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Abstract

Sentiment classification on Twitter social networking has been becoming popular in recent years. People express

their opinions and feeling about everything on Twitter social networking. These opinions and feeling can be

used as useful information for decision making. For example, customers want to know the opinions of other

users about a product before making a purchasing decision. Companies want to know the feedback of consumers

about a product or the aspects of the product to improve the quality of that product. Therefore, sentiment

analysis is playing a big role in the real world and become one of trending research topics in natural language

processing. Some previous studies showed the satisfying results of sentiment classification by using traditional

machine learning models or lexicon-based approaches. However, these results are on traditional social networks

such as forum and review, where texts/ documents are formal, long and easily to interpret. It is still hard

to analyze the sentiments of tweets. Tweets are very short and contain many noises (e.g., slang, informal

expression, emoticons, mistyping and many words that have no in a dictionary). Traditional methods can not

achieve good performance due to the unique characteristics of Twitter social networking. Moreover, most of the

traditional methods require laborious feature engineering that is difficult to extract for a specific domain. On

the other hand, existing sentiment analysis approaches mainly focus on measuring the sentiment of individual

words without considering the semantics of a word and the relationship between words.

In this thesis, we research and develop deep learning methods to classify the sentiment polarities of tweets

on Twitter micro-blogging. We not only focus on classifying the sentiment polarity of each tweet by considering

textual information but also considering the aspects of each tweet. Three main sentiment analysis tasks are

considered (1) Tweet-level sentiment analysis. We introduce a deep learning approach that models the different

characteristics (flavor-features) of each word and tries to incorporate them into the deep neural network in order

to extract correct sentiment contextual words. Four flavor-features (Word embeddings, Dependency-based word

embeddings, Lexicon embeddings, and Character attention embeddings) provide real-valued hints to alleviate the

data sparseness and improve sentiment classification performance. Specifically, the data sparseness is reduced

by the following two methods. First, we perform data processing and apply semantic rules to deal with noise,

negation and specific PoS particles in tweets. Second, we develop the multiple perspectives of each word upon

word embeddings for the deep neural network to modeling the structure of tweets. (2) Aspect-level sentiment

classification. We propose methods to incorporate aspect information into deep neural networks by using the

advantages of multiple attention mechanisms, iterative attention mechanism. In this task, the sentiment lexicon

feature is still interpolated into feature vectors and is studied the effect of classifying the sentiment polarities of

aspects. (3) Multitask-based aspect-level sentiment classification. We introduce a multi-task learning approach

which combines multiple inputs to address the drawbacks of aspect-level data. The multi-task learning called

transfer learning allows the model to learn interactive knowledge between many tasks in order to deal with

the difficulty in aspect-level data is that existing public data for this task are small which largely limits to the

effectiveness of deep learning models. The sentiment lexicon is still considered as a flavor-feature to highlight

the importance of aspects and their contexts.

The proposed methods are effective and significantly improve the performance compared to the baselines

and the-state-of-the-art models.

Keywords: Tweet-level Sentiment Analysis, Aspect-level Sentiment Analysis, Twitter Social Networking,

Deep Learning, Multi-task Learning.

ii



Acknowledgments

I would like to thank Associate Professor. NGUYEN, Le Minh who supported
my work and helped me get results of better quality. I am also grateful to the
members of my committee for their patience and support in overcoming numerous
obstacles I have been facing through my research

I would like to thank Professor. Kiyoaki Shirai, my minor research project
advisor. The discussions with him widens my research point of views and inspire
me with a handful of ideas.

I am grateful to Professor. Satoshi Tojo who showed me the science world and
encourages me to become a scientist.

I would like to thank my excellent laboratory members for their feedback,
cooperation and of course friendship. In addition I would like to express my
gratitude to the staff of Japan Advanced Institute of Science and Technology for
their supports.

Last but not the least, I would like to thank my family: my parents, my brother
and to my wife and my son for supporting me spiritually throughout writing this
thesis and my life in general.

iii



Contents

Abstract ii

Acknowledgments iii

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Research methodologies . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Sentiment Analysis on Twitter Social Networking 9
2.1 Social Networking Characteristics . . . . . . . . . . . . . . . . . . . 9

2.1.1 Twitter Characteristics . . . . . . . . . . . . . . . . . . . . . 11
2.2 The Overview of Proposed System . . . . . . . . . . . . . . . . . . 13

3 Background and Literature Review 15
3.1 Background of Deep Learning Networks . . . . . . . . . . . . . . . . 15

3.1.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . 17
3.1.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . 19
3.1.3 Long-Short-Term-Memory Networks . . . . . . . . . . . . . 20
3.1.4 Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . 22
3.1.5 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Sentiment Analysis on Social Networking . . . . . . . . . . . . . . . 24
3.2.1 Tweet-level Sentiment Analysis . . . . . . . . . . . . . . . . 24
3.2.2 Aspect-level Sentiment Analysis . . . . . . . . . . . . . . . . 26
3.2.3 Multitask-based Aspect-level Sentiment Analysis . . . . . . . 28

4 Tweet-level Sentiment Analysis 32
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



4.3 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Task definition . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Tweet Processor . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Input Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.4 Contextual Gated Recurrent Neural Network (CGRNNet) . 44
4.3.5 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.1 Datasets and Experimental Setting . . . . . . . . . . . . . . 47
4.4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . 53
4.4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Aspect-level Sentiment Analysis 60
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Proposed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Task definition . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.2 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.3 Interactive Lexicon-Aware Word-Aspect Attention Network

(ILWAAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.4 The variants of ILWAAN model . . . . . . . . . . . . . . . . 67
5.2.5 Deep Memory Network-in-Network (DMNN) . . . . . . . . . 70
5.2.6 The Effect of Multiple Attention Mechanisms . . . . . . . . 73
5.2.7 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.1 Datasets and Experimental Setting . . . . . . . . . . . . . . 73
5.3.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . 77
5.3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Multitask-based Aspect-level Sentiment Analysis 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.1 Task definition . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.2 Shared Input Tensor . . . . . . . . . . . . . . . . . . . . . . 86
6.3.3 Long Short Term Memory Encoders . . . . . . . . . . . . . . 88
6.3.4 Batch Normalization Layer . . . . . . . . . . . . . . . . . . . 89
6.3.5 Interactive Word-Aspect Attention Fusion (IWAA-F) . . . . 89
6.3.6 Final Softmax Layer . . . . . . . . . . . . . . . . . . . . . . 92

v



6.3.7 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.1 Datasets and Experimental Setting . . . . . . . . . . . . . . 93
6.4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . 95
6.4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Conclusions and Future Work 99
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Publications 112

vi



List of Figures

2.1 An example of the tweet on Twitter social networking. . . . . . . . 13
2.2 The overview of the proposed system architecture. . . . . . . . . . . 14

3.1 A feedforward neural network with information flowing left to right. 16
3.2 A structure of Convolutional Neural Network capturing the local

path on the characters of a word [Nguyen and Nguyen, 2018]. . . . 18
3.3 A recurrent neural network and the unfolding in time of the com-

putation involved in its forward computation from Nature. . . . . . 19
3.4 The architecture of Long-Short-Term-Memory unit from [Zazo et al.,

2016]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 The structure of an interactive attention mechanism. . . . . . . . . 22
3.6 The connection between our model and previous models. . . . . . . 27
3.7 The connection between our aspect-level models and the strong

state-of-the-art models. . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.8 The structure of an soft parameter sharing of multi-task learning. . 30
3.9 The structure of an hard parameter sharing of multi-task learning. . 31

4.1 The Multiple Features-Aware Contextual Neural Network. . . . . . 36
4.2 The work-flow of the Pre-processing step. . . . . . . . . . . . . . . . 37
4.3 DeepCNN for the sequence of character embeddings of a word. For

example with one region size is 2 and Four feature maps in the first
convolution and one region size is 3 with three feature maps in the
second convolution. The CharAVs is then created by performing
max pooling on each row of the attention matrix. . . . . . . . . . . 42

