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Abstract 
 

 

        Arranging elements in a design domain is an essential task in visual design because human visual perception is 

sensitive to the layout of the elements. Moreover, aesthetic preferences for a design differ from person to person in 

essence. Such multimodality complicates the formulation of an optimization problem of whether the human visual 

perception or aesthetic preference is the objective to be optimized. Due to these difficulties, computational design tools 

for discrete element layouts are presently limited. 

 

        In this thesis, we propose three computational design tools for discrete element layouts. We tackle these problems 

with reasonable assumptions by making them tractable. In the first method, we focus on a spatial distribution of discrete 

elements with different appearances. Because it is difficult and tedious for a user with manual operations to distribute 

different element spatially in a uniform manner, we propose a procedural method to distribute multi-class (different 

appearances) elements in which the spatial uniformity of the element's distribution is considered as the objective. 

In the second method, we focus on a discrete color arrangement, i.e., color palettes, and propose a computational design 

tool for rating a given palette and suggesting an additional compatible color for the palette. As human color preference 

differs from person to person or one culture to another, we employ a machine learning approach to address this 

problem. By customizing a training dataset, we can tailor a model for any color preference and suggest compatible 

colors to users. Finally, based on a visual cryptography scheme, particularly the secret sharing scheme, we propose a 

method for generating special patterns that can reveal secret patterns when superimposed on other patterns. The 

interesting part of our method is that the secret to be decrypted is changed based on the other patterns to be 

superimposed. We optimized the generated patterns with visual quality as the objective. 

 

        We analyzed the proposed methods both quantitatively and qualitatively including user studies. Additionally, we 

demonstrated various applications of the proposed methods, which show their applicability in broadening areas of 

discrete element layouts. However, we only cover portions of discrete element layouts. Notably, owing to the abstract 

nature of the problem, the discrete element layout fields are vast and include many concrete application scenarios. We 

believe that this thesis is a significant contribution to the advancement of the study of computational design for discrete 

element layouts. 

 

 

 

Keywords: Computer Graphics, Computational Design, Discrete Element Layout, Color Palette Design, Visual 

Cryptography 
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CHAPTER 1

Introducࢢon

1.1 Moࢢvaࢢon

FIGURE 1.1 Example of a design composed of discrete elements.

Layout plays a crucial role in visual design. Moreover, it is well-known that human visual
perception is sensitive to how the elements—components composing the layout—are arranged.
Furniture layouts, patterns on wallpaper, products on display in a shop, to mention a few are
examples of a layout. Figure 1.1 shows an example of a layout design composed of discrete
elements (colored traffic cones). Is it arranged in a regular pattern? Periodic? Are there salient
regions in the layout? Do you like the layout?

In this thesis, we studied a layout design which is composed of different discrete elements,
by mainly focusing on its geometric/non-geometric attributes. The task of arranging discrete
elements is mechanical rather than intellectual, but considering the aesthetics or functionalities
of layout design is a highly intellectual and creative activity. It is worth noting that designing
a layout may take dozens of trial-and-error attempts. For each trial-and-error loop, one has to
arrange the elements to obtain a new design, which is tedious but can be supported by some
computational tools.

For example, consider designing a new wallpaper with floral patterns, and flowers as the
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FIGURE 1.2 Example of a generative design. Image courtesy of Autodesk [3].

discrete elements. In this case, one can use a graphics editor to arrange the elements in a given
domain. If the pattern is simple and\or periodic, it may not be difficult but tedious. On the other
hand, if the pattern is aperiodic and\or intricate, that is, one has to consider design specifications
such as spatial uniformity or inter-element distance (e.g., overlap-free), it will be a difficult task
and also more tedious. Although several graphics editors provide basic editing tools, they do
not fully support intricate editing; hence, the need for some manual work effort to accomplish
such tasks. The motivation of this thesis is to provide methods that efficiently support such
an intellectual and creative task. Aside from supporting the tedious arrangement tasks, the
proposed methods have the capability to explore new designs which are difficult to obtain by
human imaginations only. Precisely, in this thesis, we propose computational design tools for
discrete element layouts, which allow a user to arrange a large number of elements efficiently.
In addition, the proposed methods are controllable and support the exploration of the user’s
design in a vast solution space.

Computational design is a concept that involves the creation of new designs by a user with
the aid of a computer. While the computer generates design candidates from user-specified
parameters or design specifications, the user modifies the candidates, tweak the parameters, or
provide other design specifications to create optimal designs. Although there are several defini-
tions of computational design, it is often referred to as parametric design. In this thesis, we use
the term computational design rather than parametric design; because in our tools, parameters
are not explicitly provided to a user, though, of course, a user can tweak them. We provided
user interactive tools for design exploration. By generative design tools, we refer to tools that
can generate multiple variants of a design using the user-provided design specifications.

In recent times, the computational (parametric) design is considerably becoming popular
because of its capability to generate diverse designs from its defining parameters. Similarly,
the generative design is also gaining more publicity because of its capability to generate diverse
variants of a design which are highly unimaginable. Moreover, a generative design tool can
generate various designs that satisfy the user-provided design specifications (see Figure 1.2) [3].
For example, a computer-aided design application such as the Autodesk Fusion 360, provides
a generative design tool for optimizing material distribution in a volumetric model using the
user-provided design specifications.

While computational design tools are being employed in architectural designs, digital fabri-
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cation, and similar design fields that are related to geometric modeling, there are not applicable
in the visual design field. Because to implement computational design tools for visual designs
one has to consider human preferences and\or human visual perception; and these human-related
objectives are difficult to formulate due to their multimodalities. Therefore, there is a need to
carefully consider the objectives, its assumptions, and algorithms that will solve it.

1.2 Scope of this Thesis

A layout is composed of arranged elements. Conversely, each element is arranged in a target
domain, or we can say that every element has spatial attributes such as position, shape, size, and
orientation. Besides, an element can have attributes such as colors and textures. Both spatial
arrangement and element’s appearance affect our visual perception because the visual attention
is sensitive to those factors. Therefore, it is of interest to focus the scope of this thesis on the
geometric spatial arrangements and non-geometric attributes of elements (see Figure 1.3).

It is well-known that the discrete element layouts cover various specific scenarios includ-
ing page layouts (such as web page) and poster layouts, or furniture layouts. These specific
sub-domains have been extensively studied. Elements of these layouts play specific roles. For
example, a web page (poster) layout is composed of discrete elements such as texts and im-
ages. The texts play the role of explaining the other elements or the creators’ intention, while
images or graphs are used to represent the creator’s intention. Therefore, there exist strong re-
lationships among the elements, which introduce complex constraints for their arrangements.
Similarly, each furniture arrangement is constrained by the other furniture. Because the design
specifications constraints can clearly be defined, it is possible to formulate the layout problem as
an optimization problem that optimizes a user-provided objective, subject to these constraints.
This framework has been adopted by many researchers, which resulted in attracting consider-
able attention to this type of domain. In fact, discrete element layouts of specific scenarios with
concrete elements, have been widely studied.

Layout

Element
Element

Element

Element

Element

Element

Element

position
shape

size orientation

color texture

Geometric Attributes

Non-Geometric Attributes

Element

FIGURE 1.3 A layout is composed of elements. An element has attributes including geometric attributes
such as spatial position, shape, size, and orientation; and non-geometric attributes such as colors and
textures.
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FIGURE 1.4 An overview of the focal areas of the proposed methods (areas in orange, green, and purple
colors). In this thesis, we focus mainly on general purpose discrete element layouts with more abstract
elements, rather than specific target domain with concrete elements which have been extensively studied
(areas colored by darker gray, including single-page and interior layouts).

We remark that discrete element layouts that arrange abstract elements such as primitives
or colors have not gained considerable attention to the present. Notwithstanding, layouts of ab-
stract elements are worth studying because the methods of arranging these elements are widely
applicable in various scenarios such as spatial and color designs. Obviously, spatial and color
designs are covered by a wide area of discrete element layouts. In Chapter 2, we reviewed in
detail, related works on spatial layouts and color designs.

Figure 1.4 describes the areas that can be covered by the proposed methods in comparison
with existing results colored by gray (areas with darker gray suggest these areas gain exten-
sive attention and vice versa). As described above, we mainly focus on widely applicable,
i.e., general purpose discrete element layouts with more abstract elements rather than specific
target domain (scenarios) with concrete elements; which have been extensively studied to the
present. Among various non-geometric attributes of an element, we focused on colors rather
than textures, especially in the combination of colors. This is because texture tends to be more
application specific, while color is a more abstract attribute and employed in wider applications.

1.3 Goal of this Thesis

The goal of this thesis is to provide computational design tools for discrete element layouts
that have not been extensively explored, in particular, the general layout domain with abstract
elements shown in Figure 1.4; so as to allow users to easily and efficiently explore those design
space. To support the exploration of users’ design, the following requirements must to be met:

R1 The proposed tools should be able to generate design suggestions at an interactive rate to
4



provide efficient trial-and-error design loop.

R2 The proposed tools should cover a wider range of design domains, specifically, the general
layout domain with abstract elements.

R3 The proposed tools should have the capacity to support both upcoming and professional
designers in carrying out design exploration.

To ascertain the proposed tools satisfy the above requirements, we provide a validation list
below.

V1 For each tool, the performance evaluations of its functionalities should be provided.

V2 The applications of the tools should be provided so as to determine its versatility.

V3 The user studies or feedbacks from new and professional users of the tools should be pro-
vided to confirm its usefulness.

1.4 Our Approach

TABLE 1.1 An overview of our approach.

Research Topic Discrete Element Textures Discrete Color Palettes Discrete Elemenet Patterns
(Chapter 3) (Chapter 4) (Chapter 5)

Element object image color pixel
Layout Domain spatial distribution color combination pixel arrangement
Constraint Type geometric (spatial) non-geometric (color) both (spatial/color)

Objective spatial uniformity color compatibility image quality
Method procedural machine learning combinatorial optimization

We investigated discrete element layouts with human visual perceptions. Table 1.1 shows
the summary of our approaches. We considered the following two aspects of discrete element
layouts with human visual perceptions: geometric attributes such as spatial distributions and
non-geometric attributes such as colors. We also present in this thesis, a spatial element distri-
bution method, and a color combination evaluation method. Then, considering both geometric
and non-geometric attributes, we propose a method.

1) Discrete Element Textures. As mentioned earlier, in the case of floral patterns, each
flower is regarded as a discrete element since it has a distinctive boundary; hence, we can
easily distinguish any two of them. Therefore, we call textures which comprise discrete
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elements as discrete element textures. In contrast, tree bark textures, for example, are
regarded as continuous textures, and commonly referred to as textures. While creating
periodic patterns composed of discrete elements is relatively simple, it is not straight-
forward to create aperiodic patterns; which of course requires lots of manual effort. We
propose a method for generating discrete element patterns. The human-related objective
here is “spatial uniformity” in a given domain. By spatial uniformity, we mean that each
discrete element is located uniformly at random in the domain. When we looked at the
whole domain as well as the sub-domain, the elements were observed to be uniformly
distributed. The method proposed in this thesis is shown to have the capacity to generate
discrete element textures at an interactive rate by employing a grid subdivision algorithm.
In addition, a user can control and edit the distribution of the elements. Therefore, the
proposed method makes the user’s trial-and-error loop more efficient. Furthermore, we
approximated user-provided object images by proxy shapes that are used when perform-
ing elements’ overlap checks during object distribution generation process. As the pro-
posed method does not depend on the element type, it can be applied to various element
types ranging from abstract to concrete (see Figure 1.4). By integrating previous object
distribution approaches as well as fast distribution generation algorithm, the proposed
method was shown to have the capability to generate various visually appealing textures.

2) Discrete Color Palettes. In one of our research, we propose a method for rating and sug-
gesting color palettes using a machine learning approach. A discrete color palette refers
to a color palette composed of a set of distinctive colors (color combination). Discrete
color palettes are used in data visualization for representing quantitative data or as “color
theme” in art and graphic design. Due to cultural influence or habit, preference of color
combinations differs from person to person or region to region. Therefore, it is chal-
lenging to create a general color rating model. To tackle this difficulty, we employed a
machine learning approach. Precisely, we train a color rating model using a large dataset
of human aesthetic ratings of color palettes. The model can be tweaked by training with
a dedicated dataset (e.g., pastel colors, or Japanese traditional colors). This approach
is very efficient when dealing with human-related multimodal objectives. Therefore, a
wide variety of domains ranging from general to specific purpose can be covered using
custom model (cf. Figure 1.4). In addition, using the proposed trained model, new color
candidates that will be compatible with a given color palette can be suggested; this, of
course, broadens users’ exploration space of color design.

3) Discrete Element Patterns. In another of our research, we proposed a method for cre-
ating striking patterns that excite people’s sense of wonder when superimposing a couple
of patterns. In visual cryptography scheme (VCS) a secret image is encrypted into two
unstructured, noisy patterns (shares). The secret image can be decrypted if and only if
the two shares are superimposed; otherwise no information can be obtained from a sin-
gle pattern. Inspired by VCS, we extended this method to a more entertainment-oriented
one, in which two or more secret images are encrypted into a couple of structured shares.
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One of the shares acts as a key (common share). The secret can be decrypted by superim-
posing the common share and an appropriate share corresponding to a specific secret. In
this research, share patterns composed of image pixels are regarded as discrete elements.
We optimize the pixel arrangements of shares to improve the visual quality while the su-
perimposing results remain unchanged. Compared to the two methods discussed earlier,
the proposed method here focuses on a more domain-specific application as shown in
Figure 1.4. However, in this thesis, we considered both geometric and non-geometric
constraints as design specifications, and optimize the output patterns under these con-
straints, hence the method provides a thought-provoking framework for tackling other
domains including general purpose discrete element layouts with concrete elements (the
lower right region in Figure 1.4).

1.5 Thesis Overview

This thesis is organized as follows:

• In Chapter 2, a detailed review of related work for discrete element layouts followed by
related work for each topic is provided, in preparation for subsequent chapters (Chapter 3
and 4).

• In Chapter 3, a description of the computational design tools for discrete element tex-
tures is given. Presented also, are details on how to integrate previous methods to gener-
alize them, and also some considerations for performance improvements. The demonstra-
tion of the controllability of elements distribution, as well as several results, is presented
in this chapter. The proposed algorithm was evaluated using an analysis tool for a point
set distribution. In comparison to state-of-the-art methods, a user study was conducted to
evaluate users’ preference for the generated textures. It i worthy of note that these meth-
ods are not directly comparable to ours; since they are based on texture synthesis and the
resulting patterns highly depend on the distribution properties of its exemplar, whereas the
method proposed in this thesis generates textures from the scratch. This research reveals
that “spatial uniformity” plays a crucial role in human preference of element distribution.

• In Chapter 4, the computational design tools for discrete color palettes are described.
Provided also, are details on the kind of dataset used, how to extract feature vectors, train
a model, and customize the model to a specific color tone. Using the trained model, a
description of a compatible color suggestion and color space exploration methods is also
provided. Furthermore, a detailed analysis of the trained model, the effects of adjustable
parameters, and the model customization results, is presented. The results of the user
study evaluation conducted are also presented in this chapter. Since the color design
has a wide range of applications in graphic design, several applications of the proposed
method including pattern coloring and photo recoloring, are provided.
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• In Chapter 5, a description of the computational design tools for discrete element pat-
terns is presented. Details on how to decompose secret images into structured patterns
(with a key pattern) and how to optimize these patterns are provided. The resulting pat-
terns with\without the share pattern optimization were analyzed. To demonstrate the pro-
posed method, the proposed algorithm is applied to binary, grayscale, and color images.
In addition, the patterns were printed on transparencies and superimposed to decrypt the
secret images.

• Finally, a summary of the research carried out here a conclusion of this thesis, as well as
future perspectives, are presented in Chapter 7.
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CHAPTER 2

Related Work

This chapter introduces related work for this thesis. First, we review the related work for
discrete element layouts, followed by the review of related work for discrete element textures
(Chapter 3), discrete color palettes (Chapter 4), and discrete element patterns (Chapter 5).

2.1 Related Work for Discrete Element Layouts

In this section, we review the related work for discrete element layouts. As the target domain
of discrete element layouts is large, there are various research topics in this category. Here we
review typical topics in computer graphics community; page and interior layouts. We also
provide a review of approaches to generating versatile layouts. We will review more specific
research topics in Section 2.2, 2.3, and 2.4.

2.1.1 Single-page Layouts

O’Donovan et al. proposed an approach for automatically creating single-page graphic de-
sign layouts using an energy-based model derived from design principles such as alignment
and balance [74]. Similarly, Bylinskii et al. proposed a model for predicting the relative impor-
tance of different elements in data visualizations and graphics designs [12]. Cao et al. proposed
a method for automatically generating manga layouts from a set of artworks with user-specified
semantics using a generative probabilistic model [13]. Several approaches focus on generating
layouts for directing users’ attention to a given path [14,81]. These approaches are suitable for
creating single-page layouts under the constraints of inter-element relationships.

2.1.2 Interior Layouts

Yu et al. proposed an approach for automatically synthesizing furniture layouts using simu-
lated annealing [108]. Merrell proposed an interactive furniture layout system that assists users
by suggesting furniture arrangements that are based on interior design guidelines [67]. By em-
ploying parallel tempering, the proposed system can generate a variety of optimized suggestions
in less than seconds. Similarly, several approaches have been proposed for generating building
layouts (see [4, 33, 66, 106]). To create generative models, most of these approaches utilize
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design principals specific to the target layouts or learn relationships between elements. There-
fore, they cover more domain-specific areas with concrete element types shown in Figure 1.4.
Numerous researches have been focused on similar areas, while we focus on the more general
purpose, abstracted element layouts.

While single-page layouts focus on arranging discrete elements such as texts and images,
interior layouts focus on arranging furniture and rooms in a layout domain. However, both
layouts are similar in that layouts are to be created taking into account the domain-specific
constraints of the inter-element relationships. Both elements and layouts tend to be domain-
specific; they cover the lower left regions in Figure 1.4. Depending on the abstraction levels,
the target domain and element types can be expanded to some extent, resulting in covering areas
from lower left to the center in Figure 1.4.

2.1.3 Versaࢢle Layout Generaࢢon Techniques

Gomez-Nieto et al. proposed a technique for generating structured layouts by formulating
the problem as a mixed integer optimization problem, where multiple requirements are consid-
ered simultaneously [36]. Fried et al. proposed a framework for creating informative layouts
with user-provided pairwise distances of elements [34]. The proposed method first projects
elements using a multidimensional projection. Then, the projected elements are arranged in a
pre-defined grid by computing a bipartite matching with user-provided distances as the weights
between the locations of the elements and those of grid cells.

Ritchie et al. proposed a probabilistic programming technique for generating design sug-
gestions under tight constraints [88]. They employed the Hamiltonian Monte Carlo algorithm,
which can efficiently generate design suggestions even though the solution space is highly-
constrained.

Since these approaches can arrange abstract elements in versatile layouts, the techniques can
be applied to a wide range of discrete element layouts. Both approaches cover similar areas to
our methods or cover more general and abstract areas than ours in Figure 1.4. However, there
are limitations to those approaches when applied to our purpose. Although both approaches
arrange abstract elements in a space based on user-provided design requirements, it is difficult
for a user to provide the requirements since they can be mathematically formulated constraints
and are not intuitive. For example, a user has to explicitly provide pairwise distances of any pairs
of elements, which is a difficult and time-consuming task. In addition, both approaches [34,36]
employ optimization techniques and cannot produce results at a moderate speed if the number
of elements gets larger, hence restricting users’ efficient design exploration.

2.2 Related Work for Discrete Element Textures

As a basis for the proposed algorithms in Chapter 3, we review blue noise sampling methods
and its applications in discrete element distribution.
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2.2.1 Blue Noise Sampling

Since the first dart-throwing method was proposed [29,68], various methods have been pro-
posed to generate samples with blue noise properties. In a frequency domain, a blue noise spec-
trum has a signature lack of low-frequency components and concentrated spikes. Samples with
blue noise properties are distributed randomly but remain spatially uniform. Hence, sampling
with blue noise properties is essential for rendering in computer graphics. Numerous applica-
tions have already been proposed. Therefore, here we refer to excellent survey papers [51,107]
and focus on methods more closely related to our application.

In a simple dart-throwing method, all samples are at least distance r apart from each other,
where r is specified by a user, and we call the size r exclusive region a disk. While such a disk
is isotropic, Li et al. proposed an anisotropic sampling method [54]. By employing a Jacobian
matrix applied locally to the domain-specific function used to determine a desired sample dis-
tance and anisotropy, its distance metric approximates to an inter-sample distance. On the other
hand, Wei proposed multi-class blue noise sampling [103]. In multi-class sampling, while each
single class sample has blue noise properties, their union also has blue noise properties (Fig-
ure 2.2). After Wei’s proposal, various multi-class blue noise sampling approaches have been
proposed [19, 44, 93].

We extend the anisotropic sampling method proposed by Li et al. [54] and the multi-class
blue noise sampling method proposed by Wei [103] to accommodate element distributions.
Therefore we call our sampling method multi-class anisotropic blue noise sampling. In our
configuration, we approximate an element shape by two types of proxy shape: circle and ellipse.
When checking for conflicts between two elements, we apply a local Jacobian matrix if the
proxy shape is an ellipse; otherwise, we apply Euclidean distance for our distance metric. In
addition, our samples corresponding to each element have class IDs. The class IDs are used
for conflict checks as well as local Jacobian matrix computation. Since the original multi-
class sampling method cannot explicitly specify the inter-class distance, wemodify the r-matrix
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Figure 1: A Poisson-disk distribution of 17,593 points generated in 80 ms.

Abstract

Sampling distributions with blue noise characteristics are
widely used in computer graphics. Although Poisson-disk
distributions are known to have excellent blue noise char-
acteristics, they are generally regarded as too computation-
ally expensive to generate in real time. We present a new
method for sampling by dart-throwing in O(N log N) time
and introduce a novel and e�cient variation for generating
Poisson-disk distributions in O(N) time and space.

CR Categories: I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Antialiasing; I.4.1 [Image Process-
ing and Computer Vision]: Digitization and Image
Capture—Sampling

Keywords: sampling, blue noise, poisson disk

1 Introduction and Background

Almost all problems in computer graphics involve sampling.
It is well known that the properties of the sampling distri-
bution can greatly a↵ect the quality of the final result. In

particular, blue-noise patterns perform especially well in this
setting because of the low-energy annulus around the DC
spike in their frequency spectrum. High quality sampling
patterns are especially important when sampling the image
plane in a raytracer, not only because they do a better job of
capturing the continuous function being sampled, but also
because in this setting the function being reconstructed is
displayed directly, so any sampling errors will be especially
apparent to a viewer.

