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Lossy-Forward Relaying for Lossy Communications: Rate-Distortion and
Outage Probability Analyses

Wensheng Lin, Student Member, IEEE, Shen Qian, and Tad Matsumoto, Fellow, IEEE

Abstract—This paper presents an in-depth performance anal-
ysis of lossy communications in a single-relay system, where the
recovered information is not necessarily lossless in both the relay
and the destination. In this system, the relay continues transmit-
ting the sequence with source-relay link errors to the destination
even if errors are detected after decoding, i.e., so-called Lossy-
Forward (LF) strategy. The problem can be decomposed into two
parts as follows: a point-to-point coding problem in the source-
relay (S-R) link, and a lossy source coding problem with a LF
relay in the source-destination (S-D) and relay-destination (R-
D) links. To begin with, we derive the admissible rate region
of the lossy source coding problem with a LF relay for a
specified distortion requirement. Then, we focus on the analysis
of outage probability over block Rayleigh fading channels.
Finally, a practical encoding/decoding scheme is proposed for
the evaluation of system performance by computer simulations.
Due to the suboptimal channel coding and incomplete utilization
of joint typicality, the theoretical performance cannot be achieved
in the simulation; however, the tendency of curves in simulations
matches that in theoretical calculation.

Index Terms—Relaying system, lossy-forward, distributed lossy
source coding, rate-distortion, outage probability.

I. INTRODUCTION
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Fig. 1. The simplest system model of a lossy relaying system.

In big data era, transmissions with high fidelity are not
always required in wireless cooperative communications net-
works, such as Internet-of-Things (IoT) networks. Here, we are
interested in a basic model of wireless cooperative communi-
cations networks as shown in Fig. 1. A source broadcasts the
sequence Xn to a destination and a relay, and the destination
aims to recover the source sequence with the assistance of the
relay. Due to the condition of wireless channels in practical
systems, the source-relay (S-R), source-destination (S-D) and
relay-destination (R-D) links have to satisfy the rates R0, R1

and R2, respectively. If the capacity constraint on the S-R link
is relatively strict, the relay cannot forward the message cor-
rectly. Once errors are detected in the decoded data sequence,
the traditional Decode-and-Forward (DF) scheme discards the
data sequence without forwarding to the destination. However,
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from the viewpoint of multiterminal source coding, the relay
sequence containing intra-link errors has correlation with the
source sequence as well. Therefore, the relay still continues
to send the error-corrupted sequence Y n to the destination,
which is referred to as Lossy-Forward (LF) [1], [2]. With this
method, the destination can refine the final estimate of the
source sequence with the side information provided from the
relay despite the link rate of relay channel. Compared to DF,
LF also reduces the complexity of the relay, because error
detection is not needed. More significantly, unlike Amplify-
and-Forward (AF), LF does not require amplification of the
received analog signal at the relay, which eliminates the well-
recognized disadvantage with AF, i.e., noise enhancement and
nonlinear distortion. In contrast to the hard decision in the LF
relay, soft information relaying (SIR) schemes [3]–[5] encode
and forward the soft information to the destination. SIR can
both keep the soft information and have distributed coding
gains; however, it is difficult to re-arrange the signal point at
the relay, such as using higher order modulation, for improving
the bandwidth efficiency.

From the aspect of whole system, the destination is not
able to losslessly reconstruct the source sequence, if the rate
triplet (R0, R1, R2), supported by the channel conditions in
the S-R, S-D, and R-D links, respectively, does not satisfy
the admissible rate region [6]. Actually, lossy reconstruc-
tions X̂n with its distortion level not larger than DX are
also acceptable as exemplified in IoT or sensor application
networks. For conciseness, the lossy communications with
LF are called lossy LF relaying. With a specified acceptable
distortion requirement, we can reduce the power consumption
or transmission bandwidth by lossy compression than lossless
communication. Thus, the trade-off between the link rates and
the expected distortion degree is a very interesting topic in
the big data era, especially for numerous electronic devices,
of which power is supplied by small battery.

To date, a number of scholars have made efforts to investi-
gate LF. Base on the Slepian-Wolf Theorem [7], Hu and Li [8]
for the first time proposed a novel relaying strategy, i.e., LF, to
help the destination recover data losslessly. In [9], Cheng et al.
derived the outage probability for a LF relaying system with
three nodes communicating through block Rayleigh fading
channels. Qian et al. [10] made a comparison of outage
probability under spatially and temporally correlated fading
among LF, DF and Adaptive Decode-and-Forward (ADF).
Then, in [11], Qian et al. analyzed the theoretical performance
of a LF system with three nodes suffering from independent
block Nakagami-m fading. As for the practical techniques
related to LF, researchers in [12]–[14] provided diverse coding
schemes based on the turbo code [15]. Brulatout et al. [16]
presented a medium access control (MAC) layer protocol
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which cooperates with LF techniques in physical layer. In
[17], Wolf et al. designed an optimal power allocation scheme
among a source and two LF relays by taking into account
outage probability.
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Fig. 2. The multiterminal source coding problem composed of the S-D and
R-D links.

Nevertheless, the performance analysis has not been finished
yet for the communication systems with lossy reconstructions
allowed at the destination, i.e., lossy LF relaying. Notice
that it is difficult to directly derive the explicit expression of
the distortions resulting from the rate constraints on wireless
channels. Shannon provided a way to equivalently determine
the distortion corresponding to the channel capacity, i.e.,
compressing the data sequence by lossy source coding to
satisfy the channel capacity which is achievable by lossless
channel coding1. Since the source coding and channel coding
are separately performed, this idea is referred to as the
Shannon’s lossy source-channel separation theorem [18], [19].
Likewise, to analyze the performance of lossy LF relaying, we
start from the fundamentals of multiterminal source coding,
which usually requires separate compression at encoders and
joint decompression at a common decoder. Since the relay
receives data only from the source, the analysis of the S-R
link can be easily handled by the Shannon’s lossy source-
channel separation theorem for point-to-point communication.
Regarding the remaining S-D and R-D links, we can first
consider a multiterminal source coding problem illustrated
in Fig. 2, where the encoder of X and the encoder of Y
have to compress the sequences Xn and Y n into codewords
M1 and M2 at the rates R1 and R2, respectively. Then, we
apply the Shannon’s lossy source-channel separation theorem
and equivalently calculate the distortion due to the channel
conditions.

