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Abstract

The requirement of high processing power is enormous; one of the high desire of next gen-
eration HPC systems. Since every computer chip has limited processing power, sequential
processors can’t be the suitable choice. For example, an Intel Core i7-3630QM processor (4
cores, 22nm fabrication process) can achieve about 76.8GFlops through the requirement
of 45W electrical power usage. However, the requirement for exa-scale computing will
require about 13 million of connecting such processors. Todays most powerful supercom-
puter Sunway Taihulight System has already achieved about 93 petaFlops performance
with 10,649,600 cores requiring about 15.3MW electrical power using low degree 2DMesh
interconnect (2DMesh has the performance constraints and faster saturation rate). More-
over, a high degree network like- Tofu (6DMesh/Torus) interconnect used in K-computer
has achieved 10.51 petaFlops performance (88,128 SPARC64 VIIIfx processors, Tofu in-
terconnect with 10 cores to cores connectivity) by requiring 12.6MW of electrical power.
Hence, to build an exa-flops Tofu system, it will require near about 1260MW of electri-
cal power with the current advancements. These observations confirm that conventional
structures are not feasible for the next generation networks due to the high power usage
for the high degree core to core connectivity (Tofu interconnect) and also shows poor
network performances (2DMesh interconnect). Hence, the possible solution to reach the
next generation exa-scale performance is to redesign the ”Interconnection Network”.
Exa-scale supercomputing requires network scalability over millions of cores and the

performance constraint affects heavily for the large system along with the total power us-
age. In considering those constraints our focus resides on the ”Hierarchical Interconnection
Networks (HIN)”. HINs possess the features like- constant node degree, small average dis-
tance, better bisection width, small number of wires and low network latency with high
throughput. Constant node degree ensures the fixed router cost throughout the entire
system, small average distance eliminates the possibility of the performance degradation,
better bisection width ensures the network traffic handling capability, wiring complexity
is effective for reducing the network power usage and finally, network latency ensures the
packet reachability with the requested traffic load. This research also considers a new
parameter of ”Network Energy Usage” to ensure the high performance and the low power
usage. Moreover, we have considered two possible network configuration of 65K cores and
1M cores analysis to ensure the superiority of our network for the exa-scale system.

Keywords: Interconnection Network, Hierarchical Flattened Butterfly Network, Esti-
mation of Power Consumption, Dynamic Communication Performance, Energy Usage.
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Chapter 1

Introduction

1.1 Introduction

Exa-scale performance is the next goal post for next generation supercomputers and most
likely next generation high performance computing is solely depends on the massively
parallel computers. Modern massively parallel computer (MPC) systems like- K-computer
has already achieved 10.51 petaFlops performance with more than 80,000 computing
cores and also requires about 12.6MW electrical power [1]. In addition, to achieve the
exa-scale performance the scaling will be required about 95 times and required power
consumption will be close to 1200MW for K-computer. On the other hand, Blue Gene/Q
supercomputer requires 6.6MW of electrical power in achieving 20 petaFlops performance
with 1.57M processor core. However, this supercomputer will require about 330MW of
electrical power for building the exa-scale system. Therefore, the reduction of the power
usage of the MPC systems is the one of the important issues for the next generation
exa-scale supercomputers along with continuing the other constraints like- low network
performance, poor scalability, poor throughput and large network latency [2].
The overall performances as well as the power consumption of MPC systems are heavily

affected by the interconnection networks and its processing cores. Interconnection network
acts as a communicating path for processing cores and as well as for the memory units. The
main goal of this research is to find a suitable hierarchical interconnection network that
will be suitable for the exa-scale processing. As the processing power of the single CPU
core is limited, it is important to integrate a large number of processing cores to enhance
the performance of the massively parallel system. Titan, which already achieved 17.59
petaFlops speeds using about 560,640 processor cores, including 261,632 NVDIA K20x
accelerator cores. Hence, to achieve the exa-scale computing we need to find a suitable
interconnection network that have high scalability with shorter global interconnect for
the low power usages. Consequently, every MPC system requires interconnection network
as an obvious choice. Figure 1 shows the latest scenario of existing interconnects for
MPC systems, according to system shares [3]. This figure confirms that the vastly used
network is the Tree network for the MPC systems, which was used in early days and also
it has has a big concern in case of network performance and even most of the modern
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Figure 1.1: Existing network topology for system shares [3]

supercomputers are build upon the conventional Mesh and Torus topology (for example-
one of the top supercomputer, Sunway TaihuLight uses the 2DMesh network as their
network interconnect [4]). In MPC systems, the total number of outgoing links like- on-
chip as well as off-chip links is a big concern, due to power usages as well as high latency.
However, Friedman shows 3D NoC requires less power usage than the 2D NoCs with
shorter vertical links [5]. Hence, the interconnect pattern for network topology is a vital
issue for the next generation exa-scale supercomputers.
On the other hand, efficient energy usage means delivering the same outcome while

using less energy. Todays most of the power planets produces the electrical power through
burning coal, fuel and gas. And burning them results in the conversion of carbon to carbon
dioxide (CO2), which is then released into the atmosphere. The estimated CO2 emission
from burning fossil fuel is about 10 billion tonnes yearly. This results in an increase in the
earths level of atmospheric CO2, which enhances the greenhouse effect and contributes
to global warming. On the other hand, the amount of heat generated from the electronic
devices is equivalent to the power input. For example- a heatsink rated at 100C/W will
get 100C hotter than the surrounding air when it dissipates 1 Watt of heat. Hence, the
reduction in energy usage ensures the reduction of impacts on the environment and even
low power usages ensures the less failure rate for the devices.

1.2 Problem Statement

Networks are the only way for the processors to be interconnected in a MPC system.
High degree networks (4D, 5D) ensure maximum performance through a large number of
core-core interconnections. However, high radix or node degree introduces heavy power
usage. Hence, the problem for next generation MPCs will be the maximum performance
through low power usage which leads to the efficient network. On the other hand, 3D
NoCs are one of the attractive feature for the exa-scale systems for the low power usages
(decrease 62%) than the 2D NoCs [5]. However, 3D NoCs have not been available in the
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market due to the high fault tolerant issues of through-silicon via (TSV) links and its
massive heat generation. Even today’s modern supercomputers have also been classified
with green list [6]. Table 1.1 shows the recent green listed supercomputers, where the
recent MPC systems as Gyoukou ensures the maximum petaFlops/megawatt efficiency of
14.14 (about 42.88% better than the Piz Diant).
On the other hand, exa-scale system is the only desire for the next generation super-

computing. However, exa-scale system can be achieved through interconnecting millions
of cores. For example- China’s Sunway TaihuLight supercomputer uses 40,960 64-bit
RISC processors, containing 256 processing cores for each processor and an additional
four auxiliary cores for system control for a total of 10,649,600 CPU cores for the entire
system. Sunway system achieved about 93 petaFlops linkpack performance. However,
integrating a large number of CPU cores requires huge power usages as well as the net-
work latency trends to get saturated very soon. Sunway system requires about 15MW
of electrical power to run the full system and considers the 2DMesh network for the core
Networks are the only way for the processors to be interconnected in a MPC system.
High degree networks (4D, 5D) ensure maximum performance through a large number of
core-core interconnections. However, high radix or node degree introduces heavy power
usage. Hence, the problem for next generation MPCs will be the maximum performance
through low power usage which leads to the efficient network. On the other hand, 3D
NoCs are one of the attractive feature for the exa-scale systems for the low power usages
(decrease 62%) than the 2D NoCs [5]. However, 3D NoCs have not been available in the
market due to the high fault tolerant issues of through-silicon via (TSV) links and its
massive heat generation. Even today’s modern supercomputers have also been classified
with green list [6]. Table 1.1 shows the recent green listed supercomputers, where the
recent MPC systems as Gyoukou ensures the maximum petaFlops/megawatt efficiency of
14.14 (about 42.88% better than the Piz Diant).
On the other hand, exa-scale system is the only desire for the next generation super-

computing. However, exa-scale system can be achieved through interconnecting millions
of cores. For example- China’s Sunway TaihuLight supercomputer uses 40,960 64-bit
RISC processors, containing 256 processing cores for each processor and an additional
four auxiliary cores for system control for a total of 10,649,600 CPU cores for the entire
system. Sunway system achieved about 93 petaFlops linkpack performance. However,
integrating a large number of CPU cores requires huge power usages as well as the net-
work latency trends to get saturated very soon. Sunway system requires about 15MW
of electrical power to run the full system and considers the 2DMesh network for the core
interconnectivity.

1.3 Objective of this Research

The main target of this research is to find the suitable interconnect for next genera-
tion exa-scale supercomputers. The initial target for the next generation interconnection
networks is to provide sufficient bandwidth. Bandwidth is a considerable factor for the
running applications. Hence, network latency should remain considerable as long as ap-
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Table 1.1: petaFlops/megawatt analysis for supercomputers

MPC system Country Performance
(petaFlops)

Power(MW) petaFlops/MW

Sunway Taihulight China 93.0 15.4 6.04
Tianhe-2 China 33.9 17.8 1.91
Piz Daint Switzerland 19.6 2.27 8.63
Gyoukou Japan 19.1 1.35 14.14

plication bandwidth requirement is much smaller than the bandwidth, which is available
through the network. Figure 1.2(a) shows the relation between the delivered bandwidth
(offered load) vs. latency, where networks get saturated after a certain amount of deliv-
ered bandwidth. On the other hand, figure 1.2(b) shows the relation between delivered
bandwidth (throughput) vs. offered bandwidth, where network ensures the maximum
amount of traffic the network can handle before it get saturated. Therefore, the initial
task of an interconnection network is to transfer the data from the source to destinations
with the requirements of following targets:

1. Low average transfer time (low latency)

2. High transfer rate (high throughput)

3. Low system cost

One of the most powerful modern supercomputer on earth Sunway TaihuLight System
has already achieved about 93 petaFlops performance with 10,649,600 cores requiring
about 15.3MW electrical power with the 2DMesh interconnect. The consideration for
the 2DMesh network is his constant and low number of out-going links from each core.
However, the saturation rate for Mesh network is very fast and even the zero load latency
is high. On the other hand, 2D Torus could be an alternative for this latency improve-
ment with increased number of virtual channels, which ensures the less zero load latency
than the Mesh networks. However, the increased number of virtual channels induces the
increase in power usage due to the activity at the channel buffer. Hence, our designed
network considers those observations to reduce the number of virtual channels at the on-
chip level and even shows the better zero load latency and high saturation rate than the
conventional networks.
Chip Multiprocessors (CMPs) mostly adopt conventional interconnects like- Mesh and

Torus, which consume an increasing fraction of the chip power. Moreover, as the technol-
ogy advances and voltage continues to scale down, static power consumes a large fraction
of the total power. Hence, reducing the total power usage is increasingly important for
energy proportional computing. Efficient energy usage ensures the reduced amount of
energy required to provide the suitable performance. For example- power usage effec-
tiveness (PUE) of the Swiss Supercomputer (CSCS) datacenter prior to 2012 was 1.8,
however the current PUE is about 1.25; a factor of 1.5 improvements [7]. With the mod-
ern advancements, the biggest concern for supercomputers is the power dissipation. The
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(a) Network Latency (b) Network Throughput

Figure 1.2: Performance Consideration in Latency and throughput

most powerful supercomputer on earth Sunway TaihuLight System has achieved about 93
petaFlops performance with 10,649,600 cores requiring about 15.3 MW electrical power
installed with 2DMesh network, which will require 168.3 MW of electrical power for the
exa-scale performance (close to 1 nuclear power plant) [4].
In consideration for performance and power usage, we like to introduce our new param-

eter, which is network energy usage. Network energy is defined by the average transfer
time for transmitting the flits from the source core to destination cores (which is also
called as the network latency) multiplying with the required network total power usage
(this power usage leads by the power requirement from the routers and the connected
links). Equation 1.1 shows this assumption condition. On the other hand, the efficiency
of energy usage is the reduction of the obtained network energy usage in comparing be-
tween two networks with the relative request-probability (r). In dynamic communication
performance analysis, packets are transmitted by the request-probability (r) during the
simulation clock cycles. This value is calculated in percentage. The lower the network
energy usage the better the efficiency can be obtained. As the modern MPCs are highly
affected by the power consumptions, efficient energy usage can able to trace the system
performance with respect to power usage, which is an absolutely new feature in the field
of interconnection networks.

Network Energy Usage (NEU) = Average Transfer Time× Network Total Power Usage
(1.1)

1.4 Contribution of the Dissertation

Energy consumption completely dominated by costs of data movement. The most critical
problem for 3D networks is the massive heat generation. On the other hand, it is obvious
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that 3D networks require a much higher number of off-chip connection than the 2D net-
works (50% higher). Even the cost and the power usage for 3D networks is much higher
than 2D networks. This consideration leads to 2D NoC architecture is obvious choice
for the exa-scale supercomputing. Even the Sunway supercomputer used the 2DMesh
network for considering the exa-scale system. However, hierarchical networks are prefer-
able over the conventional networks due to the hierarchical design for the modern MPC
systems. Hence, in this research, we are considering a 2D NoC based hierarchical network
for the interconnect for next generation exa-scale system.
Packet routing for interconnection networks plays the most crucial role to transmit the

messages from one core to another. Bad routing logic can degrade the network perfor-
mance. On the other hand, dimension-order routing (DOR) has been the most popular for
MPC systems due to its minimal hardware requirements and allows the router configura-
tion to simple and cost-effective. The performance of the networks can be found through
the dynamic communication performance. Dynamic communication performance can be
obtained from the latency and throughput analysis. However, a deadlock-free routing is
an obvious choice for any interconnection networks. Our network has also considered a
deadlock-free DOR routing for the traffic analysis.
Now, our next phase of research will be evaluating the power usage of the new net-

work. In on-chip level the power consumption of the interconnection network depends
on the total router power usages and summation of per link power usages. Even total
power consumption highly depends not only on the leakage power, but also the dynamic
power of both routers and link modules. On the other hand, the off-chip connection
mainly draws the power usage from the leakage power. Hence, our estimation for power
usages will require the evaluation of on-chip and off-chip power consumption for various
interconnection networks with common parameters. On the other hand, power usage for
interconnection network does not reflect the performance analysis. Hence, a network,
which shows low power usage with little low performance, has always been neglected due
to the poor performance though it could be handy for next generation computers. To sort
out this issue, we like to ensure the efficient energy usage for the various interconnects.
Finally, it is being expected from the interconnection network with low cost, low degree,

low congestion, high connectivity, high packing density and high fault tolerance. Along
with those static parameters, cost-effectiveness factor and also time-cost-effectiveness fac-
tor have also been used to evaluate the system cost and system performance of the MPC
systems. As the network topology affects the performance metrics, it is important to mea-
sure the static network performance for the new interconnection network with comparing
against the various networks.

1.5 Organisation of the Thesis

The chapter 1, introduces the requirements for exa-scale supercomputing and their con-
straints for achieving such requirements. And, now, we would like to ensure the synopsis
of the rest of the dissertation as follows:

1. In chapter 2, we considers with most challenging comparators for our network.
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Hence, chapter 2 includes the basic architecture of the conventional networks as
well as the hierarchical networks. Hierarchical networks treated as the low diameter,
low average distance and low cost requirements over the conventional networks. In
addition, we shows the requirement of exa-scale supercomputing for the generation
HPCs.

2. In chapter 3, we like to introduce our designed network. Our designed network is
based on the heterogeneous architecture, which means it flows different architecture
at the different network level. In our case, we have considered the 2D flattened
butterfly network at the on-chip level and 2DTorus network at the off-chip level or
the upper level of network with the certain network configuration.

3. Chapter 4 presents the evaluation of energy usage for various networks. Combining
the power usage and the dynamic performance, we obtained the efficient energy
usage for our designed network. Those analyses are considered with variable network
size like- 65K cores and 1M cores. With the large network size, HINs can show better
network performance as well as the low network energy usage.

4. Finally, chapter 5 concludes the thesis with the future work and we have considered
the static network performance for our designed network in appendix A, which also
ensures the superiority of our designed network over the other networks. Appendix
B shows the verification of various simulators that are used in this research. And
finally, Appendix C shows the sample code for obtaining the network analysis.
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Chapter 2

Related Works on Conventional and
Hierarchical Interconnections

2.1 Introduction

Network topology is the most important choice for the MPC systems, where network
topology refers as the static arrangement of channels and cores in an interconnection
network. Channels are used to transmit the packets over the whole network. In addition,
routing strategy and flow-control method heavily relies over the network topology. Hence,
selecting the preferable network is the first choice for the MPC system. On the other hand,
network power is also affected by the router radix.
Interconnection networks allow the send and receive of packets in the MPC systems

over the interconnected cores. Hence, the research on interconnection networks has been
quite wide, ranging from simple bus network to complex heterogenous networks. Some of
them are designed with the graph property only and never been implemented in real MPC
systems. Moreover, interconnection networks are classified with the direct and indirect
interconnect. Direct networks maintains point to point connectivity with different cores
according to the network topology. However, indirect networks don’t follow the point to
point connectivity; rather it connects any two core through the some switches. Multistage
interconnection networks are the classic example of the indirect networks [18]. In this
dissertation, we have considered only the direct networks.
Direct network topologies are defined by the graph theories. Hence, each node in

graph theory is presented as the single processing element in MPC systems. However,
we refined the nodes as the core, which is the individual processing element resides in
each processor. On the other hand, edges are referred as the link between the cores.
Graph theory also ensures the symmetry or asymmetry nature of the graph. In case
of networks, it can be symmetric if it confirms its isomorphism to itself with any core.
Symmetric network ensures substantial advantages over the asymmetric networks. The
most important feature is the network scalability. Symmetric networks allow to expand
in a modular fashion. Then, it ensures the use of simple routing algorithm, which is also
effective for the message passing parallel programs.
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Table 2.1: Commercially used networks in MPC systems

Machine Networks

Connection Machine CM-5 [8] Fat-Tree
Intel iPSC-2 [9, 10] Hypercube
Intel Paragon [15] 2DMesh
Standford DASH 2DMesh
MIT J-Machine [13, 14] 3DMesh
Michigan HARTS Hexagonal Mesh
Cray T3D [11] 3DTorus
Cray T3E [12] 3DTorus
Tera Computer Incomplete 3DTorus
K Computer [1] 5/6DTorus
Blue Gene/q [29] 5DTorus
Sunway TaihuLight[4] 2DMesh

The modern interconnection networks of the MPC systems mainly focus on the fixed
router radix because it is very important to maintain fixed router cost with the increased
scalability. Increased router radix has the performance efficiency but also increases the
router cost and also the power usages for the increased link connectivity and router
activity. On the other hand, a constant router radix network allows to construct very
large networks from the lowest network module. This regularity and modularity ensures
that direct networks are often considered for the MPC systems. Table 2.1 shows the
several topologies that are considered for various MPC systems.

2.2 General Terminology

Interconnection network helps to interconnect the processors as well as the memory mod-
ules. This section defines the basic terminology for the interconnection network and we
also follows those terminology throughout the thesis.
Interconnection Network: Interconnection network acts as a graph where each ver-

tices are defined as single computational unit and edges are defined as the communication
links.
Core: A core acts as an individual computational unit in a massively parallel computer

system. It consists of computational unit, local memory, supporting devices and a router.
Communication Link: A communication link acts as a data transmission path for

one core to another. Communication links can be unidirectional or bidirectional.
Buffers: Buffers helps to hold the data before the packet could be delivered to the

network. Hence, every communication channel in each core requires certain number of
buffers to hold the packet.
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2.3 Related Works

Networks are the backbone of a MPC system. MPC system heavily depends on the inter-
connected channels for communicating with other CPU cores or its memory system. How-
ever, earlier research on the interconnection networks was considered only conventional
structures, which caused the degradation of network performance as well as the increased
off-chip power usage. Furthermore, power estimation in CMOS VLSI chip shows that
off-chip driven power can be scaled up to 65% of the total power consumption [16]. In
addition, Infiniband QDR 40Gbps switch requires typically about 1W of electrical power
for per link. Hence, the power consumptions have been heavily affected with increased
off-chip connections. On the other hand, the most important feature for hierarchical inter-
connection networks (HIN) is the ability to maintain variable link structure for different
network levels, which leads to the reduced off-chip power. Reduction in the power usage
of the MPC systems considers three possibilities- (1) millivolt switch, (2) memory in 3-D
and (3) specialized network architecture. Hence, our consideration for reducing the power
usage is based on the network architecture. 16-tile MIT RAW on-chip network requires
36% of the total chip power [46]. In addition, in an Alpha 21364 microprocessor, the
integrated routers and links consume about 20% of the total chip power (about 25W of
total chip power 125W) (a 128 core 2Dtorus network fabricated with 180nm fabrication
process) [28]. To achieve the exa-scale performance, one of the most challenging prob-
lems for the modern supercomputers is the reduction of current power consumptions. In
addition, the requirement of power usages can be even scaled up to more than 300MW
(which is nearly equal to the one nuclear power plant) with the conventional networks
[17]. On the other hand, high degree networks show much better performance than the
low degree of networks. However, high degree networks require higher power usage for
their high degree of interconnected links.