Poisson-disk distributions have excellent blue noise spectra
and also mimic the distribution of photoreceptors in a pri-
mate eye [Yellot 1983]. These distributions have proven di�-
cult to generate directly, so many alternate approaches have
been developed, few of which can guarantee the Poisson-
disk property. In this paper, we describe an O(N log N)
algorithm for directly generating maximal Poisson-disk dis-
tributions identical to those produced by a dart-throwing
technique. We then present a variation of this algorithm
that both yields better spectral distributions and runs in
linear time and space. This algorithm generates point sets
with excellent blue noise characteristics very quickly; it can
generate over 200,000 points per second on a modern CPU.

1.1 Previous Work

Sampling theory is a well researched area of research in
computer graphics, and it has even deeper roots in the sig-
nal processing and information theory literature. Stochastic
sampling was first introduced to computer graphics by Dippé
and Wold [1985]. Cook analyzed the spectral properties of
various stochastic point processes [Cook 1986]. In that pa-
per, he extols the virtues of Poisson-disk distributions be-

503

FIGURE 2.1 Poisson-disk distributions have excellent blue noise characteristics [31].
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Figure 2: Comparison between single- and multi-class blue noise sam-
pling. The top row is produced by applying single-class dart throwing to
individual classes, but the total set is highly non-uniform. The middle row
is produced by applying single-class dart throwing to the total set, but the
individual classes are highly non-uniform. Our approach produces samples
that exhibit blue noise distribution for each class as well as the total set.
Each class contains ⇠650 samples generated with r = 0.02.

idea is to extend single-class dart throwing for multi-class soft/hard
disk sampling by replacing the spacing parameter r in the former
with a c ⇥ c symmetric matrix r for c sample classes. Since many
blue-noise sampling methods are descendants of these two seminal
algorithms [Lloyd 1982; Cook 1986] with different quality, per-
formance, and usage tradeoffs, having multi-class extensions with
both flavors could benefit different applications. Several such ap-
plications we show include object distribution [Cohen et al. 2003;
Lagae and Dutré 2005], stippling [Kopf et al. 2006; Balzer et al.
2009], sensor layout and color filter design [Ben Ezra et al. 2007],
involving both continuous/discrete sample space, uniform/adaptive
sampling, control for sample spacing/count, and preferences for
spatial-uniformity/spectrum-quality.

Our method is related to color halftoning and especially vector error
diffusion [Baqai et al. 2005; Pang et al. 2008], which can also pro-
duce multiple classes of blue noise samples. However, our method
differs from color halftoning in several significant ways. First of
all, halftoning methods are mainly about computing colors for a
given set of discrete samples, not for general purpose sampling in
graphics that might require computing both color and position in-
formation in either a discrete or continuous domain. For halftoning
methods that rely on limited neighborhood sizes such as dithering
(predetermined masks) or error diffusion (predetermined distribu-
tion coefficients), such regular discretization could be undesirable
(see e.g. [Alliez et al. 2003; Ostromoukhov et al. 2004]). Sim-
ply increasing the output resolution may not eliminate these dis-
cretization artifacts because this would reduce the effective spatial
extent of the fixed neighborhoods. Thus, even in the traditional sin-
gle class setting, halftoning is not a replacement for general blue
noise sampling. Furthermore, even though certain halftoning tech-
niques like error diffusion have implied blue noise properties, there
is no guarantee that this will be carried over in the multi-class set-
ting. To our knowledge, the best halftoning methods for generating
multi-class blue noise samples rely on iterative optimization (e.g.
the pioneering work of [Wang and Parker 1999]), which is often

slow/complex and restricted to uniform/regular/discrete sampling.

2 Multi-Class Hard Disk Sampling
Dart throwing is a classical algorithm [Cook 1986] for Poisson hard

disk sampling, a particular kind of blue noise distribution where
samples are not only randomly and uniformly distributed but re-
main at least a minimum distance r away from each other. In dart
throwing, a trial sample is drawn randomly from the entire domain.
If the sample is not within a user-specified distance r from any other
existing samples, it is accepted. Otherwise, it is rejected. This pro-
cess is repeated until reaching certain termination criteria, e.g. a
target number of samples and/or a maximum number of trials.

Our multi-class hard disk sampling algorithm follows a similar pro-
cess, with necessary extensions to handle multiple classes of sam-
ples. Specifically, instead of a single number r, the user specifies
a set of numbers {ri}i=0:c�1 for the c classes of samples. During
the sample generation process, instead of checking whether a new
trial sample is at least r away from all existing samples, we use
a (symmetric) c ⇥ c matrix r for conflict check, where two sam-
ples in classes k and j have to be at least r(k, j) away from each
other. This r-matrix is built from {ri} with each diagonal entry
r(i, i) = ri. Finally, we also need to determine the class for each
new trial sample. Below we describe the algorithm in detail.

2.1 Sample class

For multi-class sampling, we have to decide from which class to
sample for the next trial. To ensure that each class is well sampled
throughout the entire process, we always pick the next trial sample
from the class that is currently most under-filled. We measure
this via fill rate, defined as the number of existing samples for a
particular class over the target number of samples for that class. To
maintain an equal fill rate across different classes, we define N i,
the target sample number of class i, as follows:

N i = N

1
rniPc�1

j=0
1
rnj

(1)

where N is the total number of target samples, n the sample space
dimension, and {ri} the specified per-class minimum distances.
Not maintaining equal fill rates among all classes can easily lead
to non-uniform sample distribution.

2.2 Sample control

To ensure easy usage and a uniform sample distribution, it is desir-
able to generate the classes together (instead of one after another)
and maintain a consistent fill rate among different classes through-
out the sampling process. (We present a more detailed analysis in
Section 4.) However, always drawing the next trial sample from the
most under-filled class (Section 2.1) alone is not enough to achieve
this goal, as it may be unable to find a new sample not in conflict
with existing ones. This can happen quite early in the process when
the output distribution is far from being uniform, so we cannot sim-
ply stop there. One possible remedy is to accept a trial sample s if
it fails to be accepted for the most under-filled class but succeeds
for another one. However, as shown in the left case of a simple 2-
class experiment in Figure 3, even though the classes might main-
tain consistent fill-rates throughout the early part of the process, in
the end the fill-rates may become unbalanced as eventually it be-
comes difficult for the class with a larger r value to compete with
another with smaller r.

Another possibility is to tune the relative probability to sample from
each class to achieve the desired fill rates at the end of the pro-
cess, as shown in the middle case of Figure 3 (notice the two curves

FIGURE 2.2 Multi-class blue noise sampling [103]. In the two-class case, the both class 0 and class 1
exhibit blue noise properties as well as the total set.

proposed in [103]. In our method, the r-matrix acts as a scaling factor to a proxy shape.

2.2.2 Spectral Analysis of Point Sets

For analyzing the quality of a sampling pattern generated using the method proposed in this
thesis, we employ the tool provided by Schlömer and Deussen [92]. The description of the
analysis is provided in the following paragraphs.

The quality of the distribution of a point set is measured by applying spectral analysis. The
power density spectrum P (f) of a stationary stochastic process is the Fourier transform of its
autocorrelation function. Although we cannot know the autocorrelation function in reality, we
can estimate it. The estimate of the autocorrelation function P (f), i.e., periodogram; P̂ (f) for
a given point set {x0, . . . , xn−1} ∈ [0, 1)2 can be obtained as follows:

P̂ (f) = 1
n

∣∣∣∣∣F
n−1∑

i=0
δ(x− xi)

∣∣∣∣∣

2

, (2.1)

where F is the Fourier transform and δ is Dirac’s delta function. Averaging K periodograms
yields an unbiased and consistent estimate for the power spectrum [85].

Ulichney provided two tools with which we can measure the directional artifacts for one-
dimensional statistics using a power spectrum estimate P̂ (f) [100]. The first one is the radially
averaged power spectrum and is defined as follows:

Pr(fr) = 1
Nr(fr)

Nr(fr)∑

i=1
P̂ (f), (2.2)

where P̂ (f) is partitioned by concentric annuli of size ∆ and averaging Nr(fr) is frequency
samples within each annulus with radius fr.

The second one is the anisotropy and is defined as follows:

Ar(fr) = s2(fr)
P 2

r (fr)
, (2.3)
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where s2(fr) is the variance of the frequency samples and given by

s2(fr) = 1
Nr(fr)− 1

Nr(fr)∑

i=1

(
P̂ (f)− Pr(fr)

)2
. (2.4)

The anisotropy measures the radial symmetry of the spectrum in decibels.

2.2.3 Discrete Element Distribuࢢon

Several discrete element distribution methods have been proposed. The packing approach
includes an extension of Lloyd’sMethod [38], spectral packing [30], and relaxation [86,87]. The
example-based texture synthesis approach employs statistical analysis of the exemplar [41,42],
synthesis with element properties and its positions [62], patch-based synthesis [2], and sampling
from a stochastic model [52]. Few approaches employ dart throwing methods [50, 90].

While the packing approaches can densely arrange objects, they cannot generate spatially
uniform multi-class (e.g. color attributes) element distribution. It can be the same for the dart
throwing approaches (Figure 2.3).

In contrast, example-based approaches successfully capture the statistics of the input exem-
plar and synthesize larger textures similar to the exemplar (Figure 2.4). However, creating such
an appropriate exemplar (in most cases, visually appealing ones might be expected) is not easy
for most people, especially for novices. In addition, the above-mentioned approaches except
for [42] lack user controllability for distributed elements while our approach has a user interface
for controlling element distributions.
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Figure 2: Given an input exemplar (a) and output domain (b), our method
automatically synthesizes the corresponding output (c).

monly practiced in previous methods, might not work well for suf-
ficiently complex element shapes or distributions. Our key idea
is to represent each element by multiple samples so that all rele-
vant attributes including position, size, shape, and orientation can
be fully encoded by sample positions only. Upon this core repre-
sentation, we build a sample-based neighborhood similarity metric
as well as an energy formulation to express the desired combina-
tions of individual element samples and their overall distributions.
We minimize this energy function through an iterative optimization
solver (following [Kwatra et al. 2005]) to produce the desired out-
puts. A primary advantage of this energy optimization framework
is the flexibility in incorporating optional application specific con-
straints through additional energy terms (e.g. for orientation fields
and boundary conditions) or solver steps (e.g. for physics).

As an added benefit, our method can also be applied for editing ele-
ment distributions. Specifically, users just need to change a few el-
ements, and our method will automatically propagate such changes
to all other elements with similar texture neighborhoods, relieving
users from the potential tedious chore of manual repetitions. This
editing application is possible thanks to the framework we devel-
oped for direct synthesis.

2 Previous Work

Multi-scale computation A variety of phenomena consists of
small scale repetitions within a distinctive large scale structure.
Such phenomena could be computed with better quality or effi-
ciency by applying different methods for different scales; some
examples include fluid turbulence [Kim et al. 2008], hair strands
[Wang et al. 2009], crowds [Narain et al. 2009], or motion fields
[Ma et al. 2009]. Our approach follows this general philosophy and
focuses on discrete elements.

Example-based texturing Example-based texturing is a gen-
eral data-driven methodology for synthesizing repetitive phenom-
ena (see survey in [Wei et al. 2009]). However, the basic repre-
sentations in most existing texture synthesis methods such as pixels
[Efros and Leung 1999; Wei and Levoy 2000], vertices [Turk 2001]
or voxels [Kopf et al. 2007] cannot adequately represent individ-
ual or discrete elements with semantic meanings, such as common
objects seen in our daily lives. Without a basic representation that
has knowledge of the discrete elements it would be very difficult to
synthesize these elements adequately; even though artifacts could
be reduced via additional constraints on top of existing methods
(e.g. [Zhang et al. 2003]), there is no guarantee that the individual
elements would be preserved. Thus, the synthesized textures can
have elements that are broken or merged (Figure 3).

Geometry synthesis Our method is also related to geometry
synthesis, especially those via example-based texturing methods
such as surface meshes [Zhou et al. 2006], volumetric models [Bhat
et al. 2004; Merrell and Manocha 2008], or terrains [Zhou et al.

input exemplar pixel synthesis our method
Figure 3: Comparison with pixel-based synthesis. The pixel synthesis
result is produced by combining discrete optimization [Han et al. 2006]
with a texton mask [Zhang et al. 2003].

input exemplar prior method our method
Figure 4: Comparison with prior element synthesis methods. Results in
the middle column are produced by [Dischler et al. 2002] (top) and [Ijiri
et al. 2008] (bottom).

2007]. However, similar to other texture synthesis methods these
are mainly for continuous patterns and might lack necessary infor-
mation to preserve or control discrete elements, e.g. broken ele-
ments as can be seen in Figure 5b of [Zhou et al. 2006].

Element packing There exist methods that pack a set of discrete
elements into a specific domain or shape, such as geometric ele-
ments over a surface [Fleischer et al. 1995; Landreneau and Schae-
fer 2010], mosaic tiles [Hausner 2001; Kim and Pellacini 2002],
stroke patterns [Barla et al. 2006], curves [Merrell and Manocha
2010], 3D object collage [Gal et al. 2007], aggregated particles
[Jagnow et al. 2004], or rock piles [Peytavie et al. 2009]. How-
ever, the element distributions in these methods are determined via
specific procedures or a semi-manual user interface, instead of gen-
erally imitating the distributions in input exemplars as in our ap-
proach.

Texture element placement Even though the majority of
example-based texturing methods are not suitable for discrete el-
ements, potential solutions have been explored by a few pioneer-
ing works, including 1D strokes [Jodoin et al. 2002], 2D stipples
[Kim et al. 2009; Martı́n et al. 2010], 2D particles/elements [Dis-
chler et al. 2002; Ijiri et al. 2008; Hurtut et al. 2009], and 2D agent
motions [Lerner et al. 2007; Ju et al. 2010]. However, these meth-
ods treat each element as a single sample without a comprehensive
neighborhood metric or a general synthesis solver as in our method;
thus they might not faithfully reproduce both overall element dis-
tributions and individual element properties, especially shape, ori-
entation, or heterogeneous elements. For example, Dischler et al.
[2002] extracted 2D textons from an input exemplar and generated

(a) input exemplar

(a) exemplar

(b) domain

o
u
r 

m
e
th

o
d

(c) output

Figure 2: Given an input exemplar (a) and output domain (b), our method
automatically synthesizes the corresponding output (c).

monly practiced in previous methods, might not work well for suf-
ficiently complex element shapes or distributions. Our key idea
is to represent each element by multiple samples so that all rele-
vant attributes including position, size, shape, and orientation can
be fully encoded by sample positions only. Upon this core repre-
sentation, we build a sample-based neighborhood similarity metric
as well as an energy formulation to express the desired combina-
tions of individual element samples and their overall distributions.
We minimize this energy function through an iterative optimization
solver (following [Kwatra et al. 2005]) to produce the desired out-
puts. A primary advantage of this energy optimization framework
is the flexibility in incorporating optional application specific con-
straints through additional energy terms (e.g. for orientation fields
and boundary conditions) or solver steps (e.g. for physics).

As an added benefit, our method can also be applied for editing ele-
ment distributions. Specifically, users just need to change a few el-
ements, and our method will automatically propagate such changes
to all other elements with similar texture neighborhoods, relieving
users from the potential tedious chore of manual repetitions. This
editing application is possible thanks to the framework we devel-
oped for direct synthesis.

2 Previous Work

Multi-scale computation A variety of phenomena consists of
small scale repetitions within a distinctive large scale structure.
Such phenomena could be computed with better quality or effi-
ciency by applying different methods for different scales; some
examples include fluid turbulence [Kim et al. 2008], hair strands
[Wang et al. 2009], crowds [Narain et al. 2009], or motion fields
[Ma et al. 2009]. Our approach follows this general philosophy and
focuses on discrete elements.

Example-based texturing Example-based texturing is a gen-
eral data-driven methodology for synthesizing repetitive phenom-
ena (see survey in [Wei et al. 2009]). However, the basic repre-
sentations in most existing texture synthesis methods such as pixels
[Efros and Leung 1999; Wei and Levoy 2000], vertices [Turk 2001]
or voxels [Kopf et al. 2007] cannot adequately represent individ-
ual or discrete elements with semantic meanings, such as common
objects seen in our daily lives. Without a basic representation that
has knowledge of the discrete elements it would be very difficult to
synthesize these elements adequately; even though artifacts could
be reduced via additional constraints on top of existing methods
(e.g. [Zhang et al. 2003]), there is no guarantee that the individual
elements would be preserved. Thus, the synthesized textures can
have elements that are broken or merged (Figure 3).

Geometry synthesis Our method is also related to geometry
synthesis, especially those via example-based texturing methods
such as surface meshes [Zhou et al. 2006], volumetric models [Bhat
et al. 2004; Merrell and Manocha 2008], or terrains [Zhou et al.

input exemplar pixel synthesis our method
Figure 3: Comparison with pixel-based synthesis. The pixel synthesis
result is produced by combining discrete optimization [Han et al. 2006]
with a texton mask [Zhang et al. 2003].

input exemplar prior method our method
Figure 4: Comparison with prior element synthesis methods. Results in
the middle column are produced by [Dischler et al. 2002] (top) and [Ijiri
et al. 2008] (bottom).

2007]. However, similar to other texture synthesis methods these
are mainly for continuous patterns and might lack necessary infor-
mation to preserve or control discrete elements, e.g. broken ele-
ments as can be seen in Figure 5b of [Zhou et al. 2006].

Element packing There exist methods that pack a set of discrete
elements into a specific domain or shape, such as geometric ele-
ments over a surface [Fleischer et al. 1995; Landreneau and Schae-
fer 2010], mosaic tiles [Hausner 2001; Kim and Pellacini 2002],
stroke patterns [Barla et al. 2006], curves [Merrell and Manocha
2010], 3D object collage [Gal et al. 2007], aggregated particles
[Jagnow et al. 2004], or rock piles [Peytavie et al. 2009]. How-
ever, the element distributions in these methods are determined via
specific procedures or a semi-manual user interface, instead of gen-
erally imitating the distributions in input exemplars as in our ap-
proach.

Texture element placement Even though the majority of
example-based texturing methods are not suitable for discrete el-
ements, potential solutions have been explored by a few pioneer-
ing works, including 1D strokes [Jodoin et al. 2002], 2D stipples
[Kim et al. 2009; Martı́n et al. 2010], 2D particles/elements [Dis-
chler et al. 2002; Ijiri et al. 2008; Hurtut et al. 2009], and 2D agent
motions [Lerner et al. 2007; Ju et al. 2010]. However, these meth-
ods treat each element as a single sample without a comprehensive
neighborhood metric or a general synthesis solver as in our method;
thus they might not faithfully reproduce both overall element dis-
tributions and individual element properties, especially shape, ori-
entation, or heterogeneous elements. For example, Dischler et al.
[2002] extracted 2D textons from an input exemplar and generated
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Figure 2: Given an input exemplar (a) and output domain (b), our method
automatically synthesizes the corresponding output (c).

monly practiced in previous methods, might not work well for suf-
ficiently complex element shapes or distributions. Our key idea
is to represent each element by multiple samples so that all rele-
vant attributes including position, size, shape, and orientation can
be fully encoded by sample positions only. Upon this core repre-
sentation, we build a sample-based neighborhood similarity metric
as well as an energy formulation to express the desired combina-
tions of individual element samples and their overall distributions.
We minimize this energy function through an iterative optimization
solver (following [Kwatra et al. 2005]) to produce the desired out-
puts. A primary advantage of this energy optimization framework
is the flexibility in incorporating optional application specific con-
straints through additional energy terms (e.g. for orientation fields
and boundary conditions) or solver steps (e.g. for physics).

As an added benefit, our method can also be applied for editing ele-
ment distributions. Specifically, users just need to change a few el-
ements, and our method will automatically propagate such changes
to all other elements with similar texture neighborhoods, relieving
users from the potential tedious chore of manual repetitions. This
editing application is possible thanks to the framework we devel-
oped for direct synthesis.

2 Previous Work

Multi-scale computation A variety of phenomena consists of
small scale repetitions within a distinctive large scale structure.
Such phenomena could be computed with better quality or effi-
ciency by applying different methods for different scales; some
examples include fluid turbulence [Kim et al. 2008], hair strands
[Wang et al. 2009], crowds [Narain et al. 2009], or motion fields
[Ma et al. 2009]. Our approach follows this general philosophy and
focuses on discrete elements.

Example-based texturing Example-based texturing is a gen-
eral data-driven methodology for synthesizing repetitive phenom-
ena (see survey in [Wei et al. 2009]). However, the basic repre-
sentations in most existing texture synthesis methods such as pixels
[Efros and Leung 1999; Wei and Levoy 2000], vertices [Turk 2001]
or voxels [Kopf et al. 2007] cannot adequately represent individ-
ual or discrete elements with semantic meanings, such as common
objects seen in our daily lives. Without a basic representation that
has knowledge of the discrete elements it would be very difficult to
synthesize these elements adequately; even though artifacts could
be reduced via additional constraints on top of existing methods
(e.g. [Zhang et al. 2003]), there is no guarantee that the individual
elements would be preserved. Thus, the synthesized textures can
have elements that are broken or merged (Figure 3).

Geometry synthesis Our method is also related to geometry
synthesis, especially those via example-based texturing methods
such as surface meshes [Zhou et al. 2006], volumetric models [Bhat
et al. 2004; Merrell and Manocha 2008], or terrains [Zhou et al.

input exemplar pixel synthesis our method
Figure 3: Comparison with pixel-based synthesis. The pixel synthesis
result is produced by combining discrete optimization [Han et al. 2006]
with a texton mask [Zhang et al. 2003].

input exemplar prior method our method
Figure 4: Comparison with prior element synthesis methods. Results in
the middle column are produced by [Dischler et al. 2002] (top) and [Ijiri
et al. 2008] (bottom).

2007]. However, similar to other texture synthesis methods these
are mainly for continuous patterns and might lack necessary infor-
mation to preserve or control discrete elements, e.g. broken ele-
ments as can be seen in Figure 5b of [Zhou et al. 2006].

Element packing There exist methods that pack a set of discrete
elements into a specific domain or shape, such as geometric ele-
ments over a surface [Fleischer et al. 1995; Landreneau and Schae-
fer 2010], mosaic tiles [Hausner 2001; Kim and Pellacini 2002],
stroke patterns [Barla et al. 2006], curves [Merrell and Manocha
2010], 3D object collage [Gal et al. 2007], aggregated particles
[Jagnow et al. 2004], or rock piles [Peytavie et al. 2009]. How-
ever, the element distributions in these methods are determined via
specific procedures or a semi-manual user interface, instead of gen-
erally imitating the distributions in input exemplars as in our ap-
proach.

