized in
the encoders and the decoder.

Encoding. Upon observing xn, encoder 0 finds an index
k0 ∈ K0 such that (un(k0), xn) ∈ T (n)

ε1 . If there is more than
one such index k0, encoder 0 selects one of them uniformly at
random. If there is no such index k0, encoder 0 selects an index
from K0 uniformly at random. Similarly, for i ∈ L, encoder
i finds an index ki ∈ Ki such that (vni (ki), y

n
i ) ∈ T (n)

ε1 . If
there is more than one such index ki, encoder i selects one
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of them uniformly at random. If there is no such index ki,
encoder i selects an index from Ki uniformly at random. Then,
encoder 0 and encoder i send the indices m0 and mi such that
k0 ∈ B0(m0) and ki ∈ Bi(mi), respectively.

Decoding. The decoder finds the unique index tuple (k̂0,
k̂L) ∈ B0(m0)×B1(m1)× · · · × BL(mL) such that (un(k̂0),

vn1 (k̂1), · · · , vnL(k̂L)) ∈ T (n)
ε . If there is such a unique index

tuple (k̂0, k̂L), the reconstruction is computed bit by bit
as x̂t(ut(k̂0), v1,t(k̂1), · · · , vL,t(k̂L)); otherwise, x̂n is set to
arbitrary sequence in Xn.

Fig. 3. An example of the distributed compress-bin scheme with L = 2.

An example of the distributed compress-bin scheme with
L = 2 is depicted in Fig. 3. Now, we analyze the ex-
pected distortion of the distributed compress-bin scheme. Let
(K0,KL) denote the index tuple for the chosen (Un, V nL )
tuple, (M0,ML) be the tuple of corresponding bin indices,
and (K̂0, K̂L) be the tuple of decoded indices. Define the
“error” event

E = {(Un(K̂0), V n1 (K̂1), · · · , V nL (K̂L), Xn, Y n1 , · · · , Y nL )

/∈ T (n)
ε }, (9)

and consider the following events:

E1 = {(Un(k0), Xn) /∈ T (n)
ε1 for all k0 ∈ K0}, (10)

E2 = {(V ni (ki), Y
n
i ) /∈ T (n)

ε1 for all ki ∈ Ki, i ∈ L}, (11)

E3 = {(Un(K0), Xn, Y n1 ) /∈ T (n)
ε2 }, (12)

E4 = {(Un(K0), Xn, V n1 (K1), Y n1 ) /∈ T (n)
ε3 }, (13)

E5 = {(Un(K0), Xn, V n1 (K1), Y n1 , · · · , V nL (KL), Y nL )

/∈ T (n)
ε }, (14)

E6 = {(V n1 (k̃1), · · · , V nL (k̃L)) ∈ T (n)
ε for some

k̃L ∈ B1(M1)× · · · × BL(ML), k̃L 6= KL}, (15)

E7 = {(Un(k̃0), V n1 (K1), · · · , V nL (KL)) ∈ T (n)
ε for some

k̃0 ∈ B0(M0), k̃0 6= K0}. (16)

E1 and E2 represent encoding error events in encoder 0
and encoder i for i ∈ L, respectively. E5 occurs if joint
typicality decoding fails, with E3 and E4 being its sub events.
E6 and E7 mean that there are more than one decoding
result, and hence a decoding error event occurs. Notice
that the “error” event occurs only if (Un(K0), V n1 (K1),

· · · , V nL (KL), Xn, Y n1 , · · · , Y nL ) /∈ T (n)
ε or (k̃0, k̃L) 6= (K0,

KL). By the union of the events bound, we have

P(E) ≤ P(E1) + P(E2) + P(Ec1 ∩ E3) + P(Ec3 ∩ E4)

+ P(Ec4 ∩ E5) + P(E6) + P(E7). (17)

We bound each term as follows. First, by the covering
lemma [18], P(E1) tends to zero as n→∞ if