4.4 Dependency-based context extraction example [Levy and Goldberg,
2014] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 The chart of accuracy comparison for each corpus . . . . . . . . . . 56
4.6 The chart of accuracy comparison on the different sizes of word

embeddings for each corpus . . . . . . . . . . . . . . . . . . . . . . 57

5.1 The architecture of ILWAAN model. . . . . . . . . . . . . . . . . . 64
5.2 The architecture of LWAAN. . . . . . . . . . . . . . . . . . . . . . . 68

vii



5.3 The architecture of WAAN. . . . . . . . . . . . . . . . . . . . . . . 69
5.4 The architecture of AN. . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 The architecture of Deep Memory Network-in-Network. . . . . . . . 71
5.6 The attention visualization. The aspect terms are dinner special,

izza, food and dessert, respectively. The color depth illustrates the
importance of the context words affecting by the aspect terms. As
can be seen, the model can detect the word fantastic for (a), the
phrases the best, die for for (b) and (c), respectively and even nega-
tion but not great for (c) . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Multi-task Lexicon-Aware Attention Network Architecture (MLAANet). 87
6.2 The Structure of an Interactive Attention Module. . . . . . . . . . . 91
6.3 The affectation of different share weights λ on both tasks for Restau-

rant dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4 The examples showing the importance of sentences are identified by

MLAANet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

viii



List of Tables

4.1 Semantic rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 The types of words in lexicon dataset. . . . . . . . . . . . . . . . . . 41
4.3 Summary statistics for the datasets after using semantic rules. c:

the number of classes. N : The number of tweets. lw: Maximum sen-
tence length. lc: Maximum character length. |Vw|: Word alphabet
size. |Vc|: Character alphabet size. . . . . . . . . . . . . . . . . . . 48

4.4 The summary of hyperparameters . . . . . . . . . . . . . . . . . . 48
4.5 The confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Accuracy of different models for binary classification. . . . . . . . . 51
4.7 Cross comparison results for different traditional methods. LR,

RF, SVM, MNB and NB refer to Logistic Regression, Random For-
est, Support Vector Machine, Multinominal Naive Bayes and Naive
Bayes, respectively. BoW refers to Bag-of-Words, lex refers to lex-
icon, NG refers to N-gram, POS refers to Part-of-Speech and SF
refers to Semantic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.8 Cross comparison results for different traditional methods. LR,
RF, SVM, MNB and NB refer to Logistic Regression, Random For-
est, Support Vector Machine, Multinominal Naive Bayes and Naive
Bayes, respectively. BoW refers to Bag-of-Words, lex refers to lex-
icon, NG refers to N-gram, POS refers to Part-of-Speech and SF
refers to Semantic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.9 Accuracy of models using the different sizes of word embeddings for
binary classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.10 Accuracy of models using GoogleW2Vs for binary classification. . . 55
4.11 Accuracy of models using GloveW2Vs for binary classification. . . . 55
4.12 The label prediction between the Bi-GRNN model using LexW2Vs

and the Bi-CGRNN model using CharAVs and LexW2Vs (The red
words are negative, and the green words are positive). . . . . . . . . 58

5.1 The statistic of datasets . . . . . . . . . . . . . . . . . . . . . . . . 74

ix



5.2 Summary statistics for the datasets. c: the number of classes. N :
The number of sentences. lw: Maximum sentence length. |Vw|:
Word alphabet size. |Vm|: The number of words mapped into an
embedding space (Glove). |Vl|: The number of words mapped into
a lexicon embedding space. . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 The summary of hyperparameters . . . . . . . . . . . . . . . . . . 75
5.4 The experimental results compared to other models on three bench-

mark datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 The Macro-F1 scores of IALAN models compared to other models. . 79

6.1 The statistic of aspect-level datasets . . . . . . . . . . . . . . . . . 93
6.2 The statistic of document-level datasets . . . . . . . . . . . . . . . . 94
6.3 The experimental results compared to other models on Laptop and

Restaurant datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

x



Chapter 1

Introduction

In this chapter, the overview of sentiment analysis and the benefits of sentiment
analysis in the real world are introduced. Additionally, we formulate the challenges
of social networks which sentiment analysis models are applied to deal with and
how we achieve the objective. In summary, Section 1.1 describes the background
and motivation of sentiment analysis, Section 1.2 draws up the challenges of sen-
timent analysis on social networking, Section 1.3 expresses the research objective
which need to be achieved through research methodologies described in Section
1.4.

1.1 Background and Motivation

Sentiment analysis or opinion mining is the computational study of people’s opin-
ions, sentiments, emotions, appraisals, attitudes towards entities such as products,
services, organizations, individuals, issues, events, topics, and their attributes.
There are some differences between sentiment and opinion is that sentiment is de-
fined as an attitude, thought, or judgment prompted by feeling, whereas opinion
is defined as a view, judgment, or appraisal formed in mind about a particular
matter. The definitions indicate that an opinion is more of a person’s detailed
view about something, whereas a sentiment is more of a feeling. Formally, we can
define a sentiment is a quintuple as follows:

(ei, aij, sijkl, hk, tl) (1.1)

Where ei is the name of an entity, aij is an aspect of ei, sijkl is the sentiment on
the aspect aij of the entity ei, hk denotes the opinion holder, and tl is the time
when the opinion is expressed by hk. The sentiment sijkl is positive, negative, or
neutral, or expressed with different strength/intensity levels, such as the 1-5 stars
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system used by most review websites (e.g., Amazon1).
Recent years have witnessed the development of digital forms such as reviews,

forum discussions, blogs, and micro-blogs, we have a massive volume of opinion-
ated data recorded. As such, sentiment analysis has grown to be one of the most
active research areas in natural language processing (NLP) and had importance
to business and society. Nowadays, sentiment analysis is a trending topic and has
gained even more value with the advent of social networks. Their great diffusion
and their role in modern society represent one of the most exciting novelties in
recent years. However, sentiment analysis on social networking consists of many
challenges. The first challenge mainly focuses on the constant evolution of the
language used online in user-generated contents: the words that surround us every
day influence the words we use. Because the language used in social networks for
us to communicate with each other tends to be more malleable than formal writ-
ing, the combination of informal, personal communication, and the mass audience
afforded by social networks is a recipe for rapid change. The sentiment analysis
needs to adapt to it or be adapted by researchers. However, being able to solve
these problems requires robust natural language processing and linguistics skills.
Another challenge relates to the social networking natures, in which definition is
the dynamic, heterogeneous, domain-mixing environment and the entities involved
are connected. Specifically, social websites allow users to post anything that they
want without restrictions and the users often connect in large networked envi-
ronments. Therefore, investigating the sentiment on social networking is difficult.
One of the popular social networks which exist these problems is Twitter social
networking. Analyzing the sentiment of tweets is still difficult because the tweets
are very short and contain slang, informal expressions, emoticons and many words
not found in a dictionary.

Twitter social networking2 is a famous micro-blogging and accessible through
the website interface, SMS, or mobile devices. 80% users are active through mobiles
and express their opinions/ sentiments every day. Investigating the sentiment
polarity of user data on Twitter social networking have become popular in recent
years and become to be an important research direction of sentiment analysis. For
example, companies want to know the opinion of customers about their products
or a person can notify an essential event to people and listens to people about this
event. Therefore, micro-blogging is a useful resource which can be extracted as
useful information.

The purpose of sentiment analysis is to define automatic tools which able to
extract sentiment information from texts in natural language towards to create
structure and actionable knowledge to be used by a decision support system. The

1http://amazon.co.jp
2http://www.twitter.com

2



traditional approaches such as traditional machine learning and lexicon-based ap-
proaches mainly focus on predicting the sentiment of document data such as prod-
uct, movie reviews and achieved the successful results such as the works of [Hu and
Liu, 2004], [Aue and Gamon, 2005], [Pang and Lee, 2008] [Go et al., 2009], [Kumar
and Sebastian, 2012], [Mohammad et al., 2013] and [Kiritchenko et al., 2014a].
Existing approaches mainly focus on the classification where textual content is
tackled without considering the semantic information of the textual information.
These traditional approaches usually require laborious feature engineering which
is difficult to identify. The laborious feature engineering decides the classification
performance of the traditional classifiers.