2.4 Conventional Networks with Mesh and Torus In-

terconnect

Mesh [19] is one of the k-ary n-cube networks, which is very well-known for field of inter-
connection network and easy to layout in on-chips as well as for the off-chip connectivity.
2DMesh has been used in Sunway supercomputer with the achieved performance of 93
petaFlops. Average latency of Mesh network is O(sqrt(N)) with O(N) cost. Mesh net-
work requires lowest number of virtual channels for the deadlock-freeness. However, it
can’t ensure the suitable network communication performance with the large network size.
Figure 2.1 shows the network structure for 2DMesh network.
Torus also resides as another k-ary n-cube network [20]. However, Torus network con-

siders extra wraparound links over the Mesh network. Hence, Torus requires 2 VC for its
deadlock-free. Modern supercomputer like- Blue Gene/Q considers 5DTorus network as
the interconnecting module with the achieved performance of 17 petaFlops performance
included with the 18 core on-chip. Figure 2.2 shows the network architecture for 3DTorus.
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Figure 2.1: Network structure of 2DMesh Network

Figure 2.2: Architecture of 3DTorus Network
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Table 2.2: Total number off-chip interconnect with 4K Cores

# Inter-chip links # Intra-rack links

2DMesh 1536 384
2DTorus 1536 512
3DMesh 3840 1152
3DTorus 4864 1280
4DMesh 3840 4224
4DTorus 4864 5376

System cost of MPC systems is highly correlated with increased number of wiring in-
terconnect. High degree conventional networks require high number of wiring complexity,
which increases the system performance and also increases the system cost. For ex-
ample, the Modern super-computers like- Blue Gene/Q considered high degree network
(5DTorus) for its own interconnect. However, the latest top ranked supercomputer Sun-
way Taihulight with 93 petaFlops performance considered the 2DMesh network to reduce
the total system cost. Figure 2.3 shows system cost with respect to chip-chip links (level-2
links) and intra-rack links (level-3 links) (Figure 2.3(a) is the cost for the 4096 cores and
Figure 2.3(b) is the scaled cost for 1M cores). We considered the electrical links at the
inter-chip level and optical links at the intra-rack level. The consideration for number of
links are shown at Table 2.2. This analysis explains that 2DMesh network will require
about 90.39% less amount of cost for designing level-2 and level-3 off-chip links than the
4DTorus network. On the other hand, figure 2.4 shows the power usages at the inter-chip
and intra-rack links.
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Figure 2.3: Wiring cost analysis on the conventional networks
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Figure 2.4: Static Power analysis on the conventional networks

2.5 Hierarchical Interconnection Networks (HIN)

2.5.1 Tori-connected mESH (TESH) Network

The Tori-connected mESH (TESH) [21] network was introduced by V.K. Jain, et al.,is
a hierarchical interconnection network. TESH consists of multiple basic modules (BM)
that are hierarchically interconnected for building large scale system. The BM size of the
TESH network is defined as (2m × 2m), where BM is the Level-1 network. On the other
hand, higher level networks are interconnected as 2DTorus fashion. A TESH(m,L,q) can
have number of cores at each level as N = 22mL; where m is any positive integer, L is
network level and q is node interconnectivity. if m = 2, the size of the BM is (4× 4). A
BM of TESH (4× 4) is shown in Figure 2.5.

2.5.2 Tori-connected Torus Network (TTN)

Tori connected Torus Network (TTN) [23, 24] was introduced by M.M. Hafizur Rahman,
et al., considers the Torus connection over the Mesh connection. In the level-1 network or
basic module level TTN considered the 2DTorus network and even at the off-chip level, it
also considered the 2DTorus network. A (2m × 2m) on-chip module consists of a 2DTorus
network of 22m processing elements (PE) and m is a positive integer. Figure 2.6 shows
the on-chip module for TTN with m = 2, which defines the size of BM as (4× 4). TTN
requires 4 virtual channel for its deadlock-free routing.
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Figure 2.5: Basic Module of TESH Network [21]

Figure 2.6: Basic Module of TTN Network [23]
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2.5.3 Rectangular Twisted Torus Meshes (RTTM)

Rectangular Twisted Torus Meshes (RTTM) are similar to TESH network, which was pro-
posed in 2010 [22]. This network also considers reducing the network diameter through
the Mesh network at the on-chip level with (2m×2m) cores. However, the interconnection
at the off-chip level is quite different than the TESH network, considers recursively inter-
connected ax2a next lower level sub-networks in the form of a rectangular twisted torus.
This network has also high scalability with up to a millions of processors. Figure 2.7
shows the network interconnection for RTTM. RTTM ensures much better performance
than the TESH network and also have the features of smaller diameter, shorter average
distance and higher average link utilisation.

Figure 2.7: Architecture of RTTM Network [22]

2.5.4 Midimew Connected Mesh Network (MMN)

Midimew connected Mesh Network (MMN) considered the 2DMesh networks as the lowest
level network, similar to TESH network, which was proposed in 2014 [25]. This network
also considers reducing the network diameter through the Mesh network at the on-chip
level with (2m× 2m) cores. However, the interconnection at the off-chip level is midimew,
considers different node connectivity for the off-chip level than the TESH network and
RTTM network. This network has also high scalability with up to a million of processors.
Figure 2.8 shows the basic module for MMN. A MMN(m,L,q) is also a hierarchical inter-
connection networks, where m is a positive integer, L is used for the network level and q
is used for the inter-level connectivity. Upper level networks are connected with 22m im-
mediate lower level of sub-networks considering (2m × 2m) MInimal DIstance MEsh with
Wraparound links (midimew) network. Figure 2.9 shows the level-2 network connectivity
for the MMN.
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Figure 2.8: Basic Module of MMN

Figure 2.9: Level-2 Network Connectivity for MMN

23



2.6 Tofu Network

Tofu is a highly scalable network consists of 6D mesh/torus connectivity. Tofu(X,Y,Z,A,B,C)
network considers XYZ connection for the intra-rack level and/or for the inter-rack con-
nectivity. On the other hand, Tofu(X,Y,Z,A,B,C) considers ABC connection for the
intra-chip level. Tofu network consists of 10 out going link. Hence, the node degree for
Tofu(X,Y,Z,A,B,C) is 10. Each adjacent pair of ABC mesh/torus is interconnected with
12 links. Tofu considers extended dimension order routing and also requires 2 VC for
deadlock-freeness [63]. Figure 2.10 shows the Tofu(X,Y,Z,A,B,C) network level intercon-
nectivity. The on-chip module for Tofu consists of 12 cores. In this thesis (as comparing
the network models of node level and the rack level), we have considered the 240 cores for
the node level (similar to 256 cores of other networks), in total of 4080 cores at the each
rack level for Tofu network. We have considered the Tofu(40,32,68,3,2,2) network with
1,044,480 cores as the 1M cores energy evaluation and the Tofu(20,16,17,3,2,2) network
with 65,280 cores as the 65K cores energy evaluation.

Figure 2.10: Network Connectivity for Tofu [1]

2.7 Requirements for Exa-scale Computing

Exa-scale computing related to the ’ExaFlops system’. One exaFlops (EFLOPS) system
will be capable of performing about one quintillion (1018) floating-point operations per sec-
ond. This computational power is so large that any single human will require to perform
one calculation in every second for 31,688,765,000 years to be the equivalence of a single
second computational power of exa-scale computer and in the next generation computing
requires this massive scale to improve the scientific fields (such as- ’Reducing Pollution’-
can be possible through exa-scale computing, it will be possible to redesign the combustion
systems in engines and increase the efficiency by 25-50%, ’Weather Prediction’- modern
supercomputers are still lagging behind to make the proper weather forecasting due to
the lack of computer performance, ’New Energy Solutions’- redesigning of wind turbines
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along with the solar panels will be an essential choice for the next decade). Modern super-
computers like- Sunway TaihuLight has already achieved about 93 petaFlops (PFLOPS)
performance with 10,649,600 CPU cores. This constitutes that massive number of core
scalability is required to meet this excessive demand. Most of the modern networks have
poor scalability and even considers high router radix for meeting the high performance
demand. Moreover, the high router radix increases the system cost as well as the power
usage for the communicational links and routers (due to increase of processing activity in
the local buffers) [36, 37].

2.8 Summary

This chapter we have introduced the general terminology for this thesis. The area of
interconnection networks is quite wide. However, energy efficient supercomputing is a
very new scope for this research. This chapter defines some useful comparators for energy
efficient computing and we would maintain those comparator networks throughout the
thesis. This chapter also explains the requirement for exa-scale supercomputing. More-
over, it also explains the reasons of avoiding the high degree networks for using in the
large scale system.
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Chapter 3

Network Design of HFBN

3.1 Introduction

The interconnection network plays the role to interconnect the multiprocessors and its
memory module [1]. Hence, the performance of high performance computing (HPC) sys-
tems are likely depends on the network design. Since every computer chip has limited
processing power, sequential processors cant be the suitable choice. However, the require-
ment for exa-scale computing will require about 13 million of connecting such processors.
Hence, the requirement of interconnecting network has a huge impact for building exa-
scale systems. Furthermore, todays one of the most powerful supercomputer Sunway
Taihulight System has already achieved about 93 petaFlops performance with 10,649,600
cores requiring about 15.3MW electrical power using 2D Mesh interconnect [4]. The main
concern for exa-scale systems are the reduction of power usage; for example- Sunway sys-
tem will require about 168.3MW electrical power in achieving the exa-scale system with
the modern advancements [4]. On the other hand, the network with high saturation rate
will be obviously a poor consideration for the exa-scale system along with the network
power usage is also another big concern as our target to build an exa-scale system within
20MW [27]. For example, in Alpha 21364 microprocessor, the network routers and links
consume about 20% of the total chip power usage (25W of total chip power 125W) using
128 core 2DTorus network fabricated with 180nm process [28]. Furthermore, Off-chip links
requires long interconnecting distance, causing much higher off-chip power than on-chip.

3.2 Theoretical Design of HFBN

3.2.1 Physical Aspects of Different Network Layers

Modern supercomputers are designed with various levels of hierarchy. For example- on-
chip level as the lowest level network and off-chip level as the upper level network. Hence,
the number of cores have the limited numbers at the on-chip level. For example- Blue
Gene/Q chip was designed with 18 cores 64-bit A2 processor and 16 of those processor
cores are used for computing with 5DTorus network having 2GB/s chip-to-chip links
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Figure 3.1: Block diagram for Blue Gene/L supercomputer [29]

[29]. However, those link cost is cheap, requires about pico-J power and aggregated
bandwidth can be about 10GB/s. Figure 3.1 shows the design consideration for Blue
Gene/L generation. Now, if we consider the network at an off-chip level, where next
upper-level over the on-chip level is the node level. Node level considers multiple on-chip
module to be interconnected, which can be connected through the Peripheral Component
Interconnect Express (PCI express) [29]. Hence, the link cost is little higher than the
chip level, requires nano-J power and bandwidth is about 1GB/s-10GB/s. Considering
about the off-node connections, which are basically designed with the cabinet switches.
And certainly, the cost will also increase, requires the micro-J power, and bandwidth can
be up to GB/s speed [30]. Finally, the rack to rack connection is the most expensive in
cost, requires about 10 micro-J power and have large latency. In modern supercomputers
Infiniband switches are often considered at the rack to rack level. The physical layer of
Infiniband has the bidirectional links of 2.5Gb/s for single data rate (SDR). However, for
quad data rate (QDR) signalling permit single links to be scaled up to 10Gb/s (1.25GB/s
> 1GB/s) [31]. However, the per link power usage of 4x 10G QDR duplex transmission
is typically about 1W for InfiniBand and per link cost is about $300 [32].

3.2.2 Design Consideration and Analysis for On-chip and Off-
chip Network

Hierarchical networks are the most desired networks for the next generation exa-scale
supercomputers as the energy usage can be highly improved with comparing over the
conventional networks. And, the physical aspects of modern supercomputers requires to
have the hierarchical architecture at the various layers of networks. This is the main
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Table 3.1: Evaluated static performance for various networks

64 Node Evaluation 2DMesh 2DTorus FB 1DRING 3DMesh 3DTorus

Diameter 14 8 2 32 9 6
Average Distance 7 4 1.77 16 4 3

Table 3.2: Simulation Condition for On-chip Energy consumption

Parameter Value Units

number of cores 64 -
Fabrication process 65nm -
Link length 3 [mm]
Operating freq. 1× 109 Hz
Transistor type HVT -
Supply voltage 1 V
Traffic pattern Uniform Traffic -
Packet Size 6 flits
Simulation Cycle 5,000 -
Virtual Channels 2 -
Buffer Size 4 -
VA Model VC select -
VA Buffer Model SRAM -

consideration of ours to have a heterogeneous network design through the various layers
of network. In our on-chip network, we have considered the high performance network
and off-chip level is considered with the low powered networks. Hence, we have evaluated
the static performance of various networks with diameter and average distance. Table
3.1 shows this analysis and it clearly confirms the 2D Flattened Butterfly (FB) has the
superiority than any other networks. As this research focus on the efficient energy usage,
we also focus on the energy consumption at the on-chip level to consider the suitable
network as the on-chip level. To evaluate the on-chip energy consumption, we considered
the Orion energy model [33] along with the garnet 1.0 network simulator [34]. This
evaluation considers only 64 cores. Figure 3.2 shows this analysis and it confirms that 2D
Flattened Butterfly (FB) ensure much better energy usage over the 2D and 3D networks.
On the other hand, Figure 3.3 shows the network energy usage for various high degree
networks with 4K analysis. We considered the electrical links at the inter-chip level and
optical links at the intra-rack level based on the evaluation of Section 2.4. This analysis
is considered with the static performance parameter as the average distance and the total
link power considering a single rack module. This analysis explains that 2DTorus network
can ensure the low network energy usage over the other high degree networks and also
shows slightly better than 2DMesh network. Hence, we would like to use ”2D Flattened
Butterfly” as the on-chip network (with fixed router radix) and the 2DTorus network as
the off-chip interconnect for our hierarchical interconnect.
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Figure 3.2: On-chip Energy Consumption

Figure 3.3: Off-chip Energy Usage (static analysis)
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3.2.3 Definition of Hierarchical Flattened Butterfly Network
(HFBN)

HFBN is considered as a hierarchical network as it maintains different topological pattern
at the different levels of network structure. The lowest network level is (level-1 network)
is defined as the basic module for HFBN, where each core maintains fixed number of
radix and similar to 2D flattened butterfly architecture [35, 37]. On the other hand, the
upper level of HFBN is considered with 2DTorus network. Hence, we named our net-
work as the ”Hierarchical Flattened Butterfly Network (HFBN)”. This section defines
the architectural pattern for HFBN, on-chip connections as well as for off-chips. HFBN
maintains particular higher-level link pattern along with the 2DTorus upper level connec-
tivity. On the other hand, the requirements for exa-scale system can be possible through
interconnecting hundreds of millions of cores, which is certainly be possible by HFBN.
However, HFBN requires pre-defined port assignments for its upper level connectivity.
Figure 3.4 illustrates the interconnection philosophy of HFBN. However, we defined the
HFBN through the definition network structure at various network levels and the equa-
tions to obtain fixed structure of HFBN as below-

Figure 3.4: Interconnection of HFBN

Topological Definition: A HFBN(m, L, q) network, by definition is built with con-
stant radix (similar to 2D flattened butterfly network) at the lowest level of the network
followed by the 2DTorus interconnection at the upper level (with the particular connec-
tivity consideration); where L considered as the level of hierarchy, q is the number of
paired connectivity for each higher levels and m is any positive integer, which indicate
the size of the basic module.
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A HFBN(m, L, q) follows the exact definition for its certain level of connectivity-

Definition of HFBN Basic Module (BM): (2m × 2m) is the lowest network level,
(m = is any positive integer)

Definition of HFBN Upper-level Connection: Lmax = �2 × (2m − 1)/q�+ 1 is
the maximum network size. Qmax = the maximum possible paired connectivity for any
value of m; Qmax = 2(2m − 1). 1≤ q ≤ Qmax; depending on the value of q, HFBN(m, L,
q) considers two set of configuration-

(a) IDEAL HFBN(m, L, q) when (2× (2m − 1)mod q) = 0
(b) PARTIAL HFBN(m, L, q) when (2× (2m−1)mod q) ! = 0 (some exterior cores

will be remained free).

Link Connectivity:
BM cores requires two digit for the formulation; the first is the Y-index, then the

X-index. In general, in a Level-L HFBN, the core address can be represented by:

AL =
{

(ayL, axL) if Lmax ≥ L ≥ 1

More generally in a Level-L HFBN, the core address is represented by-

A = AL AL−1 AL−2 ... ... ... A2 A1

= (a2L−1, a2L−2) (a2L−3, a2L−4)... ... (a3, a2) (a1, a0)
(3.1)

Here, the Level-1 is defined by core address (a1, a0), where a1 defines the core address for
the Y-axis and then the X-axis with the a0. Higher level networks are two dimensional
networks, hence we consider the first digit as the row index and then the second one is
the column index. Now, if the address of a core N1 included in BM1 is represented as
N1 = [(s2L−1, s2L−2)... ...(s3, s2) (s1, s0)] and the address of a core N2 included in BM2

is represented as n2 = [(d2L−1, d2L−2)... ...(d3, d2) (d1, d0)]. The core N
1 in BM1 and N2

in BM2 are connected if the following connections are satisfied for N2-

• Link for BM-

[(s2L−1, s2L−2)... ...(s3, s2) (s1, s0)] to [(s2L−1, s2L−2)... ...(s3, s2) (s1, s0 ± 1 mod
2m)] where 2m > s0 >= 0,

[(s2L−1, s2L−2)... ...(s3, s2) (s1, s0)] to [(s2L−1, s2L−2)... ...(s3, s2) (s1 ± 1 mod 2m,
s0)] where 2m > s1 ≥ 0

[(s2L−1, s2L−2)... ...(s3, s2) (s1, s0)] to [(s2L−1, s2L−2)... ...(s3, s2) ((s1+2m/2) mod
2m, s0)]

[(s2L−1, s2L−2)... ...(s3, s2) (s1, s0)] to [(s2L−1, s2L−2)... ...(s3, s2) (s1, (s0 + 2m/2)
mod 2m )]
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• Link for Higher Level Vertical Connections-

Connected Core, D = (((BMNL−1 × 2m)± x) mod BMNL)

• Link for Higher Level Horizontal Connections-

Connected Core, D = (((BMNL−1)± x) mod (BMNL−1 × 2m))

In case of higher level links, BMN (BMN = (2m × 2m)) defines the number of cores in
a basic module and L defines the core number of corresponding levels. For example, if m
is 2, then the BMN = 16. On the other hand, x defines the source core number which is
equal to (s2L−1 × 2m, s2L−2) ×BMNL−1 +... ...+(s3 × 2m + s2) ×BMN + (s1 × 2m +
s0). The highest level of network, which can be obtained by a (2m × 2m) BM is defined
by Lmax = �2× (2m − 1)/q� + 1. Algorithm 1 shows the port assignment for upper-level
connectivity for a particular basic module. And, the flowchart of this algorithm is given
in Figure 3.5. This algorithm considers all of the exterior cores in the on-chip network
to be interconnected with the other on-chip module. Algorithm 1 requires the input
value of m and q. On the other hand, Lmax can be calculated from m and q. Function
HIGHERLevel HFBN(m,q) allocates the particular core in the basic module for high level
port connectivity, which requires the value of m, possible number of paired connectivity
for each level. As the high level ports are being allocated by the exterior cores of the
each basic module, this algorithm allocates the each possible port position for the higher
level connectivity. In the initialize function, Lmax has been calculated and BMAX is the
number of possible cores in each X or Y directions.
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Algorithm 1 Higher Level port assignment for HFBN
HIGHERLevel HFBN(m,q); /* Main function to call with m, possible number of paired connectivity for
each level */

initialize(q); /* Initializing the pre-defined ports */
for lv = 2 : Lmax; /* lv defines the network level */
for i = 1 : q; /* loop for making sure about all paired connectivity */
min dist = 65536;
if (lv ! = 2 and i = 1)
lvmh = port levelQ(lv − 1,′ H ′, q); /* assign the previous level Horizontal port address */
lvmv = port levelQ(lv − 1,′ V ′, q); /* assign the previous level Vertical port address */

else
lvmh = port levelQ(lv− 1,′ H ′, i− 1); /* assign the previous level Horizontal port address */
lvmv = port levelQ(lv − 1,′ V ′, i− 1); /* assign the previous level Vertical port address */

endif;
if (!availableQ(lv, ’V’, i)) /* check the current level port is already assigned or not */
for (x=0, y = 0; x ≤ BMAX; x++, y++)
SaveXY( x, y, &save pv, &save ph, lvmv, lvmh, dist, &min dist); /* this function returns

the y and x port position of current level through save ph and save pv */
endfor;
setHVLQ( save ph.y, save ph.x, lv, ’H’, i ); /* initialize the port */
setHVLQ( save pv.y, save pv.x, lv, ’V’, i); /* initialize the port */

endif;
endfor;
endfor;

end
SaveXY(x,y,∗save pv,∗save ph, lvmv, lvmh, dist, ∗min dist); /* this function returns the y and x port
position of current level through save ph and save pv */

if( LV[0][x] = 0 )
pv = set xy(0, x); ph = set xy(BMAX, x); /* consider the Vertical core position with respect to

x */
dist = distance(pv, lvmh) + distance(ph, lvmv); /* compare the distance from the previous level

outgoing ports */
if( dist < min dist )
save pv = pv; save ph = ph; min dist = dist; /* save the position */

endif;
ph = set xy(0, x); pv = set xy(BMAX, x); /* consider the horizontal core position with respect

to x */
dist = distance(pv, lvmh) + distance(ph, lvmv); /* compare the distance from the previous level

outgoing ports */
if( dist < min dist )
save pv = pv; save ph = ph; min dist = dist; /* save the position */

endif;
endif;
if( LV[y][0] = 0 )
pv = set xy(y, 0); ph = set xy(y,BMAX); /* consider the Vertical core position with respect to

y */
dist = distance(pv, lvmh) + distance(ph, lvmv); /* compare the distance from the previous level

outgoing ports */
if( dist < min dist )
save pv = pv; save ph = ph; min dist = dist; /* save the position */

endif;
ph = set xy(y, 0); pv = set xy(y,BMAX); /* consider the horizontal core position with respect

to y */
dist = distance(pv, lvmh) + distance(ph, lvmv);
if( dist < min dist )
save pv = pv; save ph = ph; min dist = dist; /* save the position */

endif;
endif;

end;
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typedef struct /* defining the core struct with x, y position */
position x, y;

end;
distance( src, dest ) /* compare the distance from the previous level outgoing ports with the current
possible location, src is the current port position and dest is the previous assigned level port position */

dist.x = abs( src.x - dest.x ); dist.y = abs( src.y - dest.y ); return( dist.x + dist.y );
end;
availableQ( pl, phv , connect) /* check the current level port is already assigned or not (pl is the level
number and phv is for the choice of vertical or Horizontal selection and connect is to defined the current
core number) */

for( p.y=0; p.y ≤ BMAX; p.y++ )
for( p.x=0; p.x ≤ BMAX; p.x++ )
if( pl == LV[p.y][p.x] && phv == HV[p.y][p.x] && connect == IN[p.y] [p.x]) return true;

return false;
end;
initialize(q) /* Initialising the pre-defined ports */

BMAX = 2m - 1;
Lmax = ceil(2*(2m - 1)/q) + 1;
for( x=0; x <= BMAX; x++ )
for( y=0; y <= BMAX; y++ )
LV[y][x] = 0; HV[y][x] = ’*’; IN[y][x] = 0; /* LV stands for level number and HV is for the

define the vertical or horizontal out-going
if (q < 2)
setHVLQ(0, 0, 2, ’H’, 1); setHVLQ( 0, BMAX, 2, ’V’,1 ); setHVLQ( BMAX, 0, 3, ’V’,1 );

setHVLQ(BMAX, BMAX, 3, ’H’,1 );
else
setHVLQ(0, 0, 2, ’H’, 1); setHVLQ(0, BMAX, 2, ’V’, 1);
setHVLQ(BMAX, 0, 2, ’V’, 2); setHVLQ(BMAX, BMAX, 2, ’H’, 2);

endif;
end;
port levelQ( pl, phv , connect) /* check the previous level which is already assigned (pl is the level number
and phv is for the choice of vertical or Horizontal selection and connect is to defined the current core
number) */

for( p.y=0; p.y ≤ BMAX; p.y++ )
for( p.x=0; p.x ≤ BMAX; p.x++ )
if( pl == LV[p.y][p.x] && phv == HV[p.y][p.x] && connect == IN[p.y] [p.x]) return( p );

end
setHVLQ(y, x, pl, phv, connect) /* initialize the LV, HV and IN array */

LV[y][x] = pl;
HV[y][x] = phv;
IN[y][x] = connect;

end
set xy(y, x ) /* returns the core structure */

p.x = x; p.y = y;
return(p);

end
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Figure 3.5: Flowchart for Port Assignment Algorithm

3.2.3.1 Discussion of Size of the HFBN Basic Module(BM)

HFBN(m, L, q) used only six intra-chip links for the interconnection of the basic module.
Hence, the on-chip design for HFBN and flattened butterfly has a distinctive difference.
However, the basic module design for HFBN(2, L, q) follows the same pattern as the
flattened butterfly network. Since HFBN maintains a constant node degree, the HFBN
link pattern varies (link connectivity has already been defined beforehand for the basic
module) from flattened butterfly when m is greater than 2. The lowest level of HFBN(m,
1, q) has been considered as the ”Basic Module” (BM). HFBN considers (2m×2m) number
of cores as his basic module size. Hence, m = 2 means the possible number of cores at
the BM level will be sixteen. Figure 3.6 shows the basic module of HFBN(2, L, q).
This network is based on the two dimensional architecture and hence, BM connectivity
considered with X and Y directions. However, we have already discussed about the link
connectivity for the basic module beforehand.
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Figure 3.6: A (4 × 4) Basic Module of HFBN

3.2.3.2 Discussion of Size of the Upper-level HFBN

Integrating large number of on-chip links is useful for network performance as well as cost
effective. However, the scenario for off-chip level is completely different, where per link
cost and power requirement increases simultaneously with the total system cost. Hence,
we have considered the hierarchical design for the next generation supercomputer archi-
tecture, where particular level links are interconnected for each level. Higher level of
HFBN considers 2DTorus interconnection considering recursive interconnect patterns of
the immediate lowest level of subnetworks. Hence, a level-2 (node level) HFBN consists
of a certain number (22m) of level-1 networks. This statement constitutes that a HFBN(2,
L, q) will have 16 level-1 network or basic module for the complete level-2 network. Fig-
ure 3.7 shows the formation of a single level-3 network through the combination of 16
Level-2 networks and 256 Level-1 networks of HFBN(2, L, q). On the other hand, we
have considered multiple lemmas to increase the readability of the network setup.