R̃0 > I(X;U) + δ(ε1), (18)

and P(E2) tends to zero as n→∞ if

R̃i > I(Yi;Vi) + δ(ε1). (19)

Since Ec1 = {(Un(K0), Xn) ∈ T (n)
ε1 }, Y n1 |{Un(K0) =

un, Xn = xn} ∼
∏n
t=1 pY1|X(y1,t|xt). By the conditional

typicality lemma [18], P(Ec1 ∩E3) approaches zero as n→∞.
To bound P(Ec3 ∩ E4), let (un, xn, yn1 ) ∈ T (n)

ε2 (U,X, Y1),
and consider

P{V n1 (K1) = vn1 |Un(K0) = un, Xn = xn, Y n1 = yn1 }
= P{V n1 (K1) = vn1 |Y n1 = yn1 }
= p(vn1 |yn1 ). (20)

First, notice that by the covering lemma, P{V n1 (K1) ∈
T (n)
ε2 (V1|yn1 )|Y n1 = yn1 } converges to 1 as n → ∞, i.e.,
p(vn1 |yn1 ) satisfies the first condition of the Markov lemma
[18]. Then, similar to the proof of the Berger-Tung inner
bound, shown in Lemma 12.3 in [18], p(vn1 |yn1 ) also satisfies
the second condition of the Markov lemma. Hence, according
to the Markov lemma, we have

lim
n→∞

P{(un, xn, yn1 , V n1 (K1)) ∈ T (n)
ε3 |U

n(K0) = un,

Xn = xn, Y n1 = yn1 }
= 1, (21)

if (un, xn, yn1 ) ∈ T (n)
ε2 (U,X, Y1) and ε2 < ε3 is sufficiently

small. Therefore, P(Ec3 ∩ E4) tends to zero as n → ∞. By
recursively utilizing the similar derivation for bounding P(E3)
and P(Ec3 ∩ E4), we can obtain that P(Ec4 ∩ E5) tends to zero
as n→∞.

To bound P(E6), we introduce the following two lemmas:
Lemma 1 (joint typicality lemma for multiple random vari-

ables): Let (VS , VSc) ∼ p(vS , vSc). If ṽni ∼
∏n
t=1 pVi(vi,t)

for i ∈ S, and ṽni is an arbitrary random sequence for i ∈ Sc,
then

P{(Ṽ nS , ṽnSc) ∈ T (n)
ε (VS , VSc)}

≤ pow

(
2,−n

[ |S|∑
j=2

I(VSj−1
1

;VSj ) + I(VS ;VSc)

− δ(ε)
])
, (22)

where pow(a, b) = ab.
Lemma 2 (mutual packing lemma for multiple random

variables): Let (VS , VSc) ∼ p(vS , vSc). For i ∈ S, let
V ni (ki) ∼

∏n
t=1 pVi(vi,t), ki ∈ Ki = {1, 2, · · · , 2nri}. For

i ∈ Sc, let Ṽ ni be an arbitrarily distributed random sequence.
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Assume that (V ni (ki) : i ∈ S, ki ∈ Ki) and (Ṽ ni : i ∈ Sc) are
independent of each other. Then, δ(ε) exists that tends to zero
as ε→ 0 such that

lim
n→∞

P{(V nS1
(kS1

), · · · , V nS|S|(kS|S|), Ṽ
n
Sc) ∈ T (n)

ε for some

ki ∈ Ki, i ∈ S}
= 0, (23)

if ∑
i∈S

ri <

|S|∑
j=2

I(VSj−1
1

;VSj ) + I(VS ;VSc)− δ(ε). (24)

The proofs of Lemma 1 and Lemma 2 are provided in
Appendix A and Appendix B, respectively.