Determining the optimal trade-off between the link rate/rates
and the expected distortion belongs to the category of rate-
distortion analysis, which identifies the minimum rate require-
ments to achieve a specified value of distortion. Therefore,
we can determine the final distortion inspired by the pre-
vious works regarding the rate-distortion function/region of
multiterminal source coding [20]–[23]. Ahlswede and Korner
derived the rate region for a system that requires the source
information to be losslessly recovered with the assistance of a
helper in [20]. In the case lossy reconstruction is acceptable, in

1By utilizing the duality between source coding and channel coding, the
information loss due to channel conditions can be equivalently analyzed
by lossy source coding, followed by lossless transmission through wireless
channels. Eventually, compression is not performed by the encoder, but
fading variation may reduce the rate supported by the channel. However, in
theoretical distortion analysis, we can formulate the problem in this way for
simplicity and without loss of generality.

[21], Wyner and Ziv characterized the rate-distortion function
for the lossy source coding problem with uncompressed side
information available in decoder. Berger [22] and Tung [23]
determined the outer and inner bounds on the achievable rate-
distortion region of multiterminal source coding problem with
two sources. In [24], Jana and Blahut further extended the
Berger-Tung bounds and Wyner-Ziv theorem to a general
framework with many sources and one link of uncompressed
side information. However, the admissible rate region of the
lossy source coding problem with a LF relay is not given by a
strict proof yet. We start from the derivation of the admissible
rate region for the problem shown in Fig. 2, and then analyze
the outage probability over Rayleigh fading channels for the
relaying system shown in Fig. 1.

The contributions of this paper are summarized as follows:
• This paper derives the admissible rate region for lossy

source coding problem with a LF relay through the proofs
of achievability and the converse. In the case of binary
sources, we further calculate and present the admissible
rate region with a specified distortion requirement.

• Subsequently, based on the derived admissible rate re-
gion, we investigate the outage probability when block
Rayleigh fading channels is implemented in the relaying
system. The numerical results demonstrate the relation-
ship of outage probability to average signal-to-noise ratio
(SNR), expected distortion and relay location.

• Moreover, we design a practical encoding/decoding
scheme to verify the tendency of theoretical results
through computer simulations. Even though there is an
obvious gap between the simulation and theoretical re-
sults, they show the similar shape of curves. Especially
for strict distortion requirements, the performance of the
proposed coding scheme is very close to the theoretical
limit. We also discuss the reasons that make the simula-
tion results away from the theoretical results.

The outline of the rest of the paper is as follows. Section II
describes the problem to be solved under mathematical frame-
work. In Section III, we derive the sufficient and necessary
conditions of the admissible rate region for lossy transmissions
with the aid of a LF relay. Then, we exploit the derived
admissible rate region to analyze the outage probability for
block Rayleigh fading channels in Section IV. In addition,
Section V provides a design of practical encoding/coding
scheme and make a comparison of outage probability between
the simulated frame error rate (FER) and theoretical outage
probability. Finally, this paper is concluded in Section VI.

II. PROBLEM STATEMENT

The theoretical performance analysis for the system illus-
trated in Fig. 1 can follow a lossy source coding problem
and then Shannon’s lossy source-channel separation theorem.
In the following, we introduce the source coding problem to
be solved and the channel model to be used in the outage
probability analysis.

A. Source Coding Problem
Notations. The random variables and their realizations are

denoted by uppercase and lowercase letters, respectively. The
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finite alphabets of a variable are denoted by calligraphic
letters X ,Y, · · · . The entropy of a random variable X with
probability mass function (PMF) p(x) is defined as

H(X) = −
∑
x∈X

p(x) log p(x). (1)

The mutual information between two random variables X and
Y is defined as

I(X;Y ) =
∑

(x,y)∈X×Y

p(x, y) log
p(x, y)

p(x)p(y)
. (2)

As mentioned above, the transmission in the S-R link is a
point-to-point source coding problem, while the transmissions
in the S-D and R-D links belong to a multiterminal source
coding problem. Since the point-to-point source coding prob-
lem is already solved by Shannon in [19], we only focus on
the lossy source coding problem with a LF relay depicted in
Fig. 2.

By taking values from a finite alphabet X for each time
index t, a common discrete memoryless source X generates
independent and identically distributed (i.i.d.) sequence xn =
{x(t)}nt=1. The encoder of X encodes the sequence xn by
mapping it into an index as:

ϕ1 : Xn 7→ M1 = {1, 2, · · · , 2nR1}. (3)

Since the relay sequence yn = {y(t)}nt=1 is an error-corrupted
version of xn, yn is also an i.i.d. sequence with each bits
belonging to a finite alphabet Y . Similar to the encoder of X ,
the encoder of Y encodes the sequence yn by assigning an
index according to the mapping rule:

ϕ2 : Yn 7→ M2 = {1, 2, · · · , 2nR2}. (4)

The joint decoder in the destination node starts decoding
after receiving the encoder outputs ϕ1(xn) and ϕ2(yn). Unlike
the distributed compression in encoders, the joint decoder
constructs the estimate x̂n from the index ϕ1(xn) with the
assistance of the compressed side information ϕ2(yn). The
recovering progress is implemented by the following mapping
as:

ψ :M1 ×M2 7→ Xn. (5)

Due to the possible deviation of x from x̂, a distortion
measure dX : X × X 7→ [0, dX,max] is defined to describe
the distortion level between x and its estimate x̂. In particular,
the Hamming distortion measure is defined for binary sources
as

dX(x(t), x̂(t)) =

{
1, if x(t) 6= x̂(t),

0, if x(t) = x̂(t).
(6)

For the whole sequence, the average distortion between xn

and x̂n is denoted by

dX(xn, x̂n) =
1

n

n∑
t=1

dX(x(t), x̂(t)). (7)

With an acceptable distortion value DX , the rate region
R(DX), consisting of all admissible rate pairs (R1, R2), is
defined as

R(DX) = {(R1, R2) : (R1, R2) is admissible such that
lim
n→∞

E[dX(xn, x̂n)] ≤ DX + ε,

for any ε > 0}. (8)

For the point-to-point communication in the S-R link, the
distortion between X and Y depends on R0. For the coop-
erative communications in the S-D and R-D links, the final
distortion depends on R1, R2 and the correlations between X
and Y . Therefore, the final distortion is eventually determined
by R0, R1 and R2. After determining the admissible rate
region R(DX) and the correlations between X and Y , we
can obtain the relationship between the final distortion and
channel capacities of all three links by utilizing the Shannon’s
lossy source-channel separation theorem.