Lemma 3.1 A (2m × 2m) basic module of HFBN has 23 × (2m − 1) numbered of free
ports for the higher-level interconnectivity.
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One of important points to achieve high performance, HFBN must use all its free ports.
Hence, the large number of paired connectivity is highly effective. q is defined as the
number of paired connectivity for each higher level and Qmax is the max paired value for
any m; Maximum paired value for any m is defined as the Qmax = 2(2m − 1) and the q is
all the possible divisors of Qmax. For example- Qmax = 2(2m−1) = 2(22−1) = 6. In addi-
tion, the highest level network of HFBN can be defined as Lmax = ceil(2×(2m−1)/q)+1.
Hence, HFBN(2, L, 1) can be constructed as the maximum seven network level Lmax =
(2× (22 − 1)/1) + 1 = 7. Number of paired connectivity, q is responsible for the increase
of number of outgoing and incoming connection at the each off-chip level. Increased value
of q, increases the number of in/out connections and decreases the maximum network
level. Figure 3.8 shows the architectural design of HFBN(2, 3, 3) and HFBN(2, 2, 6).
Those figures also show that the choice of off-chip connectivity of a particular core with the
paired connectivity number (starting 1 to 3 for Figure 3.8(a) and 1 to 6 for Figure 3.8(b)).

Lemma 3.2 The total number of the cores at each level of HFBN can be defined as
N = 22mL

HFBN maintains a fixed number of cores at the basic module level (2m × 2m) and builds
the upper level with having (22m) immediate lower level of subnetworks, which finally
constitutes the network size of particular number of interconnected cores. For example,
a HFBN(2, 3, q) has a network size of 4096 cores. Table 3.3 generalises the architectural
parameter for HFBN(m, L, q). Table 3.4 compares the various levels of HFBN for m
= 2 with the different q values with the possible number of interconnected cores at the
different level of networks.

Table 3.3: Generalisation of HFBN

Basic Module Number of Paired Connectivity Max Levels, Lmax Number of Cores
(2m × 2m) 1≤ q ≤ Qmax �2× (2m − 1)/q�+ 1 NL = 22mL
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Figure 3.7: Higher-level of Interconnection for HFBN(2, L, q)

Table 3.4: Possible number of cores with various levels of HFBN

m q L Number of Cores
2 1 3 N3 = (22×2×3) = 4,096
2 2 3 N3 = (22×2×3) = 4,096
2 1 4 N4 = (22×2×4) = 65,536
2 2 4 N4 = (22×2×4) = 65,536
2 1 5 N5 = (22×2×5) = 1,048,576
2 1 6 N6 = (22×2×6) = 16,777,216
2 1 7 N7 = (22×2×7) = 268,435,456
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(a) a 4 x 4 BM customised for HFBN(2,3,3) (b) a 4 x 4 BM customised for HFBN(2,2,6)

Figure 3.8: Increased paired connectivity for each level

3.2.4 Number of Links at Various Network Levels

Interconnection network has one of the greatest concerns for its own router layout [30],
[39]. The K-Computer requires cable length about 1,000 kilometers [30]. On the other
hand, as per analysis on Infiniband QDR 40Gbps switch requires typically about 1W of
electrical power for its per link [31]. Hence, the number of on-chip as well as the off-chip
connection will be a major concern in designing the exa-scale system. Figure 3.7 shows
the hierarchical structure for HFBN(2, L, q), where level-1 network constructs at the chip
level, level-2 network will be used for node level and level-3 network can be used at the
rack level. The number of interconnecting links at various layers of HFBN can be defined
by Equation 3.2.

LL = (Number of BM in current level, LL)× {Number of Intra-links in

L1 (48 links for m = 2) network}+
L∑

i=2

{(Number of BM at current level, LL)

× (Number of exterior outgoing links at each higher-level, Li)} [where N ≥ 2]

(3.2)

Here, Equation 3.2 defines how to calculate the interconnected links for various levels
of network. The level-1 HFBN(2, 1, 1) network requires about 48 links for its BM. We
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Table 3.5: Generalisation of number of links at various levels of HFBN

Topology Level-1 Network Higher Level Network
HFBN (Number of X-directional

Links) + (Number of Y-
directional Links)

(Number of BM in current level)× (Num-
ber of inner links in level-1 network) +∑L

i=2 { (Number of BM at current level,
LL) × (Number of outgoing links at each
higher-level, Li)} [where N ≥ 2]

Table 3.6: Example of required number of links at various levels of networks

Topology Level-1 Network
(16 Cores)

Level-2 Network
(256 Cores)

Level-3 Network
(4096 Cores)

2DMesh 24 links 480 16128
2DTorus 32 links 512 16384
HFBN(2,L,1) 48 links 16 x 48 (L1

Links) + 32 (L2
Links) = 800

13312

have also generalised this equation at Table 3.5. On the other hand, Table 3.8 shows the
total number of links for HFBN, in which the required number of links for HFBN is above
only 800 at the node layer. Table 3.6 also shows the link comparison on various networks
like- 2DMesh, 2DTorus against the HFBN. And, from this table we can also find that
2DMesh and 2DTorus network require much higher number of links than the HFBN at
the higher levels. HFBN(2, 3, 1) will require about 18.75% less interconnected links than
the 2DTorus and about 17.46% less than 2DMesh network.

3.2.5 Routing Algorithm for HFBN

Deterministic routing has been the common routing consideration along with the adaptive
routing for mitigating the network faults. Modern supercomputer BlueGene/L also uses
deterministic routing along with the adaptive routing. Hence, in our performance analy-
sis, we also considers a simple deterministic routing (dimension− order routing (DOR))
for HFBN(2, L, 1) class. Dimension − order routing continues to route the packet to
the same dimension until the distance of that dimension become zero. Now considering
HFBN routing, routing Algorithm 2 can be subdivided into two parts; one part considers
the BM routing and another part considers higher-level routing (Routing HFBN). For
example, if the packet is destined for the other BM, the source core will send the packet
to the outlet core of the next interconnected BM of the current network level. On the
other hand, receiving core is used to track down the new source core address after the
BM transfer has been completed. If the packet is destined to another BM, the source
core sends the packet to the outlet core which connects the BM to the level at which the
routing is performed. Suppose, source core address is s = (s2L−1, s2L−2) (s2L−3, s2L−4) ...
... (s3, s2) (s1, s0) and destination core d = (d2L−1, d2L−2) (d2L−3, d2L−4) .. ... (d3, d2)
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( d1, d0) considering the routing at the Y,X direction for the higher levels as well as for
the level-1 networks. Similarly, routing tag can be defined as t = (t2L−1, t2L−2) (t2L−3,
t2L−4)... ...(t3, t2) (t1, t0), where ti = di - si. In Routing HFBN function, outlet x and
outlet y are the function to get x coordinate s1 and y coordinate s2 of the core that link
(s, d, l, dα) exists, where level l(2 ≤ l ≤ L), dimension d(d ∈ {V,H}) and direction α(α
∈ {+,-}). Hence, vertical and horizontal direction are represented by V+, V-, H+ and H-.

As we considered the DOR routing for HFBN, Figure 3.9 shows the packet routing from
the source core (1,2),(1,2),(1,2) to destination core (2,1),(2,1),(2,1). Hierarchical routing
for HFBN send the highest network level at first. Hence, the packet will be routed to
Level-3 network, the source core (1,2),(1,2),(1,2) will send the packet to the basic module
outlet core (1,2),(1,2),(3,0) of Level-3 network and will reach Level-3(2,2) from Level-
3(1,2) network. Similarly, after completing the level-2 routing, Level-1 routing will be
started from (2,1),(2,1),(0,0) core and will finally reach the destination core.

Figure 3.9: Routing Path for HFBN(2,3,1)
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Algorithm 2 Routing Algorithm for HFBN(2, L, 1)
Routing HFBN(s2L−1, s2L−2, s2L−3, , s1, s0, d2L−1, d2L−2, d2L−3, , d1, d0);
tag: t2L−1, t2L−2, t2L−3, , t1, t0;

for i = 2L-1 : 3;
if (((di - si + 2m) mod 2m) <= 2m/2) then routedir = positive; ti = ((di - si + 2m) mod 2m);
else routedir = negative; ti = (2m - (di - si + 2m) mod 2m); endif;
while (ti ! = 0) do

if (i mod 2) = 1, then outlet corex = outlet x(s, d, 	(i)/2 + 1
, H, routedir);
outlet corey = outlet y(s, d, 	(i)/2 + 1
, H, routedir);

else outlet corex = outlet x(s, d, 	(i)/2 + 1
, V, routedir);
outlet corey = outlet y(s, d, 	(i)/2 + 1
, V, routedir); endif;

BM routing(s1, s0, outlet corey, outlet corex);
if (routedir = positive) then send the packet to the next BM;
else move the packet to previous BM; endif;
if (ti > 0) then ti = ti - 1; endif;
if (ti < 0) then ti = ti + 1; endif;
if (i mod 2) = 1, s1 = receiving corex(s, d, 	(i)/2 + 1
, H, routedir);

s2 = receiving corey(s, d, 	(i)/2 + 1
, H, routedir);
else s1 = receiving corex(s, d, 	(i)/2 + 1
, V, routedir);

s2 = receiving corey(s, d, 	(i)/2 + 1
, V, routedir); endif;
endwhile;

endfor;
BM routing(s1, s0, d1, d0);

end
BM routing(s1, s0, d1, d0);
source: s1, s0; destination: d1, d0;
BM tag: t1, t0 = destination address(d1, d0) - source address(s1, s0);

for i = 0 : 1;
if (ti > 0), movedir = positive; endif;
if (ti < 0), movedir = negative; endif;
if (movedir = positive and ti = 2m/2) then ti = ti - 1; endif;
if (movedir = positive and ti = -2m/2) then ti = ti + 1; endif;
if (movedir = negative and ti = 2m/2) then ti = ti - 1; endif;
if (movedir = negative and ti = -2m/2) then ti = ti + 1; endif;
if (movedir = positive and ti > 2m/2) then ti = ti - 2

m; endif;
if (movedir = negative and ti < -2m/2) then ti = ti + 2m; endif;

endfor;
while(t0 ! = 0) do

if (t0 > 0) then move packet to +x core; t0 = t0 - 1; endif;
if (t0 < 0) then move packet to -x core; t0 = t0 + 1; endif;

endwhile;
while(t1 ! = 0) do

if (t1 > 0) then move packet to +y core; t1 = t1 - 1; endif;
if (t1 < 0) then move packet to -y core; t1 = t1 + 1; endif;

endwhile;
end

3.2.6 Deadlock-free Routing for HFBN

Routing of packets requires to be deadlock-free, otherwise packet will not be sent to the
destination core ever and will delay the delivery of other packets, which in turn, drastically
reduces dynamic communication performance. In this section, we studied the deadlock-
freedom for HFBN. HFBN(2, 1, 1) network maintains the core-core connections from
each x or y (row/column) directional cores. Hence, there is no wrap-around routing is
required for HFBN(2, 1, 1), which leads to a similar routing for Mesh network (which
requires only one VC for routing). This conclusion leads to only single VC is required
for the HFBN(2, 1, 1). On there hand, off-chip HFBN are constructed with the 2DTorus

42



network arrangement. Hence, it requires 2 VC for its deadlock-free. In summary. HFBN
requires 2 VC for its deadlock-free routing. However, using the required number of VCs,
we could like to consider a proof for the HFBN deadlock-freeness. To prove the deadlock-
free of the proposed routing algorithm, the routing path are divided into multiple states.

• State 1: Transfer of packet from the source core to outlet core of the Intra-BM.

• State 2: Transfer of packet for higher level.

State 2.i.1: Transfer of packet to the outlet core of Level (L - i) through the
y-link for the Intra-BM.

State 2.i.2: Transfer of packet of Level (L - i) through the y-link for the Inter-
BM.

State 2.i.3: Transfer of packet to the outlet core of Level (L - i) through the
x-link for the Intra-BM.

State 2.i.4: Transfer of packet of Level (L - i) through the x-link for the Inter-
BM.

• State 3: Transfer of packet from the receiving core to the destination core of the
Intra-BM.

Lemma 3.1: if a message is routed in the order y → x in a 2DMesh network, then the
network is deadlock free with 1 VCs [38].

Lemma 3.2: if a message is routed in the order y → x in a 2DTorus network, then
the network is deadlock free with 2 VCs [38].

Theorem 3.1: A HFBN is deadlock-free with 2 VCs.

Proof : The BM for HFBN(2, L, q) follows the flattened butterfly connection. Hence, at
this network level requires only 1 VC, which is also proofed by the lemma 3.1. However,
the higher level network is designed with toroidal connection. Hence, it requires 2 VCs
for the upper level deadlock free and even if we considered the routing phase phase-1 and
phase-3 requires 1 VCs for HFBN(2, L, q). However, phase-2 with the sub-phases consid-
ered the toroidal connectivity. Hence, the HFBN requires 2 VCs for this case. Finally, in
summary, HFBN is deadlock-free with the two virtual channels.

3.3 Self Evaluation on HFBN

3.3.1 Optimal Configuration of HFBN for m, L and q

Optimal configuration of HFBN for choosing m and L can determined by the algorithm
3, where the value of the m and L can be easily obtained for the optimal configuration.
However, the number of cores for HFBN is predefined, which is defined as N = 22mL.
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Moreover, with the same core number HFBN has multiple possible configuration. For
example- HFBN(2, 4, 1) has 65,536 cores and even HFBN(4, 2, 15) and HFBN(8, 1,
1) have also 65,536 cores. In such case, algorithm 3 can be used to choose the optimal
configuration for HFBN with m and L. This algorithm confirms the possibility of the
maximum network level through the minimum m, which makes sure the maximum upper
level connectivity for the optimal outcome. In addition, we have also considered the traffic
analysis to verify the optimal outcome (DCP graphs are considered with the data flits only
as the accepted throughput). Table 3.7 and Table 3.8 (Each intra-chip is considered with
16 cores (L1 Links showed in Table 3.6), up to 256 cores for each inter-chip (excluding
the intra-chip connectivity) (L2 Links showed in Table 3.6) and outer of inter-chip level
connectivity, each link assumed as the optical link connectivity (However, HFBN(3,4,4)
is considered with 16 cores as the intra-chip module and up to 64 cores as the each inter-
chip module and outer links from the inter-chip module is treated as the optical links))
are used respectively for the various analysis. We have considered the static link power
for this analysis along with the same inter-rack and intra-rack link power for reducing
the complexity in power analysis. Figure 3.10 shows the NEU and Figure 3.11 shows the
performance analysis of 16M cores (Table 3.9 shows the evidence results for this analysis).
On the other hand, Table 3.10 shows the simulation condition for the optimal configuration
of m, L, q with 1M cores (same link power usage (Table 3.8) is also been considered for
the 1M core analysis). Figure 3.12 shows the network energy usage and finally, Figure
3.13 shows the traffic analysis for this case (Table 3.11 shows the evaluation results for
1M analysis). Moreover, we have also showed the optimal configuration analysis with
65K cores with same power parameters as Table 3.8 and considered traffic parameters is
showed in Table 3.12. Figure 3.14 shows the NEU analysis with various configurations
for 65K cores. Those graphs leads to three possible scenarios-

• Same m, Different q: This scenario can be describe by the Figure 3.15, where
HFBN(4, 2, 15) and HFBN(4, 2, 30) is showed and the performance of HFBN(4, 2,
30) is much better than the HFBN(4, 2, 15). However, increasing the q, increases
the power usage as well as the NEU (showed in Figure 3.14, where HFBN(4, 2, 15)
shows much low NEU than the HFBN(4, 2, 30) at the zero load latency).

• Same q, Different m: This scenario can be describe by the both 1M and 65K
analysis, where HFBN(10, 1, X) shows much worst result than the HFBN(2, 5, 1)
in case of 1M analysis and HFBN(8, 1, X) shows also the worst zero load latency
and the saturation rate over the HFBN(2, 4, 1) in case of 65K analysis.

• Low m: Figure 3.10 shows the evidence of 16M analysis through the superiority
of HFBN(2, 6, 1) over the HFBN(3, 4, 4). In addition, Figure 3.15 shows the 65K
cores traffic analysis, where for HFBN(2, 4, 1) with low m = 2, shows better zero
load latency and the much better saturation rate with respect to large m (HFBN(4,
2, 15) or HFBN(4, 2, 30)).
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Algorithm 3 Optimal Configuration of HFBN for m and L
OptimalConfiguration Selection(NODEN); // NODEN is the total core number

L = 0, m = 0;
for i = 2; 2i * 2i * 22i < = NODEN; i++
for j = 1; j < = 2 * (2i - 1) + 1 ; j++
if (L < j and 22ij = NODEN), then L = j; m = i; endif;

endfor;
endfor;
return (m, L);

end

Table 3.7: Simulation Environment for Traffic Analysis (16M cores)

Parameter Value Units

Cores 16,777,216 -
Flow Control wormhole switching -
Channel Buffer Size 4 -
Simulation Cycle 500 Clock cycles
Virtual Channels 8 -
Traffic Pattern Uniform Traffic -
Router Pipeline Cycle 1 clocks
link Latency 1 clocks
Packet size 12 flits

Table 3.8: Consideration for Power Usage

Power Evaluation Value Units
Electrical link

Intra-chip Link Power [49] 0.0012 watt
Inter-chip Link Power [49] 0.15 watt

Optical link (inter-rack and intra-rack links)
GBIC Module [FG-TRAN-SFP28-SR [45]] 1.2 watt
Intra-rack Link Power [49] 0.035 watt
Inter-rack Link Power [49] 0.035 watt
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Figure 3.10: Analysis on NEU of HFBN for m, L, q(16M Cores)
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Figure 3.11: Analysis on Uniform Traffic of HFBN for m, L, q(16M Cores)
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Table 3.9: Uniform Traffic Energy Analysis(16M cores)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

HFBN(2,6,1) HFBN(12,1,X)
0.000055 119.52 20,801,231.10 0.000005 257.09 46,933,003.40
0.001110 119.94 20,801,231.10 0.000023 258.06 46,933,003.40
0.004120 123.14 20,801,231.10
0.008100 128.64 20,801,231.10
0.010640 133.22 20,801,231.10
0.023180 189.37 20,801,231.10

HFBN(3,4,4)
0.000536 132.31 18,465,423.30
0.002610 140.62 18,465,423.30
0.006210 175.95 18,465,423.30
0.007976 206.45 18,465,423.30

Table 3.10: Simulation Environment for Traffic Analysis (1M cores)

Parameter Value Units

Cores 1,048,576 -
Flow Control wormhole switching -
Packet Size 6 (+ 6 Header flits) flits
Channel Buffer Size 4 -
Simulation Cycle 5000 Clock cycles
Virtual Channels 6 -
Traffic Pattern Uniform Traffic -
link latency 1 clocks
Router Pipeline Cycle 1 clocks
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Figure 3.12: Analysis on NEU of HFBN for m, L, q(1M Cores)
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Figure 3.13: Analysis on Uniform Traffic of HFBN for m, L, q(1M Cores)
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Table 3.11: Uniform Traffic Energy Analysis(1M cores)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

HFBN(2,5,1) HFBN(10,1,X)
0.00036 98.04 980,916.63 0.00027 1230.76 2,933,312.717
0.00054 98.24 980,916.63 0.00067 1247.09 2,933,312.717
0.00359 102.93 980,916.63 0.00133 1275.54 2,933,312.717
0.00537 106.61 980,916.63 0.00256 1352.61 2,933,312.717
0.00801 113.65 980,916.63 0.00363 1456.16 2,933,312.717
0.00987 122.24 980,916.63
0.01075 129.88 980,916.63
0.01175 140.67 980,916.63
0.00987 184.91 980,916.63

Table 3.12: Simulation Environment for Traffic Analysis (65K cores)

Parameter Value Units

Cores 65,536 -
Packet Size 6 (+ 6 Header flits) flits
Channel Buffer Size 2 -
flow Control Wormhole -
Simulation Cycle 5000 Clock cycles
Traffic Pattern Uniform Traffic -
Virtual Channels 4 -
link latency 1 clocks
Router Cycle 1 clocks
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Table 3.13: Uniform Traffic Energy Analysis(65K Cores)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

HFBN(2,4,1) HFBN(8,1,X)
0.00035 81.19 41,359.76 0.00033 337.91 183,332.04
0.00180 84.91 41,359.76 0.00170 345.37 183,332.04
0.00359 92.89 41,359.76 0.00255 351.45 183,332.04
0.00538 113.01 41,359.76 0.00482 378.41 183,332.04
0.00572 124.02 41,359.76 0.00555 396.63 183,332.04
0.00612 166.76 41,359.76 0.00521 533.91 183,332.04
0.00636 263.35 41,359.76
0.00640 328.78 41,359.76

HFBN(4,2,15) HFBN(4,2,30)
0.00035 115.31 29,877.96 0.00035 107.24 48,578.76
0.00147 245.14 29,877.96 0.00177 117.74 48,578.76
0.00112 489.30 29,877.96 0.00209 272.68 48,578.76

0.00204 331.27 48,578.76

Maximum effectiveness of paired connectivity for HFBN can be confirmed by Qmax.
Qmax defines the maximum paired connectivity is possible for particular HFBN network
level. For example, (Qmax = 2(2m − 1)) if m = 2, Qmax = 2(22 − 1) = 6 leads to 6
possible paired connectivity, which also constitutes Lmax = 2. In such case, the value of
q is up to Qmax, which is an IDEAL HFBN(2, 2, 6). However, if the q = 5 or q = 4,
the configurations leads to the PARTIAL HFBN(2, 2, 5) or PARTIAL HFBN(2, 2, 4).
However, for over than 1M cores q must be equal to 1 (Table 3.4 shows this configuration),
if we consider m = 2. This consideration leads to choose the fixed configuration of
HFBN(2, L, 1) for the entire thesis.