If R̃i = Ri for i ∈ Sc, notice that (19) becomes

Ri > I(Yi;Vi) + δ(ε1), (25)

and hence Ri is already large enough for link i. Moreover,
since R̃i − Ri = 0, there is only one index in Bi for i ∈ Sc.
Hence, k̃i = Ki for k̃i ∈ Bi. Then, E6 can be simplified as

E6 = {(V nS1
(k̃S1

), · · · , V nS|S|(k̃S|S|), V
n
Sc1

(KSc1
), · · · ,

V nSc|Sc|
(KSc|Sc|

)) ∈ T (n)
ε for some k̃S 6= KS ,

k̃S ∈ BS1(MS1)× · · · × BS|S|(MS|S|)}. (26)

Following a similar argument as Lemma 11.1 in [18] in the
proof of the Wyner-Ziv theorem, we have

P(E6) ≤ P{(V nS1
(k̃S1), · · · , V nS|S|(k̃S|S|), V

n
Sc1

(KSc1
), · · · ,

V nSc|Sc|
(KSc|Sc|

)) ∈ T (n)
ε for some

k̃S ∈ BS1
(1)× · · · × BS|S|(1)}, (27)

P(E7) ≤ P{(Un(k̃0), V n1 (K1), · · · , V nL (KL)) ∈ T (n)
ε

for some k̃0 ∈ B0(1)}. (28)

According to Lemma 2 and the packing lemma [18], P(E6)
and P(E7) tend to zero as n→∞, respectively, if

∑
i∈S

(R̃i −Ri) <
|S|∑
j=2

I(VSj−1
1

;VSj ) + I(VS ;VSc)

− δ(ε), (29)

R̃0 −R0 < I(U ;VL)− δ(ε). (30)

By combining (18), (19), (29) and (30), we have shown that
P(E) tends to zero as n→∞ if

R0 > I(X;U) + δ(ε1)− I(U ;VL) + δ(ε), (31)∑
i∈S

Ri >
∑
i∈S

[I(Yi;Vi) + δ(ε1)]−
|S|∑
j=2

I(VSj−1
1

;VSj )

− I(VS ;VSc) + δ(ε). (32)

We can further calculate (31) as

R0 > I(X;U) + δ(ε1)− I(U ;VL) + δ(ε),

= I(X,VL;U)− I(U ;VL) + δ′(ε) (33)
= I(X;U |VL) + δ′(ε), (34)

where (33) follows since VL → YL → X → U forms a
Markov chain, and δ′(ε) = δ(ε1) + δ(ε). (32) can further be
reduced to:∑
i∈S

Ri >
∑
i∈S

[I(Yi;Vi) + δ(ε1)]−
|S|∑
j=2

I(VSj−1
1

;VSj )

− I(VS ;VSc) + δ(ε)

= I(YS1
;VS1

) + I(YS2
;VS2

)− I(VS1
;VS2

)

+

|S|∑
j=3

[I(YSj ;VSj )− I(VSj−1
1

;VSj )]− I(VS ;VSc)

+ δ′(ε), (35)

where δ′(ε) = |S| · δ(ε1) + δ(ε). Consider

I(YSj−1
1

;VSj−1
1

) + I(YSj ;VSj )− I(VSj−1
1

;VSj )

= I(YSj−1
1

;VSj−1
1

) + I(YSj ;VSj )− I(VSj−1
1

;VSj )

+H(YSj−1
1
|VSj−1

1
, YSj )−H(YSj−1

1
|VSj−1

1
, YSj )

= I(YSj−1
1

;VSj−1
1

) + I(YSj ;VSj )− I(VSj−1
1

;VSj )

+H(YSj−1
1
|VSj−1

1
, YSj )

−H(YSj−1
1
|VSj−1

1
, YSj , VSj ) (36)

= I(YSj−1
1

;VSj−1
1

) + I(YSj ;VSj )− I(VSj−1
1

;VSj )

+ I(YSj−1
1

;VSj |VSj−1
1

, YSj )

= I(YSj−1
1

, YSj ;VSj−1
1

) + I(YSj , VSj−1
1

;VSj )

− I(VSj−1
1

;VSj ) + I(YSj−1
1

;VSj |VSj−1
1

, YSj ) (37)