Given a set of channel capacities for three links, we can cal-
culate the expected minimum distortion based on the derived
admissible rate region. If the expected distortion is larger than
a specified distortion requirement, the communications are not
reliable and outage event occurs. The channel capacities are
random variables in fading channels, and hence the outage
event randomly occurs with a probability, which is referred to
as the outage probability. With a specified channel model, we
can obtain the distributions of channel capacities and further
calculate the outage probability, i.e., the probability that the
instantaneous channel capacities cannot satisfy the distortion
requirement.

B. Channel Model
To make equations more concise, we denote variables for

the S-R, S-D and R-D links with subscripts 0, 1 and 2,
respectively. The S-R, S-D and R-D links are assumed to suffer
from independent block Rayleigh fading, with the complex
channel gains as h0, h1 and h2, respectively. Therefore, hi
follows the two dimensional Gaussian distribution.

For the t-th symbol xS(t) encoded and modulated in the
source node, the received signals via the S-R and S-D links
are expressed as

xi(t) =
√
GihixS(t) + zi(t), for i ∈ {0, 1}, (9)

where Gi represents the geometric gains, and zi denotes the
zero-mean additive white Gaussian noise (AWGN) in the
corresponding link. Similarly, with the symbol yR(t) encoded
and modulated in the relay node, the destination node receives
the signal

y2(t) =
√
G2h2yR(t) + z2(t). (10)

Let EX = E[|xS(t)|2] and EY = E[|yR(t)|2] be the
transmitting symbol energy, and the variances of zi be all
equal to N0/2 per dimension. Then, the average SNRs are
calculated by

γi = Gi · E[|hi|2] · EX
N0

, for i ∈ {0, 1}, (11)

γ2 = G2 · E[|h2|2] · EY
N0

. (12)
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And the instantaneous SNRs can be expressed as

γi = |hi|2 · γi, for i ∈ {0, 1, 2}. (13)

Then, we can obtain the probability density function (PDF)
of instantaneous SNR γi as

f(γi) =
1

γi
exp(−γi

γi
), for i ∈ {0, 1, 2}. (14)

For the purpose of simplicity, we assume that the channel
state information (CSI) is only available at the receiver sides,
and the effect of shadowing is not taken into account.

III. ADMISSIBLE RATE REGION

In this section, we first present the main result of the
admissible rate region with General Sources for lossy-LF
relaying in Theorem 1. Then, we calculate the admissible rate
region by rate-distortion coding with binary sources based on
Theorem 1 for the whole system.

A. Admissible Rate Region with General Sources

Theorem 1: Let (X,Y ) be a 2-component discrete mem-
oryless source and dX(x, x̂) be a distortion measure. The
admissible rate region with acceptable distortion DX for lossy
source coding of X with LF relaying is the set of rate pairs
(R1, R2) such that

R1 ≥ I(X;U |V ), (15)
R2 ≥ I(Y ;V ), (16)

for some conditional PMF p(u|x)p(v|y) and function x̂(u, v)
such that E[dX(X, X̂)] ≤ DX , with U → X → Y → V
forming a Markov chain.
U and V are auxiliary variables which represent the com-

pressed information of X and Y , respectively. X̂ is the lossy
recovery of X , which is reconstructed from the compressed
information U of the source X and the compressed side infor-
mation V of the relay information Y . For (16) in the R-D link,
the minimum rate R2 cannot be smaller than the information
about Y obtained from the compressed information V , i.e.,
the mutual information I(Y ;V ). To better understand (15) in
the S-D link, we first consider the case without the assistance
of the compressed side information V . Similar to (16), R1

should be larger than or equal to I(X;U) without the aid of
V . Then, by utilizing the compressed side information V in
joint decoding, V becomes an already known condition, and
R1 can be further reduced to I(X;U |V ).

The proofs of achievability and the converse for Theorem 1
are presented in Appendix A and Appendix B, respectively.

B. Admissible Rate Region with Binary Sources

In order to draw a precise shape of admissible rate region,
we need a specified distribution of source. Since digital signals
are quite often assumed in LF, we start to use binary source
as an instance in the following. Consider a binary source
X ∼ Bern(0.5), it is easy to find that Y , U and V also
follow the Bern(0.5) distribution separately. In order to derive
the relationship between R0 and the distortion occurring in

the S-R link, we can equivalently calculate the correlations
between X and Y based on the Shannon’s lossy source-
channel separation theorem. To satisfy the channel capacity
by lossy source coding, we have

R0 ≥ I(X;Y )

= H(X)−H(X|Y )

= 1−Hb(p), (17)

where Hb(·) denotes the binary entropy function, and p rep-
resents the crossover probability between X and Y . Likewise,
for the R-D link with the crossover probability p′ between Y
and V , we have

R2 ≥ I(Y ;V ) (18)
= 1−Hb(p

′). (19)

From (15), for the S-D link, we have

R1 ≥ I(X;U |V ) (20)
= H(U |V )−H(U |X,V )

= H(U |V )−H(U |X) (21)
= Hb(p

′ ∗ p ∗DX)−Hb(DX), (22)

where the operation * denotes the binary convolution process,
i.e., a ∗ b = a(1− b) + b(1− a); (21) and (22) follows since
V → Y → X → U forms a Markov chain with the crossover
probabilities p′, p and DX , respectively.

Consequently, we can obtain the admissible rate region with
given distortion requirement as

R0 ≥ 1−Hb(p),

R1 ≥ Hb(p
′ ∗ p ∗DX)−Hb(DX),

R2 ≥ 1−Hb(p
′).

(23)

If the acceptable distortion is given, we can illustrate the
admissible rate region by rate-distortion coding as in Fig. 3.
It is remarkable that arbitrary R0 and R2 are admissible if R1

is not less than 1−Hb(DX). Obviously, the compressed side
information provided by the relay becomes redundant when
R1 is large enough for independent decoding. Hence, the ac-
ceptable distortion DX can be easily satisfied by independent
decoding for R1 ≥ 1−Hb(DX) according to the lossy source
coding theorem for point-to-point communication. Fig. 3(a)
and Fig. 3(b) also demonstrate that the admissible rate region
extends when the acceptable distortion becomes relatively
large. Moreover, the part of surface is not flat for R0, R1

and R2 all being less than 1. Because R0 or R2 needs
more increase to compensate the decrease of R1, due to the
distortion propagating from the S-R link to the R-D link.
Another interesting observation is that the admissible rate
region is symmetric with respect to the plane of R0 = R2.
Therefore, the S-R and R-D links have the same importance
for system design, such as in determining power allocation
and/or relay location.

