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Abstract—This paper presents an unsupervised singing voice
separation algorithm which using an extension of robust principal
component analysis (RPCA) with rank-1 constraint (CRPCA)
based on gammatone auditory filterbank on cochleagram. Unlike
the conventional algorithms that focus on spectrogram analysis
or its variants, we develop an extension of RPCA on cochleagram
using an alternative time-frequency representation based on
gammatone auditory filterbank. We also apply time-frequency
masking to improve the results of separated low-rank and
sparse matrices by using CRPCA method. Evaluation results
demonstrate that the proposed algorithm can achieve better
separation performance on MIR-1K dataset.

I. INTRODUCTION

Over the past few years, singing voice separation has
attracted considerable attention and interest in many real-world
applications. The goal of singing voice separation approaches
are to separate singing voice from the mixture music signal,
which is a significant technology for chord recognition [1],
music information retrieval (MIR) [2], leading instrument
detection [3], and karaoke applications [4]. However, the
current separation results of the state of art methods are still
far behind human hearing capability. The existing problems of
singing voice separation are faced with great challenges [5].
Such as the large variety of sound type, the abundant mixing
conditions, and the unclear mechanism to distinguish sources,
especially for the similar sounds.

Many algorithms have been proposed in literature with the
goal of overcoming the difficulty in separation task. Although
the approaches based on deep neural network (DNN) [6]-[9],
have recently proved to be powerful tools for singing voice
separation task, they need a large number of training data to be
available in advanced. Unsupervised algorithms therefore still
remain the attraction for singing voice separation particularly
where only a limited amount of singing voice data is available
or without using any additional information. The classical
algorithm Non-negative Matrix Factorization (NMF) [10] for
music separation decomposes an input the given spectrogram
into a sum of a spectral basic matrix and its activation
matrix. Rafii et al [11] proposed a repeatable accompaniment
idea about background music and used Repeating Pattern
Extraction Technique (REPET) approach for separating the
repeating music part from the non-repeating singing voice

in a mixture signal. The main method was to identify the
periodically repeating.

Recently, Huang et al. [12] proposed a robust principal
component analysis (RPCA) method for singing voice separa-
tion, which decomposed an input matrix into a sparse matrix
plus a low-rank matrix. Yang [13] proposed new sparse and
low-rank matrices that were based on the incorporation of
harmonicity priors and a back-end drum removal procedure.
He [14] also proposed the multiple low-rank representations
(MLRR) to decompose a magnitude spectrogram into two
low-rank matrices. RPCA as an effective method to separate
singing voice from the mixture signal, which decomposes a
given amplitude spectrogram (matrix) of a mixture signal into
the sum of a low-rank matrix (music accompaniment) and a
sparse matrix (singing voice). Since music instruments can
reproduce the same sounds each time in the same music,
so its magnitude spectrogram can be considered as a low-
rank structure part. Singing voice, on the contrary, varies
significantly and has a sparse distribution in the spectrogram
domain owning to its harmonic structure part, resulting in a
spectrogram with a sparse structure part.

Inspired by a sparse and low-rank model, in our previous
work, we proposed an effective extension of RPCA with
rank-1 constraint (CRPCA) [15]. Although it can get better
separation results than RPCA in singing voice separation task,
there is still exists a lot of room for improvement. Recently a
study was published hinting that cochleagram, as an alternative
time-frequency analysis based on gammatone filterbank, is
more suitable than spectrogram for source separation [16] [17].
This is because, cochleagram is derived from non-uniform
time-frequency transform whereas time-frequency units in
low-frequency regions have higher resolutions than in the
high-frequency regions, which closely resembles the functions
of the human ear. Similarly, singing voice performances are
quite different from music accompaniment on cochleagram.
The spectral energy centralizes in a few time-frequency units
for singing voice and thus can be assumed to be sparse. On
the other hand, music accompaniment on the cochleagram has
similar spectral patterns and structures that can be captured
by a few basis vectors, so it can be hypothesized as a low-
rank subspace. Therefore, it is promising to separate singing



voice via sparse and low-rank decomposition on cochleagram
instead of the spectrogram.

To improve the separation performance, we combine gam-
matone auditory filterbank with cochleagram by using CRPCA
algorithm. In addition, we further apply time-frequency mask-
ing estimation [18] to enforce the constraints between an input
mixture music signal and the output results.

The rest of this paper is organized as follows. In Section
2, we review the conventional RPCA and CRPCA methods
for singing voice separation. In Section 3, we describe the
proposed framework of unsupervised singing voice separation.
In Section 4, we evaluate the proposed method on MIR-1K
dataset. Finally, we draw conclusions and describe future work
in Section 5.

II. BACKGROUND

In this section, we introduce the principles of RPCA and
CRPCA methods. And they are applied to singing voice
separation.