Thanks to the rapid development of deep learning networks, the problems de-
scribed above can be addressed. In this thesis, we develop methods based on deep
neural networks to classify the sentiment on micro-blogging. We identify the char-
acteristics of Twitter social networking and model them upon word embeddings in
order to cast flavor features for tweets. These flavor features are incorporated into
neural networks to capture the relations of tweets in order to produce more reli-
able and robust results. This step is considered as the sentiment summarization.
Subsequently, we are diving into the detail of each tweet to capture the sentiment
polarity of each aspect of the tweet. Aspect-level sentiment analysis yields very
fine-grained sentiment information which can be useful for applications in vari-
ous domains. For example, in reality, when a company evaluates the quality of a
product, they often look at the overall sentiment of tweets on Micro-blogging first.
However, if they want to improve the quality of the product, they must consider
each aspect of the product.

To deal with this, we consider the specific parts of a tweet instead of consider-
ing the whole tweet. For example, the sentence ”The battery life is too short, the
iPhone screen is good. In the sentence, the information regarding the sentiment
polarity of the aspect ”battery life is the sub-sentence ”the battery life is too short
only. On the other hand, there is a remaining challenge that each word of an aspect
may have different contributions. For example, the aspect ”iPhone screen”, the
word ”screen” is more important than the word ”iPhone” in its context. Inspire
by this problem, we propose multiple attention mechanisms to attend the impor-
tant parts of an aspect and its context. The purpose of the multiple attention
mechanisms is to learn to generate a context vector for each output time step. In
other words, a deep learning model tries to learn what to attend based on an in-
put sentence and what it has produced so far. The multiple attention mechanisms
are intra-attention and interactive attention mechanisms in which intra-attention
called self-attention tries to capture the importance of an aspect, while interac-
tive attention interactively assigns an attention score to the relationship between
the aspect context vector and each context words. In order words, the interactive-

3



attention incorporates the aspect information into the learning model to adaptively
learn to focus on the correct sentiment words towards the given aspect term.

Twitter social networking is used as a representative case study in this thesis
because of the following principal reasons. First, Twitter social networking is one
of the popular social networks containing large data. Second, many previous works
used Twitter as the case study which conducting the experiments on the Twitter
data. However, Twitter social networking has recently limited to crawling data
due to the privacy setting. This lead to public data for aspect-level sentiment
classification task is small which largely limits to the effectiveness of deep learn-
ing models. To tackle this shortcoming, we propose transfer approaches to allow
the model to integrate interactive knowledge from annotated and un-annotated
corpora being much less expensive for improving the performance of aspect-level
sentiment classification. In this approach, we develop multi-task learning which
allows the model to learn interacting knowledge between tasks.

We investigate the methods and evaluate the effectiveness of our proposed
models in multiple level sentiment classification tasks: (1) tweet-level sentiment
classification is to summarize the sentiment polarity of a tweet. (2) aspect-level
sentiment classification is to analyze the sentiment orientation of each aspect of
a tweet (3) multitask-based sentiment analysis is to utilize sharing knowledge for
aspect-level sentiment classification.

1.2 Problem Statement

Twitter micro-blogging service contains many challenges due to the ubiquitous na-
ture of Twitter social networking. The texts of Twitter social networking is short
text messages in term of noise, relevance, emotion, folksonomy, and slang. There-
fore, these unique properties of Twitter social networking cause the difficulties of
predicting sentiment on micro-blogging. There are some challenges that we have
to face on social networking raised by the following reasons:

Noisy Data

Depend on the purpose of Twitter micro-blogging, the users are forced to write
their messages within a limited space. Twitter social networking requires 140 char-
acters only. Moreover, because it is a user’s private space, the language used by
the users are very informal. The users create their own words: spelling shortcuts,
punctuation, emoticons, misspellings, slang, new words, URLs, genre-specific ter-
minology and abbreviations. Therefore, the messages of Twitter social networking
contain many slang, informal expressions, emotions, mistyping and many words
not found in a dictionary, and even hashtags.

4



On the other hand, the users of Twitter social networking tend to use many
emoticons to express their opinions. Some previous works using traditional ma-
chine learning such as the work of [Go et al., 2009] consider the emoticons (e.g.,
”:(”, ”:(”)) as noisy data. Indeed, the users commonly express their feeling oppo-
site to the emoticons, especially in the sarcasm case. These characteristics cause
noisy data to tweet-level sentiment analysis.

Lack of Data

Unlike other social media websites such as reddit forum where users express their
opinions into specific topics and domains, Twitter social networking allows the
users to freely express their opinion to any topics and domains without restriction.
As such, the sentiment polarities of words are dependent on the targets or domains.
Moreover, the users may express many aspects or targets in one tweet, even though
the length of tweets is limit. For example, the tweet ”the iPhone screen is good, but
the battery life is to short”. This requires we not only take into consideration for
the tweet level but also the aspect level and cause difficulties to annotate training
data.

On the other hand, there has been no any system to gather data on Twit-
ter social networking recently for specific domains due to noisy data and lack of
specific domains. This causes very time consuming to collect training data for
every target domain. Moreover, classifiers trained on a specific domain is poor
performance when applied to other domains. Additionally, identifying good labo-
rious feature engineering for traditional machine learning is difficult due to noisy
data. Therefore, a machine learning without any laborious feature engineering is
desirable.

Personalized Style

Because of arbitrariness in posting messages on Twitter social networking, the
users tend to use their own personalized sentiment words when expressing their
opinion. For example, the word ”good” may be a strong feeling for one user, but it
is a bit feeling for another one. Therefore, the user-sentiment consistency should
be considered.

1.3 Research Objective

To capture the users’ sentiment expressed in micro-blogging and deal with the
problems shown in Section 1.2, our motivation is to develop deep learning models
which can capture the characteristics of Twitter social networking without consid-
ering any laborious feature engineering. To accomplish this, we propose novel deep
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learning methods to recognize the characteristics of tweet words towards to con-
sider the relationship of the words, because, with the unique properties of Twitter
social networking, building a good extractor for laborious feature engineering is
difficult due to noisy data. Moreover, the problems of traditional machine learning
methods are challenging to adapt well to different domains or different languages.

In reality, most people often consider the sentiment overall of tweets firstly,
then, regarding the specific targets of the tweets before making a decision. For
example, the tweet: ”The battery is too short, but the phone is still good”. In
this tweet, the overall is positive. However, the aspect of the tweet is ”battery”
with negative sentiment. Therefore, we formulate our problems into two main cat-
egories: tweet-level sentiment analysis and aspect-level sentiment analysis where
the tweet-level task is to summarize the sentiment orientation of a tweet, while
aspect level task is to pay more attention to the detail of the tweet, specifically,
the sentiment polarity of each aspect of the tweet. In other words, our end goal
of the aspect-level task is to figure out ”What people think about X”, where X can
be a target such as a brand, product, event, company or celebrity. Tweet-level
sentiment analysis is considered as a summarization process, which describes the
conclusion of the aspects of the tweet.

To deal with the lack of domain data problem, we consider a knowledge transfer
approach which is a powerful aspect for both humans and machines. Human beings
can gain more by sharing and teaching each other, and machines can perform this
idea in the same way. In layman terms, transfer learning is knowledge sharing.
Transfer learning is the technique of using the knowledge gained by a model trained
for a source task to solve a target task. In most cases, the target task will be in
a related or a similar domain of data. Moreover, the knowledge gained refers to
the weights learned. On the other hand, the weakness of deep learning models
requires significant data. Thus, transfer learning approaches deal with large limits
to the effectiveness of deep learning models.

In the rest of this chapter, we state research methodologies and end with the
chapter organization of the thesis.

1.4 Research methodologies

The main proposal of this thesis is to develop the solutions for improving the
sentiment analysis on Twitter micro-blogging. We design a general methodology
that consists of three major components: Data pre-processing, Feature formulation
and Deep neural networks.
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Data Processing

The raw tweet data is processed and reduced the data sparsity. Specifically, the
unique properties of Twitter social networking: Username, None and Repeated
Letters, retweets, tweet repetition, stop words, links, mentions, folksonomies and
accentuation are processed. Moreover, a rule-based semantic approach is applied to
clean the raw tweet as well. For deep learning models, the data preprocessing step
contributes a big role in increasing the classification performance, since the deep
learning networks try to learn the probability distributions of tweets for prediction.