IV. OUTAGE PROBABILITY ANALYSIS

In this section, we provide the derivation of outage proba-
bility for the lossy-LF relaying, based on the admissible rate
region derived in (23).
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(a) DX = 0.05, 1−Hb(DX) ≈ 0.7136.
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(b) DX = 0.15, 1−Hb(DX) ≈ 0.3902.

Fig. 3. The admissible rate region by rate-distortion coding for specified
distortion requirement.

A. Outage Event of Lossy LF Relaying

Here, we focus on the transmissions of the S-D and R-D
links, which directly determine the occurrence of outage event,
i.e., the destination cannot guarantee the reconstruction of X
with the distortion smaller than DX . For the influence of the
S-R link, we treat the crossover probability p between X and
Y as a parameter determined by R0. By this means, we can
obtain admissible rate region for given R0 as illustrated in
Fig. 4, where the rate pair (R1, R2) is achievable if (18) and
(20) are satisfied. To facilitate the outage calculation provided
later in this paper, the inadmissible rate region is divided to
two sub-regions, α and β, as indicated by

α , {0 ≤ R1 ≤ I(X;U |Y ), 0 ≤ R2} ,
β , {I(X;U |Y ) ≤ R1 ≤ I(X;U |V ),

0 ≤ R2 ≤ H(Y )} .
(24)

I(X;U) R1

H(Y)

I(X;U|Y)

Admissible 
Region

α

β

 H(X|Y)

H(X)

R2

Fig. 4. The admissible rate region for X and Y ; the blue solid line indicates
the admissible rate region with acceptable distortion DX ; the red dashed line
indicates the admissible rate region without distortion.

To conveniently calculate I(X;U |Y ), we can utilize the result
in (22) by letting V = Y and p′ = 0. Consequently, we have

α , {0 ≤ R1 ≤ Hb(p ∗DX)−Hb(DX), 0 ≤ R2} ,
β , {Hb(p ∗DX)−Hb(DX)

≤ R1 ≤ Hb(p
′ ∗ p ∗DX)−Hb(DX),

0 ≤ R2 ≤ 1} .

(25)

Intuitively, the rate region defined in (22) indicates that:

1) For H(Y ) ≤ R2, Y can successfully decoded with Y =
V , i.e., p′ = 0. The transmission with distortion DX

can be supported as long as R1 ≥ Hb(0 ∗ p ∗ DX) −
Hb(DX) = Hb(p ∗ DX) − Hb(DX), which reduces to
the Wyner-Ziv theorem.

2) Even with 0 < R2 < H(Y ), Y can be partially
recovered at the destination as V . V containing errors
serves as the compressed side information for recovering
X as long as R1 ≥ Hb(p

′ ∗ p ∗DX)−Hb(DX).
3) In the case R2 = 0 (p′ = 0.5), i.e., the R-D link is

broken down, the conditions in (22) become to R1 ≥
Hb(0.5 ∗ p ∗ DX) − Hb(DX) = 1 − Hb(DX), which
reduces to the classical rate-distortion function.

Based on the discussion above, (22) can be rewritten explicitly
as

R1 ≥


Hb(p ∗DX)−Hb(DX), for H(Y ) ≤ R2,

Hb(p
′ ∗ p ∗DX)−Hb(DX), for 0 < R2 < H(Y ),

1−Hb(DX), for R2 = 0.

(26)

With the help of the compressed side information V , the
outage event occurs when the rate pair (R1, R2) falls inside
the inadmissible regions, i.e., region α and β in Fig. 4. The
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outage probability Pout can be defined by taking average over
all the transmissions, which results in

Pout = Pr {(R1, R2) ∈ α ∪ β}
= Pr {p = 0, (R1, R2) ∈ α ∪ β}

+ Pr {p ∈ (0, 0.5], (R1, R2) ∈ α ∪ β}
= Pr {p = 0, (R1, R2) ∈ α}

+ Pr {p = 0, (R1, R2) ∈ β}
+ Pr {p ∈ (0, 0.5], (R1, R2) ∈ α}
+ Pr {p ∈ (0, 0.5], (R1, R2) ∈ β}

= Pr {0 ≤ R1 ≤ Hb(p ∗DX)−Hb(DX), 0 ≤ R2,

p = 0}
+ Pr {Hb(p ∗DX)−Hb(DX)

≤ R1 ≤ Hb(p
′ ∗ p ∗DX)−Hb(DX),

0 ≤ R2 ≤ 1, p = 0}
+ Pr {0 ≤ R1 ≤ Hb(p ∗DX)−Hb(DX), 0 ≤ R2,

0 < p ≤ 0.5}
+ Pr {Hb(p ∗DX)−Hb(DX)

≤ R1 ≤ Hb(p
′ ∗ p ∗DX)−Hb(DX),

0 ≤ R2 ≤ 1, 0 < p ≤ 0.5}
=P1,α + P1,β + P2,α + P2,β , (27)

where P1,α, P1,β , P2,α and P2,β are defined for conciseness.
The first subscript 1 and 2 represent the events p = 0 and
p ∈ (0, 0.5], while the second subscript α and β represent
that the rate pair (R1, R2) falls inside the region α and β,
respectively.

B. Outage Derivation

For calculating the outage probability, first we establish
the relationship between γi and Ri for i ∈ {0, 1, 2}. Since
orthogonal transmissions are assumed in the system, from
the Shannon’s lossy source-channel separation theorem, the
relationship between the instantaneous channel SNR γi and
its corresponding rate constraint Ri are given by

Ri = Θi(γi) =



C(γ0)

rX
=

En

2rX
log2

(
1 +

2γ0

En

)
, i = 0,

C(γ1)

rX
=

En

2rX
log2

(
1 +

2γ1

En

)
, i = 1,

C(γ2)

rY
=

En

2rY
log2

(
1 +

2γ2

En

)
, i = 2,

(28)
where rX and rY represent the channel coding rates for Xn

and Y n, respectively; C(·) is the Shannon capacity using
Gaussian codebook, and En is the signaling dimensionality.