Texture element placement Even though the majority of
example-based texturing methods are not suitable for discrete el-
ements, potential solutions have been explored by a few pioneer-
ing works, including 1D strokes [Jodoin et al. 2002], 2D stipples
[Kim et al. 2009; Martı́n et al. 2010], 2D particles/elements [Dis-
chler et al. 2002; Ijiri et al. 2008; Hurtut et al. 2009], and 2D agent
motions [Lerner et al. 2007; Ju et al. 2010]. However, these meth-
ods treat each element as a single sample without a comprehensive
neighborhood metric or a general synthesis solver as in our method;
thus they might not faithfully reproduce both overall element dis-
tributions and individual element properties, especially shape, ori-
entation, or heterogeneous elements. For example, Dischler et al.
[2002] extracted 2D textons from an input exemplar and generated
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Figure 2: Given an input exemplar (a) and output domain (b), our method
automatically synthesizes the corresponding output (c).

monly practiced in previous methods, might not work well for suf-
ficiently complex element shapes or distributions. Our key idea
is to represent each element by multiple samples so that all rele-
vant attributes including position, size, shape, and orientation can
be fully encoded by sample positions only. Upon this core repre-
sentation, we build a sample-based neighborhood similarity metric
as well as an energy formulation to express the desired combina-
tions of individual element samples and their overall distributions.
We minimize this energy function through an iterative optimization
solver (following [Kwatra et al. 2005]) to produce the desired out-
puts. A primary advantage of this energy optimization framework
is the flexibility in incorporating optional application specific con-
straints through additional energy terms (e.g. for orientation fields
and boundary conditions) or solver steps (e.g. for physics).

As an added benefit, our method can also be applied for editing ele-
ment distributions. Specifically, users just need to change a few el-
ements, and our method will automatically propagate such changes
to all other elements with similar texture neighborhoods, relieving
users from the potential tedious chore of manual repetitions. This
editing application is possible thanks to the framework we devel-
oped for direct synthesis.

2 Previous Work

Multi-scale computation A variety of phenomena consists of
small scale repetitions within a distinctive large scale structure.
Such phenomena could be computed with better quality or effi-
ciency by applying different methods for different scales; some
examples include fluid turbulence [Kim et al. 2008], hair strands
[Wang et al. 2009], crowds [Narain et al. 2009], or motion fields
[Ma et al. 2009]. Our approach follows this general philosophy and
focuses on discrete elements.

Example-based texturing Example-based texturing is a gen-
eral data-driven methodology for synthesizing repetitive phenom-
ena (see survey in [Wei et al. 2009]). However, the basic repre-
sentations in most existing texture synthesis methods such as pixels
[Efros and Leung 1999; Wei and Levoy 2000], vertices [Turk 2001]
or voxels [Kopf et al. 2007] cannot adequately represent individ-
ual or discrete elements with semantic meanings, such as common
objects seen in our daily lives. Without a basic representation that
has knowledge of the discrete elements it would be very difficult to
synthesize these elements adequately; even though artifacts could
be reduced via additional constraints on top of existing methods
(e.g. [Zhang et al. 2003]), there is no guarantee that the individual
elements would be preserved. Thus, the synthesized textures can
have elements that are broken or merged (Figure 3).

Geometry synthesis Our method is also related to geometry
synthesis, especially those via example-based texturing methods
such as surface meshes [Zhou et al. 2006], volumetric models [Bhat
et al. 2004; Merrell and Manocha 2008], or terrains [Zhou et al.

input exemplar pixel synthesis our method
Figure 3: Comparison with pixel-based synthesis. The pixel synthesis
result is produced by combining discrete optimization [Han et al. 2006]
with a texton mask [Zhang et al. 2003].

input exemplar prior method our method
Figure 4: Comparison with prior element synthesis methods. Results in
the middle column are produced by [Dischler et al. 2002] (top) and [Ijiri
et al. 2008] (bottom).

2007]. However, similar to other texture synthesis methods these
are mainly for continuous patterns and might lack necessary infor-
mation to preserve or control discrete elements, e.g. broken ele-
ments as can be seen in Figure 5b of [Zhou et al. 2006].

Element packing There exist methods that pack a set of discrete
elements into a specific domain or shape, such as geometric ele-
ments over a surface [Fleischer et al. 1995; Landreneau and Schae-
fer 2010], mosaic tiles [Hausner 2001; Kim and Pellacini 2002],
stroke patterns [Barla et al. 2006], curves [Merrell and Manocha
2010], 3D object collage [Gal et al. 2007], aggregated particles
[Jagnow et al. 2004], or rock piles [Peytavie et al. 2009]. How-
ever, the element distributions in these methods are determined via
specific procedures or a semi-manual user interface, instead of gen-
erally imitating the distributions in input exemplars as in our ap-
proach.

Texture element placement Even though the majority of
example-based texturing methods are not suitable for discrete el-
ements, potential solutions have been explored by a few pioneer-
ing works, including 1D strokes [Jodoin et al. 2002], 2D stipples
[Kim et al. 2009; Martı́n et al. 2010], 2D particles/elements [Dis-
chler et al. 2002; Ijiri et al. 2008; Hurtut et al. 2009], and 2D agent
motions [Lerner et al. 2007; Ju et al. 2010]. However, these meth-
ods treat each element as a single sample without a comprehensive
neighborhood metric or a general synthesis solver as in our method;
thus they might not faithfully reproduce both overall element dis-
tributions and individual element properties, especially shape, ori-
entation, or heterogeneous elements. For example, Dischler et al.
[2002] extracted 2D textons from an input exemplar and generated

(d) synthesized

FIGURE 2.4 Discrete element texture synthesis proposed by [62]. The input exemplars (a) and (c) are
used to synthesize larger textures (b) and (d), respectively.

2.3 Related Work for Discrete Color Pale�es

In this section, we briefly review color harmony theories and its applications related to the
proposed method in Chapter 4.

2.3.1 Color Harmony Theory

Color harmony theory as a research topic did not begin until after Newton reported his
experiments with the light spectrum in 1672. Various color harmony theories, such as Goethe’s
thought-provoking color theory [35] (Figure 2.5 left), were proposed near the end of the 18th
century and throughout the 19th century. In the early 20th century, the first practical color-order-
system were derived from the color theories proposed by Munsell [8] and Ostwald [76]. The
color theory proposed byMoon and Spencer [71], whichwas based on themathematical analysis
of a user study, represents the beginning of modern color harmony theory. Following Moon
and Spencer, Itten proposed a color theory which is defined on a hue wheel [43] (Figure 2.5

FIGURE 2.5 Left: Goethe’s color wheel, where colors at opposite side of the color wheel are compatible
according to his theory. Right: Itten’s color wheel. According to his theory, colors are compatible if they
have geometric relationships on the color wheel.
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FIGURE 2.6 Adobe Color CC [23]. We can create custom color palettes and share with the community.

right). While colors at opposite side of the wheel are compatible in Goethe’s theory, colors are
compatible if they have geometric relationships on the color wheel according to Itten.

2.3.2 Color Pale�e Design

Wijffelaars et al. proposed a tool for generating univariate lightness ordered palettes [105].
Their tool is suitable for generating sequential and diverging color palettes. Phan et al. proposed
Color Orchestra, which can predicts and interpolates palettes by learning color palette manifold
from palettes extracted from fine art collections [83]. Shugrina et al. proposed Playful Palette,
a color picker interface that combines the advantages of both digital and physical painting [96].
Mellado et al. proposed a constrained-based interactive palette exploration system [65]. With
their graph-based palette representation, the system optimizes the palettes efficiently and allows
real-time feedback to the users. These tools, however, do not aim for creating color palettes
composed of compatible (harmonious) colors.

There are online tools available for creating color palettes. We can look for color themes,
create, or share own themes on Adobe Color CC [23] (Figure 2.6) or COLOURlovers [24].
ColorBrewer provides well-designed color palettes for cartography [37].

2.3.3 Color Harmony Model

Many color harmony models based on the mathematical analysis of user study results have
been proposed [77–79, 98]. However, such models only evaluate two or three color combina-
tions with a small number of participants (fewer than one hundred), which restricts the general-
ization of the model. On the other hand, O’Donovan et al. collected 327, 381 human ratings of
22, 376 color themes (palettes) using Amazon Mechanical Turk (MTurk) and proposed a model
trained using a machine learning algorithm [73]. They applied the trained model for various ap-
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FIGURE 2.7 O’Donovan et al. applied their color theme rating model for theme extraction (left), theme
optimization (middle), and color suggestions (right) [73].

Figure 12: A variety of images and their recolored ones with different color theme enhancements. The first column shows the original images.

FIGURE 2.8 Color theme enhancement results from [101]. The original images (first column) are recol-
ored with different color theme enhancements using different color palettes (second and third columns).

plication (Figure 2.7). Lin et al. also collected 1, 600 data items relative to how people extract
color themes from images from 160 MTurk participants [56].

These models can only rate two-, three-, or five-color palettes, which is too limited because
color palettes are typically composed as many as seven colors. In contrast to previous ap-
proaches, the proposed method is not limited to a specific number of colors in a palette, i.e., our
feature extraction method and machine learning method can handle a color palette composed
of any number of colors, which allows us to rate any color palette. Therefore, the proposed
method can be applied to a wide range of applications, such as compatible color suggestion, 2D
pattern coloring, and other fields of color design.

2.3.4 Applicaࢢons

Cohen-Or et al. proposed a method that employed a harmonic template on a hue wheel to
harmonize the target image colors [22], and Li et al. proposed a fast image recolorization algo-
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Palette-based Photo Recoloring

Huiwen Chang1 Ohad Fried1 Yiming Liu1 Stephen DiVerdi2 Adam Finkelstein1
1Princeton University 2Google

Figure 1: Palette-based photo recoloring. From left: original (computed palette below); user changes green palette entry to red (underlined),
and the system recolors photo to match; user changes multiple colors to make two other styles. Photo courtesy of the MIT-Adobe FiveK Dataset [2011].

Abstract

Image editing applications offer a wide array of tools for color
manipulation. Some of these tools are easy to understand but offer a
limited range of expressiveness. Other more powerful tools are time
consuming for experts and inscrutable to novices. Researchers have
described a variety of more sophisticated methods but these are
typically not interactive, which is crucial for creative exploration.
This paper introduces a simple, intuitive and interactive tool that
allows non-experts to recolor an image by editing a color palette.
This system is comprised of several components: a GUI that is easy
to learn and understand, an efficient algorithm for creating a color
palette from an image, and a novel color transfer algorithm that
recolors the image based on a user-modified palette. We evaluate
our approach via a user study, showing that it is faster and easier
to use than two alternatives, and allows untrained users to achieve
results comparable to those of experts using professional software.

CR Categories: I.3.4 [Computer Graphics]: Graphics Utilities

Keywords: photo recoloring, color transformation, palette

1 Introduction

Research and commercial software offer a myriad of tools for
manipulating the colors in photographs. Unfortunately these tools
remain largely inscrutable to non-experts. Many features like the
“levels tool” in software like Photoshop and iPhoto require the user
to interpret histograms and to have a good mental model of how
color spaces like RGB work, so non-experts have weak intuition
about their behavior. There is a natural tradeoff between ease of
use and range of expressiveness, so for example a simple hue slider,
while easier to understand and manipulate than the levels tool,
offers substantially less control over the resulting image. This paper
introduces a tool that is easy for novices to learn while offering a
broad expressive range.

Methods like that of Reinhard et al. [2001] and Yoo et al. [2013]
allow a user to specify complex image modifications by simply
providing an example; however an example of the kind of change
the user would like to make is often unavailable. The method of
Liu et al. [2014] allows users to modify the global statistics of an
image by simply typing a text query like “vintage” or “new york.”
However, for many desired color modifications it is hard to predict
what text query would yield the desired effect. Another challenge
in color manipulation is to selectively apply modifications – either
locally within the image (e.g., this hat) or locally in color space
(e.g., this range of blue colors) instead of globally. Selection is
particularly challenging for non-experts, and a binary selection
mask often leads to visual artifacts at the selection boundaries.

Our approach specifies both the colors to be manipulated and the
modifications to these colors via a color palette – a small set of
colors that digest the full range of colors in the image. Given an
image, we generate a suitable palette. The user can then modify the
image by modifying the colors in the palette (Figure 1). The image
is changed globally such that the chosen colors are interpolated
exactly with a smooth falloff in color space expressed through
radial basis functions. These operations are performed in LAB
color space to provide perceptual uniformity in the falloff. The
naive application of this paradigm would in general lead to several
kinds of artifacts. First, some pixels could go out of gamut.
Simply clamping to the gamut can cause a color gradient to be
lost. Therefore we formulate the radial falloff in color space
so as to squeeze colors towards the gamut boundary. Second,
many natural palette modifications would give rise to unpleasant
visual artifacts wherein the relative brightness of different pixels is
inverted. Thus, our color transfer function is tightly coupled with
a subtle GUI affordance that together ensure monotonicity in the
resulting changes in luminance.

This kind of color editing interface offers the best creative freedom
when the user has interactive feedback while they explore various
options. Therefore we show that our algorithm can easily be accel-
erated by a table-based approach that allows it to run at interactive
frame rates, even when implemented in javascript running in a web
browser. It is even fast enough to recolor video in the browser as it
is being streamed over the network.

We perform a study showing that with our tool untrained users can
produce similar results to those of expert Photoshop users. Finally,
we show that our palette-based color transfer framework also sup-
ports other interfaces including a stroke-based interface, localized
editing via a selection mask, fully-automatic palette improvement,
and editing a collection of images simultaneously.

FIGURE 2.9 Palette-based photo recoloring results from [15].

FIGURE 2.10 Pattern coloring using a probabilistic factor graph model [57].
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Figure 10: Stylized decoration results. Color themes of user-provided styles are shown in the top row.

Constraints from image Constraints from color

Figure 11: Constrained decoration results.

Constrained Decoration Our system also allows users to spec-
ify constraints. A material constraint for one part can be specified
as a value constraint by directly supplying desired material type,
parameters, and diffuse color, or an image constraint by providing
a reference region from an image. In the latter case, we obtain the
material parameters of the reference region by applying the ma-
terial annotation process described in Sec. 4.1. We enforce such
constraints by modifying the unary score (Equation 2) in the cost
function as follows,

f1 (p,m) = (t ≡ td) · exp(−λd(c− cd)
2 ), (11)

where td and cd are the type and diffuse color of the desired ma-
terial specified by the user. λd is set to 1 in our experiments. The

first term t ≡ td ensures that the chosen material has the same tag
as the desired material tag. Figure 11 shows two constrained deco-
ration results, one with image constraints (left) and one with value
(color) constraints (right). We can see that our system is capable
of producing reasonable decoration results satisfying user-provided
constraints.

Stylized Decoration To better reflect user preferences and pro-
duce customized results, our system can also generate decorations
guided by a user-specified style. To be consistent with the color
compatibility model we use, we encode a decoration style into a
5-color palette. Specifically, given a target 5-color palette tg , we
modify the global aesthetic score in Equation 9 as follows,

D(P,M) = e−d(tg,t(P,M)), (12)

where t(P,M) denotes the extracted 5-color palette of the scene,
d(·) is the squared distance between two palettes defined in Equa-
tion 5. In practice, the user-specified style can be provided in the
form of a reference image or a previous decoration result, and our
system can extract its corresponding color theme in both cases. Op-
tionally, users can also directly provide five colors as a style, which
is quite useful for experienced designers. Figure 10 shows sample
results of stylized decoration.

Performance We implemented our system on a desktop com-
puter with a Core i3 3.30GHz CPU and 8GB RAM. It takes about
8 hours for precomputation, including material annotation of rep-
resentative regions in the database (Sec. 4.1), extracting unary and
pairwise rules (Sec. 4.2), extracting color themes from images and
training the final color compatibility model (Sec. 4.3). Note that the
precomputation process is only needed once when our database is
built. At run-time, for a typical scene containing about 150 parts,
our system takes about 1-2 seconds to obtain a good decoration af-
ter the default number of 100, 000 iterations.

FIGURE 2.11 Color themes are used for stylized room decorations in magic decorator proposed by Chen
et al. [18].

rithm by employing geodesic distance-based color harmonization [55]. Sawant et al. applied
color harmonization for videos [91], and Zhang et al. employed a color scheme replacement
method in their video stream abstraction method for stylization [111]. Wang et al. proposed a
data-driven approach to convert a target image based on a given color theme [101] (Figure 2.8),
while Chang et al. proposed a method for recoloring a photograph based on a color palette [15]
(Figure 2.9). Lin et al. proposed a probabilistic factor graph model to color 2D patterns au-
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tomatically [57] (Figure 2.10), and Kim et al. proposed a method based on color perception
theories to assign color to 2D patterns automatically [46]. Employing the color compatibil-
ity rating model proposed in [73] as the one of the terms to be optimized in the optimization
problems they formulated, Yu et al. proposed outfit synthesis (fashion design) [109], and, as
mentioned previously, Lin et al. employed the model ratings as a global aesthetic term for 2D
pattern coloring [57]. Chen et al. proposed automatic material suggestion for indoor digital
scenes [18] (Figure 2.11).

Since [18, 57, 109] employed the rating model proposed in [73], their method is limited to
only five-color palettes in their methods, which limits the scope of application. In contrast, we
propose a feature extraction method that does not depend on the number of colors in a given
palette. Therefore, we can suggest a compatible color for a given palette with any number of
colors. For example, given a three-color palette as input, the palette can be expanded to four-,
five-, or even seven-color palettes using our color suggestion method while maintaining color
harmony.

2.4 Related work for Discrete Element Pa�erns

In preparation for Chapter 5, we provide a brief history of visual cryptography. We also
review the related researches in hiding multiple images.

2.4.1 Visual cryptography

VC was first proposed by Naor and Shamir [72]. Visual cryptography scheme (VCS) is a
secret sharing scheme [94] in which a secret is encrypted to patterns (referred to as shares),
shared, and correctly decrypted by participants. Encryption and decryption are performed by
a computer. In contrast, in some VCSs, the human visual system is used to decrypt the en-
crypted secret. Typically, such schemes require complex computations. In other words, with
such schemes, the human eye can decrypt secrets easily where decryption would be difficult
for a computer. In typical secret sharing schemes, the secret is either numbers or text, and in
VCSs, the secret is an image.

In the traditional VCS, the inputs are binary images. However, methods that use grayscale
and color images as input have also been developed [40]. In addition, more sophisticated ap-
proaches [45,58,59] that improve the visual quality of shares have been proposed. Figure 2.12
shows an example of the extended VCS (EVCS), where a secret image is encrypted to meaning-
ful, structured shares rather than noisy, unstructured shares in the traditional VCS. In addition,
the traditional VCS, which encrypts only a single image, has been extended to handle multiple
secrets using two circle shares and different rotation angles [97]. Universal Share can decrypt
multiple images using a unique share [32, 64]. Among the various approaches, methods that
employUniversal Share [32,64] are closely related to the proposed approach, i.e., we introduce
a common share in our work, which is a type of Universal Share. A comprehensive review of
VCSs can be found in the literature [60].
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Fig. 7. Proposed (2,2)-EVCS. The size of all the images is 768 768.

Fig. 8. Experimental results of the second method proposed in [21] for fine share images. The size of all the images is 768 768.

Fig. 9. Proposed (2,2)-EVCS for fine share images. The size of all the images is 768 768.

Tsai et al.’s EVCS [19] is simple, but it may not satisfy the
contrast condition anymore, and the recovered secret image con-
tains a mixture of the visual information of share images. Con-
sider the essence of mixing gray-level pixels; the secret infor-
mation may be hard to be recognized by human eyes.
Lastly, the EVCS proposed in [18] is only for (2,2) access

structure; besides their limitations on the access structure, the
scheme may have security issues when relaxing the constraint
of the dynamic range. (Explicit discussions on the security of
the EVCS in [18] can be found in [18, Sec. 4.2].)
This paper proposes an embedded EVCS scheme with

overall good properties. Comparisons of properties of our
proposed scheme with some well-known EVCSs can be found

in Section VII, where we will show that our scheme has com-
petitive visual quality compared with many of the well-known
EVCSs. Besides, our EVCS has many specific advantages
against these well-known EVCSs, respectively.
The rest of this paper is organized as follows: Section II

gives some preliminary results about VCS and the halftoning
technique. In Section III, we introduce the formal definition
of embedded EVCS, and give the main idea about our con-
struction. In Section IV, we give two methods to generate
the covering shares. In Section V, we embed the traditional
VCS into the covering shares and discuss the bounds of our
scheme. In Section VI, we propose a method to further reduce
the black ratio, which enhances the visual quality of the shares.

FIGURE 2.12 Extended VCS proposed by [59]. Two images shown on the left are the shares and the
right image is the secret image. While shares are noisy, unstructured patterns in the traditional VCS, the
extended VCS generates structured, meaningful patterns, i.e., images for shares.

Such previousmethods have limitations, i.e., they generatemeaningless shares and are based
on Boolean operations, such as XOR and bit shift operations, making it difficult to decrypt
secrets physically. In contrast, the proposed method can encrypt multiple secrets in meaning-
ful physically realizable shares, because it is based on the physical superimposition of shares
printed on transparencies, which corresponds to an AND operation.

2.4.2 Hiding mulࢢple images

Recently, various approaches have been proposed to hide visual information in 2D images or
3D objects. Mitra and Pauly proposed Shadow Art, which casts multiple images of a sculpture
onto walls [70]. Baran et al. proposed layered attenuators that cast different colored shadow
images under specific lighting conditions [5] (Figure 2.13). Alexa and Matusik proposed a
method to create relief surfaces whose diffuse reflection approximates the given images under
known directional illumination [1]. ShadowPix is a surface that displays multiple images using
self-shadowing [7]. In emerging images [69] and camouflage images [21], one or more figures
are embedded into a busy apparent background and remain imperceptible. Papas et al. proposed
Magic Lens, a passive display device that exposes hidden messages and images from seemingly
random and structured source images [82] (Figure 2.14). Other interesting approaches to hide
images have also been proposed, e.g., hiding patterns on a metallic substrate [84] and on a level
line moiré [20].

In most approaches, fabrication costs are significant because a high-resolution 3D printer or
milling machine is required. In contrast, images produced by the proposedMagic Sheetmethod
can be printed on inexpensive transparencies using consumer-grade printers.
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Figure 1: A single manufactured multi-layer attenuator, consisting of three transparencies separated by acrylic, casts different
shadows depending on the angle of the sun. The shadows match the target Van Gogh paintings, shown as insets.

