JAIST Repository

https://dspace.jaist.ac.jp/

Title goboooooooooboJd AvAOOOODDOOOOQ
gooooooogo

Author(s) oo, 00

Citation

Issue Date 2002-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl . handle.net/ 101019/ 1573

Rights

Description Supervisor: gg 0O, oooooono, 00

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

A logical analysis for Java Virtual Machine
and its application to implementation

Tomoyuki Higuchi (010093)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 15, 2002

Keywords: Java virtual machine,bytecode verifier,type system,type inference.

1 Background and aims

JAVA has became one of most widely used programming language due to its strong sup-
port for network computing. A JAVA program is compiled to Java bytecode which is
executed by the Java virtual machine. This structure achieves architecture independent
network programming. Moreover, JVM contains a bytecode verifier which ensure secu-
rity of a program by examining the compiled bytecode sequence and detecting various
inconsistencies before its execution.

Despite its importance, however, the specification of the verifier is written in English
admitting certain degree of ambiguity and its mathematical correctness is not proven.

To resolve this problem, some researchers have attempted to formalize the JVM verifier.
The most notable one is the work of Stata and Abadi, where they defined a type system
for Java bytecode to analyze the bytecode verifier. Since it, various type systems based
on their work have been proposed.

Although thease type systems are useful for verifying correctness of program, their
various formal properties are not yet well understood. In particular, their relationship to
the well established type theory of the lambda calculus. As a consequence, useful concepts
and techniques developed in the lambda calculus are not directly applicable.

The purpose of this thesis is to analyze Java bytecode and to establish type theoretical
basis for design and implementation of Java bytecode verifiers.

2 The contributions of the thesis

To achieve the purpose, we hava solved the following problems.

1. We define the a type system for Java bytecode based on the proof system called
sequential sequent calculus and prove the type soundness.

2. We show that bytecode verifier can be formalized by type inference algorithm.

Copyright (© 2002 by Tomoyuki Higuchi

3. This type inference algorithm is implemented and compared with Sun’s bytecode
verifier.

In the following, we outline each of them.

2.1 The type sysmte for Java bytecode

Sequential sequent calculus is a proof system which corresponds to machine code. In this
calculus, each instruction I of machine code is represented as an inference rule of the

following form:
AVE S o

A>I1C:T

where C' is a code sequence and A indicates machine memory. This typing rule represents
the property that I changes machine memory A; to A,. A return instruction corresponds
to an initial sequent of the form 7-A > return : 7 in the proof system. A program (code
sequence) corresponds to a proof composed of thease inference rule.

In JVM, Java bytecode operates on local variables and operand stack. To model this
structure, each JVM instruction [is interpreted as a typing rule a form:

Iy, As>B: 71
I',AyzI-B:1

where I, A is a local environment and a stack environment respectively. A JVM program
(method) is not a simple code sequence but a set of labeled code blocks. A label is used
as an argument of jump an instruction. We interpret such a jump instruction as reference
to an existing proof. For instance, goto (/) which jumps to the code block B labeled [is
represented as I, A > goto(l) : 7 (if A B : 7).

One further refinement is required. In JVM, a program contains subroutine — a kind
of internal procedure — other than general code blocks. A subroutine can be considered
as a code sequence which changes the machine state. To subroutine SB that changes the
machine state I's, Ay to I'1, Ay, we given following type:

SB:(Fl,Al DT//FQ,AQDT>

This indicates that SB is the function which extends a proof I'y, Ay > 7 to another proof
Fg, AQ >T.

2.2 Type inference

Java bytecode verification problem is reduced to the typability problem in the JVM type
system. Solving the typability problem requires to construct a type inference algorithm,
since a code block refers to other code blocks through untyped labels. Furthermore, a
subroutine label must be given a polymorphic type because it can be referenced from
various different contexts in a method. To represent this polymorphic nature, we divide
a program into a set M* of subroutines and a set M® of code blocks and intepret the
program as a term similar to an ML’s polymorphic let expression as follows.

let M* in M°

For this refined program, type inference algorithm can be constructed by applying the
idea of ML’s type inference algorithm W.

2.3 Implementation and Evaluation

The type inference algorithm is implemented in Standard ML. This system reads the byte-
code sequence from a given class file and divides it into a set of code blocks. It then infers
a type of method by applying the type inference algorithm. Using this implementation,
we have examined the type system by comparing with Sun’s bytecode verifier. Our initial
results show that they are orthogonal in expressive power.

3 Furture work

To establish the a basis for analysis and implementation of JVM based on result shown
in this thesis, further research is needed. The following three are particularly important.

¢ Extending type sysmte to various features
In the thesis, we defined the type system for a subset of JVM. We should investi-
gate the excluded features such as exception, interface, static method and object
initialization.

e Beyond the JVM
We would like to extend JVM with various advanced feature such as higher-order
methods which take a method as argument or return a method.

e Stronger type inference algorithm
The type inference algorithm developed in this thesis is still incompleteness and
some extension to it is remain. Possible enhancement is to allow block to have a
polymorphic type.