By combining the results with (17), the crossover probabil-
ity p between X and Y can be expressed with the function of
γ0 as

p = H−1
b [1−Θ0(γ0)] , (29)

with H−1
b (·) denoting the inverse function of Hb(·).

With the assumption that each link suffers from statistically
independent block Rayleigh fading, each term of the outage
probability expression in (27) can be further expressed as

P1,α = Pr {0 ≤ R1 ≤ Hb(0 ∗DX)−Hb(DX), 0 ≤ R2,

p = 0}
= Pr {0 ≤ R1 ≤ 0, 0 ≤ R2, p = 0}
= Pr

{
Θ−1

1 (0) ≤ γ1 ≤ Θ−1
1 (0),Θ−1

2 (0) ≤ γ2,

Θ−1
0 (1) ≤ γ0

}
=

∫ ∞
Θ−1

2 (0)

dγ2

∫ Θ−1
1 (0)

Θ−1
1 (0)

dγ1

·
∫ ∞

Θ−1
0 (1)

f(γ0)f(γ1)f(γ2)dγ0,

=0, (30)

P1,β = Pr {Hb(0 ∗DX)−Hb(DX)

≤ R1 ≤ Hb(p
′ ∗ 0 ∗DX)−Hb(DX),

0 ≤ R2 ≤ 1, p = 0}
= Pr {0 ≤ R1 ≤ Hb(p

′ ∗DX)−Hb(DX),

0 ≤ R2 ≤ 1, p = 0}
= Pr

{
Θ−1

1 (0) ≤ γ1

≤ Θ−1
1 [Hb(ξ(γ2, DX))−Hb(DX)],

Θ−1
2 (0) ≤ γ2 ≤ Θ−1

2 (1),Θ−1
0 (1) ≤ γ0

}
=

∫ Θ−1
2 (1)

Θ−1
2 (0)

dγ2

∫ Θ−1
1 [Hb(ξ(γ2,DX))−Hb(DX)]

Θ−1
1 (0)

dγ1

·
∫ ∞

Θ−1
0 (1)

f(γ0)f(γ1)f(γ2)dγ0

=
1

γ2
exp

(
−Θ−1

0 (1)

γ0

)∫ Θ−1
2 (1)

Θ−1
2 (0)

exp

(
−γ2

γ2

)
·

[
1

− exp

(
−Θ−1

1 {Hb[ξ(γ2, DX)]−Hb(DX)}
γ1

)]
dγ2,

(31)

P2,α = Pr {0 ≤ R1 ≤ Hb(p ∗DX)−Hb(DX), 0 ≤ R2,

0 < p ≤ 0.5}
= Pr

{
Θ−1

1 (0) ≤ γ1

≤ Θ−1
1 {Hb [ξ(γ0, DX)]−Hb(DX)},

Θ−1
2 (0) ≤ γ2,Θ

−1
0 (0) ≤ γ0 < Θ−1

0 (1)
}

=

∫ Θ−1
0 (1)

Θ−1
0 (0)

dγ0

∫ Θ−1
1 {Hb[ξ(γ0,DX)]−Hb(DX)}

Θ−1
1 (0)

dγ1

·
∫ ∞

Θ−1
2 (0)

f(γ2)f(γ1)f(γ0)dγ2

=
1

γ0

exp

(
−Θ−1

2 (0)

γ2

)∫ Θ−1
0 (1)

Θ−1
0 (0)

exp

(
−γ0

γ0

)
·

[
1

− exp

(
−Θ−1

1 {Hb [ξ(γ0, DX)]−Hb(DX)}
γ1

)]
dγ0,

(32)
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Fig. 5. Outage probability with different acceptable distortions.

and

P2,β

= Pr {Hb(p ∗DX)−Hb(DX)

≤ R1 ≤ Hb(p
′ ∗ p ∗DX)−Hb(DX),

0 ≤ R2 ≤ 1, 0 < p ≤ 0.5}
= Pr

{
Θ−1

1 {Hb [ξ(γ0, DX)]−Hb(DX)}
≤ γ1 ≤ Θ−1

1 {Hb [µ(γ2, γ0) ∗DX ]−Hb(DX)},
Θ−1

2 (0) ≤ γ2 ≤ Θ−1
2 (1),

Θ−1
0 (0) ≤ γ0 < Θ−1

0 (1)
}

=

∫ Θ−1
0 (1)

Θ−1
0 (0)

dγ0

∫ Θ−1
2 (1)

Θ−1
2 (0)

dγ2

·
∫ Θ−1

1 {Hb[µ(γ2,γ0)∗DX ]−Hb(DX)}

Θ−1
1 {Hb[ξ(γ0,DX)]−Hb(DX)}

f(γ1)f(γ2)f(γ0)dγ1

=
1

γ0γ2

∫ Θ−1
0 (1)

Θ−1
0 (0)

dγ0

∫ Θ−1
2 (1)

Θ−1
2 (0)

exp

(
−γ0

γ0

− γ2

γ2

)
·
[
exp

(
−Θ−1

1 {Hb [ξ(γ0, DX)]−Hb(DX)}
γ1

)
− exp

(
−Θ−1

1 {Hb [µ(γ2, γ0) ∗DX ]−Hb(DX)}
γ1

)]
dγ2,

(33)

where Θ−1
i (·) denoting the inverse function of Θi(·), ξ(γi, p̃)

= H−1
b [1 − Θi(γi)] ∗ p̃ and µ(γi, γj) = H−1

b [1 − Θi(γi)] ∗
H−1
b [1 − Θj(γj)]. Since there is not an explicit expression

for the inverse of binary entropy function, it is hard to further
calculate the integral and obtain a precise closed form. Instead,
we utilize computer to calculate the numerical results for
analyzing the outage probability.

C. Numerical Results

The performance of outage probabilities for specified ac-
ceptable distortion DX is presented in Fig. 5, where average
SNR is set at the same value for all three links. Clearly, the

lossy LF relaying achieves lower outage probability with larger
acceptable distortion DX . It should be noticed that the outage
probability equals to zero when DX = 0.5. This is because
that DX = 0.5 indicates any distortion can be accepted at the
destination, and therefore, there will be no more outage in this
case.
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Fig. 6. Outage performances of the lossy LF relaying for different relay
locations.