= I(YSj1
;VSj−1

1
) + I(YSj ;VSj |VSj−1

1
)

+ I(YSj−1
1

;VSj |VSj−1
1

, YSj )

= I(YSj1
;VSj−1

1
) + I(YSj−1

1
, YSj ;VSj |VSj−1

1
)

= I(YSj1
;VSj−1

1
) + I(YSj1

;VSj |VSj−1
1

)

= I(YSj1
;VSj−1

1
, VSj )

= I(YSj1
;VSj1

), (38)

where (36) follows the fact that VSj is a function of YSj , and
(37) follows that VSj−1

1
→ YSj−1

1
→ YSj → VSj forms a

Markov chain. By substituting (38) into (35), we have

∑
i∈S

Ri > I(YS2
1
;VS2

1
) +

|S|∑
j=3

[I(YSj ;VSj )

− I(VSj−1
1

;VSj )]− I(VS ;VSc) + δ′(ε)

= I(Y
S
|S|
1

;V
S
|S|
1

)− I(VS ;VSc) + δ′(ε)

= I(YS ;VS)− I(VS ;VSc) + δ′(ε)

= I(YS , VSc ;VS)− I(VS ;VSc) + δ′(ε) (39)
= I(YS ;VS |VSc) + δ′(ε), (40)

where (39) follows the fact that VSc → YSc → YS → VS
forms a Markov chain.

Notice that (Un(K0), V n1 (K1), · · · , V nL (KL), Xn, Y n1 , · · · ,
Y nL ) ∈ T (n)

ε , when there is no “error”. Therefore, by the
law of total expectation and the typical average lemma, the
asymptotic distortion, averaged over the random codebook and
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encoding, is upper bounded as

lim
n→∞

sup E(d(Xn, X̂n))

≤ lim
n→∞

sup
[
dmax · P(E)

+ (1 + ε) · E(d(X, X̂)) · P(Ec)
]

(41)

≤ D, (42)

if the inequalities in (34) and (40) are satisfied. Finally, from
the continuity of mutual information and taking ε → 0, we
complete the proof of Proposition 1.

IV. RATE-DISTORTION ANALYSIS FOR BINARY SOURCES

Here, we analyze the achievable rate-distortion region for
binary sources. Consider a DSBS(pi) (X,Yi) with X ∼
Bern(0.5) and Yi ∼ Bern(0.5) for i ∈ L, which follows a
joint PMF pX,Yi(x, yi) = Pr{X = x, Yi = yi} given by

pX,Yi(x, yi) =


1

2
pi, if x 6= yi,

1

2
(1− pi), otherwise,

(43)

where the correlation parameter pi = Pr{x 6= yi}, pi ∈ [0, 12 ].
Equivalently, Yi can be considered to be the output of a
binary symmetric channel (BSC) with input X and crossover
probability pi and vice versa. The distortion measure is set as
the Hamming distortion measure for binary sources, i.e.,

d(x, x̂) =

{
1, if x 6= x̂,

0, if x = x̂.
(44)

A. Achievable Rate-Distortion Region for Binary Sources

Now, we calculate the constraints of the achievable rate-
distortion region for DSBS. First, consider

R0(D) > I(X;U |VL)

= H(U |VL)−H(U |VL, X)

= H(U |VL)−H(U |X) (45)
= H(U, VL)−H(VL)− h(D), (46)

where (45) follows since VL → X → U forms a Markov
chain, and h(·) denotes the binary entropy function. In order
to further calculate (46), we introduce a joint entropy function
for the correlated binary sources with a set of crossover
probabilities {P}:

Definition 1: According to [19], given a set of crossover
probabilities {P} with a common source X , the joint entropy
f(·) of the outputs from independent BSCs is calculated as

f({P}) = −
2|P|∑
j=1

qj log2(qj), (47)

where

qj = 0.5

 ∏
k∈Ai

pk
∏
k′∈Aci

p̄k′ +
∏
k∈Ai

p̄k
∏
k′∈Aci

pk′

 , (48)

with p̄ = 1− p and Ai ⊆ {1, 2, · · · , |P|}.