Feature Formulation

We investigate and develop a series of augmentation methods to cast flavor fea-
tures for our deep learning networks. These flavor-features are built upon word
embeddings or character embeddings which present the characteristics of tweet
words. The purpose of these features is to incorporate real-valued hints (different
views) into the deep learning networks for modeling the tweet structure in order
to capture the correct contextual words in the tweet.

Deep Neural Networks

We investigate and develop deep neural networks by incorporating knowledge in-
formation. The rule-based semantic approach, multiple attention mechanisms,
and an iterative attention mechanism are applied to produce reliable and robust
sentiment analysis results.

Finally, we conduct a comprehensive evaluation and in-depth analysis of the
inner workings of our proposed models compared to the strong state-of-the-art
baselines which allow us to understand the problems of sentiment analysis in dif-
ferent views.

1.5 Chapter Organization

The chapters of our thesis are organized into four parts as follows:

Part 1: Introduction

• Chapter 1. We introduce our motivation and fundamentals of sentiment
analysis and opinion mining. The problem statement, research objectives
are described in this chapter as well.
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Part 2: Background and Literature Review

• Chapter 2: In this chapter, we describe the characteristics of the Twitter
social networking as well as the overview of our methodology for sentiment
analysis.

Part 3: Sentiment Analysis on Social Networking

• Chapter 3. We introduce the background of deep learning networks and
state the drawbacks of deep learning networks. Subsequently, we discuss the
previous works in the sentiment analysis field.

• Chapter 4: We propose a novel method for Tweet-level sentiment classifica-
tion which combines flavor-features with word embeddings.

• Chapter 5: We introduce novel approaches which take into consideration the
aspect level of tweets.

• Chapter 6: We present a transfer approach using deep neural networks to
take into consideration other source domains in order to solve the limitation
of the aspect level task.

Part 4: Discussion and Conclusion

• Chapter 7. We discuss and conclude the works presented in this thesis as
well as the future works.
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Chapter 2

Sentiment Analysis on Twitter
Social Networking

In this chapter, the unique properties of social networking and the characteristics
of Twitter social networking are introduced. Understanding the characteristics of
social networking supports us to interpret the unique aspects of social networking
to extract effective features for learning models. The section 2.1 formulates the
properties of social websites, while, the subsection 2.1.1 is diving more into rep-
resentative social networking named Twitter social networking. Based on these
unique attitudes, proposed models are introduced to overcome the challenges at
two level tasks: Tweet-level sentiment classification and aspect-level sentiment
classification tasks.

2.1 Social Networking Characteristics

Social networking is web services that allow users to broadcast their messages to
other users in the services. Unlike the real world, where instances are considered
as homogeneous, independent, and identically distributed leads us to a substantial
loss of information and the introduction of statistical bias, the nature of social
networking is heterogeneous, and the entities involved are connected. Users can
read messages online and send responses or even express their sentiment/ opin-
ion about these messages. Recently, social networking has been growing rapidly
and become to be the mainstream communication media. The number of users
in social networking is increasing dramatically. Unlike traditional social networks
such as reviews, blogs, and forums, modern social networking has special char-
acteristics that differentiate the traditional social networks from regular websites
and difficulties to handle as shown below:
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User-based

In social networks, the users are center, and social websites are based on contents
that are updated by one user and read by Internet visitors. Online social networks
are built and directed by users themselves. Without the users, the social net-
works would be an empty space filled with empty forums, applications, and chat
rooms. The users populate the social networks with conversations and contents.
The direction of these contents is determined by anyone who takes part in the dis-
cussion. This is what makes social networks so much more exciting and dynamic
for Internet users.

Interactive

The users of social networks are very interactive. This means that a social network
is not just a collection of chat rooms and forums anymore. Social websites like
Facebook are filled with network-based gaming applications, where users can play
games together. These social networks are more than just entertainment, they are
a way to connect and have fun with friends.

Community-driven

Social networks are built and thrive based on community concepts in which indi-
viduals have private hobbies, relationships, find a new friend and even reconnect to
old friends in society. Social networks have sub-communities of people who share
commonalities, and the users can discover new friends within these interest-based
communities.

Relationships

Relationships in social networks are an important concept which creates the de-
velopment of social networks. The more relationships that you have within the
network, the more established you are toward the center of that network.

Short text length

The text length of messages posted on social networks is short. For example,
Facebook limits 420 characters for status and Twitter is 140 characters. Due to
this limitation, messages posted by the users are often abbreviation, emphatic and
emotion. Evenly, the users of Twitter social networking use hashtags to illustrate
the topic of tweets. However, due to the limitation of the text length, the users
can easily write or receive their messages via various platforms and devices, such
as mobile phones, tablets, laptops. On the other hand, the limitation of the length
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causes the problem: the users may express an implicit opinion that sentiment
detection becomes more difficult.

Informal language

Languages used in social networks are arbitrary due to the character limitation con-
straint. Users tend to use informal languages and non-standard texts to express the
main points. For example, in Twitter social networking, abbreviation (e.g., LOL
means laughing out loud), misspelling, emphatic lengthening (e.g., ”gooooooood”),
emoticons (e.g., ”:(”, ”:)”) and even, the users use wrong grammar. These prob-
lems make data to become noisier and sparse.

Topic/ domain variation

Unlike traditional social media such as forums and blogs, modern social networks
are a domain-mixing environment which allows users to post any topics in any
domains without restrictions. These topics are also sorted following any properties.
For example, Facebook social networking has a feed stream that status is shown
based on the degree of interaction between users and their friends.

Language style variation

The number of users using social networks is huge and come from many countries.
Therefore, there is a mixing of users with different backgrounds and preferences
as well as the variety of language styles. Additionally, because of the popular
in various countries, social networks are often mixed with many languages. For
example, some countries like Singapore, the Philippines can use English to present
their language, however, depending on different situations, the meaning of words
is different. With these problems, the sentiment analysis on social networking is
difficult.

Big and real-time data

More than 2 billion users are using social networks, and the number of messages
is largely generated every day. Moreover, social networks operate on the real-time
data stream where data is updated immediately. This causes a big problem related
to time, storage space and analysis for big data.

2.1.1 Twitter Characteristics

In this thesis, we use Twitter social networking as a representative case study for
our research. However, our models can be expanded to other social networks due to
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the similar properties of social networks. Additionally, a transfer learning method
is utilized to approach knowledge from various resources of social networks.

Twitter social networking is one of the most popular micro-blogging services
that allow users to post their messages, called tweets. These tweets are displayed
at the timeline of followers who follow the users. The length of a tweet is limited
to 140 characters. Users must deliver their message in 140 characters, but this can
be seen as a very positive element of Twitter. The character limit makes Twitter
fun and exciting so users are not left scrolling through pages of information if
they enjoy the tweet they can click on an attached link or reply to the person
who composed the original tweet. This characteristic encourages the interaction
and conversation between users. Another characteristic that makes Twitter so
fantastic is that it is free. Users do not have to pay to share their opinion.

Twitter is designed so that users can check up on what is happening or join
a conversation during their favorite TV show. This aspect also allows for mul-
titasking, and users can do something else and share that experience with their
followers. Twitter social networking provides a public application programming
interface (REST API), which allows programmers and third-party applications to
interact with the data on Twitter social networking. Users in Twitter social net-
working are freely following other users without any permission. Users can create a
profile to interact with friends and other people around the world via tweets. The
profile can contain information about the user including his or her name, contact
details, education, interests, and any other information he or she wants to share.
The user can set the account as either public or private. Users can contact other
users via private (direct) messages or by replying to other peoples mentions of
his or her account name. This is done through a universal tweeting system that
uses three basic symbols: ”@” followed by a Twitter account name for a mention
or tweet, ”RT” for ”Retweeting” a message, and ”#” followed a word/phrase for
initiating or participating in a hashtag”. These properties can be used as features
encoded into word embeddings for deep learning models. Figure 2.1 shows the
example of a tweet with Hashtag, Mention, URLs, Emoticon and Retweet.