Abstract

We present a practical and inexpensive method for creating physical objects that cast different color shadow im-
ages when illuminated by prescribed lighting configurations. The input to our system is a number of lighting con-
figurations and corresponding desired shadow images. Our approach computes attenuation masks, which are then
printed on transparent materials and stacked to form a single multi-layer attenuator. When illuminated with the
input lighting configurations, this multi-layer attenuator casts the prescribed color shadow images. Alternatively,
our method can compute layers so that their permutations produce different prescribed shadow images under
fixed lighting. Each multi-layer attenuator is quick and inexpensive to produce, can generate multiple full-color
shadows, and can be designed to respond to different types of natural or synthetic lighting setups. We illustrate
the effectiveness of our multi-layer attenuators in simulation and in reality, with the sun as a light source.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Color,
shading, shadowing, and texture I.4.0 [Image Processing and Computer Vision]: General—Image Displays

1. Introduction

Shadows are an integral part of our visual experience, pro-
viding depth cues and conveying information about the re-
flectance and lighting of the surrounding environment. Hu-
mans have been manipulating and using shadows through-
out history, creating shadow puppets for entertainment, or
building sundials to keep time. Transparent occluders, such
as stained-glass windows, can cast colored shadows and can
be used to produce desired images, as in a slide projector.

In this work, by putting computation in the loop, we com-
bine the ideas of a slide and a sundial: we describe how
to construct layered attenuators, whose shadows form dif-
ferent images depending on the lighting configuration (Fig-
ure 1). Layered attenuators are seemingly random patterns
printed on transparencies and stacked together, which, when
properly illuminated, cast different color images as shadows.
Layered attenuators are easy to produce using commodity
hardware and inexpensive: even our prototypes cost under
$10 each. We demonstrate that they work in both natural

c� 2012 The Author(s)
Computer Graphics Forum c� 2012 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

FIGURE 2.13 Layered attenuators cast different colored shadow images under specific lighting condi-
tions [5].

The Magic Lens: Refractive Steganography
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Figure 1: We automatically design and manufacture magic lenses to warp source images into specified target images. Here we photograph
a source image (far left) viewed through a manufactured lens with 32⇥32 facets (left), resulting in four images depending on the lens’
orientation atop the source.

Abstract

We present an automatic approach to design and manufacture pas-
sive display devices based on optical hidden image decoding. Mo-
tivated by classical steganography techniques we construct Magic
Lenses, composed of refractive lenslet arrays, to reveal hidden im-
ages when placed over potentially unstructured printed or displayed
source images. We determine the refractive geometry of these sur-
faces by formulating and efficiently solving an inverse light trans-
port problem, taking into account additional constraints imposed by
the physical manufacturing processes. We fabricate several variants
on the basic magic lens idea including using a single source im-
age to encode several hidden images which are only revealed when
the lens is placed at prescribed orientations on the source image or
viewed from different angles. We also present an important special
case, the universal lens, that forms an injection mapping from the
lens surface to the source image grid, allowing it to be used with
arbitrary source images. We use this type of lens to generate hid-
den animation sequences. We validate our simulation results with
many real-world manufactured magic lenses, and experiment with
two separate manufacturing processes.

CR Categories: I.3.7 [Image and Video Processing]: Novel Dis-
play Technologies—Multi-View and 3D

Keywords: steganography, image morphing, lens fabrication
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1 Introduction

Steganographic techniques, from simple hidden message decoders
to invisible inks and complex watermarking schemes, have led to
active areas of research and have been applied in a wide variety of
fields. Searching for and finding structure in unexpected places is
also a fun and insightful process. Some common day examples of
this expedition include the pursuits of a child armed with only a
magnifying glass and their imagination, to a family huddled around
a table, completing a jigsaw puzzle.

We leverage and incite this sense of wonder, encountered when
inanimate objects suddenly convey a unexpected message or re-
veal surprising behavior, by combining the ideas of steganography,
hands-on physical user manipulation, and structure from unstruc-
tured patterns. We design and construct several different types of
Magic Lenses, using a custom computational procedure, capable of
warping both structured and unstructured image sequences into un-
expected target images. Our magic lenses are composed of lenslets
that, when placed atop an image/video and viewed from prescribed
locations, warp the image through refraction to form the desired
images specified during lens generation.

We pose secret image encoding as an inverse light transport prob-
lem and present a fully-automatic approach for designing and man-
ufacturing various types of magic lenses (see Figure 1). We exper-
iment with various use-cases, for example enabling multiple target
images to be warped from a single source image depending on the
viewing angle between the user and the lens, or depending on the
relative rotation or alignment of the lens and the source (see Sec-
tion 6 for more results). In addition, while we experiment with two
manufacturing processes to generate physical prototypes of hand-
sized magic lenses, nothing about our technique precludes more
exotic use-cases such as those depicted in Figure 2: e.g., replac-
ing architectural fixtures with large-scale magic mirrors, revealing
hidden messages for interactive and exploratory museum exhibi-
tions, sending secret messages that can only be viewed with a user’s
magic lens, or embedding thin, flexible magic lenses in paper cur-
rency as an anti-counterfeiting and validation measure.

We are motivated by recent work on computationally embedding
images into physical material properties, classic steganographic
techniques such as the Cardan grille, as well as “magic decoder
rings” which reveal secret messages already present in the source
image using masking or subtractive transmission. In contrast, our
lenses use optical refraction (or reflection), and we require little re-
lation between the input and output images as long as the original

Figure 10: Four source images with question (far left; center zoom-ins) are warped to reveal pictographic answers with a single manufactured
magic lens (16⇥16 facets). Note that the region containing the question is not targeted by any of the facets. More examples and the full-sized
sources are included in our supplemental document.

manufactured this lens using our milling approach — a photograph
of the fabricated lens placed over the source image is also shown.

The precision of the milling machine is higher than our 3D printer,
but the surfaces it produces have a frosted finish and need to be
manually polished. This can be quite time consuming, and can also
alter the shape of the lenslets, reducing quality. Because of this,
and because 3D printed lenses do not need to be as continuous, we
produce all our remaining results with the 3D printing method.

In Figure 12 we show another source-optimized magic lens with the
panda as a target image but, when viewed at a different angle, the
lens reveals a penguin image, all using the same random circle pat-
tern as a source. Figure 1 also uses the same random circle source,
but the source-optimized lens is capable of displaying four different
targets (panda, bat, penguin, and whale) at four 90 degree rotation
increments.

We also manufactured a universal lens that we place over a scram-
bled image sequence (Figure 9). When viewed through the physical
lens, an animated sequence of a worm is revealed (see our supple-
mental video).

Magic lenses can also be used for more creative interactions. For
instance, question-answer lenses can be designed to reveal pictorial
answers when placed over source images posing questions. Fig-
ure 10 shows four different question images being answered using
the same universal lens as in Figure 9. Since we use a universal lens,
there is actually no limit on the number of randomized question-
answer image pairs that can be used with this single lens (see the
supplemental document for more examples).

Simulated Results. In Figure 4 we illustrate, using simulation,
the theoretical output that could be obtained with a higher qual-
ity manufacturing process. We simulate a high resolution lens
(128 ⇥ 128 facets) that warps two images with fine-scale details.
Our simulated annealing process is clearly capable of generat-
ing smooth, continuous lenses, but these lenses are beyond the
manufacturing capabilities of our current milling or printing pro-
cesses (especially at hand-held output sizes). In Figure 16 we
show another example of a question-answer lens, this time source-
optimized to the four question images, and simulated at a higher
resolution (128 ⇥ 128 facets) than our current manufacturing pro-
cesses allow.

7 Discussion

We have presented the idea of magic lenses as well as a general
approach for creating various special case lenses. This is a signif-
icant first step towards realizing additional use-cases in the future,
and we will discuss lessons learned and some considerations for ex-

(a) (b) (c) (d)Figure 11: A physically milled result. Simulation (middle left)
closely matches the target, however the smooth lens (middle right;
32⇥32 facets with 11⇥11 micro-facets) is degraded during milling
and manual polishing, resulting in a lower quality physical result
(right) than that of a 3D printer (see Figure 12).

(a) (b) (c) (d)
Figure 12: A physically printed multi-view result. Left to right:
source image, lens (32⇥32 facets), and photographs of a manufac-
tured lens viewed from two locations.

tending our work in this section, before itemizing concrete ideas for
future work in Section 8.

Manufacturing Quality and Considerations. Our proof-of-
concept manufacturing process cannot yet yield lenses which match
the high quality of our simulation results. In general, these discrep-
ancies arise due to the differences between our idealized model of
specular refraction used in simulation, and the additional surface
roughness introduced during the manufacturing process (for both
milling and 3D printing processes). In the case of milling, surface
roughness is further diminished through a manual polishing post-
process, which is necessary to render the lens smooth enough for
refraction but which also degrades the surface quality and accuracy
(when compared to the prescribed mesh output). Milling also im-
poses additional surface smoothness constraints, limiting the space
of image patches each facet can index. To alleviate this constraint,
we place milled lenses higher above the source and not directly
atop it (as is the case for 3D printed lenses). Figure 11 is the only
milled result we illustrate, and it is clearly of lower quality than the
results generated using the 3D printer, due to the aforementioned
issues. This lens is placed 10cm from the source and is intended to
be viewed at 40cm above the lens.

As can be seen in our video, our fabricated lenses are currently
thick and likely too bulky and expensive for immediate public use.
Improved manufacturing processes in the future can permit us to

FIGURE 2.14 The magic lens proposed by Papas et al. [82] is a passive display device that exposes hidden
images from seemingly random and structured source images. Top: the 1st column shows the source
image. The 2nd column shows themagic lens. The 3rd-6th columns show the hidden images viewed from
specific orientations. Bottom: four source images with the question are warped to reveal pictographic
answers with the magic lens.
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CHAPTER 3

Discrete Element Textures

In this chapter, we present an element placement method for generating patterns containing
“discrete elements”. By extending various blue noise sampling methods, we propose a visu-
ally uniform distribution of multi-class elements. Our method also supports tileable aperiodic
distribution. Instead of actual elements, for fast calculation, we use a circular or elliptic disk
as a proxy of an element when checking conflicts with nearby elements during the distribution
process. The nature of our results is comparable to swatches in books, which shows that our
method is capable of generating visually appealing swatches for a set of elements. The user
study showed that our method outperformed state-of-the-art discrete element texture synthesis
approaches in terms of pattern visual quality.

3.1 Introducࢢon

We can see a vast variety of patterns composed of design elements on books, websites,
artwork, building facades, wallpaper in a room, and so on. When a pattern is tiled to fill a
target domain, it should be possible to seamlessly place multiple occurrences of the pattern
side-by-side. When selecting the pattern for such applications, we can look at pattern swatches
listed in books or on websites, or actual products in real shops. We can also create our original
patterns from design elements. Therefore, it is important for pattern designers or users to create
a visually appealing swatch or a desirable original pattern.

Recently, several discrete element distribution methods have been proposed in computer
graphics. Discrete elements mean visually distinguishable objects. The term discrete element
textures (or geometric textures) is used when a texture is composed of discrete elements. Unlike
pixel-based texture synthesis [104], discrete texture synthesis synthesizes a larger texture using
a vectorized approach involving exemplars (which correspond to the aforementioned swatches).
However, because this method needs exemplar patterns, we still have an issue on how to create
visually appealing or desirable exemplar patterns.

To tackle this issue, we propose a procedural distribution approach. While previous ap-
proaches lack the capability for dealing with anisotropy and/or multi-class properties (multi-
attributes), our method can handle them appropriately and generate a variety of patterns com-
posed of discrete elements. To handle these properties, we propose an algorithm called multi-
class anisotropic blue noise sampling. In addition, a user can control the element arrangement
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(a) Generated pattern (b) Visualized proxy shapes

FIGURE 3.1 Result of our element distribution with six classes (six different elements).

or orientations by specifying the element flow (Figure 3.5). We provide three types of con-
trol: random orientation (Figure 3.5a), constrained random orientation (Figure 3.5b), or a user-
controlled flow field using a stroke interface (Figures 3.5c-3.5d). Using our method, a user can
easily create a pattern composed of anisotropic andmulti-class elements, as shown in Figure 3.1,
Figure 3.6, Figure 3.7, and so on. Our method efficiently computes element arrangements by
approximating an element with a proxy shape. A user can adjust a proxy size, which results in
some overlaps of each element (if a smaller size is specified than the element size), as well as a
sparse or dense distribution. We performed a user study to compare our approach with state-of-
the-art discrete element texture synthesis approaches and found that our patterns significantly
outperformed them with respect to visual qualities and reduced computation time.

In summary, our contributions are as follows:

• We integrate the multi-class and the anisotropic blue noise sampling method to a more
generalized method and employ it for discrete element distributions.

• We generate tileable textures and control an element arrangement in which they face each
other along an underlying flow field with our method and state-of-the-art discrete element
texture synthesis approaches.

3.2 Algorithm Overview

Before we describe our algorithm in detail, a brief description follows. Our algorithm is
shown in Algorithm 1. Our goal is to implement a function Element-Distribution(·), which
takes a user-specified proxy shape size (i.e., a user specify major and minor radius of an proxy
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ellipse), per-class values for r-matrix described later, a flow field, and a domain. It then returns
a distributed sample set S. The following subsections describe the backbone of our algorithm
(3.2.1) and how to accommodate the tiling case (3.2.2). The details are described in section 3.3.

3.2.1 Fast Poisson Disk Sampling

Weuse a background gridG for storing samples and accelerating spatial searches [10]. In our
configuration, we calculate the cell size to be bounded by rmin/

√
n, where rmin is the minimum

radius of a proxy ellipse and n is the dimension of the sample domain Rn (n = 2). We first
select the initial sample s0 randomly chosen uniformly from the domain. Insert it into G and
initialize ActiveList (an array of sample indices). When the active list is not empty, choose a
random index i from it and generate up to k points chosen uniformly from the sample annulus.
Here we use k = 30.

Unlike the original method, our method takes the ellipse shape into account (we describe
the algorithm later). For each point, we calculate IsConflict(·) with existing samples. For fast
calculation, testing only the nearby samples stored in G works well. If there is no conflict,
accept it as a sample and add its index to the active list. If after k attempts, there are no such

Algorithm 1 ElementDistribution((a, b), {ri} , vf, Ω)
1: // major-/minor- radius of an ellipse; (a, b),
2: // user specified per-class values; {ri},
3: // flow field; vf,
4: // sampling domain; Ω ⊂ R2

5: BuildRMatrix({ri}) // see Supplemental material
6: generate background grid G in Ω
7: s0 ← choose a point uniformly at random ∈ Ω
8: S ← s0 // S is a set of sampling points
9: ActiveList.append(0) // index of s0
10: while ¬ActiveList.empty() do
11: i← index uniformly at random ∈ [0,ActiveList.size)
12: pi ← i-th sample ∈ S
13: for attempt← 0 to k do
14: t← GenerateTrial(pi) // see Algorithm 2
15: j ← t’s index
16: if ¬IsConflict(t) then
17: S ← t // accept the trial
18: Gi ← j // store the index to the grid cell
19: ActiveList.append(j)
20: break
21: end if
22: if k < attempt then
23: ActiveList.remove(i)
24: end if
25: attempt++
26: end for
27: end while
28: return S
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(a) Without tiling (b) With tiling (c) Visualized

FIGURE 3.2 Tileable distribution.

points to be found, remove i from ActiveList.

3.2.2 Tileable Distribuࢢon

For generating a tileable texture, we should consider the boundary cases for conflict check.
For example, when the bounding box of an element exceeds the boundaries of the sampling
domain, it can provide a potential conflict with an element at the other side of the boundary.
To address this problem, we check such potential conflicts in our conflict check procedure by
double checking conflicts in the current domain and the virtually warped domain. Figure 3.2
shows the result. While Figure 3.2a does not consider tiling, Figure 3.2b does consider it, and
Figure 3.2c visualizes such a tiling effect. The green samples are identical to the elements at
the other side, showing the texture to be seamlessly tileable.

3.3 Mulࢢ-class Anisotropic Blue Noise Sampling

We propose a sampling method called Multi-class Anisotropic Blue Noise Sampling (Fig-
ure 3.3d), which extends existing methods, anisotropic blue noise sampling [54] (Figure 3.3b)
and multi-class blue noise sampling [103] (Figure 3.3c). In addition to explaining how we build
such a sampling algorithm, we consider the following matters for incorporating the method with
an element distribution:

• How to deal multi-class attributes (3.3.1)

(a) Isotropic (b) Anisotropic (c) Multi-class (d) Ours (b + c)

FIGURE 3.3 Proxy disk types. The same color represents the same class. (a) and (b) have a single class,
while (c) and (d) have three classes.
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• How to measure our anisotropy (3.3.2)
• How we can generate a sample candidate (3.3.3)
• How to calculate IsConflict(·) (3.3.4)

We describe these matters in the following subsections. We also describe in 3.3.5 how to control
the elements’ directions shown in Figure 3.5.

3.3.1 r-matrix Construcࢢon

In dart throwing methods, two samples are at least distance r away from each other, where
r is a user-specified value that corresponds to an exclusive disk radius. In a multi-class case,
the r-matrix is used as an inter-class distance instead.

The r-matrix is built from user-specified values for each class, {ri}i=0:c−1, where c is the
number of the class. In the r-matrix, {ri} is used for diagonal entries. Off-diagonal entries
are computed by the BuildRMatrix ({ri}i=0:c−1) function [103]. Here off-diagonal entries are
used for inter-class distance, i.e., if two samples are in different classes, a user cannot explicitly
specify inter-class distance.

For example, let us consider c = 3 with r0 = 40.0, r1 = 20.0, and r2 = 10.0. In this
configuration off-diagonal entries are computed and the resulting r-matrix is given by

r =

⎡

⎢⎢⎢⎢⎢⎣

40.0 17.9 8.7

17.9 20.0 8.7

8.7 8.7 10.0

⎤

⎥⎥⎥⎥⎥⎦
. (3.1)

We can see that off-diagonal entries, i.e., inter-class distances are no longer explicitly spec-
ified. For a multi-class element distribution, a user should be able to explicitly spec-
ify inter-class distance. Hence, we modify the r-matrix because it acts as a scaling fac-
tor rscale when we check inter-class conflict. rscale is computed by element-wise divi-
sion of the min(r) entry, where min(r) is the minimum value of r. In the above case,
min(r) = r(0, 2) = r(2, 0) = r(1, 2) = r(2, 1) and thus rscale is given by

rscale =

⎡

⎢⎢⎢⎢⎢⎣

4.6 2.0 1.0

2.0 2.3 1.0

1.0 1.0 1.2

⎤

⎥⎥⎥⎥⎥⎦
. (3.2)

We use rscale for our IsConflict(·).

3.3.2 Anisotropic Sampling

In anisotropic blue noise sampling in [54], the authors employed the following distance
metric to approximate the geodesic distance from sample p to q [49].

d(p, q) =
√

(J(p)(q − p))T (J(p)(q − p)), (3.3)
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Algorithm 2 GenerateTrial(p)
1: // sample; p
2: tc ← arg mini Ni // see Equation 3.8
3: r← computed by Equation 3.9
4: loop
5: t← generate random point ∈ [−2r, 2r] from p
6: warp t’s coordinate if it’s out of the domain Ω
7: d1 ← d(p, t), d2 ← d(t, p)
8: if ¬(d1 < 1 or d2 < 1) and (d1 < 1.5 or d2 < 1.5) then
9: break
10: end if
11: end loop
12: return t

where J(·) is a local Jacobian matrix applied to the domain. Since the distance metric is not
symmetric, i.e., d(p, q) ≠ d(q, p), a conflict check is calculated using the following formula:

d(p, q) < 1 or d(q, p) < 1. (3.4)

To cope with our multi-class elements and their anisotropy, we compute the distance from
sample p to q as follows:

d(p, q) =

∣∣∣∣∣∣∣

⎡

⎢⎣
1/a′ 0

0 1/b′

⎤

⎥⎦ R(pθ)

⎡

⎢⎣
px − qx

py − qy

⎤

⎥⎦

∣∣∣∣∣∣∣
, (3.5)

where R(θ) is a rotation matrix of angle θ, pθ is the sample direction of p picked from an
underlying vector field value, and

a′ = rscale(pc, qc) · pa + rscale(qc, pc) · qa

2 , (3.6)

b′ = rscale(pc, qc) · pb + rscale(qc, pc) · qb

2 , (3.7)

where pc is p’s class and qc is q’s class. Due to its non-symmetric distance measure, it is just
an approximation. In cases where two samples have the same size and the underlying flow field
is smooth enough, the distance metric works well; otherwise, two samples can conflict. We can
see some conflict in Figures 3.5a and 3.5b due to the non-smooth flow field. In contrast, in
Figure 3.5d, there are no conflicts owing to its smooth vector field.

3.3.3 Trial Generaࢢon

Our sample candidate (a trial) generation algorithm is shown in Algorithm 2. During ele-
ment distributions, we consider how to generate a trial. Since we have multi-class elements, we
also have to consider which class element should be chosen. To this end, we compute a fill rate
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of existing classes [103]. The fill rate of i-th class Ni is computed by

Ni = N
1/rn

i∑c−1
j=0 1/rn

j

, (3.8)

where N is the total number of target samples, n is the sample space dimension, and {ri} is the
specified per-class minimum distance. We choose a class with a minimum fill rate. Until a trial
is chosen, we loop trial generation steps.

First a random point t is generated from −2r to 2r distance from a given sample p, where
r is calculated by the inter-class distance between p’s class pc and the trial’s class tc multiplied
by p’s major-radius pa:

rscale(pc, tc) · pa. (3.9)

Then we check whether a trial’s coordinate exceeds the domain. If it exceeds the domain, we
can warp the trial in a toroidal manner or simply reject it and go to the next loop. If a trial is
within the domain, we check for conflict with p. To get a dense sampling result, we restrict the
trial’s position such that it is not far from a given sample p and is determined by the predicate
listed at line 8 of Algorithm 2. If the predicate holds true we get out of the loop and return the
trial t; otherwise, we go to the next loop.

3.3.4 Conflict Check

To check conflict between a sample candidate (trial) and already accepted samples, we only
check nearby existing samples based on a grid acceleration approach [10].