YiX

pi h
-1
(1-[Ri]

-
)

Vi

D

U

Fig. 4. The test channels for binary sources, where [Ri]
− = min{1, Ri},

and h−1(·) denotes the inverse function of h(·).

Since Vi → Yi → X → Yj → Vj forms a Markov chain
for i 6= j, i.e., Yi are independent to each other if X is given,
we can obtain the test channel shown in Fig. 4. Then, by
Definition 1, we can calculate (46) as

R0(D) > f({D,αL})− f({αL})− h(D), (49)

where αi = pi ∗ h−1(1− [Ri]
−), and the operation ∗ denotes

the binary convolution process, i.e., a∗b = a(1−b)+b(1−a).
Notice that D = 0.5 if R0 = 0 according to (49). However,
it is obvious that by decoding only with the compressed side
information VL, X̂ still can achieve the distortion

D′ = h−1[H(X|VL)]

= h−1[H(X,VL)−H(VL)]

= h−1[f({0, αL})− f({αL})], (50)

where (50) holds since X can be regarded as the output of a
BSC with itself as input and the crossover probability p0 = 0.
Therefore, the optimal performance can be achieved by time
sharing between rate-distortion coding and zero-rate decoding
only with the compressed side information. Consequently, we
can obtain the rate-distortion function for DSBS, as

R0(D) =


g(D), for 0 ≤ D ≤ Dc,

(D −D′)g′(Dc), for Dc < D ≤ D′,
0, for D′ < D,

(51)

where g(D) = f({D,αL}) − f({αL}) − h(D) with g′(D)
being the derivative of g(D), and Dc is the solution to the
equation g(Dc) = (Dc −D′)g′(Dc).

Finally, we extend the above results of multiterminal source
coding into joint source-channel coding based on Shannon’s
lossy source-channel separation theorem. By combining (6)
and (51), we have

C(γ0)

r0
≥


g(D), for 0 ≤ D ≤ Dc,

(D −D′)g′(Dc), for Dc < D ≤ D′,
0, for D′ < D,

(52)

with αi = pi ∗h−1(1− [C(γi)/ri]
−) for calculating g(D) and

D′.
Remark: If a distortion requirement is given, we can eval-

uate whether the SNR of all links can satisfy the distortion
requirement by (52). Conversely, if the SNR values of all links
are given, we can utilize (52) to calculate the final distortion.

B. Numerical Results

The relationship between the link rates and the final dis-
tortion is illustrated in Fig. 5, where we set all Ri at the
same value, i.e., homogeneous assisting links, so that the
achievable rate-distortion region is able to be plotted within
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(a) pi = 0.3.

(b) L = 3.

Fig. 5. The achievable rate-distortion region for homogeneous assisting links.

three dimensions. From the whole view, we can see that the
distortion of X drops from 0.5 as R0 and Ri gradually increase
from 0. Moreover, the distortion decreases faster for larger L
and smaller pi in Fig. 5(a) and Fig. 5(b), respectively. It is
also remarkable that all surfaces of the rate-distortion function
intersect at one same curve in the R0-D coordinate plane,
i.e., Ri = 0. Obviously, the system model is equivalent to
independent lossy source coding if Ri = 0, and hence R0(D)
reduces to the classical rate-distortion function, which is not
affected by the number of assisting links and the correlations
between sources. Another important phenomenon is that the
distortion cannot be entirely eliminated to zero in the Ri-D
coordinate plane. Therefore, the estimate X̂ must be a lossy
version of X when there is no information of X directly
available for pi > 0.

For given Ri, we can obtain the curves shown in Fig. 6

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) pi = 0.3.

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Diverse pi.