3.3.2 Evaluation on Deadlock-freeness

In this section, we also showed the deadlock-freeness of HFBN(2, 3, 1) through the real
simulation. Table 3.14 shows the simulation conditions for obtaining the deadlock-free
dynamic routing. Moreover, figure 3.16 shows the packet routing with respect to virtual
channel 2, 4 and 6. Obviously, a large number of virtual channel helps to obtain better
dynamic performance; however, it also increases the network power usages. Hence, the
consideration for a network should maintain a low number of virtual channels for its
deadlock-freeness. Figure 3.16 also ensures that HFBN(2, 3, 1) requires only 2 VC for
becoming deadlock-free.
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Table 3.14: Simulation enviornment for HFBN

Parameter Value Units

Cores 4,096 -
Message Size 16 (+2 Header flit) flits
Flow Control wormhole switching -
Channel Buffer Size 2 -
Simulation Cycle 20,000 Clock cycles
Traffic Pattern Uniform Traffic -
Link Latency 1 clocks
Router pipeline cycle 1 clocks
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Figure 3.16: Uniform Traffic Analysis for Deadlock-freeness

3.4 Summary

In this chapter, we have mainly defined the network architecture for HFBN(m, L, q).
This chapter also ensures that why and how we have considered the particular network
architecture for the on-chip as well as the off-chip level. Then, we ensure the network
definition of HFBN to reduce the confusion in designing this network along with the link
connectivity at the on-chip and off-chip level. After that routing algorithm 2 shows the
dimension-order routing for HFBN as well as the number of virtual channels are required
for the deadlock-free routing for HFBN are mentioned in Section 3.2.6. We have also
showed the algorithm to find the optimal m, L and q (algorithm 3).
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Chapter 4

Efficient Energy Usage

4.1 Introduction

Modern supercomputers consider the performance constraints as the primary factor in
selecting the suitable network architecture. To gain high network bandwidth, low latency
and high network throughput, high degree networks are the preferable choice. However,
performance improvement can be achieved through the increased number of CPU cores
and low degree networks can provide better energy efficiency through the low power usage.
For example- Tofu is a 6D mesh/torus network, used in K-computer [26] can provide more
than 10 petaflops performance with requiring about 12.6MW of electrical power. On the
other hand, IBM Sequoia achieved the Linkpack performance of 17.17 petaFlops, about
63% faster than the K-computer with 123% more cores and consumes about 7.9MW, 37%
less than the K-computer, considering the 5DTorus network Sequoia ensures more energy
efficiency over the K-computer’s 6D network [61].

4.2 Evaluation on Efficient Energy Usage

Efficient energy usage is an important consideration for MPC systems. As the modern
MPCs are highly affected by the power consumptions, efficient energy usage can able to
trace the system performance with respect to power usage which will be a key feature in
the field of interconnection networks. The choice of this parameter has been taken from
the observation of scenario where network with little poor performance, but having a much
better power efficiency, had always been rejected. Efficient energy usage is treated as the
goal for reducing the amount of power usage which is required to maintain the suitable
network performance. Regarding the definition of performance, it can be considered as
the dynamic network performance of the corresponding network and the power usage
leads to network power usage. In this section, all the DCP graphs are considered with
the data flits only as the accepted throughput. Equation 4.1 shows the consideration to
obtain the network energy usage. Here, we have considered the single clock cycles as
1ns (as the system clock is 1GHz). Hence, network energy usage leads to average flits
transfer time and the total power usage for transmitting the flits. On the other hand,
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efficient energy usage is the reduction of obtained network energy usage in comparing
between two networks with the relative request-probability (r). In DCP analysis, packets
are transmitted by the request-probability (r) during the simulation clock cycles. We have
considered a wormhole simulator for the DCP analysis, which is specially designed for the
hierarchical networks [40]. On the other hand, electrical power is considered up to inter-
chip level (256 cores) and we have used the Orion energy model for this analysis [33].
Electrical power analysis considered with the various traffic patterns (used the Garnet
1.0 simulator for traffic generation [34] (used the default table-based routing)). Now, this
analysis gives required power usage for single electrical module. Hence, to obtain the total
electrical power, we have multiplied the single electrical module power with total number
of electrical modules. And then, to obtain the optical power, we have considered the
fixed data driven power of intra-rack link (0.0101 watt) [49, 62] and inter-rack link (0.035
watt) [49] along with the per GBIC module power (FG-TRAN-SFP28-SR (1.2 watt) [45])
for the optical off-chip connectivity. Total optical power usage can be obtained from the
multiplication of required number of optic links (intra-rack and the inter-racks) with its
power usage and the required number of GBIC module with its power usage. Estimation
of power usage has been showed later part of this chapter. In this section, we have
considered with three traffic patterns analysis with various simulation conditions with
respect to the number of computing cores.

Network Energy Usage (NEU) = Average Transfer Time× Network Total Power Usage

(4.1)

As the high degree networks requires large number of off-chip interconnect, it’s not
suitable for large MPC systems mainly due to the required power usage. Large-scale
analysis is considered with 2 possible case of 65K core analysis and the 1M core analysis.
In both the analysis, we have considered various traffic patterns for the result evaluation.
This section evaluates the energy analysis of Tofu network. However, the basic module
(on-chip) for Tofu network considers 12 cores. And hence, we can consider 240 cores for
the inter-chip level and the total number of cores for Tofu is considered with 4080 cores for
the single rack level (for 65K the total number of core for Tofu network is 65,280 cores and
1M analysis is consist of 1,044,480 cores), whereas rest of the networks considers 256 cores
for there inter-chip level and 4096 cores as the total number of simulating cores for each
rack. In case of RTTM network, we have considered a = 4 and each upper level network
is constructed with (4× 4) 16 lower level sub-networks with twisted torus connectivity to
have the same number of cores for the each possible case. In this section, we have also
considered the static NEU analysis based on the average distance and the total link power
usage (this power model is considered from Table 3.8). Static NEU is the multiplication
of average distance and the total power usage. This analysis (Table 4.1) ensures that with
the increase of network size the static NEU will have an huge impact over the network
(specially, the network power usage will cause the large difference).
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Table 4.1: Static NEU Evaluation

Average Distance Total Power Usage (W) Static NEU

HFBN(2,5,1) 16.9195 980,916.63 16,596,618.90
HFBN(2,4,1) 13.0994 41,359.76 541,788.04
HFBN(2,3,1) 9.2815 1,338.26 12,421.11

4.3 Dynamic Communication Performance

Network performance heavily depends on the variable traffic patterns. And, even the
running applications on a MPC system are heavily affected by the traffic patterns. Dy-
namic Communication Performance for networks considers various traffic patterns and is
characterised by the latency and throughput. Latency refers to the time of a single packet
to reach destination core from its source core. On the other hand, Network throughput
is the rate at which packets can be delivered by the network. It refers to the maximum
amount of information delivered per unit of time through the network. Latency can be
defined by the below equation-

T = Th + L/b, Ts = L/b (4.2)

Here, Th is the header latency, is the time for the header of the message to traverse
the network. Ts is the serialisation latency, is the time for a packet of length L to cross a
channel with bandwidth b.

4.3.1 Definition of Various Traffic Patterns

Network load has high effective influence on performance. Traffic patterns are responsible
for the choice of particular source and destination core in any network. Traffic patterns
can be random or non-random selection. Here, we have used the following non-uniform
traffic patterns along with the uniform traffic patterns for dynamic communication per-
formance (DCP) analysis.

Uniform- In the uniform traffic pattern, every core sends message to every other core
with equal probability, i.e., source and destination are randomly selected for each gener-
ated message.

Perfect Shuffle- This pattern is defined as the fixed source-destination pair for every mes-
sage. The core with binary value an−1, an−2, ....., a1, a0 communicate with an−2, an−3, ...
...., a0, an−1 (rotate left 1 bit).

Bit-compliment- Fixed source-destination pair for every message. This case each core
sends message to a such core with one’s complement of its own address.
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4.3.2 Evaluation on Dynamic Communication Performance

Dynamic communication performance (DCP) considers the latency and throughput of
each network. Hence, dynamic communication performance shows the network zero load
latency, saturation load and maximum amount of packet can be delivered per unit of time
through the network. Accepted throughput(Flits/Cycle/Core) is the number of flits has
been received at the destination cores with respect to total number of cores and the total
simulation cycle. Here, DCP graphs are considered with the data flits only as the accepted
throughput. On the other hand, average transfer time (measured in clock cycles) is the
average delivery period for all the delivered packets within the given simulation time.
To evaluate the dynamic communication performance HFBN, we considered a special
designed simulator [40]. This simulator is specially designed for the hierarchical networks
with the facility of explicitly changing the packet ID with the change of source router.
Hence, the choice of particular virtual channel is possible for different links in making
the network as deadlock-free. HFBN(2, L, q) requires only 1 VC for its deadlock-free
routing. However, the off-chip level of HFBN network requires 2 VCs for its deadlock-free
due to its torus connections. HFBN network considers the DOR routing for its dynamic
performance. And even we also considered consider simple dimension-order routing rest
of the networks with wormhole flow control. We have considered the intel compiler with
mcmodel(= medium) for the 1M and 16M core analysis and for 65K cores analysis, DCP
simulation results are obtained from Visual C++ 2017 compilation.
Flow control is responsible for the allocation of resources in packets. In DCP analysis,

packet is the key component to ensure the network capability, who follows a certain route
for reaching the destination core. The key resources in networks are the channels and
buffers. Channels make sure the network connectivity and buffers are used to holding the
packets temporarily at the cores. In the DCP analysis, we have considered the wormhole
flow control. Wormhole flow control requires low buffering and most importantly, ensures
the latency independence over the message distance. In wormhole routing each message is
divided into packets, which are later divided into flits. Flits are consisted of two parts as
header flits and data flits. Header flit holds the routing information and data flit follows
the header flit through the network. On the other hand, DCP analysis considers only
the deterministic routing for each network. Deterministic routing is also called as the
oblivious routing. In deterministic routing, same routing path will always be considered
between the same source and destination pair even though multiple routing path exists.

4.4 Estimation of Power Consumption

Power consumption is definitely the major concern for the exa-scale systems. Modern
supercomputers are heavily affected by the on-chip as well as of off-chip power usages. One
of the powerful supercomputer Tianhe-2 requires 24MW of electrical power in achieving
33.86 petaFlops performance with more than 3 million of core [44]. Hence, the required
power at the exa-scale level will be similar to a single nuclear power plant, which is
definitely unrealistic.
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4.4.1 Assumption for the Power Model

The power consumption for the MPC system depends on various components such as
network system, processor, memory module and for the cooling system. On the other
hand, the network has a high impact on the total power usage. For example- 16-tile MIT
RAW on-chip network consumes about 36% of the total chip power [46]. Hence, on-chip
power is obviously the most important factor for estimating the total power usage. On
the other hand, the required power at the rack level for each link is typically about 1W,
bandwidth is over GB/s and cost is very high [47]. H. Wang and et. al. shows the
power comparison for high speed electrical and optical interconnects for the interchip
communication [48]. Hence, off-chip power estimation is also required for the analysis of
total power usage. In this thesis, we have considered the fixed data driven power of intra-
rack link (0.0101 watt) [49] and inter-rack link (0.035 watt) [49] along with the per GBIC
module power (FG-TRAN-SFP28-SR (1.2 watt) [45]) for the optical off-chip connectivity.
Hence, our power model is considered with the electric power at the inter-chip level and
the optic power at the intra-rack or at the inter-rack level.

Ptotal = Pelectrical + Poptical

Pelectrical = Prouter + Plink + Pclock power

Poptical = Poptical link + PGBIC module power

(4.3)

4.4.2 Electrical Power Model

Our power model is based on the Orion energy model [33] using 65nm fabrication process.
We have used GARNET 1.0 NoC simulator [34] for analysing dynamic power consumption.
The power usage for the inter-chip network depends on the dynamic and leakage power
usage. The router power is based on the router buffers, its local and global arbiter and the
crossbar traverse. The dynamic energy model of router is being considered with Equation
4.4, where C is the capacitance, V is the supply voltage and finally α is the switching
factor [33]. On the other hand, channels dynamic power are caused by the charging and
discharging of capacitive loads, which is formulated as Pdy link = αC1Vddfclk, where C1 is
the load capacitance, Vdd is the supply. We have considered 6 header flits along with the 6
data flits for the electrical power analysis. The header flits are merged with the data flits
(8 bits for each data flits and 8 bits for each header flits). Hence, the total number of flits
for the electrical power usage is considered as 6 flits for per packet. And, to obtain the
total electrical power, we have multiplied the obtained simulated power usage with the
total number of inter-chip module. The routing for this inter-chip analysis is considered
with the default ”Table-based” routing of the garnet 1.0 simulator.

E = 1/2αCV 2 [33] (4.4)
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4.5 Efficient Energy Usage Analysis (1M Cores)

1M cores are considered up-to the Level-5 network of HFBN(2,5,1). This case starting
with the Table 4.2 parameters for the 1M traffic analysis. This case we evaluated the
power simulation with the same traffic condition with respect to Table 4.3 and Table
4.4. Power analysis is obtained from parameters showed in Table 4.3 with the same
accepted throughput (used as the injection rate in Garent 1.0 simulator [34]), which is
considered as the parameter for dynamic communication performance. This section, we
have also considered 256 cores for their inter-chip level and 1M cores as the total number
of simulating cores.

Table 4.2: Simulation Environment for Traffic Analysis

Parameter Value Units

Cores 1,048,576 -
Flow Control wormhole switching -
Packet Size 6 (+ 6 Header flits) flits
Channel Buffer Size 4 -
Simulation Cycle 5,000 Clock cycles
Virtual Channels 6 -
link latency 1 clocks
Router Pipeline Cycle 1 clocks

Table 4.3: Simulation Environment for Inter-chip Model (electrical interconnect)

Parameter Value Units

Fabrication process 65 nm
Average link length 25 [mm]
Operating frequency 1× 109 Hz
Transistor type HVT -
Supply voltage 1.0 V
Packet Size 6 flits
Simulation cycle 5,000 -
Virtual Channel 6 -
VA Model VC select -
VA Buffer Model SRAM -
Buffer Size 4 -
CLOCK PIPELINE STAGE 2 -
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Table 4.4: Consideration for optical interconnect

Optical Power Evaluation Value Units

GBIC Module [FG-TRAN-
SFP28-SR [45]]

1.2 watt

Intra-rack Link Power [49] 0.0101 watt
Inter-rack Link Power [49] 0.035 watt

4.5.1 Uniform Traffic

Now, energy usage evaluation for the 1M cores, Table 4.2 shows the traffic parameters for
1M cores evaluation and Table 4.3 shows the power parameter for electrical analysis (Table
4.4 is for the optical link power usage). And finally, Figure 4.1 shows the energy analysis
for MMN, RTTM, 2DMesh, 2DTorus, HFBN, TTN and TESH network considering the the
traffic analysis for 1M cores showed in Appendix A. This figure explains that HFBN can
obtain about 23.49% efficiency over the TTN and comparing with the Tofu(40,32,68,3,2,2)
network, HFBN can obtain about 87.26% at the zero load latency. This analysis also
ensures that the zero load latency and the network saturation rate for HFBN is superior
over any other networks. Table 4.5 shows the obtained latency and power usage for
corresponding accepted throughput.
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Figure 4.1: Energy Usage with uniform traffic (1M Cores)
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Table 4.5: Uniform Traffic Energy Analysis(1M Cores)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

HFBN(2,5,1) TTN(2,5,0)
0.00036 98.04 1,016,282.276 0.00035 129.52 1,005,457.695
0.00359 102.93 1,040,904.855 0.00356 135.70 1,031,891.050
0.00537 106.61 1,057,083.265 0.00534 140.31 1,049,271.349
0.00801 113.65 1,080,643.477 0.00798 148.94 1,066,662.592
0.00987 122.24 1,089,408.074 0.01012 159.89 1,093,031.072
0.01075 129.88 1,097,555.632 0.01138 181.72 1,102,476.112
0.01175 140.67 1,106,283.573

2DTESH(2,5,0) MMN(2,5,0)
0.00035 164.20 1,002,150.429 0.00035 194.45 1,002,503.456
0.00353 177.38 1,036,368.351 0.00176 200.91 1,014,357.264
0.00528 188.04 1,058,399.641 0.00350 211.58 1,037,283.538
0.00767 213.28 1,080,497.549 0.00523 226.57 1,060,340.884
0.00840 267.55 1,090,882.183 0.00684 251.60 1,071,574.340

RTTM(5,4,2)(4,4) 2DTorus(1024,1024)
0.00031 160.17 1,001,662.496 0.00017 2124.64 429,173.845
0.00240 169.09 1,022,779.390 0.00104 2225.95 443,548.466
0.00268 174.30 1,098,473.511

Tofu(40,32,68,3,2,2) 2DMesh(1024,1024)
0.00009 201.69 3,877,893.411 0.00019 2140.99 409,226.325
0.00180 223.20 3,885,843.705
0.00228 237.20 3,893,086.482
0.00278 263.33 3,893,086.482

4.5.2 Perfect Shuffle Traffic

Figure 4.2 shows the energy usage for perfect shuffle traffic, which also ensures the superi-
ority of HFBN over any other networks. At the zero load latency, 2DTorus network shows
the worst energy usage among all the networks due to its high network latency (showed
in Appendix A) and the high number of off-chip interconnect in compared to 2DMesh
network. In this case, HFBN can sure about 47.07% better efficiency before the network
saturation in comparing with the TTN. However, the Tofu(40,32,68,3,2,2) network shows
the efficiency difference in about 86.32% in comparing with the HFBN at the zero load
latency. Table 4.6 shows the obtained latency and power usage for corresponding accepted
throughput for the perfect shuffle traffic.
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Figure 4.2: Energy Usage with Perfect Shuffle traffic (1M Cores)

Table 4.6: Perfect Shuffle Traffic Energy Analysis(1M Cores)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

HFBN(2,5,1) TTN(2,5,0)
0.00036 98.24 1,016,344.396 0.00035 129.52 1,005,457.695
0.00268 104.49 1,033,150.924 0.00266 138.03 1,023,400.007
0.00535 125.53 1,057,554.473 0.00528 169.69 1,049,392.168
0.00620 147.13 1,065,559.210 0.00653 388.56 1,058,004.488
0.00696 204.21 1,065,559.218
0.00734 389.91 1,073,596.948

2DTESH(2,5,0) MMN(2,5,0)
0.00035 164.69 1,002,253.604 0.00035 194.27 1,002,652.195
0.00265 179.24 1,025,690.990 0.00176 204.70 1,015,397.640
0.00385 201.28 1,035,861.695 0.00348 235.84 1,037,633.993
0.00467 299.17 1,046,960.273

RTTM(5,4,2)(4,4) Tofu(40,32,68,3,2,2)
0.00033 161.68 1,001,715.988 0.00003 188.22 3,877,428.878
0.00161 169.29 1,013,207.201 0.00044 203.05 3,877,428.878
0.00308 188.06 1,033,604.647 0.00086 231.59 3,877,428.878
0.00394 284.12 1,033,604.649 0.00105 397.42 3,884,556.609

2DTorus(1024,1024) 2DMesh(1024,1024)
0.00016 2133.39 426,627.665 0.00016 2158.37 406,680.145
0.00037 2177.39 426,627.665 0.00032 2164.08 406,680.145
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4.5.3 Bit-compliment Traffic