In the case of a circular disk, we restrict the search region to the grid cells that overlap
with the bounding box of the disk (Figure 3.4a). In a similar fashion, in the case of an elliptic
disk, it is ideal to conflict-check the grid cells that overlap with the bounding box of the disk.
However, taking into account the computational cost for identifying these cells, it is reasonable
and enough to conflict-check the grid cells within the axis-aligned bounding box of the elliptic
disk (Figure 3.4b). The grid cells shown in Figure 3.4 are to be checked in the IsConflict(·)
function. As we can see, all the cells in Figure 3.4a are necessary and sufficient for conflict-
check, while in Figure 3.4b, there are cells that obviously conflict-free with the sample of focus

(a) Circular disk (b) Elliptic disk

FIGURE 3.4 Conflict checks of the shown sample (indicated by a red point) and the nearby samples. The
shown grid cells are checked in the IsConflict(·) function.
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(a) Random orientation (b) Specified random range

(c) Visualized vector field (d) With vector field

FIGURE 3.5 Controlling element orientations along with an underlying flow field. In (b), a user can
restrict orientations of elements by specifying a range of random orientations as shown in the inset (the
arc and the fan indicate that random orientations are generated within the angle).

as we check all the cells within the axis-aligned bounding box of the disk. Given a trial t, the
IsConflict(t) returns true or false based on equation 3.4.

3.3.5 Control Element Orietaࢢon

Given a user-stroke, we compute the background flow field along which distributed ele-
ments are directed. Our flow field is designed as a vector [110]. Similar to the brush interface
of [17, 47], we divide a user stroke into strips composed of vertices {v0, v1, . . . , vi, . . . } ∈ V
and call them design elements of the vector field. A vector field at a specific point V (p) is
computed using the following equation:

V (p) =
∑

i

e−κ|p−vi|2Vi(p), (3.10)

where κ is a decay constant, p is a point in the domain Ω, Vi(·) is the basis vector field cor-
responding to a design element, and vi is the position of the design element. We compute the
vector field on the entire domain Ω (Figures 3.5c and 3.5d), and when a trial point is generated,
its vector direction is picked and assigned to it. Because of its simple summation calculation, a
user can edit the flow field multiple times to get a desirable flow field.

3.4 Results

We can generate a variety of patterns with our application. In Figure 3.1 we use six different
elements (= 6-class) in the configuration. We set proxy shapes for each element and adjust the
size of the shape. In this configuration, we do not incorporate an underlying flow field, which
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(a) Maya’s XGen (top-view) (b) Maya’s XGen (persp-view)

(c) Ours (top-view) (d) Ours (persp-view)

FIGURE 3.6 Rendering results of Figurines (4-class). Same number of objects (=total 176) are distributed
inside the blue stage.

results in elements in the same class facing the same orientation. In Figure 3.6, we compared
the 3D object distributed scene generated by Maya’s XGen and our distribution pattern. We
used four figurines (= 4-class) for the distribution. Compared to the scene generated by XGen’s
random distribution, ours have fewer object collisions and a visual uniformity, provides a more
visually appealing impression. Other various results are shown in Figure 3.7. The sampling
quality of our method is analyzed and a further comparison to Refs. [54] and [103] is available
in Section A.

3.4.1 Reproducing Reference Swatch

In Figure 3.8, we compare how our method can reproduce a swatch in a reference book [9].
In this case, we use nine elements (i.e. 9-class) listed in Figure 3.8a and set each proxy shape
to be smaller than an element image. This allows some overlap when reproducing the swatch
(Figure 3.8d). Compared to the pseudo random placement (Figure 3.8b), our approach captures
the reference distribution properties well, and thus a visually plausible pattern is reproduced
(Figure 3.8c).

3.4.2 Tileable Texture Generaࢢon

In Figure 3.9, we generate a tileable texture and compare it with one that avoids boundaries.
In Figure 3.9a, we can see visual artifacts such as vertical or horizontal lines with no elements
across them. In contrast, the tileable image generated by our method has enhanced seamless
boundaries (Figure 3.9b). In Figure 3.9 we simply tile a texture in a 2 × 2 matrix for demon-
strating the effect of a tileable distribution. We can still perceive repetitive elements placed
side-by-side on it. To avoid this, we can employ Wang tiles with pre-distributing elements
similar to that described in [50].
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(a) Fish (3-class)

(b) Splash (6-class) (c) Marché (7-class)

(d) Halloween (8-class) (e) Felt-like (9-class)

FIGURE 3.7 Additional resutls.

3.4.3 Control Inter-class Raࢢos

We can reproduce a swatch using our method (Figure 3.10). Since our method can specify
ratios of multi-class elements, we can generate various images similar to the swatch in a ref-
erence book but which differ in the extent of inter-class ratios. In Figure 3.10a, two classes of
elements are evenly distributed in the image. While each single class element is placed spatially
in a uniform manner, the union of two classes retains spatial uniformity owing to its multi-class
blue noise properties. In Figure 3.10b, the two classes of elements are distributed by a ratio of
2 : 1, which nearly equals that of the reference swatch shown in Figure 3.10c.

3.4.4 Control Element Orientaࢢon

Figure 3.11 demonstrates the effect of flow-guided pattern generation. 3-class fish elements
are distributed along with an underlying flow field. Figure 3.12 demonstrates an oriented distri-
bution result. In the swatch shown in Figure 3.12c, the elements are randomly oriented, while
ours shown in Figure 3.12b have a similar orientation by restricting the orientation to a specific
range (Figure 3.5b). In cases when the input elements have semantics such as an expectation
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(a) Elements (9-clip) (b) Pseudo-random distribution

(c) Our distribution (d) Swatch in a book

FIGURE 3.8 Comparison of our pattern with a pseudo-random pattern and a swatch in a book.

(a) Avoid boundaries (b) Tileable

FIGURE 3.9 Effect of tileable generation. A texture is tiled 2× 2 side-by-side.

that fishes swim or that horses run in the same direction, our method is capable of generating
an expected arrangement.
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(a) 50%:50% (b) 68%:32% (c) Swatch in [9]

FIGURE 3.10 Effect of changing fill rate of two elements.

(a) Generated pattern (b) Underlying flow field

FIGURE 3.11 Effect of flow field editing. 3-class elements approximated by ellipses are distributed along
with a flow field.

(a) Elements (b) Oriented (c) Swatch in [9]

FIGURE 3.12 Effect of specifying element orientations.
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3.5 User Study

We evaluated our approach by comparing with the state-of-the-art methods with respect
to the generation of visually appealing patterns. We invited 29 users to participate in the fol-
lowing user study. All participants were graduate students, two of whom were majoring in
design. Since previous discrete element placement approaches lack the ability to distribute
multi-class and/or anisotropic elements, we compare our approach with the following discrete
element texture synthesis approaches: BBT06 [6], HLT09 [41], IMIM08 [42], LGH13 [52], and
MWT11 [62]. All patterns shown to the participants in our study are available in Section A.4.

All synthesis results of these methods as well as the elements used for our user study were
taken from those listed in [52]. Figure 3.13 shows our patterns for each element used in our user
study. For each element, we adjusted the proxy size and the element size so that our result had
almost the same size and number of elements in the domain. Since our approach only checks
whether a sampling point is inside the domain, the result does not ensure that a whole element
is inside the domain this leads to a clipped pattern. Therefore we also generated a pattern where
whole elements had to be inside the domain and compared our clipped and without clipped
patterns with previous methods. We asked the users to rate the patterns between 0 (worse) and
5 (best), indicating visual quality. The seven patterns (the previous five methods and our clipped
and without clipping patterns) for each element (=total 42 patterns) were randomly displayed to
the users. The first set of patterns was displayed to the participants in a random order, and the
following sets were displayed in the same manner. We invited the participants to our controlled
room so that all participants experienced the same conditions. It took approximately 3− 5 min
per person to rate all patterns.

Figure 3.14 plot the average score along with the associated 95% confidence interval for
each case. We performed an analysis of variance and found that there are significant differences
between the methods. Following the result, we then performed a Scheffe’s test for multiple
comparisons (α = 0.05), and the results are listed in Table 3.1. It showed that our clipped
patterns outperformed the other methods, followed by our without clipping for any kind of
element.

In addition, our method can generate a pattern faster than LGH13 [52], which takes several
seconds or minutes to generate a pattern. Our computation time for generating Figure 3.13 on
a 3.4GHz Core i7, 16GB RAM machine is given in Table 3.2.

Leaf Snake Balloon Flower Ant Wheat

FIGURE 3.13 Our discrete element patterns used for our user study.
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FIGURE 3.14 Comparison results for each element.

TABLE 3.1 Scheffe’s test (corresponding to Figure 3.14). Means designated with the same letter (group)
are not significantly different.

group method mean
a ours (clipped) 3.868
b ours 3.494
c LGH13 3.086
d BBT06 2.626
d MWT11 2.621
d HLT09 2.437
d IMIM08 2.328

TABLE 3.2 Computation time for the distributions shown in Figure 3.13.

element #elements time
leaf 103 41ms
snake 47 46ms
balloon 48 9ms
flower 30 16ms
ant 59 60ms

wheat 46 12ms

3.6 Conclusions and Discussion

We have proposed an algorithm called Multi-class Anisotropic Blue Noise Sampling and
employed it for the distribution of elements. A user can generate discrete element patterns using
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(a) (b) (c) (d)

FIGURE 3.15 Limitations. Two different sized elements (size ratio = 1:2) (a), or elements with different
shaped proxies (b) result in a non-uniform distribution (in these cases, the red circle class does not dis-
tribute spatially in a uniform manner). Distributions of three or more classes suffer as well (c). Note that
a multi-sized element distribution can be achieved by a simple hierarchical dart throwing approach (d);
therefore, we do not focus on such a pattern in this work.

our application interface. The user can produce tileable patterns, and modify their arrangements
via a stroke interface or manual editing. In addition, the user can specify the ratios of each
element to be placed. In our application, the method is applied to each proxy shape of the
element. An element is approximated by a circle or an ellipse to efficiently compute a spatially
uniform distribution. A user study showed that our generated patterns significantly outperform
patterns generated by previous discrete element texture synthesis approaches in terms of visual
quality.

There are several limitations and future directions. Although our method can quickly pro-
duce visually plausible results, and if required, a user can modify the distributed elements ar-
rangement, our proxy shape is restricted to a circle or an ellipse, which does not accurately
approximate a non-convex element. Therefore, we cannot produce a high-density distribution
well with those elements. In cases that involve dense packing of non-convex elements, ap-
propriate shapes must be used for their proxies. In the case of a sparse distribution or where
elements are far from each other to some extent, our shape proxy works well.

Moreover, in our method, we cannot handle conflict check of proxies that have different
sizes and/or shapes from each other (Figure 3.15). In such cases, the distances tend to be
more asymmetric, and our distance metric cannot capture their characteristics well. Note that a
multi-sized element distribution can easily be achieved by a simple hierarchical dart throwing
approach (Figure 3.15d), is a different concept from that proposed in this work. Therefore, for
a multi-sized element distribution, a simple hierarchical dart throwing approach can be used
instead of our multi-class anisotropic approach. In Figure 3.15d two largely different sized el-
ements are distributed by descending order of its size. In this study, we assume similar proxy
shapes and sizes, and therefore ourmethod is useful when distributing elements that have similar
shapes and sizes but different colors or textures. Related to this point, our method only consid-
ers spatial uniformity, and we do not take into account an element’s attributes such as colors.
One promising future direction is to take such visually meaningful attributes into consideration
when generating patterns.
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CHAPTER 4

Discrete Color Pale�es

FIGURE 4.1 The proposed method can rate a given color palette with any number of colors relative to hu-
man aesthetic preferences. The proposed method suggests a compatible color for the given palette, which
allows us to expand the palette while retaining color harmony to support user exploration of color design.
Left: given a color palette composed of three colors, our model rate the palette (score: 3.13/5.00). With
a user-provided index (!), we can suggest compatible colors to the given palette. We explore the HSV
color space and sampling the candidates (e.g., the hue value is sampled by rejection sampling using the
hue probability distribution as illustrated below the palette). Then, these candidates are rated and the
top colors are return to the user. This process can be repeated until the palette has the desired number
of colors. Right: a template pattern is colored by the 3-, 4-, and 5-color palette, respectively, where the
user provided 3-color palette is expanded to the 4- or 5-color palette using the proposed method.

In this chapter, a model to rate color combinations that consider human aesthetic preferences
is proposed. The proposed method does not assume that a color palette has a specific number of
colors, i.e., an input is not restricted to a two-, three-, or five-color palettes. We extract features
from a color palette whose size does not depend on the number of colors in the palette. The
proposed rating prediction model is trained using a human color preference dataset. The model
allows a user to extend a color palette, e.g., from three colors to five or seven colors while
retaining color harmony. In addition, we present a color search scheme for a given palette and
a customized version of the proposed model for a specific color tone. We demonstrate that the
proposed model can also be applied to various palette-based applications.

4.1 Introducࢢon

Color palettes and patterns are used in various fields, such as graphics, web, packaging,
fashion, and interior design. Such design elements are also used in business, e.g., illustrations
in documents and presentations, and play an important role in scientific visualizations. In addi-
tion, individuals make personal decisions about aesthetics and harmonious color combinations
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(e.g., the color of curtains and wallpaper, room theme colors, or even cushions and other dec-
orative objects in a room). Therefore, evaluating the aesthetics and color harmony of color
combinations is not only important for design professionals, but it is also important for many
people. However, creating and evaluating a set of colors (i.e., a color palette) is difficult for
most people.

Many books, such as [48], that help a user select a color palette based on a color image1 (e.g.,
casual, elegant, or romantic) have been published. Such books illustrate the relationship be-
tween a color image and a three-color palette. On the websites, such as Adobe Color (formerly
known as Adobe Kuler) [23] and COLOURlovers [24], users can share the color palettes and
patterns with other community members. These services are useful for novices and designers
because they can use others’ palette designs as references or customize palettes to suit personal
requirements and taste. However, customizing a palette composed of N colors that can be ex-
panded to N + α while retaining the original color harmony remains difficult because choosing
a color that is compatible with the original palette from many possible colors is challenging and
tedious.

We propose a color palette rating model that considers human aesthetic preferences. In
addition, we propose a compatible color suggestion method, which is based on the color palette
rating model, to expand a given palette while retaining color harmony (Figure 4.1). First, we
construct a model that predicts the ratings of a given palette composed of any number of colors
by learning from a large dataset of human-rated color palettes. Here, we propose a feature
extraction method that does not depend on the size of a color palette, which enables us to rate a
color palette composed of any number of colors. We also propose a color suggestion method,
wherein we employ a sampling method to search color candidates efficiently from a large color
space.

In summary, our contributions are as follows:

• a model that can evaluate a given color palette aesthetics regardless of size, i.e., the num-
ber of colors in the palette;

• a feature extraction method to learn the weights of the model;
• a method to suggest a compatible color for palette expansion, i.e., a color that retains
color harmony;

• a sampling method to search the compatible color from a color space.

4.2 Model Training for Color Pale�e Raࢢng

We employ a machine learning approach to learn the weights of a model for rating a color
palette. First, we extract features from palettes in a dataset. Then, multivariable regression
analysis is applied to learn the weights for each feature vector.

1As is used in the other chapters in this thesis, the term color image is normally referred to as a two-dimensional
pixel array with multiple channels (e.g., RGB). In addition, in this chapter, we use color image to refer to the
impression we have when we see a set of color combination.
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4.2.1 Dataset

We use a MTurk dataset from O’Donovan et al. [73]. In the dataset, 10, 743 color palette
ratings by MTurk users are available. The palettes were collected randomly from the Adobe
Kuler website. Each palette was rated on a scale of 1-5 by 40 participants.

4.2.2 Feature Extracࢢon

O’Donovan et al. extracted 334 features from a palette [73]. We extract 118 equivalent
features from a palette. These include palette colors, mean, standard deviation, median, max,
min, and max minus min across a single channel in each color space, i.e., RGB, CIELAB,
HSV, and CHSV2. We also extract plane-fitting features, i.e., a 2D plane is fit to 3D color
coordinates using PCA in RGB, CIELAB, and CHSV color spaces, while in the HSV color
space, we extract hue entropy and hue joint/adjacent probabilities. Please refer to the original
paper for the details [73]. On the other hand, we exclude features that depend on the number
of colors in a palette, i.e., we do not extract colors sorted by lightness, by differences between
adjacent colors, and by color differences. Using such features, the total length of the feature
vector varies based on the number of colors in a given palette. This is why O’Donovan’s model
can only be applied to a five-color palette. However, our proposed model does not suffer such
restrictions.

In addition, we include a color harmony term [78]. In addition, a “gradation of lightness”
and a “gradation of hue” of colors in a palette are included in our feature extraction method.
These are based on the fact that as the order of colors in a palette becomes increasingly linear,
human ratings tend to increase. The details of feature extraction are described in Chapter B. In
total, 121 features were extracted and used for learning and rating.

4.2.3 Learning Model Weights

We use LASSO regression [99] in the same way as [56,73] for learning the weights of each
feature. The equation for rating color palette t is given by r(t) = w⊤f(t) + b, where w is a
weight vector, f is a feature vector, and b is a bias term. Then, the weight vector and the bias
are leaned with L1 regularization:

min
w,b

∑

i

(w⊤fi + b− ri)2 + λ∥w∥1, (4.1)

where ri is an actual user rating (1-5) from the dataset described in Section 4.2.1 and λ is a
regularization parameter (λ = 2.2× 10−6 by 10-fold cross validation). The dataset is split into
learning and test datasets at a ratio of 6 : 4. Due to the L1 regularization, the extracted features
are expected to have adequate weight even if there are similar features in the extracted feature
vector.

2A space where hue θ and saturation s are remapped to Cartesian coordinates: d1 = s cos(θ) and d2 = sin(θ).
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4.3 Suggesࢢng Compaࢢble Colors

Using the proposed model, we can suggest a compatible color for a given color palette,
while in [73], they can only suggest a fifth color for a given four-color palette.

Given a color palette with any number of colors, an index position the user would like to
insert a color in the palette (e.g., the i-th index from the left of the palette), and optionally
the number of colors M to be suggested, the proposed method can suggest compatible colors.
First, we search a compatible color and add the color to a given palette. Then, the palette is
rated by the rating prediction model. The top M high-rated colors are suggested to the user.
To avoid suggesting overly similar colors for the given palette to the human eye, we calculate
CIEDE2000 (∆E00) [95] for each color in the palette and the candidate color, and we collect
only candidates with ∆E00 values greater than a threshold τ . Similar to the τ thresholding, we
calculate the ∆E00 for each two candidate color combinations out of M . Note that we collect
only candidates with ∆E00 values greater than a threshold κ. We explore the color space with
those constraints and select candidate colors by rejection sampling, which allows us to suggest
various colors to the user.

4.3.1 Compaࢢble Color Suggesࢢon

Given a color palette t = [c1, c2, . . . , cn], we solve the following optimization problem for
a compatible color candidate ccand with the given palette:

max
ccand

r(t)

subject to ∆E00(ccand, ci) ≥ τ, ∀i ∈ {1, 2, . . . , n} ,
(4.2)

where, r(t) is a color palette rating by the learned model, ∆E00(c1, c2) is CIE Delta E of c1 and
c2, and τ is the user-defined threshold to suggest colors that are substantially different from the
colors in the given palette.

4.3.2 Color Space Exploraࢢon

Since the color space is vast, it is necessary to search color candidates efficiently in order
to suggest compatible colors to the user. It took 12 hours to brute-force search a candidate in
the RGB color space (i.e., the total number of the solution candidates is 2553) with a Core i7
2.3 GHz, 16 GB RAM machine. Therefore, we perform the following procedure to sample
candidates in the HSV color space.

First, we calculate an adjacent hue probability distribution of a color c. Here,
pjoint

c = [P joint
hc,0 , P joint

hc,1 , P joint
hc,2 , . . . , P joint

hc,359], where hc ∈ [0, 360) is the hue of c and P joint
h1,h2 is the

probability of co-occurrence of colors with its hues h1 and h2 in the same palette. The adjacent
hue probability distribution of color c denoted by padj

c , which is the probability of co-occurrence
of the adjacent hues h1 and h2 in the same palette, is calculated in the same manner. With this
configuration, we perform rejection sampling using a hue probability distribution function to
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select a candidate hue ccand = (h, s, v) depending on the index position at which the candidate
is to be inserted.

A case whereby the specified index in a palette is the head or tail of the palette, we compute
the following as the hue probability distribution function:

α · padj
ci

+ (1− α) · 1
n− 1

∑

ck∈C\{ci}
pjoint

ck
, (4.3)

where ci is a color adjacent to ccand, n is the number of colors in the given palette, ck represents
non-adjacent colors to ccand, and α is a balancing parameter of the two terms (α = 0.5 in this
study). We compute P adj with the adjacent color and P joint with the remaining non-adjacent
colors. When a candidate is to be inserted between two colors in a palette, we compute the
following hue probability distribution function:

α ·
padj

ci
+ padj

cj

2 + (1− α) · 1
n− 2

∑

ck∈C\{ci,cj}
pjoint

ck
, (4.4)

where ci and cj are adjacent colors of ccand, and ck represents non-adjacent colors of ccand in the
palette. Figure 4.2 shows the hue probability distribution function calculated for various color
palettes where a candidate is to be inserted at !.

We also sample the candidate’s saturation s with s ∼ N (µs, σs) and the value v with
v ∼ N (µv, σv) from the given color palette, where N (µ, σ) is a normal probability distribution
with mean µ and standard deviation σ.

In addition, we constrain the color differences of any two color combinations from M can-
didates by computing the following constraint, which ensures the diversity of the suggested
colors:

∆E00(ccandj , ccandk ) ≥ κ, j ≠ k, ∀j, k ∈ {1, 2, . . . , M} , (4.5)

where κ is a user-defined threshold. The proposed sampling method results in few seconds
to several tens of seconds depending on the number of samples (a few thousand to 100, 000),
and we also find that the rejection sampling algorithm is approximately 10 times faster than
naive random hue sampling. The pseudo code of the rejection sampling algorithm is provided
in Chapter B.

4.4 Customizing the Model to a Specific Color Tone

We use the general-purpose dataset described in Section 4.2.1 rather than a dataset with a
specific concept. Therefore, it sometimes does not give the user a satisfactory rating or color
suggestion with the model if the given palette has a specific context, such as pastel colors. The
suggested colors tend to be relatively dark with low saturation.