Fig. 6. The rate-distortion function for given Ri = 1.

by projecting the surfaces of the rate-distortion function onto
the R0-D coordinate plane. Interestingly, the curves based on
Proposition 1 perfectly coincide with the curves of the Wyner-
Ziv theorem for arbitrary pi if there is only one assisting link
without rate constraint. This phenomenon results from the fact
that the theoretical model of the lossy source coding with
helpers reduces to the Wyner-Ziv problem when L = 1 and
Ri = 1. In addition, Fig. 6(a) demonstrates that the distortion
can be reduced by introducing extra assisting links; however,
the gap between L and (L+ 1) becomes narrower along with
the increment of assisting links. Consequently, it is harder
to obtain more gains when the number of assisting links is
already large enough. In Fig. 6(b), we can clearly observe
that the curve shift to the left for small pi, i.e., the distortion
is smaller for more correlated sources. Meanwhile, the gap
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between L and (L + 1) is wider for the sources with high
correlations, and hence it is more efficient to introduce extra
assisting links for more correlated sources.

V. PERFORMANCE EVALUATION

Encoder 0
X

n

Joint

decoder

(X
n
, D)^Encoder 1

Y1
n

Encoder 2
Y2

n

...

Encoder L
YL

n

Z1
n

Z2
n

ZL
n

Modulator Demodulator

Modulator Demodulator

Modulator Demodulator

Modulator Demodulator

Fig. 7. An instance of cooperative communications systems in WSNs.

In this section, we start to evaluate the practical system
performance for an instance of cooperative communications
WSNs depicted in Fig. 7. There is one target sequence
Xn and L assisting sequences Y ni corrupted by Zni with
Zi ∼ Bern(pi). To begin with, encoder 0 and encoder i encode
their own sequence, respectively, and send the codeword
through additive white Gaussian noise (AWGN) channels after
modulation. The objective of this simulation is to compare the
practical performance with the theoretical bound. Therefore,
in order to make the final distortion as small as possible,
the fusion center starts to decode and produce estimate X̂n

after receiving and demodulating the signals in all the links.
If the aim of a system is to satisfy a specified distortion
requirement, the fusion center may decrease the latency and
complexity by decoding with fewer assisting sequences. In
other words, after receiving signals from some links, the fusion
center can first evaluate the SNR of received signals and
the crossover probabilities between X and Yi by the error
probability estimation algorithm proposed in [17]. Then, it
calculates the final distortion with already received signals
by (52). If the expected final distortion is not larger than the
given distortion requirement, the fusion center starts decoding
process; otherwise, it continues receiving the signals from the
remaining links until the expected final distortion is small
enough.

CC ∏0 ACC
X
n

(a) The encoder of primary sensor.

CC ∏i,2 ACC∏i,1
Yi
n

(b) The encoder of i-th assisting sensor.

Fig. 8. The structure of encoders.

Since the distributed compress-bin scheme utilized in the
theoretical proof requires extremely huge memory to store the
codebook, we design a practical coding scheme for simulation.
Fig. 8 illustrates the structure of encoders, which consists of
two component codes, i.e., a convolutional code (CC) as the
outer code and the output of an accumulator (ACC) [20] as the
inner code. In order to exploit the principle of turbo code [21]

in decoding, an interleaver Π0 or Πi,2 is deployed between
CC and ACC in the primary link or the i-th assisting link,
respectively. Moreover, an additional interleaver Πi,1 is used
to disperse noises into different bits before CC in the assisting
link.

Extrinsic

informa on

exchanger

ACC
-1

CC
-1

LLR0
p

LLR0
a

-

X
n^

LLR0
e

ACC
-1

CC
-1

LLRi
p

LLRi
a

-

LLRi
e

∏i,2
-1

∏i,2

∏0
-1

∏0

: local itera on : global itera on

Assis�ng links

Primary link

Fig. 9. The structure of the joint decoder.