As the full system simulator (Gem5) has limited system scalability [51, 50], we have
also considered the NAS parallel benchmarks [59] communication characteristics with the
Message Passing Interface (MPI) implementation [58]. In static communication, compiled
communication technique considers the compiler knowledge on application communication
requirement and the provided network structure and allows to significantly optimize the
performance of communications at the compile time [59]. The communication pattern
of MPI programs can be sub-divided into three types: static communications, dynamic
communications and dynamically analyzable communications. Static communications are
those communications whose source and destination core are determined at the compile
time. Dynamically analyzable selects source and destination core at runtime without
incurring excessive overheads. Dynamic communications selects source and destination at
only the runtime. However, majority of communications in scientific programs maintains
the static communication. Hence, in this part of traffic analysis, we have considered
the static communication pattern of MPI Send, where selection of all source-destination
pairs must be determined at compile time. We have considered the bit-compliment traffic
pattern with fixed source and destination for this analysis. Table 4.2 shows the parameter
consideration for the traffic analysis. And, Appendix A reviled the performance analysis
with various networks along with the Figure 4.3 shows that HFBN can obtain about
30.76% better efficiency over the TTN in considering the bit-compliment traffic pattern.
In case of Tofu, this difference leads to about 92.98% at the max saturation point of Tofu.
Table 4.7 also reviles the obtained latency and power usage for corresponding accepted
throughput for bit-compliment traffic.
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Figure 4.3: Energy Usage with Bit-compliment Traffic (1M Cores)
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Table 4.7: Bit-compliment Traffic Energy Analysis(1M Cores)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

HFBN(2,5,1) TTN(2,5,0)
0.00036 103.67 1,016,599.045 0.00035 151.39 1,005,353.181
0.00089 104.79 1,016,599.046 0.00178 155.75 1,014,532.475
0.00179 106.95 1,025,576.540 0.00266 159.12 1,022,844.130
0.00268 109.61 1,033,680.777 0.00530 173.99 1,048,342.117
0.00358 112.76 1,041,853.060 0.00874 213.06 1,073,310.903
0.00713 134.01 1,074,948.564 0.01038 251.67 1,090,219.065
0.00886 153.56 1,083,075.117 0.01176 329.88 1,098,682.066
0.01051 184.62 1,099,671.217 0.01191 481.18 1,098,682.067
0.01202 239.78 1,115,270.056
0.01319 336.46 1,123,336.192

2DTESH(2,5,0) MMN(2,5,0)
0.00035 194.96 1,002,485.325 0.00035 188.35 1,002,323.860
0.00176 204.47 1,014,682.012 0.00176 197.08 1,014,323.838
0.00263 212.48 1,025,684.290 0.00263 204.23 1,025,498.918
0.00522 248.48 1,059,694.237 0.00621 375.15 1,070,596.788
0.00687 304.23 1,071,195.862
0.00796 479.40 1,081,820.547

RTTM(5,4,2)(4,4) 2DTorus(1024,1024)
0.00035 194.97 1,002,485.326 0.00017 2143.06 434,843.930
0.00176 204.47 1,014,680.604 0.00032 2183.46 434,843.930
0.00349 221.38 1,036,843.640 0.00067 2341.89 434,843.930
0.00522 248.56 1,059,693.225
0.00688 304.20 1,071,195.174

Tofu(40,32,68,3,2,2) 2DMesh(1024,1024)
0.00017 201.87 3,878,017.259 0.00002 2530.79 414,896.410
0.00087 205.67 3,878,017.259 0.00003 2579.03 414,896.410
0.00435 238.24 3,906,982.387 0.00004 2588.11 414,896.410
0.00676 523.18 3,921,517.650 0.00004 2588.11 414,896.410

4.6 Efficient Energy Usage Analysis (65K Cores)

65K cores are considered up-to the Level-4 network of HFBN(2, 4, 1). This case starting
with the Table 4.8 parameters for the 65K traffic analysis. This case we evaluated the
power simulation with the same traffic condition with respect to Table 4.9 and Table 4.10.
Power analysis is obtained from parameters showed in Table 4.9 with the same accepted
throughput (used as the injection rate in Garent 1.0 simulator [34]), which is considered
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as the parameter for dynamic communication performance. This section, we have also
considered 256 cores for there inter-chip level and 65,536 cores as the total number of
simulating cores (other than Tofu network).

Table 4.8: Simulation Environment for Traffic Analysis

Parameter Value Units

Cores 65,536 -
Flow Control wormhole switching -
Packet Size 6 (+ 6 Header flits) flits
Channel Buffer Size 2 -
Simulation Cycle 5000 Clock cycles
Virtual Channels 4 -
link latency 1 clocks
Router Pipeline Cycle 1 clocks

Table 4.9: Simulation Environment for Inter-chip Model (electrical interconnect)

Parameter Value Units

Fabrication process 65 nm
Average link length 25 [mm]
Operating frequency 1× 109 Hz
Transistor type HVT -
Supply voltage 1.0 V
Packet Size 6 flits
Simulation cycle 5000 -
Virtual Channel 4 -
VA Model VC select -
VA Buffer Model SRAM -
Buffer Size 2 -
CLOCK PIPELINE STAGE 2 -

Table 4.10: Consideration for optical interconnect

Optical Power Evaluation Value Units

GBIC Module [FG-TRAN-
SFP28-SR [45]]

1.2 watt

Intra-rack Link Power [49] 0.0101 watt
Inter-rack Link Power [49] 0.035 watt
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4.6.1 Uniform Traffic

In case of 65K analysis, we have considered electrical power analysis up-to inter-chip
level and we considered the optical power for intra-rack level and inter-rack level. We
have considered 6 header flits along with the 6 data flits and for the electrical power
analysis. The header flits are merged the data flits (8 bits for each data flits and 8 bits
for each header flits). Appendix A shows the traffic analysis for this case and using the
Table 4.10 (optical connectivity) and Table 4.9 (electrical connectivity), we could obtain
the power usage. Figure 4.4 shows the energy analysis for 65K uniform traffic, where
HFBN could achieve about 22.24% better efficiency over the TTN. In comparing with the
Tofu(20,16,17,3,2,2) network, even with the different network size of 65,280 cores, HFBN
can also achieve much better efficiency (80.56%) with the low load latency. Table 4.11
shows the result evaluation of each throughput points showed in figure 4.4.
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Figure 4.4: Energy Usage with uniform traffic (65K Cores)
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Table 4.11: Uniform Traffic Energy Analysis(65K Cores)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

HFBN(2,4,1) TTN(2,4,0)
0.00180 84.91 43,820.099 0.00178 104.29 43,253.880
0.00359 92.89 44,816.752 0.00357 112.68 44,324.910
0.00538 113.01 45,827.034 0.00534 131.51 45,408.380
0.00572 124.02 45,827.034 0.00567 140.04 45,408.381
0.00612 166.76 46,325.554 0.00593 165.40 45,408.381
0.00636 263.35 46,325.554

2DTESH(2,4,0) MMN(2,4,0)
0.00178 138.93 43,241.635 0.00174 160.85 43,265.00
0.00266 146.97 43,934.866 0.00348 176.30 44,694.53
0.00355 160.92 44,637.352 0.00500 208.45 45,350.69

RTTM(4,4,2)(4,4) 2DTorus(256,256)
0.0015 132.59 43,167.883 0.00158 668.73 23,778.818
0.0027 141.86 43,824.502 0.00312 731.06 25,408.434
0.0031 150.89 44,518.446 0.00330 978.12 25,408.434

Tofu(20,16,17,3,2,2) 2DMesh(256,256)
0.00179 90.23 233,198.691 0.00147 922.50 22,532.102
0.00358 91.45 234,110.836 0.00251 1173.47 23,341.387
0.00720 94.09 235,890.004
0.01077 97.5 237,280.525

4.6.2 Perfect Shuffle Traffic

The zero load latency for HINs always ensures the lowest latency over the conventional
networks. Perfect shuffle traffic analysis is also considered with the 65K cores and the
same traffic parameters as the Table 4.8 for 65K analysis. In addition to traffic analysis
parameters, the parameter used (Table 4.9 and 4.10) for the power analysis is also same as
to analyze the network energy usage. Figure 4.5 shows the energy usage for Perfect Shuffle
traffic, which also ensures the superiority of HFBN over any other networks. 2DMesh
and 2DTorus networks show the worst efficiency among all the 2D networks due to its
high network latency showed in Appendix A. This analysis ensures that HFBN has the
superiority over TTN up-to 18.39% with the efficiency (Figure 4.5). Now, comparing
with the Tofu(20,16,17,3,2,2) network, even with the different network size (65,280 cores),
HFBN can achieve about 78.13% better efficiency with the low load latency. Table 4.12
also ensures the same comparison with various networks.
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Figure 4.5: Energy Usage with Perfect Shuffle Traffic (65K Cores)

Table 4.12: Perfect Shuffle Traffic Energy Analysis(65K Cores)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

HFBN(2,4,1) TTN(2,4,0)
0.00179 83.28 43,439.89 0.00179 102.47 43,262.49
0.00360 88.53 44,817.46 0.00359 108.55 44,305.26
0.00538 102.04 45,858.30 0.00536 122.99 45,416.70
0.00695 168.12 46,358.37 0.00692 196.56 45,954.92
0.00794 304.75 46,857.63 0.00782 342.49 46,470.30

2DTESH(2,4,0) MMN(2,4,0)
0.00178 135.51 43,269.02 0.00177 158.53 43,330.157
0.00356 147.64 44,606.47 0.00352 171.94 44,694.533
0.00502 213.78 46,057.97 0.00422 212.59 45,434.135

RTTM(4,4,2)(4,4) Tofu(20,16,17,3,2,2)
0.00171 132.68 43,193.14 0.00180 89.86 233,166.281
0.00337 143.91 44,465.82 0.00359 90.56 233,942.075
0.00475 199.70 45,133.54 0.00539 91.15 234,780.557
0.00489 304.75 45,133.54 0.01078 93.63 236,779.315

2DTorus(256,256) 2DMesh(256,256)
0.00158 673.53 23,435.55 0.00157 694.16 22,188.834
0.00193 1011.06 23,435.55 0.00294 855.23 22,812.574
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4.6.3 Bit-compliment Traffic

In case of zero load latency for HINs as well as the HFBN always ensures the lowest
latency over the conventional networks. Bit-compliment traffic analysis is also considered
with the 65K cores and the same performance analysis parameter as the Table 4.8 for 65K
analysis. In addition to traffic analysis parameters, the parameter used (Table 4.9 and
4.10) for the power analysis is also same as to analyze the network energy usage. Figure
4.6 shows the energy usage for Bit-compliment traffic, which also ensures the superiority of
HFBN over any other networks. 2DMesh and 2DTorus networks show the worst efficiency
among all the 2D networks due to its high network latency showed in Appendix A. This
analysis ensures that HFBN has the superiority over TTN up-to 22.36% with the energy
efficiency (Figure 4.6). Now, comparing with the Tofu network, even with the different
network size, HFBN can achieve much better energy efficiency (72.09%). Table 4.13 also
ensures the same comparison with various networks.
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Figure 4.6: Energy Usage with Bit-compliment Traffic (65K Cores)
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Table 4.13: Energy Analysis of Bit-compliment Traffic(65K Cores)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

Accepted
Through-
put(F/C/C)

Average
Transfer
Time(C)

Total
Power
Usage(W)

HFBN(2,4,1) TTN(2,4,0)
0.00180 87.38 43,863.22 0.00178 115.4 43,242.08
0.00359 90.81 44,879.06 0.00356 119.68 44,278.12
0.00539 95.85 45,926.69 0.00535 125.73 45,315.76
0.00716 103.26 46,942.44 0.00713 134.83 46,389.55
0.00894 114.86 47,446.79 0.00888 148.90 46,902.91
0.01066 134.19 48,480.92 0.01060 174.73 47,958.50

2DTESH(2,4,0) MMN(2,4,0)
0.00176 160.52 43,285.55 0.00178 153.84 43,263.26
0.00353 168.77 44,667.31 0.00353 161.52 44,630.33
0.00527 183.69 46,092.55 0.00529 175.20 46,052.64
0.00694 224.39 46,810.26 0.00656 213.23 46,759.02

RTTM(4,4,2)(4,4) Tofu(20,16,17,3,2,2)
0.00177 160.61 43,285.51 0.00179 94.94 233,190.43
0.00353 168.91 44,667.29 0.00359 95.38 234,073.92
0.00530 184.02 46,092.04 0.00718 96.76 235,820.15
0.00695 225.07 46,810.23 0.01076 98.29 237,161.66

2DTorus(256,256) 2DMesh(256,256)
0.00158 658.43 24,467.09 0.00116 1580.6 23,220.37
0.00313 692.90 26,771.97 0.00118 1734.9 23,220.37
0.00448 820.16 27,834.23

4.7 Summary

This chapter ensures the energy superiority of HFBN than any other networks. 65K core
analysis showed that HFBN can achieved about 22.24% with uniform traffic and about
18.39% (with perfect shuffle traffic) better energy usage over the TTN. And finally, the
case for 1M core ensures that HFBN shows the superiority at the zero load and also for the
high saturation. This case HFBN can achieve about 23.49% better efficiency with uniform
traffic, about 47.07% with perfect shuffle traffic and about 30.76% with bit-compliment
traffic over the TTN.
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Chapter 5

Conclusion

5.1 Conclusion

In this research plan, our main objective was to find an efficient interconnection network
with requiring low power usage and can achieve high network performance for many-core
processors. High degree networks are useful for performance considerations, but are not
useful for low power usage. Hence, the target network focus on the efficient energy usage
over achieving the suitable network performance.
Our new interconnection network is based on the 2D NoCs, renamed as the Hierarchical

Flattened Butterfly Network (HFBN). Hence, this network has the high resiliency than
the 3D networks (3D networks require higher switch surface area (0.1385) than the 2D
networks (0.0924) [52]). On the other hand, HFBN with variable network size will require
a fixed number of router radix (9); costing only about $2,261.3 for each router [36]. In
the static performance analysis, HFBN can show much better performance than conven-
tional networks. For example- in comparing with 5DTorus network (used in Blue Gene/Q
supercomputer), this network can also achieve about 32.5% better diameter performance
(over 1M cores) and about 66.67% with over 200M cores, almost similar average distance
performance and even shows much better cost analysis at 1M cores. On the other hand,
in considering with the most recent high-performed hierarchical networks such as TTN,
MMN, TESH, RTTM; this network confirms itself as an obvious choice. In case of diam-
eter, HFBN can achieve about 34.15% better performance than TTN (with 1M cores);
where in case of average distance, HFBN can achieve about 26.14% better performance.
Our energy evaluation considers various configurations starting from 65K cores to 1M

cores. Most of the networks like- TTN, TESH, Mesh, Torus gets congested very quick.
Hence, we couldn’t evaluate the energy usage over 16M cores and compare them. However,
starting with the 65K cores up to 1M cores HFBN shows its uttermost superiority over
any other networks. 65K cores analysis showed that HFBN can achieved about 22.24%
with uniform traffic and about 18.39% (with perfect shuffle traffic) better energy usage
over the TTN. And finally, the case for 1M cores ensures that HFBN shows the superiority
for zero load latency and also for the high saturation rate. This case HFBN can achieve
about 23.49% better efficiency with uniform traffic, about 47% with perfect shuffle traffic
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and about 30.76% with bit-compliment traffic over the TTN. Comparing with the high
degree network like- Tofu; HFBN also confirms its superiority. In case of 1M cores analysis
of Tofu(40,32,68,3,2,2) network, HFBN can obtain about 87.26% better energy efficiency
at the zero load latency with uniform traffic, about 86.32% with perfect shuffle traffic
and about 92.98% with the bit-compliment traffic. On the other hand, with the 65K
core analysis of Tofu(20,16,17,3,2,2) network, HFBN can obtain about 80.56% better
efficiency with uniform traffic, 78.13% better efficiency with the perfect shuffle traffic and
about 72.09% better efficiency with the bit-compliment traffic.

5.2 Future Research

This research considers about the energy efficient supercomputing for the next generation
supercomputers. However, there is still lots of area where this research can be exploited.
Some of the areas are discussed below-

1. Research on interconnection networks mainly conducted through network design,
implementation, simulation analysis and experimental performance evaluation with
collective communication patterns on various networks. In addition, in this paper,
we have considered only the one-to-one communication. However, MPI (message
passing interface) program requires to handle the multicast or broadcast message
passing. This could be a very useful feature for future research on HFBN.

2. Exa-scale system requires large scalability. On the other hand, the failure rate
trends to be increase vastly with the increase of system size. Thus, fault-tolerant
capabilities could be very much beneficial. In the future research on HFBN, we
would like to consider a new fault-tolerant routing algorithm such that it could
handle the traffic in case of faulty nodes or any faulty links.

3. The prototyping approach will definitely reduce the required full scale implemen-
tation efforts. In the prototyping approach implemented through the Field Pro-
grammable Gate Array (FPGA), can also reduce the system cost and the risk of
hardware implementation. Hence, our target for the next phase of this research also
considers the implementation of HFBN on FPGA.

4. In this research, we also didn’t consider the adaptive routing for the HFBN, where
adaptive routing ensures better communication performance over the simple deter-
ministic routing [40]. HFBN allows to travel the packet through numerous number
of paths between any source and destination. On the other hand, deterministic
routing follows a single path between any source to destination. If the selected path
from source to destination is congested, the network traffic will be delayed. Thus,
such fixed routing limits the network performance.
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Appendix A

Large-scale Dynamic Communication Performance

The target for this large-scale analysis is to ensure that HFBN is capable of performing as
the exa-scale supercomputer network. From this analysis, it is quite evident that HFBN is
capable for the large-scale systems with its large network scalability. Moreover, HFBN(2,
7, 1) can also be scaled up-to 268 million of cores, which is enough number of cores for
requiring a exa-scale system. This analysis considers only 500 simulation cycle to reduce
the simulation execution time. On the other hand, other comparator networks show high
congestion rate and requires large transfer time to run the same packet request probability
(r). For example- with the same request probability, HFBN(2,6,1) can transfer about
388,620 packets and TTN(3,4,1) can transfer only 3,187 packets. On the other hand,
2DMesh can only send about 174 packets. Table A.1 shows the considered parameters
for this analysis and Figure A.1 shows the uniform traffic analysis of HFBN(2,6,1). This
graph also includes the traffic analysis of HFBN(2,5,1) for 1M cores and HFBN(2,4,1)
for 65K Cores. On the other hand, Table A.2 and Table A.3 shows the parameters of
traffic analysis for 1M and 65K cores respectively. Figure A.2, A.3, A.4 shows the traffic
analysis with respect to uniform traffic, perfect shuffle traffic and bit-compliment traffic
with 1M cores. Figure A.5, A.6 and A.7 shows the traffic analysis of 65K cores with
uniform, perfect shuffle and bit-compliment traffic respectively.

Table A.1: Simulation Environment for Traffic Analysis

Parameter Value Units

Flow Control Wormhole Switching -
Channel Buffer Size 4 -
Simulation Cycle 500 Clock cycles
Virtual Channels 8 -
Router Pipeline Cycle 1 clocks
link Latency 1 clocks
Traffic Pattern Uniform Traffic -
Packet size 12 flits
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Table A.2: Simulation Environment for Traffic Analysis (1M Cores)

Parameter Value Units

Cores 1,048,576 -
Flow Control wormhole switching -
Packet Size 6 (+ 6 Header flits) flits
Channel Buffer Size 4 -
Simulation Cycle 5,000 Clock cycles
Virtual Channels 6 -
link latency 1 clocks
Router Pipeline Cycle 1 clocks

Table A.3: Simulation Environment for Traffic Analysis(65K Cores)

Parameter Value Units

Cores 65,536 -
Flow Control wormhole switching -
Packet Size 6 (+ 6 Header flits) flits
Channel Buffer Size 2 -
Simulation Cycle 5,000 Clock cycles
Virtual Channels 4 -
link latency 1 clocks
Router Pipeline Cycle 1 clocks
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Figure A.1: Uniform Traffic Analysis with Various Network Size of HFBN
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Figure A.2: Various networks with uniform traffic (1M Cores)
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Figure A.3: Various networks with Perfect Shuffle traffic (1M Cores)
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Figure A.4: Bit-compliment Traffic Analysis for various networks (1M cores)
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Figure A.5: Various networks with uniform traffic (65K Cores)
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Figure A.6: Various networks with Perfect Shuffle Traffic (65K Cores)
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Figure A.7: Various networks with Bit-compliment Traffic (65K Cores)

Static Network Performance

Static network performance ensures the network capability without considering the packet
movement. Hence, static network performance is useful in the initial choice of the network.
Good network ensures low cost, low degree, low congestion, high connectivity and high
fault-tolerant rate than the others. In this section, we compare the parameters, such
as diameter, average distance and cost analysis. We consider up to the level-5 network
performance for HFBN(2, 5, 1). Hence, we use SGI supercomputer with the openmp
parallel programs run with the 6 core with 16 threads. Table A.4 shows the simulation
environment for the static network performance. Static performance for Tofu has not
been evaluated by the reference papers and hence, we skip the static analysis of Tofu for
this section.

Table A.4: Static Simulation Enviornment

SGI UV3000

OS SUSE Linux Enterprise Server 12
CPU Intel Xeon E5-465v3
Core 6 core
Number of Threads 16
Compiler Intel C++ Compiler 17.0.1
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Comparison of Static Performance of Various Networks

Node Degree

The node degree is defined as the maximum number of physical outgoing links from a core.
Since each core of HFBN network has maximum 8 outgoing links, the degree of HFBN
is 8. Constant node degree networks are easy to expand and the network interface cost
remains unchanged with increasing network size. The I/O interface cost of a particular
core is proportional to its degree. Table A.5 shows node degree for the various networks.