The outage curves of the lossy LF relaying are shown in
Fig. 6 for two different relay location scenarios. With si for
i ∈ {0, 1, 2} denoting the distance of its corresponding link,
we set s0 = s1 = s2 in location scenario A (Loc A), while
s0 = 0.25s1 and s2 = 0.75s1 in location scenario B (Loc B).
In either the Loc A or Loc B, lower outage probability can be
achieved by allowing distortion at the destination. Moreover,
since the distances of the S-R and R-D links in Loc B are
both smaller than that in Loc A, outage events occur with
lower probability in Loc B than in Loc A.
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Fig. 7. The optimal relay positions of the lossy LF relaying, where γ1 = 5
dB.
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Fig. 8. Outage probability versus acceptable distortion where γ1 = 5 (dB).

Fig. 7 shows the impact of the relay location on the outage
probability, with γ1 = 5 dB. The relay is located on the line
between the source and the destination. It is found that the
lowest outage probability can be achieved when the relay is
located at the midpoint regardless the acceptable distortion.
It is also observed that the outage curves are symmetric with
respect to the midpoint of the S-D link. This is because in
the lossy LF relaying, the errors due to the S-R link can be
corrected at the destination, and therefore, the midpoint (s0 =
s2) is the optimal point where the contributions of the S-R
and R-D links are balanced. This phenomenon indicates that
the S-R and R-D links are of the same significance for system
design, which perfectly matches with the finding in Fig. 3.

Fig. 8 shows the outage probability versus the acceptable
distortion DX , with different relay location scenarios are
considered. We set s0 = s1 = s2 in Loc A, s0 = 0.25s1

and s2 = 0.75s1 in Loc B, and s0 = s2 = 0.5s1 in Loc C. It
is observed that when the relay at the same location, outage
probability decreases as the acceptable distortion increases. It
can also be seen from the figure that, the outage performance
in Loc B is superior than that obtained in Loc A. This
is because the quality of the S-R link in Loc B is better
than that in Loc A, resulting in lower probability of the
S-R link transmission failure. From intuitive discussion for
Fig. 7, we can understand the fact that the lossy LF relaying
shows the best outage performance in Loc C, since the relay
is at the midpoint. Another interesting finding is that, the
outage probability decreases almost linearly with DX when
the value of acceptable distortion is small (roughly less than
0.3); however, the outage probability decreases significantly
when DX is larger than 0.3. This observation, which results
from the exact calculations of outage probability with diverse
DX , can explain the reason why the gap between the curve
with DX = 0.4 and that with DX = 0.49 suddenly becomes
large in Fig. 7.

V. PERFORMANCE EVALUATION

A. Simulation Design

Y
n

ENC 1
X

n

^X
nJoint

DEC

DeM

Modulator

DeM

DeMDEC

ENC 2 Modulator
Des!na!on

Relay

Source

First slot: Second slot:

Fig. 9. The system model for simulation.

Here, we start to evaluate the system performance for a
practical wireless communications network. As illustrated in
Fig. 9, there are three nodes in the system containing source,
relay and destination. In the first slot, the source node encodes
sequence Xn by ENC 1 and broadcasts the modulated signal
through Rayleigh channels. Then, the relay node decodes the
received signal by DEC after demodulation (DeM) and makes
hard decision into Y n, while the destination node just stores
the received signal. In the second slot, the relay node encodes
Y n by ENC 2 and subsequently sends the modulated signal to
the destination node. As soon as the destination node receives
the signal from the relay node, it starts to jointly decodes the
received signals and finally outputs the estimate X̂n.

CC ∏ ACC
X
n

(a) ENC 1.

CC ∏2 ACC∏1
Y
n

(b) ENC 2.

Fig. 10. The structure of encoders.

The structure of encoders is shown in Fig. 102. In the source
node, Xn is encoded by a convolutional code (CC) for the
first step. For the sake of utilizing the principle of turbo code
in decoding, CC is concatenated with an interleaver Π and an
accumulator (ACC) [14]. To obtain the iteration gains between
Xn and Y n in joint decoding, Y n is interleaved by Π1 at
the beginning of encoding. Then, the interleaved sequence is
encoded by the same means as the process in the source node.

Fig. 11 depicts the structure of the joint decoder in the
destination node. To begin with, the demodulated signal in
each link is separately decoded by the decoder of ACC
(ACC−1) and the decoder of CC (CC−1). In the local iteration,
the extrinsic information is exchanged between ACC−1 and
CC−1 via an interleaver Π and a deinterleaver Π−1. After
CC−1 outputs the a posteriori log-likelihood ratio (LLRp)

2The purpose of the simulation is to compare the performance tendency
with theoretical performance, and also with other forwarding schemes. There-
fore, we choose relatively simple component codes to reduce simulation time.
To approach the theoretical limit by utilizing stronger coding scheme is left
as the future work.
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Fig. 11. The structure of joint decoder.

TABLE I
PARAMETER SETTINGS

Parameter Value

Frame length 104 bits

Number of Frames 106

Rate of CC 1/2

Generator polynomial of CC G = ([3, 2]3)8

Type of interleaver random interleaver

Modulation method BPSK

Decoding algorithm for CC BCJR algorithm [29]

Maximum iteration time 30

at the end of local iteration, the joint decoder calculates the
extrinsic LLR (LLRe) by subtracting the a priori LLR (LLRa)
from LLRp. When exchanging LLR between Xn and Y n, we
take the error probability of Y n into consideration based on
the correlation model [25]. The error probability of Y n is
first estimated by the algorithm proposed in [26], and then
the a priori LLR is updated by the LLR updating function
fc(·) [27] with the extrinsic LLR as input. By this means, the
relay information provides less extrinsic information if more
errors exist in Y n, and hence Xn is insulated from the errors
in Y n in joint decoding3. Due to the interleaving process on
Y n before CC, LLRe1 should be interleaved by Π1 and LLRe2
should be deinterleaved by Π−1

1 when exchanging the extrinsic
information in the global iteration. Finally, the estimate X̂n is
made by hard decision from LLRp1, if the maximum iteration
time is exceeded or no more gains of the mutual information
on LLRp1 can be obtained in iterations.