Hashtag

The hashtag is a word or a phrase starting with ”#” symbol in order to express
the topic of a tweet. For example, the tweet ”I love Apple #Iphone”. The hashtag
can be used to extracting a trending topic, hot topic which many people discuss.

Retweet

The retweet is an action to re-post or forward a message posted by other users on
Twitter social networking. The format of Retweet is ” RT @Username”, where
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Username is the twitter name of the user, who writes the message re-posted by
others. The content of retweet can be not changed. As such, the users agree with
the content of the original message.

URL

Twitter social networking allows users to refer to external contents, such as news,
photos via URLs. URLs enable users to give more information about their opinion
due to the limitation of the tweet length.

Mention

The tweet contains ”@Username” in the body. It is normally used for replying
comments or referring to other users. The user mentioned in the tweet will be
received a notification message. This creates a relationship between users besides
the follow-network.

RT @members: Looking forward to see you tomorrow morning. Pretty Cool
offer. Get a Free @Coffee Groundz's iChamber membership if you join us...

:):) fb.me/182VVIOtv #Coffee Groundz 

URLs
Mention Hashtag

Emotion

Retweet

Coffee Groundz
@CoffeeGroundz

Figure 2.1: An example of the tweet on Twitter social networking.

2.2 The Overview of Proposed System

In this section, we propose the overview of our system at two levels: tweet-level
sentiment classification and aspect-level sentiment classification. Our system takes
Twitter corpus as an input and performs data processing before feeding into deep
learning models. The deep neural networks in Chapter 5 and Chapter 6 consider
more aspects extracted from the Twitter corpus for the aspect-level sentiment clas-
sification task. For each model, flavor-features are initialized via feature creator
component before putting to the deep learning models. These flavor-features con-
tribute to shaping the initial views of the deep neural networks about Twitter data
and is fine-tuned during the training process of the deep neural networks. Deep
neural networks have a promising performance for sentiment analysis task without
any laborious feature engineering. This solves the difficult problems of traditional
machine learning in term of feature extraction.
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Our system is as an integrated approach which considers the different views of a
tweet. Specifically, tweet-level sentiment classification is considered first in term of
the sentiment summarization of a tweet. Subsequently, the different perspectives
of the tweet are exploited. Intuitively, the specific parts of the tweet are recognized
and extracted based on their importance scores via multiple attention mechanisms.
We propose multiple attention mechanisms to detect the sentiment polarity of each
aspect in the tweet. A pipeline of our work is shown in Figure 2.2. Chapters in
this thesis concerning each task are shown in this Figure 2.2. In summary, the
final output of our system consists of two parts: The sentiment summarization of
a tweet and the different aspects of the tweet.

Twitter
Corpus

Data Processing

Multi-task Attention
Network

Attention Networks

Deep Memory
Network-in-Network

Recurrent Neural
Networks

The list of aspects

Aspect
embeddingsWord

embeddings

Semantic rules

Deep Neural
Networks

Character attention
embeddings

Dependency-based
word embeddings

Sentiment
Lexicon

embeddings

Lexicon resources
creationEmbedding creation

Aspect creation

CHAPTER 4

CHAPTER 6

CHAPTER 5

Related
Task

Main Task

Aspect-level sentiment
classification

Tweet-level sentiment
classification

Common Module

Figure 2.2: The overview of the proposed system architecture.
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Chapter 3

Background and Literature
Review

In this chapter, we introduce the background of deep learning techniques which
are utilized and improved in our thesis. Additionally, the literature review is
conducted to introduce the current knowledge including substantive findings, as
well as theoretical and methodological contributions to sentiment classification
tasks.

3.1 Background of Deep Learning Networks

Deep learning models are the application of artificial neural networks to learning
tasks using networks of multiple layers. The input feature of deep learning is
word embeddings in which the characteristics of words are exploited. The deep
learning is inspired by the structure of the biological brain and consists of a large
number of information processing units (called neurons) organized in layers. The
neural networks adjust the connection weights between neurons which resemble
the learning process of a biological brain. Neural networks can be categorized into
Feedforward Neural Networks (FNN) and Recurrent Neural Networks (RNN) in
which FNN is the first type of artificial neural networks invented and are simpler
than RNN. A simple version of Feedforward Neural Networks is described in Figure
3.1 which consist of four layers. Layer 0 is input layer which forms the input
vector (x1, x2, x3). Layer 3 is output layer corresponding to the output vector
(y1, y2). The middle of the neural network is hidden states corresponding to Layer
1 and Layer 2. The output of Layer 1 and 2 are not visible as the output of
Layer 3 called activation function. The lines between the neurons represent the
connections of the flow of information. Each connection is associated with a weight
which controls the signal value between two neurons. The weights are adjusted
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Figure 3.1: A feedforward neural network with information flowing left to right.

via the learning process of the neural network in which information flows through
them and is processed in order to generate output to the next layers. After the
learning process, the neural network will achieve a complex form of a hypothesis
and fits the data. The computational operation in hidden layers can be described
as follows: each neuron in Layer 1 takes input (x1, x2, x3) and output a value
f(Wtx) = f(

∑3
i=1Wixi + b) by activation function f, where Wi are weights of

the connections and b is bias. f function is commonly non-linear function. The
common function of f is Sigmoid function, hyperbolic tangent function (tanh), or
rectified linear function (ReLU). The formulas of these functions as follows:

f(Wtx) = sigmoid(Wtx) =
1

1 + exp(−Wtx)
(3.1)

f(Wtx) = tanh(Wtx) =
eWtx − e−Wtx

eWtx + e−Wtx
(3.2)

f(Wtx) = ReLU(Wtx) = max(0,Wtx) (3.3)

The Sigmoid function takes a real-valued number and squashes it to a value in
the range between 0 and 1. The function has been used frequently in the previous
time due to its nice interpretation as the firing rate of a neuron: 0 for not firing or
1 for firing. However, the problem of the non-linearity of the sigmoid function is
that its activation can easily saturate at either the tail of 0 or 1, where gradients
are almost zero, and the information flow would be cut. Another thing is that its
output is not zero-centered, which could cause undesirable zig-zagging dynamics in
the gradient updates for the connection weights in training. The tanh function has
been more preferred recently in practice because its output range is zero-centered
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[-1, 1]. The ReLU function has become popular lately because its activation is
thresholded at zero when the input is less than 0. The ReLU function is easy to
compute, fast to converge in training and produce better performance in neural
networks against to sigmoid and tanh functions.

In the last layer of neural networks, a softmax function is utilized to normalize
the logits of networks to produce a final prediction which squashes a K-dimensional
vector X of arbitrary real values to a K-dimensional vector σ(X) of real values in
the range (0, 1). The functional equation is as follows:

σ(X)j =
exj∑K
k=1 e

xk

(3.4)

Where j = 1, ..., k. Stochastic gradient descent is used to training a neural network
via Back propagation. The purpose is to minimize Cross-entropy loss. Gradients
of the loss corresponding to weights from the last hidden state to the last layer are
computed firstly. Subsequently, gradients of the expressions with respect to weights
between upper network layers are calculated recursively in a backward manner.
The weights between layers are adjusted accordingly through those gradients. It
is an iterative refinement process until certain stopping criteria are met.

In a nutshell, deep learning utilizes multiple layers of non-linear for extracting
and transforming features. The lower layers try to learn the simple features, while,
the higher layers learn more complex features derived from lower layers. Recently,
end-to-end neural networks with sophisticated structures have achieved promising
performance and showed great potentials. In the next sections, we review some
popular Deep learning neural networks which are utilized in our thesis.

3.1.1 Convolutional Neural Networks

Convolutional neural network (CNN), a class of artificial neural networks that
have become dominant in computer vision, natural language processing tasks, is
attracting interests across a variety of domains. CNN is designed to automatically
and adaptively learn spatial hierarchies of features through backpropagation by
using multiple building blocks, such as convolution layers, pooling layers, and
fully connected layers.