To address this issue, we customize themodel based on the idea proposed by Chen et al. [18],
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FIGURE 4.2 Hue probability distribution functions for various color palettes when a color is to be inserted
between the index specified by !. The distribution functions are calculated by equations 4.3 and 4.4,
and they are different from each other as it depends on the colors comprising the palette, the location of
the index !, and its adjacent colors.

i.e., we rerate the all color palettes in the dataset using an additional dataset:

r′(t) = δ · r(t) + (1− δ) · e
− min

t′∈T
d(t, t′)

, (4.6)

where t is a color palette in the dataset described in Section 4.2.1 and t′ ∈ T is a color palette
in the new dataset composed of a specific color to be used for customization. δ is a balancing
parameter for the two terms (δ = 0.6 in this study).

In [18], they employed a weighted sum of the squared Euclidean distance of all five colors
in a HSV space palette to calculate d(t, t′). Note that their method can only deal with five-color
palettes; however, since our method is not restricted to five-color palettes, we must be able to
compute the distance of two palettes with different numbers of colors (e.g., the distance between
a three-color palette and a five-color palette). To do so, we use the following distance function:

d(t, t′) = EMD∆E00(t, t′), (4.7)
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where EMD∆E00(t, t′) is the Earth Mover’s Distance (EMD) [89], and we employ ∆E00 as the
distance metric. The EMD with ∆E00 is defined as follows:

EMD∆E00(t, t′) =
∑m

i=1
∑n

j=1 fi,j∆E00(ti, t′
j)∑m

i=1
∑n

j=1 fi,j
, (4.8)

where fi,j is a flow between two histograms or probability distributions that move one distri-
bution to the other. In our context, we consider a flow from ti to t′

j , where ti and t′
j are the i-th

and j-th color in each color palette with m and n colors, respectively. The flow F = [fi,j] is
computed by solving the following optimization problem:

minimize
m∑

i=1

n∑

j=1
fi,j∆E00(ti, t′

j)

subject to fi,j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n,
n∑

j=1
fi,j ≤ wti , 1 ≤ i ≤ m,

m∑

i=1
fi,j ≤ wt′

j
, 1 ≤ j ≤ m,

m∑

i=1

n∑

j=1
fi,j = min

⎛

⎝
m∑

i=1
wti ,

n∑

j=1
wt′

j

⎞

⎠,

where wt = wt′ = [ 1
3 , 1

3 , 1
3 ] is the weight vector. The above problem is an optimal transport

problem and solved using mathematical programming [39].
After rerating all palettes in the original dataset, we then combine the additional and original

datasets by giving full-rate to all new color palettes to build a customized dataset for pastel
colors and so on.

4.5 Results

4.5.1 Model Analysis

Here, we compare our learned model with a previously proposed model [73]. The mean
absolute errors (MAE) and mean squared errors (MSE) are shown in Table 4.1. The baseline
was computed by the difference between the test and training data calculated by the proposed
method [73]. For [73], theMAE decreased by 33% andMSE decreased by 55% compared to the
baseline. For the proposed method, MAE and MSE decreased by 30% and 51%, respectively.
We also performed a correlation analysis of ratings for bothmodels (Figure 4.3). As can be seen,
R2 = 0.56 in [73] and R2 = 0.52 for the proposed method. Although the proposed method is
less accurate than [73] in both cases, the MAE and MSE values are reduced compared to the
baseline and R2 is greater than 0.5, which indicates that the proposed model can still rate color
palettes with respect to human aesthetic preferences with sufficient accuracy. In addition, the
proposed model can rate color palettes with any number of colors, while the model proposed
in [73] can only rate a five-color palette.
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TABLE 4.1 Comparison of MAE and MSE for [73] and the proposed model.

Fixed (baseline) [73] Proposed model
MAE 0.267 0.180 0.187
MSE 0.116 0.052 0.057

(a) [73] (b) Ours.

FIGURE 4.3 Comparison of correlation coefficientR of human ratings for [73] (a) and the proposedmodel
(b).

As the learning result with L1 regularization shows, 19 features out of 121 received zero
weights, and the other 102 features received nonzero weights. The Color Harmony (CH) and
Gradation (Grads) terms added to the feature extraction method receive nonzero weights, which
contributes to increased correlation. We further analyzed these features and found that, although
the CH term received nonzero weights, it does not sufficiently contribute to correlation. On the
other hand, the correlation coefficient R increases by 0.01 due to the Grads term (Table 4.2). A
more detailed analysis is provided in Chapter B.

TABLE 4.2 Comparison of the correlation coefficient of predicted rating by the proposedmodel and human
ratings. The R value was calculated with and without the CH and Grads terms.

[73] w/o w/ CH w/ Grads w/ both
R value 0.76 0.71 0.71 0.72 0.72

4.5.2 Analysis of Compaࢢble Color Suggesࢢon

Figure 4.4 shows the results of the color suggestions for the given palettes. The proposed
method can suggest appropriate colors for the gradation color palettes (Figures 4.4a and 4.4b)
and can suggest well-chosen colors for a palette that includes various hues (Figures 4.4c and
4.4d). Using the proposed color suggestion method, the input three-color palettes are expanded
to four-, five-, or seven-color palettes while retaining color harmony.

We conducted an experiment to evaluate the performance of the palette expansion algo-
rithm. For 10 three-color palettes and 10 five-color palettes, we applied our compatible color
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(a) Gradation (dark→ light)

(b) Gradation (light→ dark)

(c) Color palette composed of various color hues

(d) Palette expansion from 3-color to 7-color

FIGURE 4.4 Palette expansion results of the proposed method. Rows 1-3: a suggested color is added at
the index specified by !. Row 4: two types of palettes are expanded from three-color to seven-color
palettes by adding suggested colors side-by-side. τ = 5 for all results.

suggestion method (Ours(Best)) to expand these palettes to four-color and six-color palettes,
respectively. For comparison, we generated palettes using the incompatible color suggestion
method (Ours(Worst)), in which we sampled the lowest rated hue by our model in HSV color
space, and the saturation and value were sampled in the manner described in Section 4.3.2. We
also generated palettes with additional colors sampled randomly in RGB color space (Random).
For 20 cases, we asked 17 participants (four females) with a normal color vision to rank the three
palettes generated by the different methods relative to Naturalness (“expansion with additional
color is natural”) and Compatibility (“the expanded palette has compatibility to the original
palette”). In the experiment, each participant was shown an original three-color palette at the
top of the display, and three expanded palettes with four colors were displayed at the bottom,
side-by-side in a random order.

We applied Friedman’s test and if a significant difference (p < 0.05) was observed, we
proceeded to perform Wilcoxon tests with Holm corrections for multiple comparisons. The
results showed that, for 12 of the 20 cases, the palettes expanded by ourmethodwere statistically
significant for both the Ours(Worst) and Random methods. In addition, even in cases where
our method had no statistical significance, Figure 4.5 shows that the palettes generated by our
method were most frequently chosen by participants as the best palette, which demonstrates the
effectiveness of the proposed method.

4.5.3 Pale�e Index for Variaࢢons of Color Suggesࢢons

As shown in Figure 4.6, the suggested colors can vary depending on where the color is to be
inserted because the rating model considers the order of colors in a palette. One may consider a
color palette as simply a set of colors that is independent of the order of the colors in the palette,
however, we must consider color order because such sets of colors should be arranged to form a
single group. Therefore, we consider that the order is important for us to evaluate the aesthetics
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FIGURE 4.5 Number of times that palettes generated by three different methods were chosen by partic-
ipants as the best compatible palette. Top: color suggestions for three-color palettes to be expanded to
four-color palettes. Bottom: color suggestions for five-color palettes to be expanded to six-color palettes.
We expanded the palettes listed at the 8th and 10th columns with pastel and retro customized models,
respectively.

of a color palette.

FIGURE 4.6 The suggested colors (!) are varied depending on the index of the palette (τ = 5).

We also apply a palette re-ordering to a palette t, where we select the highest rated palette
from all possible permutations; t = arg maxr∈P(t) r(t), where P(t) denotes the 7! = 5, 040
possible permutations of a palette in the results shown in Table 4.3.

TABLE 4.3 Comparison of ratings for original and re-ordered palettes.

original palette re-ordered palette

#1 3.40 3.41

#2 3.43 3.49

#3 3.41 3.45

#4 3.37 3.37

#5 3.09 3.21

#6 3.52 3.52

In addition, we conduct a user study to analyze user preferences of a color order of a palette.
In the study, we show a participant a pair of color palettes (an original and the re-ordered) listed
in Table 4.3 except for #6 since it is not re-ordered. We shuffle the left or right side of the two
palettes randomly and ask “Which color palette is more harmonious?” to 48 participants (36
males and 12 females), 27 of them major in design. The age of the participants lies in 20 –
25. The result is shown in Figure 4.7. According to the histogram, the re-ordering approach is
effective for improving color palette evaluation of human aesthetics preferences.
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FIGURE 4.7 Preference analysis from a user study. For each palette, the participants selected either an
original or the re-ordered palette. The palettes used in the study were taken from #1 – #5 shown in
Table 4.3.

4.5.4 Choice of τ

Figure 4.8 shows the results of choosing different τ values in Equation 4.2. Although Fig-
ure 4.6 does give color suggestion results with τ = 5 and sufficient hue variations while main-
taining overall color compatibility, it does not always suggest sufficient hue variation, as shown
in Figure 4.8a. When the user desires a variety of colors that differ sufficiently from the colors
in the original palette, the proposed color suggestion method can suggest various colors that
are sufficient to perceive the differences for the human visual system by setting τ to a larger
value. As can be seen in Figure 4.8a, τ = 5 does not give sufficient differences because the
value is close to a just-noticeable difference (the value around 2.3 [63]). With a larger value,
e.g., τ = 20, in Figure 4.8b, the proposed method can suggest a wide variety of colors.

(a) τ = 5

(b) τ = 20

FIGURE 4.8 τ affects the color suggestion results. With a small τ value, the results can be similar to the
colors already in the given palette. With a greater τ value, perceptually different but compatible colors
can be suggested. For a three-color palette with different τ values ((a) τ = 5 and (b) τ = 20), the
suggested colors are marked as !.

4.5.5 Choice of κ

As shown in Figure 4.9a, the color candidates tend to be similar to the colors in the given
palette if κ in Equation 4.5 is small. To avoid this, greater κ will suggest colors with more
variety (Figure 4.9b) while the palette maintains color harmony.
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(a) τ = 5, κ = 5 (b) τ = 20, κ = 20

FIGURE 4.9 κ affects the color suggestion results. Given a four-color palette with different τ and κ, the
suggested colors are inserted at both ends (the ! columns). Top to bottom is higher to lower ratings.
N = 4, M = 5.

4.5.6 Analysis of Model Customizaࢢon

For the model customization, we collected 1, 403 pastel color palettes from Pastel_-
L♥vers [26] and 3, 176 retro color palettes from the Retro group [27], and we customized the
model with these additional datasets by applying the method described in Section 4.4.

Table 4.4 shows a comparison of the color suggestion results with and without the pastel-
customized models. As can be seen, the customized model can suggest more compatible colors
than the model without customization.

TABLE 4.4 Comparison of color suggestions with and without the model customized with pastel col-
ors. The suggested colors are listed in the columns marked !, and the rating is shown next to it.
N = 3, M = 5, τ = 5, and κ = 20.

w/o custom model w/ pastel model

#1 3.16 4.47

#2 3.14 4.35

#3 3.10 4.35

#4 3.07 4.23

#5 3.07 4.18

Table 4.5 shows a comparison of the ratings results with and without the pastel and retro
customizations. We rated various three-color palettes using these models. As can be seen for
the pastel-customized model, the ratings are higher than those obtained without the customized
model for the palette shown by (a) in Table 4.5.

In addition, the pastel model gives higher ratings to gradation palettes, as shown in Ta-
ble 4.5b and c, while the palette shown by (e) – (i) in Table 4.5 obtained lower ratings. On the
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other hand, the Retro model rated the palette shown in Table 4.5h higher, and the pastel color
palette shown in Table 4.5a was also rated higher, which suggests that the retro model gives
higher ratings to palettes comprising colors where saturation values are very similar. We also
found that the pastel model rates were lower for Table 4.5i, while the retro model rates it with
nearly the same rating as the non-customized model.

TABLE 4.5 Comparison of ratings for various color palettes with and without model customization.

model customization
color palette w/o pastel retro

(a) 2.90 4.24 3.50

(b) 3.18 3.73 2.75

(c) 2.95 3.20 3.12

(d) 3.01 3.16 2.85

(e) 3.21 3.02 3.23

(f) 2.76 2.45 2.94

(g) 2.95 2.24 3.07

(h) 2.84 2.63 4.02

(i) 2.65 1.57 2.66

Furthermore, we compared our pastel and retro customized model to our original and
O’Donovan’s model [73]. For the comparison, we collected 664 pastel color palettes and 1, 222
retro color palettes from P a s t e l C u t i e s [25] and RETROpolis [28], respectively. Then,
we rated the pastel dataset by our pastel-customized and original model, and O’Donovan’s
model (Figure4.10a), and the rated retro dataset by our retro-customized and original model,
and O’Donovan’s model (Figure4.10b). These means and standard deviations (StdDev) are
listed in Table 4.6. They showed that, the customized model obtained higher mean ratings in
both cases, and larger StdDevs are considered to these abilities to rate the specific colors in de-
tail, while O’Donovan’s and our original model can not capture the differences of the specific
colors well since these models have smaller StdDevs. Although the original model has a less
correlation to human ratings in Table 4.1 and Figure 4.3, the customized version of the proposed
models compare favorably to O’Donovan’s model [73].
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(a) Pastel dataset (b) Retro dataset

FIGURE 4.10 Histograms of ratings of pastel dataset (a) and retro dataset (b) of our pastel-customized
and retro-customized and original model, and O’Donovan’s model [73].

TABLE 4.6 Mean and StdDev for Figure 4.10.

Dataset [73] Ours (Original) Ours (Custom)
Pastel Mean 3.11 3.13 3.24

StdDev 0.197 0.166 0.719
Retro Mean 3.06 2.95 3.15

StdDev 0.207 0.198 0.452

4.6 Applicaࢢons

4.6.1 Coloring 2D Pa�erns

We applied the proposed color suggestion method to a 2D pattern template from
COLOURlovers (Figure 4.11). First, we selected a three-color palette with color images (e.g.,
mysterious, noble, dreamy, and progressive) [48]. Then, the three-color palette was expanded to
a five-color palette using the proposed color suggestion method. We performed pattern coloring
with three-color (Figure 4.11, left) and five-color palette (Figure 4.11, right). As can be seen
in the five-color palette and its pattern coloring results, the color image does not change from
that of the original three-color palette. Since the pattern coloring with the five-color palette has
5! = 120 possible pattern coloring combinations, we employed the color assignment method
proposed in [46] for coloring and selected the top-ranked results in Figure 4.11.

4.6.2 Coloring Segmented 3D Model

We also applied the method to 3D model coloring. Given a segmented model, we group
these segments into three to seven group and color them with three-color, five-color, or seven-
color palettes (Figure 4.12). It can be noted that such color variations are useful, for example,
a user already has a basic color concept (e.g., three basic colors) and would like to refine the
color design while retaining the color image.
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(a) Color image: Mysterious

(b) Color image: Noble

(c) Color image: Dreamy (pastel model)

(d) Color image: Progressive (retro model)

FIGURE 4.11 Coloring pattern templates. The original three-color palette color image (left) was expanded
to a five-color palette using the colors suggested by the proposed method while retaining its color image.
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FIGURE 4.12 Robot color design. Left to right: segmented model, model colored by a three-color palette,
model colored by a five-color palette, andmodel colored by a seven-color palette while retaining the color
image.

4.6.3 Photo Recoloring

A user can produce enhanced photo-editing results by incorporating a palette-based photo
recoloring method [15] with our palette expansion method. First, we prepare a three-color
palette with a target color image. Such a palette with a certain color image can be obtained
from the Internet (e.g., by searching for Pastel or Retro palettes) or from a book [48]. Second,
we apply the palette expansion method to the palette to obtain additional compatible colors. We
also prepare a target photo to be recolored and apply the palette-based photo recoloring method
to extract a source palette from the photo. Then, each color in the source palette is replaced
with our palette colors using the color transfer function to recolor the photo. Figures 4.13 and
4.17 show the results. Using our palette expansion method, a user can obtain more colors in
the palette while retaining its color image when the colors of the collected palette are limited,
which provide more flexibility.

FIGURE 4.13 Recoloring results with Mysterious palettes. The original photo (left) is recolored using
the palette-based photo recoloring method with three- (middle) and seven-color palettes (right). Photo
courtesy of Tommie Hansen (Flickr).

4.6.4 Adding Items

A user can add items with different colors to a set according to the color suggestions. For
example, for a set of pens with different colors (Figure 4.14 left), the additional pens with
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FIGURE 4.14 Pen set

different yet compatible colors are added to the set (Figure 4.14 right). This is useful when
providing color variations. Another example is provided in Figure 4.15, in which additional
objects (e.g., a blind and a sofa) with colors that are compatible with the room’s color theme
are added to the room. Here, we assign the color to a diffuse color of the object.

FIGURE 4.15 For a bedroom with an associated color theme (left), a window blind and a sofa with colors
assigned according to the extended palette are added to the room (right). Model courtesy of 3D Bar.

4.7 Conclusions and Limitaࢢons

4.7.1 Conclusions

In this work, we have proposed a rating prediction model for a given color palette that can
comprise any number of colors. We have also proposed a compatible color suggestion method
for palette expansion while retaining color harmony, as well as a method to explore color space

52



to select color candidates. With the proposed model, we can evaluate simple palettes, such as
gradations, and we can rate palettes comprising various color tones and hues.

4.7.2 Limitaࢢons

Since the proposed method employs a machine learning approach, the rating prediction of
the model depends strongly on the quality of the dataset. We specialized our model by collecting
pastel and retro palettes from COLOURlovers with relatively little effort. However, if only a
few datasets are available or it is difficult to collect datasets from the Internet, it is difficult to
customize the model. It is also difficult to determine how many palettes need to be customized
for sufficient rating accuracy. In addition, we have demonstrated coloring pattern templates as
an application; however, the color harmony of a palette is not directly related to the target pattern
mood, which can result in mismatched coloring. Figure 4.16 shows an example, in which we
prefer Figure 4.16c over Figure 4.16b relative to the mood of the target content in the pattern
template (Figure 4.16a). That is, although we proposed a palette rating model, we cannot rate
the goodness of colored pattern using our rating model as it has semantics and our model cannot
capture the semantics.

(a) Template (b) Merry (c) Noble

FIGURE 4.16 Coloring pattern templates using two color palettes with different color images.
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FIGURE 4.17 Top: recoloring results with Dreamy palettes. Middle: recoloring results with Noble
palettes. Bottom: recoloring results with Retro palettes. The first column shows the original images.
Photos courtesy of Celine Nadeau (top) and Ana Kuhnen (bottom) (Flickr), and the MIT-Adobe FiveK
Dataset [11] (middle).
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CHAPTER 5

Discrete Element Pa�erns

Visual cryptography (VC) is an encryption technique for hiding a secret image in distributed
and shared images (referred to as shares). VC schemes are employed to encrypt multiple images
as meaningless, noisy patterns or meaningful images. However, decrypting multiple secret
images using a unique share is difficult with traditional VC.

In this chapter, we propose an approach to hide multiple images in meaningful shares. We
can decryptmultiple images simultaneously using a common share, whichwe refer to as aMagic
Sheet. TheMagic Sheet decrypts multiple secret images depending on a given share. The shares
are printed on transparencies, and decryption is performed by physically superimposing the
transparencies. The proposed method was evaluated using binary, grayscale, and color images.

5.1 Introducࢢon

Visual cryptography (VC) is a secret sharing scheme where secrets are hidden in distributed
and shared images. The secrets can be decrypted successfully if shared images (hereafter shares)
printed on transparencies are stacked (superimposed). Decryption can be performed by the hu-
man visual system; therefore, computational resources are not required for decryption. VC
applications include secret message sharing, authentication and identification, and watermark-
ing. To encrypt secrets securely, the secrets also need to be split and embedded into shares with
high-quality images. VC has been studied extensively by the cryptography community and
other communities related to visual media, including computer vision and computer graphics.

In the computer graphics community, various approaches for hiding images in a sur-
face/display have been investigated. In such approaches, a different image is displayed on the
surface depending on the viewer’s perspective or lighting conditions. Here the surface displays
the hidden images itself or projects it onto a wall from an unstructured meaningless pattern or a
different image shown on the surface. Such surprising behavior evokes a sense of wonder; there-
fore, the technique can be applied to various entertainment applications. This is also true for a
VC scheme (VCS). In other words, although VC is essentially a cryptography/steganography
method, it can also be used in entertainment applications.

We propose Magic Sheet, an approach to hide multiple images in sheets. The proposed
method is based on the (k, n)-VCS, where a secret can be decrypted by stacking k out of n

images using a VCS, whereas any k−1 of n images cannot decrypt the secret successfully. Note
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(2, 2)-VCS (2, 2)-EVCS EVCS with Common Share (Ours)

FIGURE 5.1 Left: example of basic (2, 2)-VCS. Middle: example of (2, 2)-EVCS. Right: proposed
EVCS with common shares. The share images (top row) are stacked (physically superimposed) to de-
crypt the secret images (bottom row). The proposedmethod can decryptmultiple images using a common
share. Input images are 200× 200 pixels and output images are 400× 400 pixels.

that shares in the traditional (k, n)-VCS are meaningless, noise-like images. In the extended
(k, n)-VCS ((k, n)-EVCS), shares are composed of meaningful images. Magic Sheet takes
three share images {I1, Ic, I2} and two secret images {IS1 , IS2} as input and computes three
output share images {S1, Sc, S2} such that IS1 and IS2 can be decrypted by stacking S1 and Sc

and Sc and S2, respectively. This is similar to (2, 2)-EVCS; however, in the proposed approach,
share Sc is a common share used to decrypt two secrets simultaneously, which differentiates our
approach from the conventional EVCS (Figure 5.1).

By printing output shares on transparencies, we can physically decrypt secret images. This
can be applied to various recreational purposes, such as cooperative games, in which a player
with a share looks for a player with the other share to reveal secrets.

Contribuࢢons. The primary contributions of this study are as follows.

• We propose an EVCS that uses a unique common share to decrypt multiple secret images
by employing a bitwise AND-like operation.

• We demonstrate the effectiveness of the proposed method using binary, grayscale, and
color images.

• We demonstrate decryption by superimposing shares printed on transparencies.

Focus. In this work, we aim to apply VCS for entertainment purposes, i.e., hiding and re-
vealing images to evoke a sense of wonder. We do not focus on theoretical aspects, such as
security analysis of the proposed method.