B. Simulation Results

The simulation result with parameter settings listed in Table
I is shown in Fig. 12, which compares the theoretical outage
probability and FER in simulation. For simplicity, average

3It should be emphasized that although the final distortion will not be worse
if the relay always forwards the sequence to the destination, the performance
gain becomes very small when the relay sequence contains too many errors.
However, the relay still needs to consume the same power for forwarding,
resulting in lower power efficiency. The trade-off between outage and energy
efficiency may be handled by a thresholding technique [28]; however, it is
out of the scope of this paper.
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(a) Comparison between theoretical and simulation results.
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(b) Comparison among different forwarding schemes.

Fig. 12. Outage probability in simulation.

SNR is set at the same value for the S-D, S-R and R-D links.
In Fig. 12(a), it is clear that the simulation result has the
same tendency and similar slope as the theoretical bound, even
though there is an obvious gap between them. Moreover, the
gap between the simulation and theoretical results becomes
larger as DX increases. This phenomenon indicates that the
practical scheme used in simulation is more efficient when
the distortion requirement is more strict. There are two major
factors which result in the loss of system performance. First,
notice that with relatively simple channel coding scheme, it is
hard to achieve the Shannon limit, and hence there is also a
gap between the FER in simulation and the theoretical outage
probability of the network, as a whole. Another significant
factor is that, the practical coding scheme in simulation cannot
utilize the joint typicality as efficiently as the random binning
coding scheme in the proof of achievability for Theorem 1.

Fig. 12(b) compares the practical performance for diverse
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relaying schemes, including AF, DF, LF, and the case without
relay. Obviously, the curves with a relay have the same
decay of the performance curve independently of the relaying
scheme, while the slope of the curve without a relay is less
steep compared to the curves with a relay. This observation
demonstrates the diversity gains achieved by introducing a
relay, although there are some gaps between different relaying
schemes. It is found that AF has a worse performance than
DF and LF for relatively small distortion requirement, because
DF and LF can eliminate the errors from the S-R link, while
AF amplifies the signals along with the noise. In addition,
by encoding again at the relay, the data received from the
S-D and R-D links are equivalent to distributed turbo codes,
and hence DF and LF have coding gains while AF cannot.
Nonetheless, when the acceptable distortion becomes very
large, e.g., DX = 0.4, AF has a better performance than DF.
The reason is that large DX requires even lower SNR, which
makes more errors exist in the decoding result at the relay;
therefore, the DF relay discards the data sequences and stop
forwarding more frequently. However, if the average SNR is
not too small (larger than −4 dB), the system with a LF relay
still has a lower outage probability than that with a AF relay,
due to the utilization of correlations in the error-corrupted
sequences. Only when the average SNR is very small and
the acceptable distortion is very large, can AF achieve lower
outage probability than LF. This is because with LF, hard
decision will eliminate the information rather than the noise
when the SNR is very small. In low average SNR region, the
instantaneous SNR is frequently small, and hence the relay
sequence contains too many errors resulting from the hard
decision by LF. On the other hand, AF still keeps relatively
large volume of soft information of the source sequence, if
large distortion is acceptable.

VI. CONCLUSION

We have analyzed the performance of lossy LF relaying,
where distortion is allowed in the destination with the assis-
tance of a LF relay. To begin with, we divided the system into
two sub problems, i.e., lossy point-to-point communication for
the S-R link, and the multiterminal source coding problem for
the S-D and R-D links. The sub problem for the S-R link can
be easily solved by the Shannon’s lossy source coding theorem
and lossy source-channel separation theorem. Then, for the
multiterminal source coding problem in the S-D and R-D
links, we derive the admissible rate region through the proofs
of achievability and the converse. We further determine the
relationship between final distortion and the rate constraints
due to the channel condition, by applying the Shannon’s
lossy source-channel separation theorem to the admissible
rate region. Moreover, we analyze the outage probability for
specified distortion requirements over block Rayleigh fading
channels. Finally, we design a simulation system to evaluate
the practical performance of FER. Comparing to the theoretical
outage probability, we find that the tendency of simulation
result matches with theoretical analysis. Especially for the case
with strict distortion requirement, the FER in simulation is
very close to the theoretical outage probability.

APPENDIX A
PROOF OF ACHIEVABILITY FOR THEOREM 1

Fig. 13. The coding scheme for the proof of achievability.

For two correlated sequences, if one of the sequence is
given, the possible alternatives of another sequence will also
be determined, so that two sequences follow the joint PDF
of two random variables. This property is referred to as
joint typicality, which can be utilized to save coding rate
for correlated sources. We use a random binning and joint
typicality encoding scheme shown in Fig. 13, and analyze
its expected distortion for the proof of achievability. In the
following, we assume that ε′′ < ε′ < ε.

Codebook generation. Fix a conditional PMF p(u|x)p(v|y)
and a function x̂(u, v) such that E[dX(X, X̂)] ≤ DX/(1+ ε).
Let R̃1 ≥ R1. Randomly and independently generate 2nR̃1

sequences un(l) ∼
∏n
t=1 pU (u), l ∈ L = {1, 2, · · · , 2nR̃1}.

Partition the set of indices l into equal-size bins B(M1) =

{(M1 − 1)2n(R̃1−R1) + 1, · · · ,M12n(R̃1−R1)}. Note that this
process is equivalent to vector quantization of a source [30].
Then, randomly and independently generate 2nR2 sequences
vn(m2) ∼

∏n
t=1 pV (v),m2 ∈ M2 = {1, 2, · · · , 2nR2}. This

codebook structure is utilized in the encoders and the decoder.
Encoding. Upon observing xn, the encoder of X finds an

index l ∈ L such that (un(l), xn) ∈ T (n)
ε′′ . If there is more than

one such index l, the encoder of X selects the smallest one
among them. If there is no such index l, the encoder of X sets
l = 1. Then, the encoder of Y finds an index m2 such that
(vn(m2), yn) ∈ T (n)

ε′′ . If there is more than one such index
m2, the encoder of Y selects the smallest one among them.
If there is no such index m2, the encoder of Y sets m2 = 1.
The encoder of X and the encoder of Y send the indices m1

and m2 such that l ∈ B(M1), respectively.
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Decoding. The joint decoder finds the unique index l̂ ∈
B(M1) such that (un(l̂), vn(m2)) ∈ T (n)

ε . If there is such a
unique index l̂, the reconstruction is computed bit by bit as
x̂t(ut(l̂), vt(m2)); otherwise, x̂n is set to an arbitrary sequence
in Xn.