As depicted in Fig. 9, the decoder of ACC (ACC−1) decodes
the inner code, and then the decoder of CC (CC−1) decodes
the outer code after deinterleaving in Π−1. Next, the extrinsic
information is interleaved and subsequently exchanged to
ACC−1 as the a priori information in local iteration. In the
global iteration, the a posteriori LLR (LLRp) output from
CC−1 is updated via an extrinsic information exchanger, which
inputs the extrinsic LLR (LLRe) and outputs the a priori LLR
(LLRa). The extrinsic information exchanger calculates LLRe

by the LLR updating function µ(·) for correlated sources [22]
based on the correlation model [23].

TABLE II
BASIC SETTINGS OF SIMULATION PARAMETERS

Parameter Value

Number of Blocks 1000

Block length 10000 bits

Generator polynomial of CC G = ([3, 2]3)8

Rate of CC 1/2

Type of interleaver random interleaver

Modulation method BPSK

Maximum iteration time 30

With the basic parameter settings listed in Table II, the
simulation results in Fig. 10 show the similar tendency as the
curves of the theoretical bound. Clearly, the SNR threshold
becomes lower as the number of assisting sensors increases;
however, the turbo cliff shifts to the left less rapidly for
the system with more assisting sensors. By the comparison
between Fig. 10(a) and Fig. 10(b), we can find that the more
independent the sources are, the higher SNR threshold is
required. The performance gap between the theoretical and
simulation results is due to the following two factors, i.e., the
suboptimal channel coding scheme and incomplete utilization
of joint typicality in the simulation. First, notice that there is
an obvious gap between the theoretical and simulation results
even for the case without any assisting sensor, because it is
hard to achieve the Shannon limit by the relatively simple
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(a) pi = 0.01.
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(b) pi = 0.1.

Fig. 10. Simulation results, where SNR is set at the same value for all links.

channel coding scheme used in the simulation. Besides the
loss of performance due to channel coding, another key factor
for the gap between the theoretical and simulation results is
the incomplete utilization of joint typicality in the simulation.
For instance, as shown in Fig. 10(b), there is a 2.6 dB gain for
the theoretical analysis between no assisting sensor and one
assisting sensor; however, only 2 dB gain can be achieved
in the simulation for the same condition. This observation
implies that the joint typicality is not completely utilized for
joint decoding in the simulation as the distributed compress-
bin scheme used in the theoretical analysis.

VI. CONCLUSION

We have analyzed the performance of cooperative com-
munications in WSNs for IoT, where the final distortion of
the estimate is acceptable if the fusion center can still make

right judgements and operations. To begin with, we start
the theoretical analysis from a lossy source coding problem
with helpers. After deriving an inner bound on the achievable
rate-distortion region, we further calculate the rate-distortion
function for binary sources. Subsequently, the results of mul-
titerminal source coding is extended to joint source-channel
coding based on Shannon’s lossy source-channel separation
theorem. The theoretical results perfectly match the Wyner-
Ziv theorem, if there is only one assisting sensor and no rate
limit on it. Finally, we present a distributed encoding and
joint decoding scheme to evaluate the practical performance
for an instance of cooperative communications systems in
WSNs via a series of simulations. The comparison between the
theoretical and simulation results inspires us that the system
performance can be further improved if there is a better coding
scheme which can more efficiently utilizes the joint typicality
of the coded sequences. Moreover, both the theoretical and
simulation results indicate that the additional assisting link
provides even smaller gains as the number of the assisting
links becomes large.

APPENDIX A
PROOF OF LEMMA 1

First, consider

P{(Ṽ nS , ṽnSc) ∈ T (n)
ε (VS , VSc)}

=
∑

ṽnSc∈T
(n)
ε (VSc |ṽnS),

ṽnS∈T
(n)
ε (VS)

p(ṽnSc)

≤ P{ṽnS ∈ T (n)
ε (VS)} · |T (n)

ε (VSc |ṽnS)|
· 2−n[H(VSc )−εH(VSc )]

≤ P{ṽnS ∈ T (n)
ε (VS)} · 2n[H(VSc |VS)+εH(VSc |VS)]