5.2 Background

In this section, we briefly describe the traditional (k, n)-VCS and the (k, n)-EVCS for bi-
nary, grayscale, and color images.
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TABLE 5.1 Construction of (2, 2)-VCS. An input white/black pixel p in a share image I1/I2 is encoded
to a block p′ composed of 2 × 2 subpixels. The stacked result Sp′

S representing a pixel color in a secret
image Ip

S is obtained by superimposing Sp′

1 and Sp′

2 .

Ip
S = White

Input Ip
1 White Black White Black

Output Sp′

1

Input Ip
2 White White Black Black

Output Sp′

2

Stacked:
Sp′

S = Sp′

1 ⋆ Sp′

2

Ip
S = Black

Input Ip
1 White White Black Black

Output Sp′

1

Input Ip
2 White Black White Black

Output Sp′

2

Stacked:
Sp′

S = Sp′

1 ⋆ Sp′

2

5.2.1 (k, n)-VCS
With the (k, n)-VCS, a secret image is decomposed into n shares. The secret is decrypted

by the human visual system if k out of n images are physically superimposed; however, any
k−1 out of n images cannot decrypt the secret and there should be no information leakage [72].
Meaningless random dot patterns are used as shares in the traditional (k, n)-VCS.

Meaningless shares in the traditional (k, n)-VCS are extended to meaningful images. Note
that we can construct a (k, n)-EVCS using meaningful shares. Traditional schemes are only
used for binary images, and grayscale images can be converted to binary images by halftoning.
In addition, many color VCSs have been proposed. By employing a subtractive color model,
such as the CMY model, a color image can be decomposed into CMY images and the tradi-
tional EVCS can be applied to each C-/M-/Y-channel image. The C-/M-/Y-channel images are
then merged into a single color image. Here, the resulting shares do not demonstrate excellent
quality, and more sophisticated approaches are available [45]. In addition, developing color
EVCSs remains a challenging problem [60].

5.2.2 Pixel Representaࢢon

Here, we describe pixel (block) representations in a VCS with a focus on the (2, 2)-VCS.
Each of the following patterns is used to represent a white/black pixel in the output share images.
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FIGURE 5.2 Number of possible share combinations for each share pattern. A share pattern is represented
by five 0-1 digits (0 and 1 indicate black and white pixels, respectively). In order, the five digits represent
the block color of share Sp′

1 , common share Sp′
c , share Sp′

2 , the stacking result of Sp′

1 ⋆ Sp′
c = Sp′

S1 , and
Sp′

c ⋆ Sp′

2 = Sp′

S2 . The results are stored in look-up table Lut.

White:

Black:

One of { , , , } is used to represent a white pixel in a stacked result of two shares,
and we use to represent a black pixel. This means that the output shares and decrypted
secret have lower contrast compared to the original images.

5.2.3 Example

Construction of a (2, 2)-VCS is described in Table 5.1. Given share images I1, I2, and a se-
cret image IS , we can compute subpixels Sp′

1 and Sp′

2 in the output shares for each corresponding
pixel Ip

S = p ∈ IS such that the stacked subpixels of Sp′

1 and Sp′

2 (= Sp′

1 ⋆ Sp′

2 ) represents the
color of the corresponding pixel Ip

S , where ⋆ is a stacking operator. Note that a bitwise AND-
like operator is employed if white and black are represented by 1 and 0, respectively. We can
select Sp′

1 and Sp′

2 randomly if the shares represent meaningless noise-like images. For mean-
ingful shares, we must select subpixels such that Sp′

1 and Sp′

2 represent I1 and I2 as closely as
possible.

5.3 EVCS with Common Share

In the proposed method, we use a common share to decrypt multiple (2, 2)-EVCS images.
One secret is decrypted by superimposing one share and the common share, and the other se-
cret is decrypted by superimposing the other share and the common share. In this section, we
describe the proposed EVCS with the common share approach.
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5.3.1 Share Combinaࢢons

First, we compute all possible share combinations. We represent a share combination in the
following tabular form:

{
Sp′

1 , Sp′
c , Sp′

2 , Sp′

S1 , Sp′

S2

}

Sp′

1 Sp′
c Sp′

2

Sp′

S1 Sp′

S2

.

Here, the notations are same as in Section 5.2. The top row represents a share combination
comprising subpixels p′ of share S1, common share Sc, share S2, secret SS1 , and secret SS2 (in
this order). For example, in the left table shown below, we have

{
Sp′

1 , Sp′
c , Sp′

2
}

={ , ,
}. Then, the stacking results would be Sp′

S1 = Sp′

1 ⋆ Sp′
c = , and Sp′

S2 = Sp′
c ⋆ Sp′

2 = , and
the resulting combination would be represented as

{
Sp′

1 , Sp′
c , Sp′

2 , Sp′

S1 , Sp′

S2

}
= {1, 1, 0, 1, 1},

where a white/black block is represented by 1/0 and ⋆ is the bitwise AND operator. Similarly,
the right table shown below represents

{
Sp′

1 , Sp′
c , Sp′

2 , Sp′

S1 , Sp′

S2

}
= { , , , , } =

{1, 0, 0, 0, 1}.

{1, 1, 0, 1, 1} {1, 0, 0, 0, 1}

Here, we attempt to compute all possible share combinations, which is performed as fol-
lows. First, for each possible combination of Sp′

1 , Sp′
c , and Sp′

2 , we compute the stacking re-
sult of Sp′

1 ⋆ Sp′
c and Sp′

c ⋆ Sp′

2 to obtain Sp′

S1 and Sp′

S2 , respectively. Then, we store the pattern{
Sp′

1 , Sp′
c , Sp′

2 , Sp′

S1 , Sp′

S2

}
in look-up table Lut. In Figure 5.2, we plot all possible share patterns

and the number of possible combinations. Note that, although we can find symmetric patterns
and consider them when reducing the computation time of enumerating all possible combina-
tions to some extent, we compute all possible patterns due to the simplicity of our implemen-
tation. The Lut is referenced from the EVCSwithCommonShare procedure to obtain a valid
white/black block arrangement.

5.3.2 Proposed Algorithm

The algorithm is given in Algorithm 3. Given input images (share I1, common share Ic,
share I2, secret IS1 , and secret IS2), we assign white/black to the corresponding output share
images S1, Sc, and S2, where I1, Ic, and I2 have the same width and height, and S1, Sc, and
S2 have twice the width and height of the input. Note that we apply the algorithm directly if
the inputs are binary images. If the inputs are grayscale images, we first apply halftoning using
Ostromoukhov’s error diffusion algorithm [75] to convert the images to binary images. We
describe extension to color input images in Section 5.3.4.

To assign white/black to the output images, we obtain white/black colors from the input
images. Since the output images are twice the size of the input images, an (x, y) pixel in an
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Algorithm 3 EVCSwithCommonShare
1: for y ← 0 : height do
2: for x← 0 : width do
3: P ← {I1(x, y), Ic(x, y), I2(x, y), IS1(x, y), IS2(x, y)}
4: C ← RandomSelect(Lut[P ])
5: for k ∈ {1, c, 2} do
6: AssignColor(Sk(x′, y′), C)
7: end for
8: end for
9: end for
10: return S1, Sc, S2

input image corresponds to a (x′, y′), 2×2 pixel block in the output image. Then, a block color
pattern is constructed from the input colors (Algorithm 3, line 3). We select a valid combination
randomly from the Lut by querying the pattern (Algorithm 3, line 4). Finally, the white/black
blocks are assigned to each output image (Algorithm 3, lines 5-7).

5.3.3 Share Opࢢmizaࢢon

After computing EVCSwithCommonShare, we improve the visual quality of the output
shares by applying a share optimization algorithm [58]. For each pixel block, we rearrange
the white/black such that the resulting shares have better visual quality while the remaining
stacking results remain unchanged. The results are shown in Figure 5.3. Note that the algorithm
is described in detail in the Appendix C.

5.3.4 Extension to Color Images

The proposed method can be extended to a color EVCS. As described in Section 5.2, we
decompose the given images into C-/M-/Y-channel images. Then, we apply Ostromoukhov’s
error diffusion method [75] to convert the images to halftone images. Note that we initially
applied the structure-aware error diffusion method [16]; however, this method did not show
significant improvement. Therefore, we used Ostromoukhov’s method, which is simple and
faster. Contrast-aware halftoning [53] or other state-of-the-art error diffusion approaches [61]
can be employed for faster and better image preparation. Regarding the color EVCS, although
it is not obvious that the proposed method can be incorporated, we can improve the visual
quality of the output shares using amore sophisticated approach [45]. However, the color EVCS
remains a challenging and open problem [60].

5.4 Results

We applied the proposed method to binary, grayscale, and color images. The results for
binary images are shown in Figure 5.1. Figures 5.3 and 5.9 show the results for grayscale
images, and Figures 5.4, 5.6, and 5.10 show the color EVCS results.
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Share S1 Common Share Sc Share S2

Optimized S1 Optimized Sc Optimized S2

Close-up of S1 Close-up of Optimized S1

FIGURE 5.3 Results of proposed EVCS. Input images are 512× 512 pixels and outputs are 1024× 1024
pixels. Top: unoptimized results. Middle: optimized results. Bottom: close-ups of unoptimized and
optimized S1.

We generated output results printed on transparencies using a Canon ImageRUNNER AD-
VANCE C3330i (Figures 5.5 and 5.6 (bottom)). To improve contrast, we printed each share
on two transparencies and superimposed them. As shown in Figures 5.5 and 5.6 (right), the
crosstalk effect is observable in the decrypted images due to the influence of the transmitted
background light; however, the secret images are revealed successfully, and the secret text is
readable.
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5.4.1 Visual Comparison

Figure 5.3 compares the source input images and output images with/without optimization
(Section C.1). For example, as can be seen in the optimized result shown in Figure 5.3 (Bottom),
the structures are better preserved and textureless areas are smoother. Although the quality
improvements are not always obvious, the results demonstrate higher quality relative to both
visual quality and quantitative evaluations.

5.4.2 Numerical Comparison

We followed previous approaches to evaluate the results quantitatively [16,54,58,80]. Here,
we computed the mean structural similarity index measure (MSSIM) [102] and the peak signal-
to-noise ratio (PSNR) to compare the input and output images with/without optimization. We
measured the average MSSIM and PSNR over 10 runs. Note that the color results were con-
verted to grayscale images for comparison.

The MSSIM and PSNR results are shown in Tables 5.2 and 5.3, respectively. Since the
algorithm outputs binary images, we first applied the Gaussian blur with a kernel size of 5× 5
and compared them to the input source images. Note that the input source images were scaled
to the same size as the output images. Generally, the results with optimization achieved higher
MSSIM and PSNR values.

Although both MSSIM and PSNR achieved higher values after optimization, in the case
shown in Figure 5.1 (binary image) in Tables 5.2 and 5.3, the visual quality was worse due to
information leakage, as shown in Figure 5.7. In other words, there is a tradeoff between visual
quality and the MSSIM and PSNR values. Note that such visual artifacts resulting from the
optimization procedure were only observed for binary images, i.e., the optimized grayscale and
color images did not demonstrate such artifacts.

This is because, in the binary cases, the figures (contents) in the images have no textures, i.e.,
these images consist of black and white regions with boundaries. Therefore, in a share image,
boundaries (from the other image) in the textureless regions are noticeable in the optimized
share images. In contrast, we did not notice such information leakages in the optimized share
images in the grayscale and color image results (Figures 5.9 and 5.10) because these images
have textures and a busy appearance compared to the binary images.

However, since optimization is an optional process, we can simply omit this procedure
when we apply the proposed method to binary images, whereas optimization can be applied
to grayscale and color images to improve visual quality. To alleviate and improve optimization,
a different objective function could be introduced rather than the current mean-squared-error
and MSSIM-based function (Equation (C.1) in the Appendix).
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Share S1 Common Share Sc Share S2

FIGURE 5.7 Information leakage on images after optimization applied to output shares with binary images
as input (Figure 5.1 right).

5.4.3 Computaࢢon Time

We measured computation time using an Intel Core i5 @ 2.9 GHz personal computer with
16 GB RAM. We implemented our algorithms in C++ using OpenCV. The computation of all
possible share combinations to prepare the look-up table Lut (Section 5.3) took approximately
0.5 ms. Table 5.4 summarizes the computation times for the EVCSwithCommonShare proce-
dure with andwithout optimization. As can be seen, the optimization process is computationally
expensive because calculating the MSSIM for each loop is computationally expensive, and this
may not be worth the cost.

Rather than using the MSSIM, we can use another structure similarity measure; however,
this will be the focus of future work. For color images, we simply compute EVCSwithCom-
monShare for each CMY channel for color images, which can be parallelized, or we can employ
a more sophisticated approach for a color EVCS.

TABLE 5.4 Computation time of EVCSwithCommonShare with/without optimization.

Input size Without Opt. With Opt.
Figure 5.1 right (binary) 200× 200 0.034 sec 75 sec
Figure 5.3 (grayscale) 512× 512 0.232 sec 482 sec
Figure 5.4 (color) 463× 680 0.785 sec 1738 sec
Figure 5.9 (grayscale) 600× 375 0.198 sec 431 sec
Figure 5.10 (color) 600× 375 0.570 sec 1238 sec

5.4.4 (2, n)-EVCS
In Section 5.3, we described the proposed method for the (k, n)-EVCS where k = 2 and

n = 2. Due to its simplicity and scalability, it is straightforward to extend the proposed method
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to greater n values. The (2, 4)-EVCS and (2, 5)-EVCS computed by the proposed method are
shown in Figure 5.8.

5.5 Conclusion and Future Work

We have presentedMagic Sheet, a VCS that uses common shares (a type of universal share).
With the common shares, we can decrypt multiple secrets simultaneously depending on a given
share. Magic Sheet hides secret images in meaningful shares and can be applied to binary,
grayscale, and color images. Since the proposed method is based on a bitwise AND-like oper-
ation, we can physically realize shares on transparencies and retrieve secrets by superimposing
these shares.

Future Work. In this study, we applied the proposed method to a pair of (2, 2)-EVCSs for
both grayscale and color images, and we demonstrated a (2, n)-EVCS, where n > 2. Note
that the proposed method can also be applied to pairs of general (k, n)-EVCSs. In addition,
although we employed 2× 2 pixel expansion in the proposed method, it would be interesting to
investigate an algorithm with no pixel expansion to achieve higher contrast while maintaining
visual quality. In addition, the proposed method employs a simple optimization algorithm to
improve the visual quality of the output shares, and this algorithm requires significant time to
achieve optimization. Thus, in the future, we will investigate a faster approach.

With the color EVCS, we can observe some information leakage in the stacked result of
S1 and S2, i.e., S1 ⋆ S2 in Figure 5.10. Although we have focused more on the entertainment
purposes of the proposed method and did not focus on security aspects, it is important to analyze
such aspects quantitatively.
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CHAPTER 6

Feedback from an Expert

In each chapter, we validated the proposed method by conducting user study and perfor-
mance analysis. In addition, we asked a professional designer whether the proposed tools are
sufficient for practical purposes so as to support him in his work.

We conducted an informal interview with him, which lasted for about two hours. First, we
briefly introduced the proposed tool, i.e., the functionalities of the tool, and then asked several
questions regarding the functionalities, usefulness in actual design scenarios, as well as, free
comments.

6.1 Comments on Discrete Element Textures

Funcࢢonality. He commented, “For functionality, it’s a good starting point for non-
professional as it gives a good solid base for wallpaper or background composition. For pro-
fessional it can be a good tool to quickly generate different proposal rapidly to test and verify
different potential composition.” This is actually our aim in this thesis; to support users by the
proposed tools. In particular, he preferred the flow editing functionality of the tool as indicated
by this statement: “Most of the time, it’s cumbersome to edit that–arrangement of numerous
elements–by hand.”

Usefulness. For the usefulness, he commented, “Sometimes, graphic designer doesn’t have
much time to work on projects, so reducing the production time during the experimentation
phases can be of good help.” This is one of the requirements of the proposed tool (R1 in Sec-
tion 1.3). His comment shows that the requirement captured the practical setting.

Free Comments. “One improvement could be on modifying the size of some of the ele-
ments,” he commented. Although we did not mention the limitations of the proposed tool
during the interview, he mentioned the very limitation, which confirms our submission that the
future research direction is promising.

6.2 Comments on Discrete Color Pale�es

Funcࢢonality. He commented, “Color is really important in any design, color balance can
be difficult to achieve, especially if attached to a specific style like pastel or warm colors.” This
is the comment referring to the customization of the functionality of the proposed model. He
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also commented that “Not everybody has an education in art and color sensitivity, so allowing
the user to choose a pre-selected style and allowing for customization is a good tool for anyone.
A professional designer doesn’t have much time, so being able to rapidly test out different color
combination is a great time saver,” he continued.

Usefulness. He also commented about its usefulness in practical scenarios: “For a profes-
sional creating a design identity for a client, maybe a pack for a website, business card and
graphic identity for a logo,” and “For an amateur, if you are trying to design a holiday card it
can be a good starter to find a good color balance based on a defined style, like Christmas for
example.” He emphasized on the importance of “easier access to modification, and also easier
access to iterative design.”

Free Comments. He mentioned that the proposed tool focuses on solid color palettes. He
suggested we should also consider non-solid palettes, i.e., “use of gradient could be a good
addition,” which would improve its practical usage in actual scenarios.

6.3 Comments on Discrete Element Pa�erns

Funcࢢonality. Since the proposed method is very specific, he had no comments on the spe-
cific functionalities of the proposed tool.

Usefulness. He commented that the results generated by the proposedmethod are of interest:
“very impressive result, surprising use of image combination,” and suggested several practical
applications listed below:

• Online security and robot verification
• Commercial campaign, e.g., hiding a winning message on a bottle of soda for a campaign
• Kids party or any kind of secret message, on cereals package for example
• Encrypted arts

“This is more like an interesting experience,” he commented.
Free Comments. He suggested several insightful ways for the fabrication, e.g., using func-

tional inks.

6.4 General Comments

We also asked him for comments on the proposed tools from a comprehensive point of view.
He commented that the proposed tool for discrete element textures and discrete color palettes
“do help visualize faster nice and balanced images,” and “allows less able amateur to generate
personal content, for their own website or cards or something” as “you can quickly generate
proposal” using the proposed tools.

As regard to the practical aspect, he commented: “If you design patterns, and if it’s the
product to sell, then it’s good for a first stage exploration” and “It could be part of a final
product if used for procedural generation of patterns on background elements for a poster.”
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In summary, he concluded with a comment: “Anything that would need speed will be ap-
plicable for this tool, may it be quick creation of proposal design or the design of a poster with
intricate elements where some require to be wrapped with patterns.”

Overall, he repeated that the speed of computational performance is very important because
professional designers have to create designs for clients and the time to create designs for each
client is limited in most cases. In addition, the speed is also important in the cases where time is
not limited since users can repeat trials and errors to create desired designs, which is a tedious
and time-consuming stage of the design exploration and to be streamlined by the computational
design tools.
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CHAPTER 7

Conclusion and Future Work

We conclude this thesis by outlining the goals we have achieved and also discuss future
work.

7.1 Summary

The motivation of this thesis is to support users’ intellectual and creative works, and the
goal is to provide computational tools for discrete element layouts by focusing especially on
its geometric\non-geometric aspects: since the arrangement of discrete elements affects human
visual perception, which is difficult to formulate because of the multimodality of human prefer-
ence for visual designs. These challenges consequently prevent researchers and developers from
providing tools for supporting users’ layout design exploration. To tackle these problems, we
employed a machine learning approach or assumed several constraints and formulated the de-
sign goal as an objective function. Furthermore, we have proposed computational design tools
for abstract elements in a general layout design domain by parameterizing the design space.
While we mathematically formulated the spatial uniformity in the discrete element texture tool
and the image quality in the discrete element pattern tool, the human color preferences we dealt
with in the discrete color palettes hardly could be formulated mathematically. However, the
L1 regularization of the LASSO–one of the sparse modeling approach we employed in the
proposed method allows us to parameterize the multimodality of the human color preferences.

In summary, we have tackled a design problem of abstract element layouts in a general
domain by parameterizing the design space while putting the human visual perception or human
visual preferences into consideration. The proposed computational (parametric) design tools
support users’ design exploration of spatial element arrangements and color combination easily
and efficiently. Even if the objective function is multimodal such as human color aesthetic
preferences, we have shown that it can be formulated by employing a sparse modeling approach.
Specifically, we have proposed three computational design tools summarized below.

First, we have provided a computational design tool for creating a spatial uniform distribu-
tion of discrete elements by applying multi-class anisotropic blue noise sampling. The multi-
class blue noise distribution allows a user to create a spatially uniform discrete element dis-
tribution. By approximating an element as an ellipse or a disk, the collision detection can be
checked efficiently, which makes the distribution generation at an interactive rate. Besides, the
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user can edit elements layout by directly manipulating an element or editing the underlying flow
field to control elements orientation in a macroscopic way. We have demonstrated the proposed
method by applying it to create various textures composed of discrete elements.

Second, using a machine learning approach we have provided a computational design tool
for creating discrete color palettes. We trained the proposed palette rating model using a large
dataset including general human color palette preferences. Using the palette rating model, we
have proposed an additional compatible color suggestionmethod by efficiently exploring a huge
color space. We have also provided a way to customize (specialize) the palette rating model to a
specific color tone (e.g., pastel). We have demonstrated the proposed method by applying it to
2D pattern coloring, photo recoloring, product color design exploration, and room decoration.

Third, we have provided a computational design tool for creating discrete element patterns
using an EVCS with common shares. Our tool is the first to possess all of the following char-
acteristics:

• A method that can generate meaningful shares, i.e., composed of a structured pattern,
rather than a noisy unstructured pattern.

• A method that can generate a common share used as a key to decrypt multiple secrets.
• The secrets can be decrypted by superimposition of shares printed on transparencies.
• A method that can be applied to binary, grayscale, and color images
• A method that optimizes the visual quality of shares.

We expect that this method should be employed in entertainment applications since patterns
created by it can evoke a sense of wonder in people as we have demonstrated in Section 5.4.

In the first method, we employed a procedural approach to generate the spatially uniform
distribution. This is because spatial uniformity can be formulated as an objective function.
Therefore, we have employed a procedure that generate such a distribution and analyzed the
quality of the distribution using point set analysis tools. In contrast to the first method, we em-
ployed a machine learning approach in the second method. This is because people’s aesthetic
preference is difficult to formulate due to the nature of its multimodality. A machine learning
approach can be effective in this situation, since we can train a model using a dataset com-
posed of ratings based on human aesthetic preferences. By alternating\customizing the dataset,
a model can be trained with a bias. Also, the color palette preference model can be trained
for not only specific color such as pastel or retro, but also for Japanese, French, or even just
for myself. In the third method, we employed meta-heuristic approach to solve a combinatorial
optimization problem. It is worth noting that the visual quality of a pattern can be formulated
as an objective function. However, in this case, solving the combinatorial optimization prob-
lem may be time-consuming due to the nature of the combinatorial complexity. Therefore, a
meta-heuristic approach can work well in this situation.