A. Principle of RPCA

RPCA can decompose an input matrix M € R,,x, into
the sum of a low-rank matrix L € R,,,x,, and a sparse matrix
S € R, xn. The convex model can be defined as follows:

minimize |L|. + A|S]1,

: ey
subject to M = L+ S.

where |- |, denotes the nuclear norm (sum of singular values),
| - |1 is the Li-norm (sum of absolute values of matrix
entries), and A is a positive constant parameter between the
low-rank matrix L and the sparsity matrix S. Candés et al.
suggested A\ = 1/+/maxz(m,n) [19] can obtain better results.
Furthermore, this convex program can be solved by accelerated
proximal gradient (APG) or augmented Lagrange multipliers
(ALM) [20] (we used an inexact version of ALM in a baseline
experiment).

B. RPCA for singing voice separation

Huang et al. assumed that RPCA method can be applied to
the task of separating singing voice and music accompaniment
from the mixture music signal [12]. On account of the music
accompaniment part, music instruments can reproduce the
same sounds each time in the same music, so its magnitude
spectrogram can be considered as a low-rank matrix structure.
Singing voice part, in contrast, varies significantly and has a
sparse distribution in the spectrogram domain due to its har-
monic structure part, resulting in a spectrogram with a sparse
matrix structure. Therefore, we can use the RPCA method to
decompose an input matrix into a sparse matrix (singing voice)
and a low-rank matrix (music accompaniment). However, it
makes some strong assumptions. For instance, drums may
lie in the sparse subspace instead of being low-rank, which
decreases the separation performance in the mixture music
signal.

Algorithm 1 CRPCA for singing voice separation [15]

Input: Mixture signal M € R, «p.
1: Initialize: p > 1,9 > 0,k =0,Ly = .Sy = 0.
2: While not convergence,

3:do:

4 | Ly = Py (M — Sy + . ).
50 | Skt = Q,\kal(M — Liy1 + i ' Jk).
6: | Jpy1 = Jr + (M — L1 — Skt1)-
Too | Phe1 = P [l

8 | k=k+1.

9: end while.

Output: L,y xn, Smxn-

C. Principle of CRPCA

CRPCA is a novel extension of RPCA, which exploiting
rank-1 constraint for singing voice separation. We define the
model as follows:

min(m,n)
minimize Z 0;(L) + S|, )
i—2

subject to M = L + S.

where L is the value of low-rank matrix, S is the value of
sparse matrix. M € R,,x, is the value of an input matrix,
which consists of L € R,,,x,, and S € R,,,xn, and A > 0 is a
positive constant parameter between the sparse matrix S and
the low-rank matrix L. And 6;(L) is the i-th singular value
of L. We used A\ = 1/4/max(m,n) as suggested in [19]. We
also used an efficient iALM [20] method to solve this convex
model in this work. The augmented Lagrangian function can
be defined as follows:

min(m,n)
J(M,L,S, 1) = min 5:(L) + A|Sh
2

1=

+<J,M—L—S>+%\M—L—S|%. 3)

where .J is the Lagrange multiplier and p is a positive scaler.
The process of separating singing voice from the mixture
music signal can be seen in Algorithm 1 CRPCA for singing
voice separation. The value of M is a mixture music signal
from the observed audio data. After separated by using CR-
PCA, we can get a low-rank matrix L (music accompaniment)
and a sparse matrix S (singing voice).

From the augmented Lagrangian function, we solve the
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Fig. 1. Block diagram of unsupervised singing voice separation system.

following two sub-problems about L and S:

min(m,n)

Lis1 = min ; §i(L) + (Jo, M — L — S

+%|M—L—Sk|%. (4)
Sk+1 = InSin )\|S‘1 + <Jk,M— Ly — S>
+ EEIM — L — [ 5)

As suggested by Oh et al. [21], the update rules of L and
S are solved as the following two equations (6) and (7):

Lit1 = Py 1 (M = Sy + i i) (6)
Spr1 = Qo (M — Ligr + p1i; " i) (N

P u;l(') can be defined as follows:
Py, 1(Y) = Uy(Dy, + Q-1 (Dy,)) W ®)

where Y = Y1+Ys (Y € Ryxn), Dy, = diag(61,0,...,0),
Qulzl(DYZ) = sign(Dy,) - maz(|Dy,| — p;;*,0) is the soft-
thresholding operator [22], Dy, = diag(0,dz, ..., Omin(m,n))s
01 and 6 are the first and second singular values.

III. PROPOSED METHOD

In this section, we explain the proposed framework for
unsupervised singing voice separation.