Table A.5: Node Degree of Various Networks

Parameter 2DMesh 2DTorus TESH TTN RTTM HFBN
Node Degree 4 4 4 6 4 8

5.2.1 Diameter Performance

The diameter ensures the maximum number of channels is required for a packet to be
sent from each source core to destination core along its shortest path. However, static
diameter doesn’t consider the channel faults. Low diameter ensures low communication
delay. Hence, the low diameter is preferable for any interconnection networks. Equation
A.1 shows the diameter evaluation for HFBN(m, L, q) and Table A.6 shows the calculated
formulation considering Equation A.1. On the other hand, Figure A.8 shows the diameter
analysis of HFBN(2, L, 1) comparing with the various networks. This simulation ensures
that diameter performance of HFBN(2, L, 1) is much better than various hierarchical net-
works (Like- TTN [23], TESH). In comparing the conventional networks, such as 2DMesh
and 2DTorus, HFBN(2, 5, 1) shows much better results. Even HFBN(2, 5, 1) can achieve
about 34.15% better than the TTN network. Diameter for HFBN can also be evaluated
using the below equation-
For the HFBN, an upper bound for the diameter is given by-

Diameter = max(Ds + (
L∑

i=2

(Dsi +Di)) +Dd) (A.1)

Here, where Ds = distance for highest level of outgoing core. Dsi = distance for the
next level of routing and Di = distance for corresponding level of routing. Dd = distance
from level-2 to destination core. Table A.4 shows the calculated formulation for HFBN
network-
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Figure A.8: Diameter Performance for Various Networks

Table A.6: Calculated Formulation of Diameter for HFBN

Parameter(m, L, q) Result
of Ds

Result for Dsi and Di Result
for
Dd

Diameter of the
corresponding
level

HFBN(2, 1, 1) 2 Dsi = 0, Di = 0 0 2
HFBN(2, 2, 1) 2 for i = 2; Dsi=0, Di=5 2 9
HFBN(2, 3, 1) 2 for i = 2; Dsi=1, Di=5

for i = 3; Dsi=0, Di=5
2 15

HFBN(2, 4, 1) 2 for i = 2; Dsi=1, Di=5
for i = 3; Dsi=1, Di=5
for i = 4; Dsi=0, Di=5

2 21

HFBN(2, 5, 1) 2 for i = 2; Dsi=1, Di=5
for i = 3; Dsi=1, Di=5
for i = 4; Dsi=1, Di=5
for i = 5; Dsi=0, Di=5

2 27

HFBN(2, 6, 1) 2 for i = 2; Dsi=1, Di=5
for i = 3; Dsi=1, Di=5
for i = 4; Dsi=1, Di=5
for i = 5; Dsi=2, Di=5
for i = 6; Dsi=0, Di=5

2 34
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5.2.2 Average Distance

Diameter analysis considers the routing for a single packet with a maximum path required
to traverse along its shortest distance [53]. On the other hand, average distance considers
the broadcasting of packets from each core to every other core. Hence, an average shorter
path is more preferable over the low diameter. The average distance is the mean distance
between each distinct pair of cores. The small average distance allows small communica-
tion latency. The average distance of graph G can be defined by Equation A.2, where n is
the total number of cores in the network and d defined as the diameter between all distinct
pair x and y. However, Figure A.9 shows the average distance of various networks, which
ensures that HFBN is superior over TTN, 2DMesh, 2DTorus and TESH. Unfortunately,
the average distance calculation for RTTM is wrong and hence, we ignored this network
for this analysis.

μ(G) =

∑
x,y ε v d(G; x, y)

n(n - 1)
(A.2)
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Figure A.9: Average Distance for Various Networks

Cost Analysis

Cost analysis is effective for interconnection networks due to its considerations in product
of core degree and diameter. The cost and performance of network are inter-related due to
inter-node distance, message traffic density and fault-tolerance. Node degree of a network
can be defined as the maximum number of physical outgoing channels from a single core.
The node degree of HFBN is 8. On the other hand, network radix can be defined by
the number of channels for inter-router and number of cores are connected to a single
router. Hence, the network radix for HFBN is 9 (8 links are used to connect other routers

87



and single link will be used for connecting the single core). In contrast, this network is
not fixed for connecting multiple cores from a single router. This feature allows the high
network scalability for HFBN. Figure A.10 shows the cost analysis for HFBN(2, L, 1),
which shows that this network outperformed the 2DTorus and even much better than
the TTN network. On the other hand, RTTM and butterfly network shows the low cost
performance due to its low node degree.
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Figure A.10: Cost analysis for Various Networks

Topological Analysis

Packing Density

Network cost is defined as the product of network diameter and node degree. The network
cost for HFBN has already been evaluated in the earlier studies and shows much better
result than the 2DMesh, 2DTorus and even TTN networks. On the other hand, high
packing density is one of the most desirable feature in VLSI, is defined as the ratio of the
number of cores of a network to its cost [54]. The higher the packing density, the smaller
chip area will be required for its VLSI layout. Equation A.3 shows the definition for
the packing density. As the computational power for supercomputers are highly depends
upon the multi-core structures, the chip area has a big impact on power usage. Figure
A.11 shows the packing density for various networks. Its shows that HFBN network
has a higher packing density than 2DMesh, 2DTorus and almost similar to TTN, TESH
networks.

Packing Density =
Total Number of Cores

Degree × Diameter
(A.3)
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Figure A.11: Packing density for Various Networks

Message Traffic Density

The performance of a network for the message traffic can be evaluated by the average
distance from one source core to other. An efficient network should have low message
traffic density to reduce the traffic congestion and eventually should provide wide network
bandwidth. The message traffic density is the ratio of multiplication between the total
number of cores and its average distance to its total number of links [55]. Hence, message
traffic density can be derived by the equation A.4.

Message Traffic Density, ρ =
dN

E
(A.4)

Here, d is the average distance, N is the total number of cores and E is the total number
of links. The total number of links for HFBN can be derived from the Equation A.5.

E = NBM × inner L1 Links +
N∑

i=2

NBM × outer Li Links (A.5)

Here, NBM is the number of basic module in current level, L1 links considers for number
of level-1 links and Li considers the number of i-th level links. Using those equations we
have also compared the message traffic density with the other networks in Figure A.12,
which shows that HFBN ensures the lowest message traffic density than the 2DTorus,
2DMesh, TTN, TESH networks. However, the estimated average distance for RTTM is
not correct. Hence, we couldn’t include the result for RTTM in this figure.

89



20 24 25 26 27 28 29 210 211 212 213 214 215 216
20

21

22

23

24

25

26
M

es
sa

ge
Tr

af
fic

De
ns

ity

Number of Cores

2DMesh
2DTorus
HFBN(2, L, 1)
TESH(2, L, 0)
TTN(2, L, 0)
MMN(2, L, 0)

Figure A.12: Message Traffic density for Various Networks

Fault tolerance

Fault tolerance for networks directly related to network resiliency. In parallel computing
environment fault tolerance is an important factor due to the common phenomenon of core
or link failures. Fault tolerance for a graph has been defined as the maximum number of
vertices that can be removed until the graph is still connected. Hence the fault tolerance
for a graph is one less than its connectivity [56]. A network will be k-fault tolerant if it
can sustain up to k number of link failures. In case of HFBN, the connectivity is lower
than the node degree. Hence HFBN can tolerate up to (connectivity 1 = 5) five link
failures at the BM level. Figure A.13 shows the total number of paths between each
source-destination pair for the BM levels. This figure ensures that HFBN has the higher
fault tolerance than 2DMesh, 2DTorus, TESH and TTN networks.

Cost Effectiveness factor

Speedup and efficiency are the usual measured parameters for the performance evolution
of MPC systems. However, those parameters don’t consider communication links. It is
obvious for MPC system, the total system cost depends on the number of processor cores
and with the number of communication links [56, 57]. The cost effectiveness factor (CEF)
for HFBN has been defined by the Equation A.6. Let, CP is the cost for a processor
core including its processing unit, control unit and memory unit. And, CL is the cost
for the communication link. Hence ρ is defined as CL/CP. Figure A.14 shows the cost
effectiveness of various networks (ρ = 0.1). Hence, HFBN is a good choice over the
2DMesh, 2DTorus as well as TESH network.
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CEF(N) =
1

1 + ρ(
Total Number of communication links

Total Number of Cores
)

(A.6)
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Figure A.14: CEF for Various Networks
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Time Cost Effectiveness Factor

Time cost effectiveness factor (TCEF) parameter considers the time for the simulation
seconds of a program [56, 57]. A faster solution is expected with the low cost effectiveness
for the MPC systems. This factor helps to characterise the profitable use of the MPC
systems. The TCEF for HFBN has been defined in equation A.8, where ρ is defined as
CL/CP; same as cost-effectiveness. T1 is the time to solve a single problem by a single
processor core; we have assumed σ = 1, which is linear time penalty in Tp. Tp is the time
required by p cores to solve a problem. Figure A.15 shows the TCEF for HFBN network,
which is better than all the cost efficient networks.

g(p) =
Total Number of communication links

Total Number of Cores
(A.7)

TCEF (p, Tp) =
1 + σT σ−1

1

1 + ρg(p) +
σ

p
T σ−1
p

(A.8)
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Figure A.15: TCEF for Various Networks
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Appendix B

Simulator Verification

In our research, we have considered 2 simulator mainly for the performance evaluation and
the analysis of the power estimation. In case of the power estimation, we have considered
the Orion 2.0 power simulator [33]. This simulator is already been verified with the Intel 80
core [33]. On the other hand, considering the paper from DSENT power simulator, Orion
2.0(re-calibrated) simulator has a error rate of 47.5% in compared to SPICE simulation
and about 50.36% error rate than the DSENT simulator in comparing the total router
power [64]. However, the leakage power modeling is not accurate for DSENT simulator
with different technology nodes, which leads us to consider the Orion 2.0 with default
enviornment for this research. However, in this section, we would like verify the Orion
2.0 simulator setup same as the paper for obtaining the same result. Through the paper
[33] has some of the important parameters are missing, we could able to obtain the same
result as the paper considering the dynamic router power usage. Table B.1 shows those
parameters (along with the given parameters as HVT, NVT, and LVT, we use (0.8 V, 0.2
GHz), (1.0 V, 1GHz), and (1.1 V, 3 GHz)) and Figure B.1 shows the paper results along
with our evaluated results in Figure B.2. Our analysis showed that we may have only
about 2% error rate in comparing with the referenced paper.
In the next part, we also like to verify our DCP traffic simulator. We have considered

the performance analysis of Mesh network with the DOR routing [53] with the similar
parameters. However, our simulator considers the wormhole flow control and referenced
paper considers the virtual-channel flow control. Moreover, referenced paper considers the

Table B.1: Simulation Condition for Power Analysis

Parameter Value Units

Fabrication process 65/45 nm
number of Cores 1 Cores
Traffic pattern uniform traffic -
Message inject rate 0.28 flits/cycle/core
Simulation Cycle 20,000 -
Virtual Channels 2 -
Buffer Size 4 -
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Figure B.1: Results of Orion 2.0 [33]
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Figure B.2: Verification for Orion 2.0
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per-hop latency of the routers is 3 cycles and our simulator considers 1 clock for router
pipeline with 1 clock for the link traversal. Figure B.3 shows the DCP analysis for Mesh
(8-ary 2-Mesh) from the referenced paper and Figure B.4 shows the evaluation analysis
obtained from our simulator. In both cases of DOR routing, the zero load latency is
almost similar. However, saturation rate showed in our simulator is much faster than the
referenced paper. This difference leads to a about 39% difference at the saturation point.

Figure B.3: Verification for DCP Simulator [53]
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Figure B.4: Verification for DCP analysis on Mesh and Torus network
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Appendix C

Appendix C is considered for the future analysis on HFBN. This chapter shows the eval-
uation method with the sample code to run the various evaluation of HFBN. Starting
from the sample code of the network design with the ”Higher Level Port Assignment for
HFBN”, then the sample code to obtain the ”Static Performance Analysis” and finally,
the sample code to obtain the ”Dynamic Performance Analysis” of HFBN.

Higher Level Port Assignment for HFBN

The higher level port assignment for HFBN is required for the upper-level connection
setup from the each basic module. The Algorithm 1 defined in Chapter 3 is also designed
based on the below code implementation. This code requires input data as the value
of m and q. And, the output will be the specific core number for the each higher-level
connectivity. With the increase of paired connectivity(q), the number of out going port
for each higher-level will be increased.

#define MX 256

/∗ d e f i n i n g the core s t r u c t wi th x , y p o s i t i o n ∗/
typedef struct{

int x , y ;
} yx ;

int m = 3 ;
int BMAX;
int Lmax ;
int QMAX;
short LV[MX] [MX] , HV[MX] [MX] , IN [MX] [MX] ;

int ipow ( int n ){
int p=1;
while ( n−− ) p ∗= 2 ;
return ( p ) ;

}

yx s e t xy ( int y , int x ){
yx p ;
p . x = x ; p . y = y ;
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return (p ) ;
}

void setHVLQ( int y , int x , int pl , char phv , int connect ){
LV[ y ] [ x ] = pl ;
HV[ y ] [ x ] = phv ;
IN [ y ] [ x ] = connect ;

}

/∗ I n i t i a l i s i n g the pre−de f ined por t s ∗/
void i n i t i a l i z e ( int q ){

int x , y ;
yx p ;

for ( x=0; x <= BMAX; x++ ){
for ( y=0; y <= BMAX; y++ ){

LV[ y ] [ x ] = 0 ;
HV[ y ] [ x ] = ’ ∗ ’ ;
IN [ y ] [ x ] = 0 ;

}
}
BMAX = ipow ( m ) − 1 ;
Lmax = c e i l (2∗ ( ipow ( m ) − 1)/q ) + 1 ;
i f ( q < 2){

setHVLQ( 0 , 0 , 2 , ’H ’ , 1 ) ;
setHVLQ( 0 , BMAX, 2 , ’V ’ , 1 ) ;
setHVLQ( BMAX, 0 , 3 , ’V ’ , 1 ) ;
setHVLQ( BMAX, BMAX, 3 , ’H ’ , 1 ) ;

}
else {

setHVLQ( 0 , 0 , 2 , ’H ’ , 1 ) ;
setHVLQ( 0 , BMAX, 2 , ’V ’ , 1 ) ;
setHVLQ( BMAX, 0 , 2 , ’V ’ , 2 ) ;
setHVLQ( BMAX, BMAX, 2 , ’H ’ , 2 ) ;

}
}

void pr int portQ (){
int x , y ;

for ( y=BMAX; y >= 0 ; y−− ){
for ( x=0; x <= BMAX; x++ ){
p r i n t f ( ”%3d%c %d ” , LV[ y ] [ x ] , HV[ y ] [ x ] , IN [ y ] [ x ] ) ;

}
p r i n t f ( ”\n” ) ;

}
}

/∗ check the prev ious l e v e l which i s a l r eady as s i gned ( p l i s the
l e v e l number and phv i s f o r the cho ice o f v e r t i c a l or Hor i zon ta l
s e l e c t i o n and connect i s to de f i ned the curren t core number ) ∗/
yx po r t l ev e lQ ( int pl , char phv , int connect ){
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yx p ;
for ( p . y=0; p . y <= BMAX; p . y++ ){

for ( p . x=0; p . x <= BMAX; p . x++ ){
i f ( p l == LV[ p . y ] [ p . x ] && phv == HV[ p . y ] [ p . x ]
&& connect == IN [ p . y ] [ p . x ] ) return ( p ) ;

}
}

}

/∗ check the curren t l e v e l por t i s a l r eady as s i gned or not ( p l i s the
l e v e l number and phv i s f o r the cho ice o f v e r t i c a l or Hor i zon ta l s e l e c t i o n
and connect i s to de f i ned the curren t core number ) ∗/
bool ava i lab l eQ ( int pl , char phv , int connect ){

yx p ;
for ( p . y=0; p . y <= BMAX; p . y++ ){

for ( p . x=0; p . x <= BMAX; p . x++ ){
i f ( p l == LV[ p . y ] [ p . x ] && phv == HV[ p . y ] [ p . x ]
&& connect == IN [ p . y ] [ p . x ] ) return true ;

}
}
return fa l se ;

}

/∗ This f unc t i on re turns the mesh d i s t ance between the
source and d e s t i n a t i o n node ∗/

int d i s t anc e ( yx src , yx dst ){
yx d i s t ;
d i s t . x = abs ( s r c . x − dst . x ) ;
d i s t . y = abs ( s r c . y − dst . y ) ;
return ( d i s t . x + d i s t . y ) ;

}

/∗ t h i s f unc t i on re tu rns the y and x por t p o s i t i o n
o f curren t l e v e l through $save \ ph$ and $save \ pv$ ∗/
void SaveXY( int x , int y , yx∗ save pv , yx∗ save ph , yx lvmv , yx lvmh ,
int d i s t , int ∗min d i s t ){

yx pv , ph ;

i f ( LV [ 0 ] [ x ] == 0 ){
pv = se t xy (0 , x ) ; ph = se t xy (BMAX, x ) ;
d i s t = d i s t anc e (pv , lvmh ) + d i s t anc e (ph , lvmv ) ;

i f ( d i s t < ∗min d i s t ){
∗ save pv = pv ; ∗ save ph = ph ; ∗min d i s t = d i s t ;

}
ph = se t xy (0 , x ) ; pv = se t xy (BMAX, x ) ;
d i s t = d i s t anc e (pv , lvmh ) + d i s t anc e (ph , lvmv ) ;

i f ( d i s t < ∗min d i s t ){
∗ save pv = pv ;∗ save ph = ph ; ∗min d i s t = d i s t ;

}
}
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i f ( LV[ y ] [ 0 ] == 0 ){
pv=se t xy (y , 0 ) ; ph=se t xy (y ,BMAX) ;
d i s t = d i s t anc e (pv , lvmh ) + d i s t anc e (ph , lvmv ) ;
i f ( d i s t < ∗min d i s t ){

∗ save pv = pv ; ∗ save ph = ph ; ∗min d i s t = d i s t ;
}

ph=se t xy (y , 0 ) ; pv=se t xy (y ,BMAX) ;
d i s t = d i s t anc e (pv , lvmh ) + d i s t anc e (ph , lvmv ) ;
i f ( d i s t < ∗min d i s t ){

∗ save pv = pv ; ∗ save ph = ph ; ∗min d i s t = d i s t ;
}

}
}

/∗ Se t s the a v a i l a b l e por t f o r upper l e v e l s ∗/
void HIGHERLevel ( int m, int q ){

int d i s t , min d i s t ;
int x , y , i ;
int lv , max connect ;
yx save pv , save ph , lvmv , lvmh ;
for ( l v =2; l v <= Lmax ; lv++ ){

for ( i =1; i <= q ; i++){
// check the a l r eady a l l o c a t e d max connect
min d i s t = 65536 ;
i f ( l v != 2 && i == 1){

lvmh = por t l ev e lQ ( lv −1, ’H ’ , q ) ;
lvmv = por t l ev e lQ ( lv −1, ’V ’ , q ) ;

}
else {

lvmh = por t l ev e lQ ( lv , ’H ’ , i−1 ) ;
lvmv = por t l ev e lQ ( lv , ’V ’ , i−1 ) ;

}
i f ( ! ava i lab l eQ ( lv , ’V ’ , i ) ){

for ( x=0, y = 0 ; x <= BMAX; x++, y++){
SaveXY( x , y , &save pv , &save ph , lvmv ,
lvmh , d i s t , &min d i s t ) ;

}
setHVLQ( save ph . y , save ph . x , lv , ’H ’ , i ) ;
setHVLQ( save pv . y , save pv . x , lv , ’V ’ , i ) ;

}
}

}
}

int main ( char ∗ argc [ ] , int argv ){
int q = 4 ;
i n i t i a l i z e ( q ) ;
HIGHERLevel (m, q ) ;
p r i n t f ( ”\ n f i n a l \n” ) ;
pr int portQ ( ) ;

}
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Static Performance Analysis

To run the static performance evaluation, we have considered the Openmp program-
ming for the large-scale analysis. The Algorithm 2 in Chapter 2 also explains the static
routing, which is considered for the HFBN. This code implementation is considered for
HFBN(2,4,1) and the port assignment has been fixed by the Algorithm 1 in Chapter 3.

int d i f f e r e n c e ( int dest , int s r c )
{

return ( des t − s r c ) ;
}

int ou t l e t x ( int ∗ s , int ∗d , int l , int VH, int r ou t ed i r )
{

int out l e t nodex ;
i f ( l == 5 and VH == 1 and r ou t ed i r == 0){ return out l e t nodex = 0 ;}
i f ( l == 5 and VH == 0 and r ou t ed i r == 0){ return out l e t nodex = 3 ;}
i f ( l == 4 and VH == 1 and r ou t ed i r == 0){ return out l e t nodex = 3 ;}
i f ( l == 4 and VH == 0 and r ou t ed i r == 0){ return out l e t nodex = 0 ;}
i f ( l == 3 and VH == 1 and r ou t ed i r == 0){ return out l e t nodex = 0 ;}
i f ( l == 3 and VH == 0 and r ou t ed i r == 0){ return out l e t nodex = 3 ;}
i f ( l == 2 and VH == 1 and r ou t ed i r == 0){ return out l e t nodex = 3 ;}
i f ( l == 2 and VH == 0 and r ou t ed i r == 0){ return out l e t nodex = 0 ;}

i f ( l == 5 and VH == 1 and r ou t ed i r == 1){ return out l e t nodex = 0 ;}
i f ( l == 5 and VH == 0 and r ou t ed i r == 1){ return out l e t nodex = 3 ;}
i f ( l == 4 and VH == 1 and r ou t ed i r == 1){ return out l e t nodex = 3 ;}
i f ( l == 4 and VH == 0 and r ou t ed i r == 1){ return out l e t nodex = 0 ;}
i f ( l == 3 and VH == 1 and r ou t ed i r == 1){ return out l e t nodex = 0 ;}
i f ( l == 3 and VH == 0 and r ou t ed i r == 1){ return out l e t nodex = 3 ;}
i f ( l == 2 and VH == 1 and r ou t ed i r == 1){ return out l e t nodex = 3 ;}
i f ( l == 2 and VH == 0 and r ou t ed i r == 1){ return out l e t nodex = 0 ;}

return 0 ;
}

int ou t l e t y ( int ∗ s , int ∗d , int l , int VH, int r ou t ed i r )
{

int out l e t nodey ;
i f ( l == 5 and VH == 1 and r ou t ed i r == 0){ return out l e t nodey = 1 ;}
i f ( l == 5 and VH == 0 and r ou t ed i r == 0){ return out l e t nodey = 1 ;}
i f ( l == 4 and VH == 1 and r ou t ed i r == 0){ return out l e t nodey = 2 ;}
i f ( l == 4 and VH == 0 and r ou t ed i r == 0){ return out l e t nodey = 2 ;}
i f ( l == 3 and VH == 1 and r ou t ed i r == 0){ return out l e t nodey = 3 ;}
i f ( l == 3 and VH == 0 and r ou t ed i r == 0){ return out l e t nodey = 3 ;}
i f ( l == 2 and VH == 1 and r ou t ed i r == 0){ return out l e t nodey = 0 ;}
i f ( l == 2 and VH == 0 and r ou t ed i r == 0){ return out l e t nodey = 0 ;}

i f ( l == 5 and VH == 1 and r ou t ed i r == 1){ return out l e t nodey = 1 ;}
i f ( l == 5 and VH == 0 and r ou t ed i r == 1){ return out l e t nodey = 1 ;}
i f ( l == 4 and VH == 1 and r ou t ed i r == 1){ return out l e t nodey = 2 ;}
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i f ( l == 4 and VH == 0 and r ou t ed i r == 1){ return out l e t nodey = 2 ;}
i f ( l == 3 and VH == 1 and r ou t ed i r == 1){ return out l e t nodey = 3 ;}
i f ( l == 3 and VH == 0 and r ou t ed i r == 1){ return out l e t nodey = 3 ;}
i f ( l == 2 and VH == 1 and r ou t ed i r == 1){ return out l e t nodey = 0 ;}
i f ( l == 2 and VH == 0 and r ou t ed i r == 1){ return out l e t nodey = 0 ;}