Figure 3.2 shows a Deep convolutional neural network (DeepCNN) from [Nguyen
and Nguyen, 2018] to capture the morphology of a word by recognizing the charac-
teristics of characters. DeepCNN has two wide convolution layers. The first layer
extracts local features around each character windows of a word and using a max
pooling over character windows to produce a global fixed-sized feature vector for
the word. The second layer retrieves important context characters and transforms
the representation at the previous level into representation at a higher abstract
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Figure 3.2: A structure of Convolutional Neural Network capturing the local path
on the characters of a word [Nguyen and Nguyen, 2018].

level. To extract such local features, DeepCNN utilizes a filter to scan the char-
acters of a word. The filter is an array of numbers (called weights or parameters)
which projects on each region of the input matrix. The filter convolves by multiply-
ing its weight values with the original values of the character matrix (element-wise
multiplications). The multiplications are all summed up to a single value which
is a representative of the receptive field. Each representative produces a number.
The output of scanning is called activation map or feature map. Following the
convolutional layer is a subsampling (or pooling) layer which progressively reduces
the spatial size of the representation. As such, the pooling layer is to reduce the
number of features and the computational complexity of the neural network. For
example, DeepCNN in Figure 3.2 utilizes the filter of size (2× 4) with four filters
in the first layer to produce 4 feature maps. Afterward, max pooling reduces the
feature maps to a single vector of size (1 × 4). The last layer of Convolutional
Neural Network is a softmax layer to normalize logits for prediction.

Convolutional Neural Network often plays a role of feature extractor, which
extracts local features. CNN has a different spatially local correlation by enforcing
a local connectivity pattern between neurons. Such a characteristic is useful for
natural language processing classification, in which we expect to find reliable local
clues that these clues can appear in the different places of input. For example,
CNN can capture N-gram of a sequential data to determine a topic of a document/
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sentence. Due to the unique properties of Social networking (e.g., the abbreviation
case of Twitter social networking), CNN can be utilized to capture the morphology
of each word in a tweet to cast scalar indicators in order to recognize the word.

3.1.2 Recurrent Neural Networks

Figure 3.3: A recurrent neural network and the unfolding in time of the computa-
tion involved in its forward computation from Nature.

Recurrent Neural Networks (RNNs) are a class of neural networks in which the
connection weights between neurons form a directed cycle. The RNNs are popular
models that have shown great promising performance in many NLP tasks. The
idea behind Recurrent Neural Networks is to process sequential information that
assumes that all inputs (and outputs) are dependent on each other. Whereas,
traditional neural networks accept that all inputs and outputs are independent of
each other. In many cases, this is a terrible idea, because if we want to predict
the next word in a sentence, we better know which words came before it. RNNs
are called Recurrent because they perform the same task for each element of se-
quential data with each output being dependent on all previous computations.
This mechanism is considered as a Memory as well which remembers all necessary
information about what has been processed so far.

Figure 3.4 shows an RNN being unrolled (or unfolded) into a full network. It
means that we write out the network for the complete sequence by unrolling. For
example, if the sequence is a sentence of 5 words, the network would be unrolled
into a 5-layer neural network, one layer corresponds to a word. The formulas that
govern the computation happening in RNN are as follows:

• xi is an input vector at each time step t. The input vector here can be a
word embedding or one-hot vector.
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• st is a hidden state at each time step t and is calculated based on the previ-
ously hidden state and the input at the current time step:

st = f(W hsst−1 + whxxt) (3.5)

Where f function is usually a non-linearity tanh, or ReLU function. The first
hidden state, is typically initialized to all zeroes. W hx is the weight matrix
to condition the input xt.

• ot is the output at step t which has the equation as follows:

ot = softmax(W ost) (3.6)

The hidden state st is as a memory of the neural network which captures infor-
mation about what happened in all the previous time steps. The output at step
ot is calculated solely based on the memory at the time t. RNN shares the same
parameter (W hs,W hx,W o) which is different from Feedforward Neural Networks
with different parameters at each layer. Additionally, RNN performs the same
task at each step with different inputs. These greatly reduce the total number
of parameters needed to learn. However, there are some drawbacks for RNN is
that the memory st of the neural network can not capture information from too
many time steps ago due to vanishing gradient problem. Researchers improve this
by developing more sophisticated types of RNN to deal with the shortcomings of
the standard RNN: bidirectional RNN, deep bidirectional RNN, Long-Short-Term-
Memory networks. The basic idea of bidirectional RNN is that the output at each
time step not only depends on the previous elements but also depends on the next
elements in a sequential data. In other words, the model may look at both the left
and right context to predict a missing word in a sequence. The bidirectional RNN
consists of two RNNs, in which the first one processes the input from the left to
the right context, while the second one processes the reversed input. The output
is computed based on the hidden states of both RNNs. The deep bidirectional
RNN is similar to bidirectional RNN. However, it is stacked many layers per time
step and requires many training data for higher learning capacity.

3.1.3 Long-Short-Term-Memory Networks

Inspired by the drawbacks of RNN model, Long Short-Term Memory networks
usually called LSTMs are an improved version of RNN. RNN has a simple structure
having a single neural layer. Instead, LSTM is more complicated with four layers
interacting in a special way and two states: hidden state and cell states. The core
idea behind LSTMs is the cell state which can maintain its state over time, and
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Figure 3.4: The architecture of Long-Short-Term-Memory unit from [Zazo et al.,
2016].

non-linear gating units which regulate the information flow into and out of the
cell. The following composite function implements a single LSTM memory cell:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3.7)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (3.8)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc) (3.9)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (3.10)

ht = ottanh(ct) (3.11)

where σ is the logistic sigmoid function, i, f, o and c are the input gate, forget gate,
output gate, cell and cell input activation vectors, respectively. All of them have a
same size as the hidden vector h. Whi is the hidden-input gate matrix, Wxo is the
input-output gate matrix. The bias terms which are added to i, f, c and o have
been omitted for clarity. The advantage of LSTM compared to standard RNN is
capable of learning long-term dependencies. A slight variation of LSTM is Gated
Recurrent Unit proposed by [Cho et al., 2014]. It combines the forget and input
gates into a single update gate. Additionally, the cell state and hidden state are
merged and made some other changes. The GRU is simpler than LSTM and has
been growing in popularity.
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Figure 3.5: The structure of an interactive attention mechanism.

3.1.4 Attention Mechanism

Long-Short-Term-Memory networks are capable of learning long-term dependen-
cies in sequential data. However, in practice, the long-range dependencies are still
problematic handle due to mathematical nature: it suffers from Gradient Vanish-
ing/ Exploding which means it is hard to train when sentences are long enough.
A potential issue with the neural networks needs to be able to compress all the
necessary information of a source sentence into a fixed-length vector. A critical
and apparent disadvantage of this fixed-length context vector design is incapabil-
ity of remembering long sentences. Often it has forgotten the first part once it
completes processing the full input. Instead of encoding the input sequence into a
single fixed context vector, we let the model learn how to generate a context vector
for each output time step. That is we let the model learn what to attend based
on the input sentence and what it has produced so far. As such, attention mecha-
nisms are proposed to allows the neural networks to attend to different parts of the
source sentence at each step of the output generation. The first version of the at-
tention mechanisms is proposed by [Bahdanau et al., 2015] for an encoder-decoder
framework where the attention mechanism is used to selecting the reference words
of a source sequence for the words of a target sequence before translation. This
attention mechanism is a global configuration, where all the encoder states are
considered while calculating attention weights. Recently, the attention mechanism
has been utilized in classification tasks in order to capture the importance of text
representations.

Figure 3.5 describes the structure of an interactive attention mechanism which
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is a local configuration proposed in our model. It is improved from the idea of
[Bahdanau et al., 2015] in which at each time step t, each encoder state is con-
sidered while calculating attention weights instead of considering all the encoder
states. The local configuration allows the context vector C to peak at a small
segment of the source sequence, in order to the context vector C could selectively
focus on the tokens in that small segment. It can be broken down into a few key
steps:

• Feed-forward network (MLP network): A one layer MLP acting on the hid-
den state of the word and generate a Word-level context via dot product.