We start to analyze the expected distortion of this random
binning scheme. Let L denote the index for the chosen
sequence Un, M1 be the corresponding bin index, and L̂ be
the decoded index. Moreover, let M2 denote the index for the
chosen sequence V n. Define the “error” event

E = {(Un(L̂), V n(M2), Xn, Y n) /∈ T (n)
ε }, (34)

and consider the following events:

E1 = {(Un(l), Xn) /∈ T (n)
ε′′ for all l ∈ L}, (35)

E2 = {(V n(m2), Y n) /∈ T (n)
ε′′ for all m2 ∈M2}, (36)

E3 = {(Un(L), Xn, Y n) /∈ T (n)
ε′ }, (37)

E4 = {(Un(L), Xn, V n(M2), Y n) /∈ T (n)
ε }, (38)

E5 = {(Un(l̃), V n(M2)) ∈ T (n)
ε

for some l̃ ∈ B(M1), l̃ 6= L}. (39)

E1 and E2 represent that encoding error events happen in the
encoder of X and the encoder of Y , respectively. E4 represents
the failure of joint typicality decoding, while E3 is the sub
event of E4. E5 occurs when there are more than one decoding
result, i.e., a decoding error event also happens. Notice that
the “error” event occurs only if (Un(L), Xn, V n(M2), Y n) /∈
T (n)
ε or l̃ 6= L. By the union of the events bound, we have

P(E) ≤ P(E1) + P(E2) + P(Ec1 ∩ E3) + P(Ec3 ∩ E4) + P(E5).
(40)

We bound each term as follows. First, by the covering
lemma, P(E1) and P(E2) both tend to zero as n→∞ if

R̃1 > I(X;U) + δ(ε′′), (41)
R2 > I(Y ;V ) + δ(ε′′). (42)

Notice that Ec1 = {(Un(L), Xn) ∈ T (n)
ε′′ } and Y n|{Un(L) =

un, Xn = xn} ∼
∏n
t=1 pY |X(yt|xt). By the conditional

typicality lemma, P(Ec1 ∩ E3) tends to zero as n→∞.
To bound P(Ec3∩E4), let (un, xn, yn) ∈ T (n)

ε′ (U,X, Y ), and
consider

P {V n(M2) = vn|Un(L) = un, Xn = xn, Y n = yn} (43)
= P {V n(M2) = vn|Y n = yn}
= p(vn|yn). (44)

First, notice that by the covering lemma, P{V n(M2) ∈
T (n)
ε′ (V |yn)|Y n = yn} converges to 1 as n → ∞, i.e.,
p(vn|yn) satisfies the first condition of the Markov lemma
[6]. Then, similar to the Lemma 12.3 in [6] for the proof
of the Berger-Tung inner bound, p(vn|yn) also satisfies the
second condition of the Markov lemma. Hence, according to
the Markov lemma, we have

lim
n→∞

P
{

(un, xn, yn, V n(M2)) ∈ T (n)
ε |Un(L) = un,

Xn = xn, Y n = yn}
= 1, (45)

if (un, xn, yn) ∈ T (n)
ε′ (U,X, Y ) and ε′ < ε is sufficiently

small. Hence, P(Ec3 ∩ E4) tends to zero as n→∞.
To bound P(E5), similar to the Lemma 11.1 in [6] for the

achievability proof of the Wyner-Ziv Theorem, we have

P(E5) ≤ P{(Un(l̃), V n(M2)) ∈ T (n)
ε for some l̃ ∈ B(1)}.

(46)

By the mutual packing lemma P(E5) tends to zero as n→∞,
if

R̃1 −R1 < I(U ;V )− δ(ε). (47)

Further combining the inequalities (41) and (47), we have

R1 > R̃1 − I(U ;V ) + δ(ε)

> I(X;U) + δ(ε′′)− I(U ;V ) + δ(ε)

= I(X,V ;U)− I(U ;V ) + δ′(ε) (48)
= I(X;U |V ) + δ′(ε), (49)

where (48) follows since U → X → Y → V forms
a Markov chain and by defining δ′(ε) = δ(ε′′) + δ(ε).
Hence, we have shown that P(E) tends to zero as n →
∞ if inequalities (42) and (49) are satisfied. Notice that
(Un(L), V n(M2), Xn, Y n) ∈ T (n)

ε if there is no “error”.
Therefore, by the law of total expectation and the typical
average lemma, the asymptotic distortion, averaged over the
random codebook and encoding, is upper bounded as

lim
n→∞

sup E[dX(Xn, X̂n)]

≤ lim
n→∞

sup[dX,max · P(E)

+ (1 + ε) · E[dX(X, X̂)] · P(Ec)] (50)
≤ DX , (51)

if the inequalities in (42) and (49) are satisfied. Finally, by
the continuity of mutual information and taking ε → 0, we
complete the proof of achievability for Theorem 1.

APPENDIX B
PROOF OF THE CONVERSE FOR THEOREM 1

First, consider

nR1 ≥ H(M1)

≥ H(M1|M2) (52)
≥ I(Xn;M1|M2)

=

n∑
t=1

I(Xt;M1|M2, X
t−1) (53)

≥
n∑
t=1

I(Xt;M1|M2, X
t−1, Y t−1) (54)

=

n∑
t=1

I(Xt;M1, X
t−1, Y t−1|M2, X

t−1, Y t−1), (55)

where (52) and (54) hold since the condition reduces en-
tropy; (53) holds according to the chain rule for mutual
information. By identifying Ut = (M1, X

t−1, Y t−1) and



12

Vt = (M2, X
t−1, Y t−1), noting that Ut → Xt → Yt and

Xt → Yt → Vt form Markov chains, we have

nR1 ≥
n∑
t=1

I(Xt;Ut|Vt). (56)

Then, consider

nR2 ≥ H(M2)

≥ I(Y n;M2)

=

n∑
t=1

I(Yt;M2|Y t−1)

=

n∑
t=1

I(Yt;M2, Y
t−1) (57)

=

n∑
t=1

I(Yt;M2, X
t−1, Y t−1) (58)

=

n∑
t=1

I(Yt;Vt), (59)

where (57) and (58) hold by that Yt is independent of
(Xt−1, Y t−1) since X and Y are memoryless sources, and
(59) holds by the same identifying of Vt as in the derivation
of constraint on R1. This completes the proof of the converse
for Theorem 1.
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