Both first and second tools can be used for general spatial layouts and color designs, respec-
tively, since these tools handle abstract data structures such as proxy polygons or color itself. In
contrast to the first and second tools, the third tool is more application specific, i.e., it provides
a tool for creating EVCS with common shares, and it is difficult to apply for general discrete
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element pattern generation purpose. However, we are positive that the methodology we have
proposed for the constrained discrete element pattern optimization can be applied widely.

7.2 General Discussions

In Section 1.3, we enumerated the requirements for the proposed computational design tools
and the corresponding validations to be assessed. In each chapter that describes the proposed
tool, we have performed quantitative and qualitative evaluations including computational per-
formances analysis (V1) to check whether the proposed methods can generate design sugges-
tions at an interactive rate so as to efficiently support users’ trial-and-error design process (R1),
and user studies (V3) to check if the proposed methods provide better functionalities in compar-
ison to the state-of-the-art equivalents. We have also demonstrated various applications of the
proposed methods (V2) to demonstrate their versatility (R2). Finally, we asked a professional
designer to assess the usefulness of the proposed tools (V3). As described in Section 6.4, he
emphasized on the importance of the computational performance of the design tools in practical
design scenarios. Hence, we have set up several requirements including the computational per-
formance (R1), the usefulness (which is confirmed by the professional designer’s emphasis),
as well as, V1. The requirements R2 and R3 refer to the applicability of the proposed tools,
the usefulness of the proposed tools are also validated by the comments of the professional de-
signer on each tool, as well as, V2 and V3. However, he also mentioned several improvements
of the proposed tools, which are important for practical usage and suggested some fruitful future
direction to be pursued.

In Figure 1.4, we showed the focal areas of the proposed methods, i.e., abstract element ar-
rangements in a general layout domain. By providing three different computational design tools
and focusing on the element’s geometric\non-geometric aspects, we tackled some challenging
layout problems including the human visual perception and the human aesthetic preferences as
its important visual factors. In the discrete element texture design tool, we approximated an el-
ement as a proxy shape. Such abstraction allows us to deal with an arbitrary shape of elements.
In the discrete color palette design tool, we customized the palette aesthetic rating model to any
type of color images, by which we can capture the multimodality of the human color aesthetic
preferences in a parametric manner. In addition, we trained an aesthetic rating model by a ma-
chine learning approach. Hence, we have provided a generalized color combination design tool.
Consequently, users can explore the layout design space easily and efficiently. Besides, owing
to the abstract and general purpose nature of the proposed tools, users can use the tools at the
early stage of the design exploration.

7.3 Contribuࢢon to Knowledge Science

As we stated in Chapter 1.1, the main motivation of this thesis is to support users’ intellec-
tual and creative work by providing computational design tools for visual design, especially in
discrete element layouts. The computational design tools proposed in this thesis can not only
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generate various design candidates efficiently, but also produce more design solutions which
cannot be obtained from one’s idea and intuition. Moreover, these tools have the potential to
open up a new frontier of various design fields. In this thesis, we focused on human-related
objectives including human visual perception and aesthetic preferences. At the present mo-
ment, supporting tools for visual designs that can optimize human-related design specifications
are limited. Aside from we covering several portions of the visual design field, the proposed
tools in this thesis solve several challenging problems with human-related objectives, and we
have demonstrated their various applications; hence the proposed methods can be applied to
several other problems and design fields. From the perspective of knowledge science, our com-
putational design tools provide a foundation for users’ design exploration of discrete element
layouts.

7.4 Limitaࢢons and Future Work

Although the tools proposed in this thesis satisfied all the requirements validations discussed
here, we have not fully covered the discrete element layout domains shown in Figure 1.4. Areas
such as the gradient regions between the darker gray regions (covered by previous researches)
and regions we have covered (orange, green, and purple areas), are still remaining.

In addition, although we have covered several regions mostly by the computational design
tools for discrete element textures and discrete color palettes, we have not provided an integrated
tool that can simultaneously deal with both geometric and non-geometric aspects.

For example, in regard to the tool for the discrete element textures, we generated the el-
ement distributions in a spatially uniformly manner. However, the spatial uniformity differs
from visual uniformity as we have to take into account both the spatial arrangement and the
appearance of the elements simultaneously so as to generate the visually uniform distribution.
Accomplishing this task entails solving a joint optimization problem.

In regard to the tool for discrete element patterns, utilizing an energy function composed of
structure and coherence terms, which captures the spatial (neighboring) relationships, we jointly
optimized the sub-pixel (element) arrangement to improve the visual qualities (appearance) of
shares. Although this topic focuses on a very specific application, the proposed framework can
be employed for the joint optimization of spatial and appearance of elements in various design
areas.

Evaluaࢢon of Computaࢢonal Design Tools. Computational design tools support users’ design
exploration. The tool not only supports in the provision of useful methods for efficient design
creation but also provides a user with new unimaginable ideas. Although an interview can
be conducted for the qualitative evaluation of the tools, it is difficult to quantitatively assess
whether they could successfully provide the user with new ideas; which raises an important
question of this research domain, and it is one of the fruitful future directions to be explored.
It is also important to observe how users employ computational design tools: When do they
use the tools? At what stage of the design exploration do they use the tools? How do they
collaborate with the tools?
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Finally, we also have to think of what is the ideal design support in proposing computational
design tools. For example, if a user is satisfied with a design suggestion generated by the design
tool, he\she may stop further design exploration. Therefore, appropriate support is needed to
bring out the user’s potential. The tools proposed in this thesis aim at supporting general layout
design and first stage exploration, as well as the creation of new opportunities for further design
improvements. However, we have not proved that our design tools appropriately provide these
opportunities. The quantitative assessment of whether the proposed tools provide sufficient
rooms for a user’s further design exploration is an important research question and will open up
a new frontier in the computational design field.
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CHAPTER A

Appendix for Discrete Element
Textures (Chapter 3)

A.1 BuildRMatrix

In the proposed algorithm, RMatrix is constructed according to the literature [103]. In our
case, the normalized RMatrix is returned by the BuildRMatrix(·) function.

Algorithm 4 BuildRMatrix({ri}i=0:c−1)
// user specified per-class values; {ri},
// number of classes; c
for i = 0 to c− 1 do

r← ri // initialize diagonal entries
end for
sort the c classes into priority group {Pk}k=0:p−1 with descreasing ri

C ← ∅ // the set of classes already processed
D ← 0 // the density of classes already processed
for k = 0 to c− 1 do

C ← C
⋃ Pk

for each class i ∈ Pk do
D ← D + 1

r2
i

end for
for each class i ∈ Pk do

for each class j ∈ C do
if i ≠ j then

r(i, j)← r(j, i)← 1√
D

end if
end for

end for
end for
rscale ← r/ min(r) // element-wise division
return rscale
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A.2 Staࢢsࢢcal Analysis for Mulࢢ-class Anisotropic Blue Noise
Sampling

We analyzed our algorithm by calculating its power spectrum and anisotropy according to
the literature [54]. Figures A.1 to A.3 show the analysis results for 3-class, 5-class, and 7-
class distribution respectively. We plotted the total set and each class. To verify the anisotropic
sampling, a distribution is warped back from a scaling projection to a unit square. In the original
distribution, we employed a simple scaling transform from p = (x, y) to q = (u, v), i.e.,
q = ϕ(p), where

ϕ : (u, v) = (x/2, y). (A.1)

Therefore, the points can be warped back by applying a Jacobian matrix expressed as

J(ϕ−1(q)) =

⎡

⎢⎣
∂x
∂u

∂x
∂v

∂y
∂u

∂x
∂y

⎤

⎥⎦ =

⎡

⎢⎣
2 0

0 1

⎤

⎥⎦ . (A.2)

The spectrum analysis results are shown in Figures A.1 to A.3. Here, simple scaling is used
for the warp to test its anisotropic and multi-class sampling properties (left to right: original
(anisotropic) samples, warped (isotropic) samples, power spectrum averaged over 10 runs, and
the corresponding radial mean and anisotropy plots). The total set contains approximately 3800
samples, and each class contains an almost equal number of samples.

As can be seen, the total set of all cases exhibits blue noise properties. In Figure A.1,
each class also exhibits blue noise properties. However, in Figures A.2 and A.3, each class is
slightly biased due to a smaller number of points and may also suffer from a scaling effect and
constrained distribution resulting from multi-class sampling. However, we aim for multi-class
element distribution rather than a pure sampling application, such as anti-aliasing; thus, this is
acceptable because we can generate visually appealing results, which are shown in Section 3.4.

The spectrum analysis for 16-/32-/64-classes are shown in Figure A.4. As can be seen, our
algorithm can also generate distributions with blue noise properties even with a large number
of classes.

A.3 Comparison of Sampling Approaches

We compare the distribution methods in Section 3.5. Here, we compare our method (Fig-
ure A.1) to anisotropic sampling with random class assignment (Figure A.6). We find that there
are significantly sparser and denser areas of samples in each class in Figure A.6 than those
shown in Figure A.1, which results in fewer blue noise qualities.

We also generate a discrete element pattern using three methods: (a) multi-class isotropic
sampling [103], (b) anisotropic sampling [54] with random class assignment, and (c) our multi-
class anisotropic sampling (Figure A.5). As can be seen, the anisotropy of an element is ignored
and the elements are not well populated in Figure A.5a. Although Lagae and Dutré employed
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FIGURE A.1 Spectrum results for 3-class distribution.

an isotropic Poisson disk sampling approach for object distribution [50], Figure A.5 shows
that isotropic Poisson disk sampling is unsuitable for anisotropic element distribution. In Fig-
ure A.5b, the elements are well populated; however, it does not consider multi-class distribution
as in Figure A.5a. As a result, the same class elements are not well uniformly distributed in the
whole domain. As shown in Figure A.5c, ours is well populated and the elements of the same
class are uniformly distributed in the domain.

A.4 All Pa�erns Shown to Parࢢcipants

All of the patterns shown to the participants in our experiment are shown in Figure A.7.
Since the previous discrete element placement approaches lack the ability to distribute multi-
class or anisotropic elements, we compare our approach to discrete element texture synthesis
approaches.

Although the statistical test shows that our method outperforms other methods, the results
from these synthesis approaches are highly dependent on the input exemplar. As mentioned in
Section 3.1, creating a visually appealing swatch (pattern), i.e., an exemplar, is difficult. This
indicates that the proposed method might be useful while creating a visually appealing pattern,
and the resulting pattern can be used as input exemplar for discrete texture synthesis approaches.
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FIGURE A.2 Spectrum results for 5-class distribution.
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FIGURE A.3 Spectrum results for 7-class distribution.
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FIGURE A.4 Spectrum results of distribution with more classes. Left to right: 16-/32-/64-classes. In
these cases, simple scaling is applied, as well as warp back from a scaling projection to a unit square for
spectrum and anisotropy analysis.

(a) Multi-class (isotropic) (b) Anisotropic (random class) (c) Ours

FIGURE A.5 Comparison of three methods: (a) multi-class isotropic sampling [103], (b) anisotropic sam-
pling [54] with random class assignment, and (c) our multi-class anisotropic sampling. The generated
patterns are shown in the top row, and the elements with proxy shapes are shown in the bottom row.
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FIGURE A.6 Spectrum results for 3-class distribution. In this case, we first generate a distribution by
anisotrpic sampling. Then, each sample is assigned a class ID randomly while maintaining a nearly
equal ratio relative to the number of classes.
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Ours (Clipped) BBT06 [1] HLT09 [2] IMIM08 [3] LGH13 [4]Ours MWT11 [6]

(a)

(b)

(c)

(d)

(e)

(f)

FIGURE A.7 All patterns shown to participants in our experiment. Left to right: ours (clipped), ours,
BBT06 [6], HLT09 [41], IMIM08 [42], LGH13 [52], and MWT11 [62]. Top to bottom: (a) leaf, (b)
snake, (c) balloon, (d) flower, (e) ant, and (f) wheat. The results other than ours are courtesy Landes et
al. [52].
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CHAPTER B

Appendix for Discrete Color Pale�es
(Chapter 4)

B.1 Proposed Algorithm

The algorithms proposed in Section 4.3 are given below.

Algorithm 5 SuggestCompatibleColors(t, k, Ncand, Nsample, τ, κ)
1: // palette; t,
2: // index; k,
3: // #cands; Ncand,
4: // #samples; Nsample,
5: // thresholds; τ , κ
6: ◃ Sampling candidate’s HSVs
7: f ← ComputeHueProbability(t, k) ◃ Equation 4.3 or Equation 4.4
8: h← SamplingFromHueProb(f , Nsample)
9: s ∼ N (µs, σs) ◃ §4.3.2
10: v ∼ N (µv, σv) ◃ §4.3.2
11: ◃ Compute rating
12: for i = 1→ m do
13: ci ← (hi, si, vi)
14: Ccand

i ← CompatibleCandidates(t, ci, τ ) ◃ Equation 4.2
15: end for
16: C ← PerceptualThresholding(Ccand, Ncand, κ) ◃ Equation 4.5
17: return C

B.2 Feature Extracࢢon

We extract the following features from a given palette. The basic, plane, and HSV features
are derived from those used in [73].

Color Space. We extract the features of a given palette from RGB, CIELAB, HSV, and
CHSV color spaces.
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Algorithm 6 SamplingFromHueProb(f , n)
1: // function; f ,
2: // #samples; n
3: H ← ∅ ◃ initialize a set that holds accepted hue samples
4: for i = 1→ n do
5: ◃ Rejection sampling from f
6: hi ← RandomInteger[0,360] ◃ Select a hue value
7: ui ∼ U[0,max f ]
8: if ui ≤ f(hi) then
9: H ← H ∪ {hi}
10: end if
11: end for
12: return H ◃ Out of n samples, m accepted hue samples are returned

Basic Feature (BF). Basic statistics, i.e., Mean, StdDev, Median, Max, Min, and MaxMinDiff,
for each of the three dimensions of a color space are extracted. For the BF vector, 72 features
are extracted.

Plane Feature (PF). A 2D plane is fitted to 3D color coordinates using PCA in RGB,
CIELAB, and CHSV color spaces, and Normal, Variance, and SSE are computed as the plane
features. Twenty-one features are extracted for the PF vector.

HSV Feature (HsvF). In HSV color space, we extract the Mean, StdDev, Min, Max, LogMean,
LogStdDev, LogMin, and LogMax features from the hue probability of color c; pc. We also extract
these features from the hue adjacent probability of colors b and c; padjbc and the hue joint prob-
ability of b and c; pjointbc . Here pc is the percentage of colors in training palettes with hue c, padjbc

is the percentage of adjacent colors b and c, and pjointbc is the percentage of colors b and c in the
same palette. Twenty-five features are extracted for HsvF.

In addition, we extract the hue entropy, which is defined as a probability distribution p(θ)
computed using the hues of a given palette comprising n colors as a mixture of von Mises
distribution, i.e., p(θ) ∝ ∑n

i=1 exp(2π cos(θ − θi)).

Addiࢢonal feature (CH and Grads). In addition to the above 118 features, we also extract
three additional features. The first feature is Color Harmony (CH) [78]. The process to cal-
culate CH is given in Section B.4. The other features are lightness and hue gradation (Grads),
according to the analysis described in Section B.5. We compute linear regressions in ascend-
ing/descending order of colors in a palette, and the resultingR2 values are used as the gradation
features. In total, we extract 121 features from a given palette.

B.3 Model Analysis

A detailed analysis of the contributions of each feature extracted from a given palette is
shown in Table B.1. The results show that BF has the largest contribution. According to the
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results, we include all these features for feature extraction (row 13).

TABLE B.1 Contributions of each feature (BF, Basic Feature; PF, Plane Feature; HsvF, HSV Feature; CH,
Color Harmony; Grads, Gradation).

BF PF HsvF CH Grads R value
1 # 0.70
2 # 0.38
3 # 0.27
4 # 0.33
5 # 0.14
6 # # 0.42
7 # # 0.37
8 # # # 0.71
9 # # # # 0.51
10 # # # 0.71
11 # # # # 0.71
12 # # # # 0.72
13 # # # # # 0.72

B.4 Two-color Harmony Model

Ou et al. proposed the following two-color harmony model based on the results of a user
study [78]:

CH = HC + HL + HH , (B.1)

where HC , HL, and HH are the terms related to chroma, lightness, and hue, respectively, cal-
culated by the following equations.

HC = 0.04 + 0.53 tanh(0.8− 0.045∆C)
∆C = [(∆H∗

ab)2 + (∆C∗
ab/1.46)2] 1

2

HL = HLsum + H∆L

HLsum = 0.28 + 0.54 tanh(−3.88 + 0.029Lsum)
in which Lsum = L∗

1 + L∗
2

H∆L = 0.14 + 0.15 tanh(−2 + 0.2∆L)
in which ∆L = |L∗

1 − L∗
2|

HH = HSY1 + HSY2

HSY = EC(HS + EY )
EC = 0.5 + 0.5 tanh(−2 + 0.5C∗

ab)
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HS = −0.08− 0.14 sin(hab + 50◦)− 0.07 sin(2hab + 90◦)

Here L∗, C∗
ab, and hab are the lightness, chroma, and hue values in the CIELAB color space,

respectively. We calculated CH as a feature for all combinations of colors in a given palette.

B.5 Gradaࢢon Analysis

We analyzed whether a color palette in the [73] dataset displays linearity in the order of
colors. We counted the lightness/chroma/hue gradation of a palette for all palettes in the dataset
to determine if the order of colors decreases (increases) monotonically in the palette’s line plot
(Figure B.1). A palette with lightness gradation tends to obtain a higher rate than those without
lightness gradation (Figure B.1a). As can be seen, hue gradation has the same tendency as
lightness gradation (Figure B.1c); however, no significant differences were observed for chroma
(Figure B.1b).

(a) Lightness (b) Chroma (c) Hue

FIGURE B.1 Histogram of #palette of (non-)gradations in the dataset.

We also analyzed the quality of linearity of the lightness gradation. We split the dataset to
lower-/middle-/higher-rated groups. Each group had 1, 000 palettes. Then, all the palettes in
the group were plotted and linear regression was computed (Figure B.2). The bold blue and red
lines are the fitting results. From theR2 value, it can be observed that linearity tends to increase
as the rating increase. Therefore, we include the gradation term in the feature extractionmethod.

(a) Low-rated (b) Mid-rated (c) High-rated

FIGURE B.2 Linearity of lightness gradation.
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CHAPTER C

Appendix for Discrete Element
Pa�erns (Chapter 5)

C.1 Share Opࢢmizaࢢon

We minimize the following objective function:

Etotal(Ip, Sp′) = Es(Ip, Sp′) + λEc(Ip, Sp′), (C.1)

where Es and Ec are structure and coherence terms, respectively, defined as follows.

Es(Ip, Sp′) =
∑

k∈{1,c,2}
wk

(
wgG(Ip

k , Sp′

k ) + wt

(
1−MSSIM(Ip

k , Sp′

k )
))

Ec(Ip, Sp′) =
∑

k∈{1,c,2}

∑

q∈N(p)

∥∥∥Sq′

k − Sp′

k

∥∥∥e−β·∥Iq
k−Ip

k∥
(C.2)

Here, p is the pixel location in input I and p′ is the corresponding block of subpixels in the
output share S.

Structure Term. The structure term Es comprises a tone similarity term and a structure sim-
ilarity term [58, 80]. Tone similarity is measured by G(Ip

k , Sp′

k ), where Ip and Sp′ are the local
region, which is one-half the size of the pixel expansion plus one-half the size of the Gaus-
sian kernel, and G(·, ·) measures the mean-squared-error of the Gaussian-blurred input images.
Here we use an 11 × 11 Gaussian kernel. We employ the MSSIM [102]; thus, the structure
term (1−MSSIM(Ip

k , Sp′

k )) measures the dissimilarity of the structures of Ip
k and Sp′

k . Note that
parameters wk, wg, and wt are weight factors. Here, wk = 1 for all k, and wg = wt = 0.5.

Coherence Term. The coherence term Ec smooths noise that appears in textureless ar-
eas [58]. Here, p and q are the pixel locations in input I , and p′ and q′ are the corresponding
blocks of subpixels in the output share S. N(p) is a set of eight connected neighboring pixels
of p. The exponential term is used to attenuate the energy as the difference between Ip

k and Iq
k

increases, and β controls the attenuation rate (β = 5). Note that we use λ = 0.01 to balance the
structure and coherence terms in Etotal.
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Algorithm 7 Optimization procedure
1: T ← T0
2: repeat
3: for p ∈ I do
4: Eold ← E(Ip, Sp′)
5: C ← RandomSelect(Lut[ShareComb(p)])
6: for k ∈ {1, c, 2} do
7: Rearrange(Sp′

k , C)
8: end for
9: Enew ← E(Ip, Sp′)
10: ∆E = Enew − Eold

11: Sample r ∈ [0, 1] at random
12: if r < exp(min(0,−∆E/T )) then
13: Eold ← Enew

14: else
15: Undo rearrange Sp′

k , ∀k ∈ {1, c, 2}
16: end if
17: end for
18: T ← c× T
19: until T < Tend

20: return S1, Sc, S2

Procedure. The optimization procedure is given in Algorithm 7. We attempt to optimize the
output image quality by rearranging white/black pixels into blocks. Here, we employ simulated
annealing optimization. The temperature T is initialized as T0 and is gradually reduced by
cooling factor c until T < Tend. Here, T0 = 0.2 and c = 0.95. At the beginning of the loop, the
new arrangement of white/black pixels in a block has a higher probability to be accepted as a
new arrangement even if the arrangement results in worse quality. This is helpful for us because
we attempt to minimize error in the local blocks because measuring global error for each loop
is computationally expensive.

For each loop, we select a rearrangement candidate from the look-up table Lut. Since we
have already computed the share combination of p in the EVCSwithCommonShare procedure,
we can retrieve the combination using ShareComb(p), and this combination is used as a Lut
query to obtain a new arrangement. We calculate an objective function (Equation (C.1)) for
each local region Ip and the corresponding block Sp′ before and after rearranging Sp′ . Note
that acceptance/rejection follows typical simulated annealing techniques.

C.2 Input Images

The input images for Figures 5.9 and 5.10 are listed below.
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