• Softmax: The resulting vector is passed through a softmax layer.

• Dynamic context: The attention vector from the softmax is combined with
the hidden state that was passed into the MLP.

These key steps can be illustrated in Equations in which h1, h2, ..., hN is hidden
states encoded by RNNs/ LSTMs and C is a context vector (e.g., In an aspect-
level sentiment classification task, the context vector can be a fixed-length aspect
vector):

• The single layer MLP is an aggregator which aggregates the values of C and
hi. It is to take the words, rotate/ scale them and then translate them.
In other words, it rearranges words into its current vector space. The tanh
activation then twists and bends the vector space into a manifold. There
is no information lost in this step. In this step, the dot product is utilized
to compute the correlation between the context vector C and each hidden
state hi. The parameter W learns information of this new vector space as
a combination of the context vector C and the hidden state hi according to
their relevance to the problem at hand. In order word, the alignment model
assigns a score αi to the pair of the context vector C and the hidden state hi
at each position i based on how well they match. The set of αi are weights
defining how much of each hidden state should be considered for each output
and shows the correlation between source and context vector.

ei = align(C, hi) = tanh(hi.W.C
T ) (3.12)

• Finally, the alignment scores is normalized by softmax layers and multiply
with the hidden states to extract the importance of the input sequence:

αi = softmax(ei) (3.13)

ci =
N∑
j=1

αihj (3.14)
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3.1.5 Word Embeddings

Word representations are central to deep learning and an essential feature extractor
which encode the different features of words in their dimensions. Word embeddings
are a technique for Language modeling and Feature learning, which transforms
words in a vocabulary into vectors of consecutive real numbers. This technique
transforms words from high-dimensional sparse vector space (e.g., one-hot encod-
ing vector space, in which each word takes a dimension) to a lower-dimensional
dense vector space. Each dimension of the embedding vector represents a latent
feature of a word which may encode linguistic regularities and patterns.

Word embeddings can be built by using neural networks or matrix factor-
ization, such as [Collobert and Weston, 2008a], Neural network language model
[Bengio et al., 2003] and CBOW (Continuous Bag-of-Word) [Mikolov et al., 2013a],
Word2Vec [Mikolov et al., 2013b] and Doc2Vec [Le and Mikolov, 2014]. These
methods learn word embeddings from context because words with similar context
but opposite sentiment polarities may be mapped to nearby vectors in the em-
bedding space. Inspire by the above methods, [Maas et al., 2011] improved word
embeddings that can capture both semantic and sentiment information. [Bespalov
et al., 2011] improved a suitable embedding for sentiment classification from n-gram
model. Later on, [Labutov and Lipson, 2013] re-embedded word embeddings with
logistic regression as a regularization term. [Tang et al., 2014b] proposed many
kinds of Sentiment-specific word embeddings (SSWEs) which learn both semantic
and sentiment information. [Levy and Goldberg, 2014] tackled the disadvantages
of word embedding learning models by using a dependency tree to capture only rel-
evant words for a target word. Recently, feature enrichment and multi-sense word
embeddings have been investigated for sentiment classification. For example, [Qian
et al., 2015] introduced two advanced models, namely Tag-guided recursive neu-
ral network (TG-RNN) and Tag-embedded recursive neural network/ Recursive
neural tensor network (TE-RNN/ RNTN) to learn tag embeddings. Moreover,
[Vo and Zhang, 2015] obtained additional automatic features using unsupervised
learning techniques to integrate into word embeddings for Twitter sentiment anal-
ysis. Additionally, [Ren et al., 2016] proposed methods to learn topic-enriched
multi-prototype word embeddings for Twitter-level sentiment classification. Most
of these ideas utilize additional features to increase the information of words.

3.2 Sentiment Analysis on Social Networking

3.2.1 Tweet-level Sentiment Analysis

Tweet-level sentiment analysis is to determine the sentiment expressed in a given
tweet. As discussed earlier, the sentiment of a tweet can be inferred with sub-
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jectivity classification or polarity classification. Same as sentence-level sentiment
classification, the tweet representation produced by neural networks is important
for representing the information of a tweet. The ubiquitous nature of Twitter social
networking is the use of short text messages in term of noise, relevance, emoticons,
folksonomy, and slang. As such, some syntactic and semantic information (e.g.,
parse trees, opinion lexicons, and part-of-speech tags) may be used to helping. Ad-
ditional information such as review ratings, social relationship, and cross-domain
information can be considered too. For example, a social relationship has been ex-
ploited by discovering sentiments in social media data. In previous studies, some
researchers dealt with these problems by using a tree structure providing some
semantic and syntactic information and combining with words as an input so that
the sentiment can be inferred better. However, deep learning models have become
popular and are the application of artificial neural networks to extract automatic
features by using multiple layers. Such impressive models are the Convolutional
neural networks (CNN) and Long-Short-Term-Memory networks (LSTM). The
CNN and LSTM models can learn the intrinsic relationships between words in a
sentence. We introduce some improved models based on the idea of LSTM and
CNN models as the detail below.

[Socher et al., 2011] proposed a semi-supervised recursive auto-encoders net-
work (RAE) for sentence-level sentiment classification, which obtains a reduced
dimensional vector representation for a sentence. Later on, [Socher et al., 2012]
proposed a Matrix-vector Recursive Neural Network (MV-RNN), in which each
word is additionally associated with a tree structure matrix. Additionally, [Socher
et al., 2013] introduced a recursive neural tensor network (RNTN), in which tensor-
based compositional functions are used to capturing the interactions between ele-
ments.

Regarding to the CNN idea, [Kalchbrenner et al., 2014] introduced a Dynamic
CNN (DCNN) for modeling the semantics of sentences by improving a CNN model.
The difference is that the DCNN uses a dynamic max-pooling as a non-linear
subsampling function. The feature map produced by the model can capture word
relations. Inspire by DCNN, [Collobert et al., 2001] proposed MAX-TDNN by
generalizing the DCNN model. In next time, [Kim, 2014] proposed the many
types of Convolutional Neural Networks (CNN) with the multi-channel and single-
channel of convolutional layers and [Santos and Gatti, 2014] proposed Character
CNN by using two convolutional layers for the characters of a words to perform
sentiment analysis of short texts. Besides, [Wang et al., 2015] utilized an LSTM
for Twitter-level sentiment classification by simulating the interactions of words
during the compositional process.

In another aspect, [Wang et al., 2016a] and [Wang et al., 2016b] used the ben-
efits of LSTM and CNN models to construct a combination of them for sentiment
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classification of short texts. [Guggilla et al., 2016] introduced an LSTM-based or
CNN-based deep neural networks which utilizes word2vec and linguistic embed-
dings for claim classification. [Guan et al., 2017] developed a weakly-supervised
CNN model for a sentence/ aspect-level sentiment classification. It is composed
of two steps: it first uses overall view ratings for learning a supervised weakly
sentence representation and then uses the representation for fine-tuning.

In recent studies, researchers tended to combine lexicon-based approaches with
deep learning models in order to enhance the important information of words.
Specifically, [Tang et al., 2016a] proposed a context-sensitive lexicon-based method
for sentiment classification based on a simple weighted-sum model. The model
from [Mishra et al., 2017] utilizes a CNN model to automatically extract cogni-
tive features from the eye-movement data of human readers and uses them as
enhanced features alongside textual features for sentiment classification. On the
other hand, [Huang et al., 2017] introduced a tree structure LSTM model to encode
the syntactic knowledge (e.g., part-of-speech tags) in order to enhance a phrase
representations and a sentence representation. Futhermore, the model of [Qian
et al., 2017] combines linguistic resources such as sentiment lexicons, negation
words and tensity words into a LSTM model (a linguistically regularized LSTM
model) to capture the sentiment effects of sentences. Inspired by the advantages
of the above models, we consider learning the advanced word embeddings for deep
neural networks.

Figure 3.6 illustrates the connection between our tweet-level deep learning
model and previous models by using the advantages of previous deep learning
models and effective traditional features to tackle the unique characteristics of
Twitter social networking.