· 2−n[H(VSc )−εH(VSc )]

= P{ṽnS ∈ T (n)
ε (VS)} · 2−n[I(VS ;VSc )−δ

′(ε)]

= P{ṽn
S
|S|
1

∈ T (n)
ε (V

S
|S|
1

)} · 2−n[I(VS ;VSc )−δ
′(ε)], (53)

where δ′(ε) = ε[H(VSc) + H(VSc |VS)]. To further calculate
(53), consider

P{ṽn
Sj1
∈ T (n)

ε (VSj1
)}

= P{(ṽn
Sj−1
1

, ṽnSj ) ∈ T
(n)
ε (VSj−1

1
, VSj )}

=
∑

ṽnSj
∈T (n)

ε (VSj |ṽ
n

S
j−1
1

),

ṽn
S
j−1
1

∈T (n)
ε (V

S
j−1
1

)

p(ṽnSj )

≤ P{ṽn
Sj−1
1

∈ T (n)
ε (VSj−1

1
)} · |T (n)

ε (VSj |ṽnSj−1
1

)|

· 2−n[H(VSj )−εH(VSj )]

≤ P{ṽn
Sj−1
1

∈ T (n)
ε (VSj−1

1
)}

· 2
n[H(VSj |VSj−1

1
)+εH(VSj |VSj−1

1
)]
· 2−n[H(VSj )−εH(VSj )]

= P{ṽn
Sj−1
1

∈ T (n)
ε (VSj−1

1
)}

· 2
−n[I(V

S
j−1
1

;VSj )−δ
′
j(ε)]

, (54)



10

where δ′j(ε) = ε[H(VSj ) +H(VSj |VSj−1
1

)] and j ∈ {3, 4, · · · ,
|S|}. According to the joint typicality lemma, for j = 2, we
have

P{ṽnS2
1
∈ T (n)

ε (VS2
1
)}

= P{(ṽnS1
, ṽnS2

) ∈ T (n)
ε (VS1

, VS2
)}

≤ 2−n[I(VS1 ;VS2 )−δ
′
2(ε)]]. (55)

By combining the results of (54) and (55), we have

P{ṽn
Sj1
∈ T (n)

ε (VSj1
)}

≤ pow

(
2,−n

[ j∑
i=2

(I(VSi−1
1

;VSi)− δ′i(ε))
])
. (56)

By substituting (56) into (53), we have

P{(Ṽ nS , ṽnSc) ∈ T (n)
ε (VS , VSc)}

≤ pow

(
2,−n

[ |S|∑
j=2

I(VSj−1
1

;VSj ) + I(VS ;VSc)

− δ(ε)
])
, (57)

where δ(ε) = δ′(ε) +
∑|S|
j=2 δ

′
j(ε). This completes the proof

of Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

Define the events

Ẽk = {(V nS1
(kS1

), · · · , V nS|S|(kS|S|), Ṽ
n
Sc) ∈ T (n)

ε } for

ki ∈ Ki, i ∈ S. (58)

By the union of events bound, the probability of the event of
interest can be bounded as

P

 ⋃
ki∈Ki,i∈S

Ẽk


≤

∑
ki∈Ki,i∈S

P(Ẽk)

=
∏
i∈S

2nri · P(Ẽk)

≤
∏
i∈S

2nri · pow

(
2,−n

[ |S|∑
j=2

I(VSj−1
1

;VSj ) + I(VS ;VSc)

− δ(ε)
])

(59)

= pow

(
2, n

∑
i∈S

ri − n
[ |S|∑
j=2

I(VSj−1
1

;VSj ) + I(VS ;VSc)

− δ(ε)
])
, (60)

where (59) follows according to Lemma 1. Notice that (60)
tends to zero as n→∞ if∑

i∈S
ri <

|S|∑
j=2

I(VSj−1
1

;VSj ) + I(VS ;VSc)− δ(ε). (61)

This completes the proof of Lemma 2.
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