return 0 ;
}

int r e c e i v i ng nodex ( int ∗ s , int ∗d , int l , int VH, int r ou t ed i r )
{

int r e c e i v i ng nodex ;
i f ( l == 5 and VH == 1 and r ou t ed i r == 0){ return r e c e i v i ng nodex = 0 ;}
i f ( l == 5 and VH == 0 and r ou t ed i r == 0){ return r e c e i v i ng nodex = 3 ;}
i f ( l == 4 and VH == 1 and r ou t ed i r == 0){ return r e c e i v i ng nodex = 3 ;}
i f ( l == 4 and VH == 0 and r ou t ed i r == 0){ return r e c e i v i ng nodex = 0 ;}
i f ( l == 3 and VH == 1 and r ou t ed i r == 0){ return r e c e i v i ng nodex = 0 ;}
i f ( l == 3 and VH == 0 and r ou t ed i r == 0){ return r e c e i v i ng nodex = 3 ;}
i f ( l == 2 and VH == 1 and r ou t ed i r == 0){ return r e c e i v i ng nodex = 3 ;}
i f ( l == 2 and VH == 0 and r ou t ed i r == 0){ return r e c e i v i ng nodex = 0 ;}

i f ( l == 5 and VH == 1 and r ou t ed i r == 1){ return r e c e i v i ng nodex = 0 ;}
i f ( l == 5 and VH == 0 and r ou t ed i r == 1){ return r e c e i v i ng nodex = 3 ;}
i f ( l == 4 and VH == 1 and r ou t ed i r == 1){ return r e c e i v i ng nodex = 3 ;}
i f ( l == 4 and VH == 0 and r ou t ed i r == 1){ return r e c e i v i ng nodex = 0 ;}
i f ( l == 3 and VH == 1 and r ou t ed i r == 1){ return r e c e i v i ng nodex = 0 ;}
i f ( l == 3 and VH == 0 and r ou t ed i r == 1){ return r e c e i v i ng nodex = 3 ;}
i f ( l == 2 and VH == 1 and r ou t ed i r == 1){ return r e c e i v i ng nodex = 3 ;}
i f ( l == 2 and VH == 0 and r ou t ed i r == 1){ return r e c e i v i ng nodex = 0 ;}

return 0 ;
}

int r e c e i v i ng nodey ( int ∗ s , int ∗d , int l , int VH, int r ou t ed i r )
{

int r e c e i v i ng nodey ;
i f ( l == 5 and VH == 1 and r ou t ed i r == 0){ return r e c e i v i ng nodey = 1 ;}
i f ( l == 5 and VH == 0 and r ou t ed i r == 0){ return r e c e i v i ng nodey = 1 ;}
i f ( l == 4 and VH == 1 and r ou t ed i r == 0){ return r e c e i v i ng nodey = 2 ;}
i f ( l == 4 and VH == 0 and r ou t ed i r == 0){ return r e c e i v i ng nodey = 2 ;}
i f ( l == 3 and VH == 1 and r ou t ed i r == 0){ return r e c e i v i ng nodey = 3 ;}
i f ( l == 3 and VH == 0 and r ou t ed i r == 0){ return r e c e i v i ng nodey = 3 ;}
i f ( l == 2 and VH == 1 and r ou t ed i r == 0){ return r e c e i v i ng nodey = 0 ;}
i f ( l == 2 and VH == 0 and r ou t ed i r == 0){ return r e c e i v i ng nodey = 0 ;}

i f ( l == 5 and VH == 1 and r ou t ed i r == 1){ return r e c e i v i ng nodey = 1 ;}
i f ( l == 5 and VH == 0 and r ou t ed i r == 1){ return r e c e i v i ng nodey = 1 ;}
i f ( l == 4 and VH == 1 and r ou t ed i r == 1){ return r e c e i v i ng nodey = 2 ;}
i f ( l == 4 and VH == 0 and r ou t ed i r == 1){ return r e c e i v i ng nodey = 2 ;}
i f ( l == 3 and VH == 1 and r ou t ed i r == 1){ return r e c e i v i ng nodey = 3 ;}
i f ( l == 3 and VH == 0 and r ou t ed i r == 1){ return r e c e i v i ng nodey = 3 ;}
i f ( l == 2 and VH == 1 and r ou t ed i r == 1){ return r e c e i v i ng nodey = 0 ;}
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i f ( l == 2 and VH == 0 and r ou t ed i r == 1){ return r e c e i v i ng nodey = 0 ;}

return 0 ;
}

long BM routing ( int sy , int sx , int dy , int dx )
{

long diameter = 0 ;
int movediry = 0 ; //0 i s f o r p o s i t i v e move and 1 i s f o r nega t i v e move
int movedirx = 0 ;

int de lx = dx − sx ;
int de ly = dy − sy ;

i f ( de ly > 0) {movediry = 0 ;}
i f ( de ly < 0) {movediry = 1 ;}
// f o r Tori connect ion (0−>2 or 1−>3)
i f ( movediry == 0 and de ly == 2) { de ly = de ly − 1 ;}
i f ( movediry == 0 and de ly == −2) { de ly = dely + 1 ;}
i f ( movediry == 1 and de ly == 2) { de ly = de ly − 1 ;}
i f ( movediry == 1 and de ly == −2) { de ly = dely + 1 ;}
// f o r Tori connect ion (0−>3)
i f ( movediry == 0 and de ly > 2) { de ly = dely − 4 ;}
i f ( movediry == 1 and de ly < −2) { de ly = de ly + 4 ;}

i f ( de lx > 0) {movedirx = 0 ;}
i f ( de lx < 0) {movedirx = 1 ;}
// f o r Tori connect ion (0−>2 or 1−>3)
i f ( movedirx == 0 and de lx == 2) { de lx = de lx − 1 ;}
i f ( movedirx == 0 and de lx == −2) { de lx = delx + 1 ;}
i f ( movedirx == 1 and de lx == 2) { de lx = de lx − 1 ;}

i f ( movedirx == 1 and de lx == −2) { de lx = de lx + 1 ;}
// f o r Tori connect ion (0−>3)
i f ( movedirx == 0 and de lx > 2) { de lx = delx − 4 ;}
i f ( movedirx == 1 and de lx < −2) { de lx = de lx + 4 ;}

while ( de ly != 0)
{

i f ( de ly > 0) { de ly = de ly − 1 ; } //move the packe t to +y d i r e c t i o n
i f ( de ly < 0) { de ly = de ly + 1 ; } //move the packe t to −y d i r e c t i o n
diameter++;

}
while ( de lx != 0)
{

i f ( de lx > 0) { de lx = de lx − 1 ; } //move the packe t to +x d i r e c t i o n
i f ( de lx < 0) { de lx = de lx + 1 ; }//move the packe t to −x d i r e c t i o n
diameter++;

}
return diameter ;

102



}

//Def ines the Sho r t e s t path rou t ing . . .
int SP Routing ( int ∗ s , int ∗d , int L , int i )
{

int r ou t ed i r = 0 ;

i f ( ( ( d [ i ] − s [ i ] + 4) % 4) > 4/2)
{

return r ou t ed i r = 1 ;
}
else {

return r ou t ed i r = 0 ;
}

}

long Routing ( int s9 , int s8 , int s7 , int s6 , int s5 , int s4 , int s3 , int s2 , int s1 , int s0 ,
int d9 , int d8 , int d7 , int d6 , int d5 , int d4 , int d3 , int d2 , int d1 , int d0 )
{

int d [ 1 0 ] = { d0 , d1 , d2 , d3 , d4 , d5 , d6 , d7 , d8 , d9 } ;
int s [ 1 0 ] = { s0 , s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 , s9 } ;
int t [ 1 0 ] = {0} ;
int out l e t nodex= 0 ;
int out l e t nodey= 0 ;
int diameter = 0 ;

int r ou t ed i r = 0 ; //0 i s f o r p o s i t i v e and 1 i s f o r nega t i v e move
for ( int i = 9 ; i>=2; i−−)
{

r ou t ed i r = SP Routing ( s , d , f l o o r ( ( i )/2 + 1 ) , i ) ;

i f ( r ou t ed i r == 0) { t [ i ] = (d [ i ] − s [ i ] + 4) % 4 ; }
else { t [ i ] = 4 − ( ( d [ i ] − s [ i ] + 4) % 4 ) ; }

while ( t [ i ] != 0)
{
i f ( ( i % 2) == 0 ) {

out l e t nodex = ou t l e t x ( s , d , f l o o r ( ( i )/2 + 1 ) , 0 , r ou t ed i r ) ;
ou t l e t nodey = ou t l e t y ( s , d , f l o o r ( ( i )/2 + 1 ) , 0 , r ou t ed i r ) ;

}
else {
out l e t nodex = ou t l e t x ( s , d , f l o o r ( ( i )/2 + 1 ) , 1 , r ou t ed i r ) ;
ou t l e t nodey = ou t l e t y ( s , d , f l o o r ( ( i )/2 + 1 ) , 1 , r ou t ed i r ) ;

}
diameter += BM routing ( s [ 1 ] , s [ 0 ] , out l e t nodey , out l e t nodex ) ;
i f ( r ou t ed i r == 0) {

i f ( s [ i ] + 1 >= 4)
s [ i ]= −4 + s [ i ] + 1 ;

else { s [ i ] = s [ i ] + 1 ;}
} // move the packe t to the next BM
else {
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i f ( s [ i ] − 1 < 0)
s [ i ]= 4 + s [ i ] − 1 ;

else { s [ i ] = s [ i ] − 1 ;}
} // move the packe t to the prev ious BM

diameter++;
i f ( t [ i ] > 0) t [ i ] = t [ i ] − 1 ;
i f ( t [ i ] < 0) t [ i ] = t [ i ] + 1 ;
i f ( ( i % 2) == 0 ) {

s [ 0 ] = re c e i v i ng nodex ( s , d , f l o o r ( ( i )/2 + 1 ) , 0 , r ou t ed i r ) ;
s [ 1 ] = re c e i v i ng nodey ( s , d , f l o o r ( ( i )/2 + 1 ) , 0 , r ou t ed i r ) ;

}
else {

s [ 0 ] = re c e i v i ng nodex ( s , d , f l o o r ( ( i )/2 + 1 ) , 1 , r ou t ed i r ) ;
s [ 1 ] = re c e i v i ng nodey ( s , d , f l o o r ( ( i )/2 + 1 ) , 1 , r ou t ed i r ) ;

}
}

}

diameter = diameter + BM routing ( s [ 1 ] , s [ 0 ] , d [ 1 ] , d [ 0 ] ) ;
return diameter ;

}

int main (void )
{

long diameter = 0 ;
long tota lDiameter = 0 ;
double averageDistance = 0 ;
int maxDiameter = 0 ;
int xMax = 4 ;
int yMax = 4 ;
int t o t a lPa i r = 0 ;
int l4sY , l4sX , l3sY , l3sX , sY , sX , sy , sx ;
int l4dY , l4dX , l3dY , l3dX , dY, dX, dy , dx ;

#pragma omp p a r a l l e l for c o l l a p s e (14) private (dy , dx ) reduct i on (+: tota lDiameter )
for ( l4sY=0; l4sY<4; l4sY++)
for ( l4sX=0; l4sX<4; l4sX++)

for ( l3sY=0; l3sY<4; l3sY++)
for ( l3sX=0; l3sX<4; l3sX++)

for ( sY=0; sY<4; sY++)
for ( sX=0; sX<4; sX++)

for ( sy=0; sy<4; sy++)
for ( sx=0; sx<4; sx++){

for ( l4dY=0; l4dY<4; l4dY++)
for ( l4dX=0; l4dX<4; l4dX++)

for ( l3dY=0; l3dY<4; l3dY++)
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for ( l3dX=0; l3dX<4; l3dX++)

for (dY=0; dY<4; dY++)
for (dX=0; dX<4; dX++)

for ( dy=0; dy<4; dy++)
for ( dx=0; dx<4; dx++){

diameter = Routing (0 , 0 , l4sY , l4sX , l3sY , l3sX , sY , sX ,
sy , sx , 0 , 0 , l4dY , l4dX , l3dY , l3dX , dY, dX, dy , dx ) ;

i f ( diameter >= maxDiameter ){
maxDiameter = diameter ;

}
tota lDiameter += diameter ;

}
}

averageDis tance = tota lDiameter / (double ) ( 6 5 536 ) ;
averageDistance = averageDistance / (double ) ( 6 5535 ) ;

return 0 ;
}
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Dynamic Communication Performance Analysis

Dynamic communication performance (DCP) is required for the network energy usage
analysis. This analysis ensures the performance superiority of HFBN through the low
zero-load latency and slower saturation rate. DCP analysis requires various important
parameters for the deadlock-freeness as well as to maintain suitable network performance.
Before discussing the running same codes, we could like to show the parameters which is
required to setup the enviornment. Our simulator considers the NODEN as the number
of cores, TIME is the total simulation cycles, P is the rate of packet generation (this
parameter is required to change for the inrease of traffic loads in the network), C is the
used for Hotspot traffic analysis and L is the packet length (This simulator considers 6
flits as the default and hence, L = 6, means a total of 12 flits as the packet length). We
have considered the intel compiler with mcmodel(= medium) for the 1M and 16M core
analysis and for 65K cores analysis, DCP simulation results are obtained from Visual
C++ 2017 compilation.

#de f i n e NODEN 1048576 /∗ Number o f PE ∗/
#de f i n e LINEN 1024 /∗ Number o f PE in one d i r e c t i o n ∗/
#de f i n e LINKN 8 /∗ Link Number o f 1 PE ∗/
#de f i n e VRCH 6 /∗ Number o f VC ∗/
#de f i n e BUFN 4 /∗ Capacity o f Channel b u f f e r ∗/
#de f i n e P 2 /∗ Pro b a b i l i t y o f g enera t ing Packet ∗/
#de f i n e TIME 5000 /∗ Maximum Ca l cu l a t i on time ∗/
#de f i n e SENDQN 16 /∗ Capacity o f sending b u f f e r ∗/
#de f i n e MAXBUF 32
#de f i n e SW\ MAX 10 /∗ Maximum Number o f Cross Bar Switch ∗/
#de f i n e RAND 077777 /∗ RANDOM va lue ∗/
#de f i n e C 3277 /∗ Communication Ratio in BM ∗/
#de f i n e PMAX 32768 /∗ Pro b a b i l i t y o f g enera t ing Packet ∗/
#de f i n e L 6 /∗ Packet l e n g t h ∗/
#de f i n e FIX 1 /∗ Fixed Channel s e l e c t i o n ∗/

Connectivity Setup

To analyze the DCP of HFBN, requires to follow the curtain steps for the code imple-
mentation. At first, we would like to explain the network configuration setup. Function
linksetup() is considered for the network connection. We have considered HFBN(2,4,1)
configuration to explain our link setup. This code requires the connectivity up to Level-4
network with paired connectivity is one. Hence, each BM will have only one Level-4,
Level-3 and Level-2 vertical connection and one horizontal connection. Specific core num-
ber for the upper level connectivity has been determined by Algorithm 1(Chapter 3).

void l i n k s e tup ( ){

// LINEN i s the number o f cores in X−d i r e c t i o n in each BM = 2ˆm;
// HFBN(2 ,4 ,1) has 4 cores in X−d i r e c t i o n .
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BMNODEN = LINEN ∗ LINEN;

// This i s the l i n k se tup f o r the 1 s t BM (0−16)
for ( i =0; i<BMNODEN; i++){

Nodel ink [ i ] [ 0 ] = i + LINEN;
Nodel ink [ i ] [ 1 ] = i − LINEN;
Nodel ink [ i ] [ 2 ] = i − 1 ;
Nodel ink [ i ] [ 3 ] = i + 1 ;
Nodel ink [ i ] [ 4 ] = i ;
Nodel ink [ i ] [ 5 ] = i ;
Nodel ink [ i ] [ 6 ] = i ;
Nodel ink [ i ] [ 7 ] = i ;

i f ( i >= BMNODEN − LINEN)
Nodel ink [ i ] [ 0 ]= ( i − BMNODEN + LINEN) ;

i f ( i < LINEN)
Nodel ink [ i ] [ 1 ]= i + BMNODEN − LINEN;

i f ( i%LINEN == 0 )
Nodel ink [ i ] [ 2 ]= i + (LINEN − 1 ) ;

i f ( i%LINEN == LINEN − 1 )
Nodel ink [ i ] [ 3 ]= i − (LINEN − 1 ) ;

i f ( i < (BMNODEN / 2) )
Nodel ink [ i ] [ 4 ] = i + (LINEN ∗ 2 ) ;

i f ( i >= (BMNODEN / 2) )
Nodel ink [ i ] [ 4 ] = i − (LINEN ∗ 2 ) ;

i f ( i%LINEN < LINEN/2)
Nodel ink [ i ] [ 5 ] = i + (LINEN / 2 ) ;

i f ( i%LINEN >= LINEN / 2)
Nodel ink [ i ] [ 5 ] = i − (LINEN / 2 ) ;

}

// THIS case i s f o r the l i n k se tup f o r r e s t o f the BMs
// NODEN i s the t o t a l Core number in the network
for ( i = BMNODEN; i< NODEN; i++){

Nodel ink [ i ] [ 0 ] = Nodel ink [ i − BMNODEN] [ 0 ] + BMNODEN;
Nodel ink [ i ] [ 1 ] = Nodel ink [ i − BMNODEN] [ 1 ] + BMNODEN;
Nodel ink [ i ] [ 2 ] = Nodel ink [ i − BMNODEN] [ 2 ] + BMNODEN;
Nodel ink [ i ] [ 3 ] = Nodel ink [ i − BMNODEN] [ 3 ] + BMNODEN;
Nodel ink [ i ] [ 4 ] = Nodel ink [ i − BMNODEN] [ 4 ] + BMNODEN;
Nodel ink [ i ] [ 5 ] = Nodel ink [ i − BMNODEN] [ 5 ] + BMNODEN;
Nodel ink [ i ] [ 6 ] = i ;
Nodel ink [ i ] [ 7 ] = i ;

}

// This case f o r the h o r i z on t a l l i n k s at L4 Hor i zon ta l ou t
for ( i = 8 ; i < BMNODEN ∗ BMNODEN ∗ BMNODEN ∗ LINEN; i += BMNODEN) {

Nodel ink [ i ] [ 6 ] = ( i + BMNODEN ∗ BMNODEN ∗ BMNODEN) %
(BMNODEN ∗ BMNODEN ∗ BMNODEN ∗ LINEN) ;

Nodel ink [ i ] [ 7 ] = (BMNODEN ∗ BMNODEN ∗ BMNODEN ∗ LINEN +
i − BMNODEN ∗ BMNODEN ∗ BMNODEN) % (BMNODEN ∗ BMNODEN ∗ BMNODEN ∗ LINEN) ;

}
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for ( ; i < NODEN; i += BMNODEN) {
Nodel ink [ i ] [ 6 ] = Nodel ink [ i − BMNODEN ∗ BMNODEN ∗ BMNODEN ∗ LINEN ] [ 6 ] +
BMNODEN ∗ BMNODEN ∗ BMNODEN ∗ LINEN;
Nodel ink [ i ] [ 7 ] = Nodel ink [ i − BMNODEN ∗ BMNODEN ∗ BMNODEN ∗ LINEN ] [ 7 ] +
BMNODEN ∗ BMNODEN ∗ BMNODEN ∗ LINEN;

}

// This case we are adding L3 Ver t i ca l out l i n k s
for ( i = 12 ; i < BMNODEN ∗ BMNODEN ∗ BMNODEN; i+= BMNODEN){

Nodel ink [ i ] [ 6 ] = ( i + BMNODEN ∗ BMNODEN ∗ LINEN) %
(BMNODEN ∗ BMNODEN ∗ BMNODEN) ;
Nodel ink [ i ] [ 7 ] = (BMNODEN ∗ BMNODEN ∗ BMNODEN + i − BMNODEN ∗ BMNODEN ∗ LINEN)
% (BMNODEN ∗ BMNODEN ∗ BMNODEN) ;

}
for ( ; i < NODEN; i += BMNODEN) {

Nodel ink [ i ] [ 6 ] = Nodel ink [ i − BMNODEN ∗ BMNODEN ∗ BMNODEN] [ 6 ] +
BMNODEN ∗ BMNODEN ∗ BMNODEN;
Nodel ink [ i ] [ 7 ] = Nodel ink [ i − BMNODEN ∗ BMNODEN ∗ BMNODEN] [ 7 ] +
BMNODEN ∗ BMNODEN ∗ BMNODEN;

}

// This case f o r the h o r i z on t a l l i n k s at L3 Hor i zonta l
for ( i = 15 ; i < BMNODEN ∗ BMNODEN ∗ LINEN; i+= BMNODEN){

Nodel ink [ i ] [ 6 ] = ( i + BMNODEN ∗ BMNODEN ) % (BMNODEN ∗ BMNODEN ∗ LINEN) ;
Nodel ink [ i ] [ 7 ] = (BMNODEN ∗ BMNODEN ∗ LINEN + i − BMNODEN ∗ BMNODEN )
% (BMNODEN ∗ BMNODEN ∗ LINEN) ;

}
for ( ; i < NODEN; i+= BMNODEN){

Nodel ink [ i ] [ 6 ] = Nodel ink [ i − BMNODEN ∗ BMNODEN ∗ LINEN ] [ 6 ] +
BMNODEN ∗ BMNODEN ∗ LINEN;
Nodel ink [ i ] [ 7 ] = Nodel ink [ i − BMNODEN ∗ BMNODEN ∗ LINEN ] [ 7 ] +
BMNODEN ∗ BMNODEN ∗ LINEN;

}

// Level−2 Ve r t i c a l Links connec t ions
for ( i = 3 ; i < BMNODEN ∗ BMNODEN; i+= BMNODEN){

Nodel ink [ i ] [ 6 ] = ( i + BMNODEN ∗ LINEN) % (BMNODEN ∗ BMNODEN) ;
Nodel ink [ i ] [ 7 ] = (BMNODEN ∗ BMNODEN + i − BMNODEN ∗ LINEN) %
(BMNODEN ∗ BMNODEN) ;