A. Gammatone filterbank and cochleagram

The Gammatone filterbank [23] is a cochlear filtering
representation which decomposes an input signal into the
time-frequency domain using a lot of gammatone filters. The
impulse response of a gammatone filter centered at frequency
w is obtained as follow:

th=le=2™tcos(2mwt), t >0
g(w7 t) =

9
0, others ©)

where h represents the order of filter, v stands for the rect-
angular bandwidth which increases as the center frequency w
increases. The filter output response 7(c, t) can be expressed
as follow:

r(c,t) = 2(t) * g(we, t) (10)

where “*’ indicates the convolution in time domain, ¢ is a
particular filter channel and the center frequency is w.. So
this function can be shifted backwards by using (h-1)/(27v)
to compensate for the filter delay. The output of each filter
channel is cut into time-frequency with half of overlap be-
tween the consecutive frames. And finally, the time-frequency
spectra of all the filter outputs are constructed to form the
cochleagram.

B. CRPCA using time-frequency masking

After separated by using CRPCA, in order to improve
the separation performance, we apply binary time-frequency
masking estimation to further improve the separation results.
We define b,,, as follows:

{1
bm:
0

where S;; and L;; are the values of sparse and low-rank
matrices.

A block diagram of our proposed unsupervised singing
voice separation system can be illustrated in Fig. 1. For each
mixture music audio in the test dataset, we calculate the
cochleagram of the mixture music audio under the condition
of gammatone filterbank, after that decompose the matrix into
low-rank matrix L (music accompaniment) and sparse matrix
S (singing voice) by using CRPCA method, and then, we
deal with the separated sparse and low-rank matrices by using
time-frequency masking. Finally, the separated matrices can
be synthesized as described in [24].

Sij > Lij

11
Sij < Lij (i

IV. EXPERIMENTAL EVALUATION

In this section, we show how evaluated the proposed unsu-
pervised singing voice separation method by using MIR-1K
dataset ' [25], and how we compared it with the conventional
RPCA method.

Ihttps://sites.google.com/site/unvoicedsoundseparation/mir-1k/
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Fig. 2. Comparison of unsupervised singing voice separation results on MIR-1K dataset among of the conventional RPCA, CRPCA and CRPCA on cochleagram,

respectively.

A. Dataset and condition

In our experiments, we evaluated the proposed method
on MIR-1K dataset, which contains 1000 song clips with
durations ranging from 4 to 13 seconds. The data were
extracted from 110 Chinese karaoke pop songs. The dataset
includes annotations of the pitch contours, lyrics, indices and
types for unvoiced frames, and indices of the vocal and non-
vocal frames. We mainly focused on monaural singing voice
separation in our experiments. This is even more difficult than
multichannel source separation since only a single channel is
available. All experiment data were sampled at 16 kHz. We set
parameters for cochleagram analysis: 128 channels, 40~8000
Hz frequency range, and 256 frequency length. To compare the
results with those obtained with CRPCA, we calculated the in-
put feature by using short-time Fourier transform (STFT) and
inverse STFT (ISTFT), which is a part of baseline experiments
that have been performed on spectrogram for conventional
RPCA method. We used a window size of 1024 samples, a
hop size of 256 samples for the STFT and an FFT size of
1024.

To confirm the effectiveness of the proposed method, we
assessed its quality of separation in terms of the source-to-
distortion ratio (SDR) and the source-to-artifact ratio (SAR)
by using the BSS-EVAL 3.0 metrics® [26] is defined as

g(t) = Starget(t) + Sinterf (t) + Sartif (t) (12)

where Siqrget(t) is the allowable deformation of the target
sound, S;nterf(t) is the allowable deformation of the sources
that account for the interferences of the undesired sources, and
Sartis(t) is an artifact term that may correspond to the artifact
of the separation method. The formulas for the SDR and SAR
are defined as

Zt Starget (t)2
SDR = 10log . (13)
10 Zt {einterf (t) + eartif (t)}2
) 2
SAR = 10log;, 21 {Starger(t)  Cinters DY 1))

>t artif (t)?

Zhttp://bass-db.gforge.inria.fr/bss_eval/

The higher values of the SDR and SAR represent that
the method exhibits better separation performance in source
separation task. The SDR represents the quality of the sepa-
rated target sound signals. The SAR represents the absence of

artificial distortion. All the evaluation metrics are expressed in
dB.

B. Results

To examine the proposed method, we evaluated it on
MIR-1K dataset. Fig. 2 shows the comparison results of
conventional RPCA, CRPCA and CRPCA on cochleagram,
respectively. All methods were run by using binary time-
frequency masking estimation. From the experiment results,
we can see that the proposed method can improve the sep-
aration performance between singing voice and music. In
terms of singing voice, the separation performance is worse
than the part of music in SDR. On the contrary, the SAR
of the proposed method has the highest value among them.
In addition, the SAR obtains a significant improvement on
cochleagram between the parts of singing voice and music.

V. CONCLUSION

In this paper, a novel unsupervised method to address the
singing voice separation task has been proposed. From the
experiment results on MIR-1K dataset, we can see clearly
that the proposed method outperforms the conventional RPCA
method. In future work, since melody extraction is significant
for separating singing voice from the mixture music signal,
we therefore will combine with it to improve the separation
results.
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