}
for ( ; i < NODEN; i+= BMNODEN){

Nodel ink [ i ] [ 6 ] = Nodel ink [ i − BMNODEN ∗ BMNODEN] [ 6 ] + BMNODEN ∗ BMNODEN;
Nodel ink [ i ] [ 7 ] = Nodel ink [ i − BMNODEN ∗ BMNODEN] [ 7 ] + BMNODEN ∗ BMNODEN;

}

// Level−2 Hor i zon ta l Links connec t ions
for ( i = 0 ; i < (BMNODEN ∗ LINEN) ; i+= BMNODEN){

Nodel ink [ i ] [ 6 ] = ( i + BMNODEN ) % (BMNODEN ∗ LINEN) ;
Nodel ink [ i ] [ 7 ] = (BMNODEN ∗ LINEN + i − BMNODEN ) % (BMNODEN ∗ LINEN) ;

}
for ( ; i < NODEN; i+= BMNODEN){
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Nodel ink [ i ] [ 6 ] = Nodel ink [ i − (BMNODEN ∗ LINEN ) ] [ 6 ] + (BMNODEN ∗ LINEN) ;
Nodel ink [ i ] [ 7 ] = Nodel ink [ i − (BMNODEN ∗ LINEN ) ] [ 7 ] + (BMNODEN ∗ LINEN) ;

}

for ( i =0; i<BMNODEN; i++)
for ( j = 0 ; j < LINKN; j++)

for ( k = 0 ; k < VRCH; k++)
f r e e channe l [ i ] [ j ] [ k ] = 0 ;

for ( i = BMNODEN; i< NODEN; i++)
for ( j = 0 ; j < LINKN; j++)

for ( k = 0 ; k < VRCH; k++)
f r e e channe l [ i ] [ j ] [ k ] = f r e e channe l [ i−BMNODEN] [ j ] [ k ] ;

}

DCP Routing

In DCP routing, each port number is mapped with the next possible core number (this is
already considered in linksetup()) and hence, next receiving core number can be obtained
from the corresponding port of the current source core. This case we have also considered
the HFBN(2,4,1) network and hence, we need up to level-4 routing to complete the network
simulation. Routing algorithm follows the highest level of routing first. Return value of
Routing HFBN() and BMroute() is the outgoing port number of the current source core.

int Routing HFBN( int src , int dest ){

// Node number at the BM LEVEL . . .
s r c0 = s r c % BMNODEN;
dest0 = dest % BMNODEN;

// NODE number at the LEVEL−2 NETWORK. . .
s r c1 = ( s r c % (BMNODEN∗BMNODEN)) / BMNODEN;
dest1 = ( dest % (BMNODEN∗BMNODEN)) / BMNODEN;

// NODE number at the LEVEL−3 NETWORK. . .
s r c2 = ( s r c % (BMNODEN∗BMNODEN∗BMNODEN)) / (BMNODEN ∗ BMNODEN) ;
dest2 = ( dest % (BMNODEN∗BMNODEN∗BMNODEN)) / (BMNODEN ∗ BMNODEN) ;

// NODE number at the LEVEL−4 NETWORK. . .
s r c3 = s r c / (BMNODEN ∗ BMNODEN ∗ BMNODEN) ;
dest3 = dest / (BMNODEN ∗ BMNODEN ∗ BMNODEN) ;

// i f l e v e l −4 network rou t ing i s r e qu i r ed then we must make the l e v e l −4 rou t ing .
// The below case we make sure the l e v e l −4 rou t ing i s r e qu i r ed . . .

i f ( s r c3 != dest3 ) {
// 4LV.V
i f ( ( s r c3 / LINEN) != ( dest3 / LINEN)){

i f ( ( (LINEN + ( dest3 / LINEN) − ( s r c3 / LINEN) ) % LINEN) <= LINEN / 2)
i f ( s r c0 == 11) return 6 ;

109



else return BMroute ( src0 , 1 1 ) ;
else

i f ( s r c0 == 11) return 7 ;
else return BMroute ( src0 , 1 1 ) ;

}

// 4LV.H
i f ( ( s r c3 % LINEN) != ( dest3 % LINEN)){

i f ( ( (LINEN + ( dest3 % LINEN) − ( s r c3 % LINEN) ) % LINEN) <= LINEN / 2)
i f ( s r c0 == 8) return 6 ;
else return BMroute ( src0 , 8 ) ;

else
i f ( s r c0 == 8) return 7 ;
else return BMroute ( src0 , 8 ) ;

}
}

// i f l e v e l −3 network rou t ing i s r e qu i r ed then we must make the l e v e l −3 rou t ing .
// The below case we make sure the l e v e l −3 rou t ing i s r e qu i r ed . . .
else i f ( s r c2 != dest2 ){

// 3LV.V
i f ( ( s r c2 / LINEN) != ( dest2 / LINEN)){

i f ( ( (LINEN +(dest2 / LINEN) − ( s r c2 / LINEN) ) % LINEN) <= LINEN / 2)
i f ( s r c0 == 12) return 6 ;
else return BMroute ( src0 , 1 2 ) ;

else
i f ( s r c0 == 12) return 7 ;
else return BMroute ( src0 , 1 2 ) ;
}

// 3LV.H
i f ( ( s r c2 % LINEN) != ( dest2 % LINEN)){

i f ( ( (LINEN +(dest2 % LINEN) − ( s r c2 % LINEN) ) % LINEN) <= LINEN / 2)
i f ( s r c0 == 15) return 6 ;
else return BMroute ( src0 , 1 5 ) ;

else
i f ( s r c0 == 15) return 7 ;
else return BMroute ( src0 , 1 5 ) ;
}

}

// i f l e v e l −2 network rou t ing i s r e qu i r ed then we must make the l e v e l −2 rou t ing .
// The below case we make sure the l e v e l −2 rou t ing i s r e qu i r ed . . .
else i f ( s r c1 != dest1 ){

// 2LV.V
i f ( ( s r c1 / LINEN) != ( dest1 / LINEN)){

i f ( ( ( LINEN +(dest1 / LINEN)−( s r c1 / LINEN) ) % LINEN) <= LINEN / 2)
i f ( s r c0 == 3) return 6 ;
else return BMroute ( src0 , 3 ) ;

else
i f ( s r c0 == 3) return 7 ;
else return BMroute ( src0 , 3 ) ;
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}

// 2LV.H
i f ( ( s r c1 % LINEN) != ( dest1 % LINEN)){

i f ( ( (LINEN +(dest1 % LINEN)−( s r c1 % LINEN) ) % LINEN) <= LINEN / 2)
i f ( s r c0 == 0) return 6 ;
else return BMroute ( src0 , 0 ) ;

else
i f ( s r c0 == 0) return 7 ;
else return BMroute ( src0 , 0 ) ;
}

}
// i f l e v e l −1 network rou t ing i s r e qu i r ed then we must make the l e v e l −1 rou t ing .
// The below case we make sure the l e v e l −1 rou t ing i s r e qu i r ed . . .
else return BMroute ( src0 , dest0 ) ;

}

// BMroute re tu rns the outgo ing por t number at the on−ch ip l e v e l
int BMroute ( int bmsrc , int bmdest ) {

s r c = bmsrc % BMNODEN;
dest = bmdest % BMNODEN;

// Src and de s t are same . . . .
i f ( s r c == dest )

return LINKN; // LINKN = NODE DEGREE of HFBN(8)
else i f ( ( ( s r c / LINEN) == 2 && ( dest / LINEN) == 0) | |
( ( s r c / LINEN) == 3 && ( dest / LINEN) == 1))

return 4 ;
else i f ( ( s r c / LINEN) == 3 && ( dest / LINEN) == 0)

return 0 ;
else i f ( ( s r c / LINEN) == 0 && ( dest / LINEN) == 3)

return 1 ;
else i f ( ( ( s r c / LINEN) == 0 && ( dest / LINEN) == 2)
| | ( ( s r c / LINEN) == 1 && ( dest / LINEN) == 3))

return 4 ;
else i f ( s r c / LINEN > dest / LINEN)

return 1 ;
else i f ( s r c / LINEN < dest / LINEN)

return 0 ;

else i f ( ( ( s r c % LINEN) == 2 && ( dest % LINEN) == 0)
| | ( ( s r c % LINEN) == 3 && ( dest % LINEN) == 1))

return 5 ;
else i f ( ( s r c % LINEN) == 3 && ( dest % LINEN) == 0)

return 3 ;
else i f ( ( s r c % LINEN) == 0 && ( dest % LINEN) == 3)

return 2 ;
else i f ( ( ( s r c % LINEN) == 0 && ( dest % LINEN) == 2)
| | ( ( s r c % LINEN) == 1 && ( dest % LINEN) == 3))
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return 5 ;
else i f ( s r c % LINEN > dest % LINEN)

return 2 ;
else i f ( s r c % LINEN < dest % LINEN)

return 3 ;
else { p r i n t f ( ”Error at BM rout ing . . . . \ n” ) ; }

}

Selection of the Virtual Channel

Selecting the virtual channel for the deadlock-free routing is the most important part
for the hierarchical network because hierarchical network maintains various network con-
figuration at different level of hierarchy. Priority outbuffer() is considered for switching
between the virtual channels for the deadlock-freeness. For example- the case when a
packet is generated in the source node destined for other destination node, case 1 (1st flit
is generated) is considered for the Source BM (case 0 is for the no flit is available at the
source node). Then, the case 2 is considered for outer BM routing. If the wrap-around
route is taken then the case 12 is considered. Case 22 is after the current level horizontal
or vertical routing is completed. Finally, case 3 is for the Destination BM routing. If the
1st flit is available at the current node and then, inputbuffer() is responsible for updat-
ing the packet ID number depending on the current source and routing condition. This
function updates the packet ID through case 1 clause (this case is considered when the
1st flit is arrived at the current source node).

// k i s the s e l e c t e d v i r t u a l channel number , i i s f o r the curren t node number
// j i s the l i n k number , id temp i s the de f ined as the packe t ID .
int p r i o r i t y o u t b u f f e r ( int k , int i , int j , int id tmp ) {

int m, id ;

m = (k / 2) ∗ 2 ;
id = id tmp / 10000000;

i f ( j == LINKN)
return k ;

i f (FIX | | ( f r e e channe l [ i ] [ j ] [VRCH − 1 ] == 0) )
k = 0 ;

i f ( k == 0) {
switch ( id ) {
case 0 :

return 0 + m; // re turns even−numbered v i r t u a l channel
break ;

case 1 :
return 0 + m;
break ;

case 2 :
i f ( j >= 6) return 0 + m;
else return 0 + m;
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break ;
case 12 :

i f ( j >= 6) return 1 + m; // re turns odd−numbered v i r t u a l channel
else return 0 + m;
break ;

case 22 :
return 0 + m;
break ;

case 3 :
return 1 + m; // re turns odd−numbered v i r t u a l channel

}
}
else {

i f ( id == 0)
return k ;

else {
m = k ;
while ( f r e e channe l [ i ] [ j ] [m] == 0)

m = (m + 1) % VRCH;
return m;

}
}

}
// time i s to t rack down the s imu la t i on c y c l e time
void i npu tbu f f e r ( int time ) {

// ∗∗ Some Omitted Code which are not r e qu i r ed f o r V i r tua l Channel S e l e c t i o n . . .
case 1 :

// i f nex t rou t e re turn 6/7 then i t means i t s a o f f−ch ip rou t ing . . .
// add +1 to move to a new BM and t h i s i s the f i r s t UPPER LEVEL BM MOVE
// As the i n i t i a l i d f o r BM l e v e l i s 10000000 so we add 10000000
// make 20000000 as the second BM ID . . .
i f ( ( nextroute ( i , l i n e s [ i ] . i npu tbu f de s t [ j ] [ k ] ) >= 6)
&& ( l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] / 10000000 == 1)) {

l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] += 10000000; //ID +1
}

// case 2 , case when we are making the move from out o f second BM (same l e v e l V/H move)
// So we w i l l add +10 to send to a new BM id ( same l e v e l V/H move)
// then in packe s t s id become +12 t h i s w i l l be the to rus route
// +22 f o r end o f Ve r t i c a l or Hor i zon ta l rou t ing .

i f ( ( ( nextroute ( i , l i n e s [ i ] . i npu tbu f de s t [ j ] [ k ] ) == 6)
&& ( Nodel ink [ i ] [ nextroute ( i , l i n e s [ i ] . i npu tbu f de s t [ j ] [ k ] ) ] < i ) )
| | ( ( nextroute ( i , l i n e s [ i ] . i npu tbu f de s t [ j ] [ k ] ) == 7)
&& ( Nodel ink [ i ] [ nextroute ( i , l i n e s [ i ] . i npu tbu f de s t [ j ] [ k ] ) ] > i ) ) ) {

switch ( l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] / 10000000) {
case 2 :

l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] += 100000000; //+10
break ;
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case 12 :
p r i n t f ( ” e r r o r ! ! ! ! source=%d de s t i n a t i on=%d %d %d %d\n” ,
i , l i n e s [ i ] . i npu tbu f de s t [ j ] [ k ] ,
nextroute ( i , l i n e s [ i ] . i npu tbu f de s t [ j ] [ k ] ) ,
l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] ,
l i n e s [ i ] . i npu tbu f de s t n ex t [ j ] [ k ] ) ;
break ;

case 22 :
l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] −= 100000000; //−10

}
}

// Change the ID number i f current BM i s not the d e s t i n a t i o n BM
i f ( ( nextroute ( i , l i n e s [ i ] . i npu tbu f de s t [ j ] [ k ] ) < 6) &&
( ( i / 16) != ( l i n e s [ i ] . i npu tbu f de s t [ j ] [ k ] / 16 ) ) ) {

switch ( i % 16) {
case 0 :
case 3 :
case 12 :
case 15 :
case 8 :
case 11 :
case 4 :
case 7 :

i f ( l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] / 10000000 == 2)
l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] += 200000000; // +20

i f ( l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] / 10000000 == 12)
l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] += 100000000; // +10

break ;
case 2 :

i f ( ( ( i %16384)/4096) == ( ( l i n e s [ i ] . i npu tbu f de s t [ j ] [ k ]%16384)/4096)
&& ( ( i % 16 == 2) ) ) {
i f ( l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] / 10000000 == 2)

l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] += 200000000; // +20
i f ( l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] / 10000000 == 12)

l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] += 100000000; // +10
}

case 13 :
i f ( ( ( i %1024)/256) == ( ( l i n e s [ i ] . i npu tbu f de s t [ j ] [ k ]%1024)/256)

&& ( ( i % 16 == 2) | | ( i % 16 == 13) ) ) {
i f ( l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] / 10000000 == 2)

l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] += 200000000; // +20
i f ( l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] / 10000000 == 12)

l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] += 100000000; // +10
}

break ;
}

}

i f ( ( nextroute ( i , l i n e s [ i ] . i npu tbu f de s t [ j ] [ k ] ) >= 6)
&& ( l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] / 10000000 == 22))
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l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] −= 200000000;

i f ( ( nextroute ( i , l i n e s [ i ] . i npu tbu f de s t [ j ] [ k ] ) < 6)
&& ( ( i / 16) == ( l i n e s [ i ] . i npu tbu f de s t [ j ] [ k ] / 16 ) ) ) {

i f ( l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] / 10000000 == 12)
l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] −= 100000000;

i f ( l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] / 10000000 == 2)
l i n e s [ i ] . i npu tbu f i d nex t [ j ] [ k ] += 10000000;

}
break ;

// ∗∗ Some Omitted Code which are not r e qu i r ed f o r V i r tua l Channel S e l e c t i o n . . .
}

Electrical Power Analysis

We have used the Orion 2.0 power simulator [33] along with the garnet 1.0 [34] for running
the data driven power analysis. Electrical module is considered up to inter-chip level.
Hence, up to 256 cores power usage has be obtained from single electrical power analysis.
To obtain the total electrical power usage requires to multiply the number inter-chip
module with the obtained single electrical power usage from the Orion power analysis.
Here, we have showed the simulation parameters for power analysis and the sample code
for HFBN(2,2,1) a single inter-chip module. The routing for this inter-chip analysis is
considered with the default ”Table-based” routing of the garnet 1.0 simulator.

// Running s imu la t i on parameters f o r garnet 1 .0
. / bu i ld /ALPHA Network test/gem5 . debug c on f i g s /example/ ruby network te s t . py
−−num−cpus=256 −−num−d i r s =256 −−topo logy=HFBN −−mesh−rows=4 −−sim−c y c l e s =5000
−− i n j e c t i o n r a t e =0.00179 −−s yn th e t i c=0 −−garnet−network=f i x ed −−cpu−c l o ck=1GHz
−−sys−c l o ck=1GHz

class HFBN( SimpleTopology ) :
d e s c r i p t i o n=’HFBN’

de f i n i t ( s e l f , c o n t r o l l e r s ) :
s e l f . nodes = c o n t r o l l e r s

de f makeTopology ( s e l f , opt ions , network , IntLink , ExtLink , Router ) :
nodes = s e l f . nodes

num routers = opt ions . num cpus
num rows = opt ions . mesh rows

# There must be an evenly d i v i s i b l e number o f c n t r l s to r ou t e r s
# Also , obv ious ly the number or rows must be <= the number o f r ou t e r s
c n t r l s p e r r o u t e r , remainder = divmod ( l en ( nodes ) , num routers )
a s s e r t ( num rows <= num routers )
num columns = int ( num routers / num rows )
a s s e r t ( num columns ∗ num rows == num routers )
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# Create the r ou t e r s in the torus
r ou t e r s = [ Router ( r o u t e r i d=i ) for i in range ( num routers ) ]
network . r ou t e r s = rou t e r s

# l i n k counter to s e t unique l i n k i d s
l i nk coun t = 0

# Add a l l but the remainder nodes to the l i s t o f nodes to be uni formly
# d i s t r i b u t e d ac ro s s the network .
network nodes = [ ]
remainder nodes = [ ]
for node index in xrange ( l en ( nodes ) ) :

i f node index < ( l en ( nodes ) − remainder ) :
network nodes . append ( nodes [ node index ] )

else :
remainder nodes . append ( nodes [ node index ] )

# Connect each node to the appropr i a t e route r
e x t l i n k s = [ ]
for ( i , n ) in enumerate ( network nodes ) :

c n t r l l e v e l , r o u t e r i d = divmod ( i , num routers )
a s s e r t ( c n t r l l e v e l < c n t r l s p e r r o u t e r )
e x t l i n k s . append ( ExtLink ( l i n k i d=l ink count , ext node=n ,

in t node=rou t e r s [ r o u t e r i d ] ) )
l i nk coun t += 1

# Connect the remainding nodes to rout e r 0 . These should only be
# DMA nodes .
for ( i , node ) in enumerate ( remainder nodes ) :

a s s e r t ( node . type == ’DMA Controller ’ )
a s s e r t ( i < remainder )
e x t l i n k s . append ( ExtLink ( l i n k i d=l ink count , ext node=node ,

in t node=rou t e r s [ 0 ] ) )
l i nk coun t += 1

network . e x t l i n k s = e x t l i n k s

# Create the to rus l i n k s . F i r s t row ( east−west ) l i n k s then column
# ( north−south ) l i n k s
# column l i n k s are g iven h igher weights to implement XY rout ing
i n t l i n k s = [ ]

BM Col = num rows
BMNUM = num columns/num rows
TOTAL Node = num columns ∗ num rows

##############################################################
######## HFBN(2 ,1 ,X) int ra−chip connect ion
##############################################################
# rout ing for X d i r e c t i o n
for Current BM in xrange (BMNUM) :
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for row in xrange ( num rows ) :
for c o l in xrange (BM Col ) :

wes t id = co l + ( row ∗ BM Col) + (Current BM ∗ BMNUM)
for subco l in range ( co l , BM Col−1):

i f ( subco l + 1 < BM Col ) :
e a s t i d = ( subco l + 1) + ( row ∗ BM Col) + (Current BM ∗ BMNUM)

else :
e a s t i d = ( row ∗ BM Col) + (Current BM ∗ BMNUM)

i n t l i n k s . append ( IntLink ( l i n k i d=l ink count ,
node a=rou t e r s [ e a s t i d ] ,
node b=rou t e r s [ we s t id ] ,
weight=1))

l i nk coun t += 1

# rout ing for Y d i r e c t i o n
for Current BM in xrange (BMNUM) :

for c o l in xrange (BM Col ) :
for row in xrange ( num rows ) :

no r th id = co l + ( row ∗ BM Col) + (Current BM ∗ BMNUM)
for subrow in range ( row , num rows−1):

i f ( subrow + 1 < num rows ) :
s ou th id = co l + ( ( subrow + 1) ∗ BM Col) + (Current BM ∗ BMNUM)

else :
s ou th id = co l + (Current BM ∗ BMNUM)

i n t l i n k s . append ( IntLink ( l i n k i d=l ink count ,
node a=rou t e r s [ no r th id ] ,
node b=rou t e r s [ s ou th id ] ,
weight=2))

l i nk coun t += 1

##############################################################
######## HFBN(2 , 2 , 1 ) Level2 ( o f f−chip ) connect ion
##############################################################
# rout ing for Level−2 Ve r t i c a l d i r e c t i o n
for c o l in xrange (3 , num columns ,BMNUM) :

for row in xrange ( num rows ) :
no r th id = co l + ( row ∗ num columns )
i f ( row + 1 < num rows ) :

s ou th id = ( co l + ( ( row + 1) ∗ BMNUM ∗ num rows ) ) % TOTAL Node
else :

s ou th id = ( co l ) % TOTAL Node
i n t l i n k s . append ( IntLink ( l i n k i d=l ink count ,

node a=rou t e r s [ no r th id ] ,
node b=rou t e r s [ s ou th id ] ,
weight=2))

l i nk coun t += 1

# rout ing for Level−2 Hor i zonta l d i r e c t i o n
for c o l in xrange (0 , TOTAL Node , num columns ) :

for row in xrange ( num rows ) :
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nor th id = co l + ( row ∗ BMNUM)
i f ( row + 1 < num rows ) :

s ou th id = ( co l + ( ( row + 1) ∗ BMNUM )) % TOTAL Node
else :

s ou th id = ( co l ) % TOTAL Node
i n t l i n k s . append ( IntLink ( l i n k i d=l ink count ,

node a=rou t e r s [ no r th id ] ,
node b=rou t e r s [ s ou th id ] ,
weight=2))

l i nk coun t += 1

network . i n t l i n k s = i n t l i n k s
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