3.2.2 Aspect-level Sentiment Analysis

Different from tweet-level sentiment classification, aspect-level sentiment analysis
considers both the sentiment and the target information in a tweet/ sentence. The
target is usually an entity, or an entity aspect generally called aspect. Given a
tweet/ sentence and an aspect, aspect-level sentiment analysis aims to infer the
sentiment polarity of the aspect in its context. For example, the sentence: ”the
iPhone screen is very good, but the battery life is too short”. The sentiment po-
larity of the aspect ”iPhone screen” is positive, whereas, the sentiment polarity
of ”battery life” is negative. There are three important tasks in aspect-level senti-
ment classification using neural networks. The first one is to identify the context
of aspect in a sentence or document. The context means the contextual words con-
cerning a given aspect. The second task is to generate an aspect representation,
which can interact with its context. The last task is to determine the important
sentiment context words in a sentence or document. Our task is the third task,
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Figure 3.6: The connection between our model and previous models.

in which we develop a neural network to classify the contextual sentiment words.
For example, the word ”good” is extracted for the aspect ”screen” and classify to
positive.

Aspect-level sentiment analysis has a challenge because modeling the relation
between an aspect and its context is difficult. The main reason is that different
context words have different influences on the sentiment polarity of the aspect and
the words of the aspect do not have equal importance. Recently, neural networks
have achieved promising performance in recognizing the relativeness between sen-
tence words as well as computing the relativeness between an aspect and its context
words.

Ideally, [Dong et al., 2014] proposed an Adaptive recursive neural network
(AdaRNN) for target-dependent twitter sentiment classification, which learns to
propagate the sentiment information of words towards the target. [Vo and Zhang,
2015] developed aspect-based twitter sentiment classification by making use of rich
automatic features, which are additional features obtained by unsupervised learn-
ing methods. LSTM models are still popular which can capture semantic relations
flexibly. For example, [Tang et al., 2016a] developed models based on LSTM mod-
els such as Target-dependent LSTM (TD-LSTM) and Target-connection LSTM
(TC-LSTM) to consider a specific aspect as a feature and concatenate it with its
context for aspect-level sentiment analysis. These representative models achieves
remarkable results for aspect-level sentiment classification.

Later on, [Wang et al., 2016c] proposed an attention-based LSTM neural net-
work by using an attention mechanism to enforce the neural model to attend to
the specific parts of context words. Additionally, [Yang et al., 2017] proposed two
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attention-based bidirectional LSTM models to improve classification performance.
Furthermore, [Tang et al., 2016b] and [Chen et al., 2017] introduced end-to-end
memory networks for aspect-level sentiment classification. These models utilize the
benefit of attention mechanisms and external memory to capture the importance
of context words towards a specific aspect. The memory networks have multiple
computational layers which calculate the importance degrees of an aspect-specific
representation and transforms the representation to a higher abstract-level repre-
sentation. The common point of these models is the use of attention mechanisms
to look into the specific parts of a context sentence towards a specific aspect.

Deep learning models assisted by attention mechanisms have played a signif-
icant role and showed promising performance for aspect-level sentiment analysis,
however, to our knowledge, there are still no dominating techniques in the liter-
ature that can tackle the problems of aspect-level task thoroughly. Specifically,
our models are improved from the attention-based models and the deep memory
networks to tackle the challenges of aspect-level sentiment classification. Fig-
ure 3.7 illustrates the connection between our aspect-level models and the strong
state-of-the-art models in which the attention networks are improved from TD-
LSTM+ATT and ATAE-LSTM, while Deep Memory Network-in-Network is im-
proved from attention networks and end-to-end memory networks. Furthermore,
the advantages of tweet-level sentiment classification model is utilized as a re-
lated task for multi-task learning model in order to enhance the performance of
aspect-level sentiment classification task due to the lack of data in social network-
ing. In the next section, we describe the advantages of multi-task learning which
contributes to increasing the performance of aspect-level sentiment classification.

3.2.3 Multitask-based Aspect-level Sentiment Analysis

We enhance the aspect-level sentiment analysis problem to multitask-based aspect-
level sentiment analysis in order to deal with the limitations of aspect-level data
on Twitter social networking by using transfer learning. Transfer Learning is a
powerful aspect for both humans and machines. Human beings can gain more
by sharing and teaching each other and machines are in the same way. Transfer
learning is the technique of using the knowledge gained by a model trained for a
source task to solve a target task. In most cases, the target task will be in a related
or a similar domain of data. Moreover, the knowledge gained refers to the weights
learned. In other words, if additional data is available, transfer learning can often
be used to improving performance on the target task. The kind of transfer learning
used for our task is multi-task learning which comes in many guises: joint learning,
learning to learn, and learning with auxiliary tasks. In Machine Learning (ML),
we typically care about optimizing for a particular metric, whether this is a score
on a certain benchmark. In order to do this, we generally train a single model or
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Figure 3.7: The connection between our aspect-level models and the strong state-
of-the-art models.

an ensemble of models to perform our desired task. We then fine-tune and tweak
these models until their performance no longer increases. While we can generally
achieve acceptable performance this way, by being laser-focused on our single task,
we ignore information that might help us do even better on the metric we care
about. Specifically, this information comes from the training signals of related
tasks. By sharing representations between related tasks, we can enable our model
to generalize better on our original task.

Multi-task learning has been used successfully across all applications of machine
learning, from natural language processing [Collobert and Weston, 2008b] and
speech recognition [Deng et al., 2013] to computer vision [Ren et al., 2015]. Multi-
task learning can be motivated in different ways: 1) Biologically, we can see multi-
task learning as being inspired by human learning. For learning new tasks, we often
apply the knowledge we have acquired by learning-related tasks. 2) Pedagogical
perspective: we often learn tasks first that provide us with necessary skills to
master more complex techniques. 3) A machine learning point of view: We can
view multi-task learning as a form of inductive transfer. Inductive transfer can
help improve a model by introducing an inductive bias, which causes a model to
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prefer some hypotheses over others. There are two kinds of multi-task learning:
Hard parameter sharing and Soft parameter sharing.

• Soft parameter sharing. Figure 3.8 illustrates soft parameter sharing in which
each task has its own model with its own parameters. The distance between
the parameters of the model is then regularized in order to encourage the
parameters to be similar.

TASK 1 TASK 2 TASK 3

CONSTRAINED LAYERS

TASK-SPECIFIC LAYERS

Figure 3.8: The structure of an soft parameter sharing of multi-task learning.

• Hard parameter sharing. Figure 3.9 describes hard parameter sharing which
is the most commonly used approach to multi-task learning in neural net-
works. It is generally applied by sharing the hidden layers between all tasks,
while keeping several task-specific output layers. Hard parameter sharing
greatly reduces the risk of overfitting [Baxter, 1997].

There are some several advantages of multi-task learning:

• Implicit data augmentation. Multi-task learning effectively increases the
sample size that we are using for training our model.

• Attention focusing. If a task is very noisy or data is limited and high-
dimensional, it can be difficult for a model to differentiate between relevant
and irrelevant features. Multi-task learning can help the model focus its at-
tention on those features which provide additional evidence for the relevance
or irrelevance of those features.
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Figure 3.9: The structure of an hard parameter sharing of multi-task learning.

• Eavesdropping. Some features G are easy to learn for some task B while
being difficult to learn for another task A. Multi-task learning allows the
model to eavesdrop in order to learn G through task B.

• Representation bias. Multi-task learning biases the model to prefer repre-
sentations that other tasks also prefer.

• Regularization. Multi-task learning acts as a regularizer by introducing an
inductive bias. As such, it reduces the risk of overfitting as well as the
Rademacher complexity of the model towards its ability to fit random noise.

Thanks to the benefits of multi-task learning, [Hashimoto et al., 2017] utilized
multi-task learning to define joint hierarchical learning solving many natural lan-
guage processing tasks: Chunking, POS Tagging, a Dependency tree, and En-
tailment. The work which is most relevant to our model is [He et al., 2018]. [He
et al., 2018] proposed a kind of multi-task learning model for aspect-level sentiment
analysis task in which a pre-trained document-level model is utilized to share in-
teractive knowledge between two tasks. Multi-task learning contributes a big role
in tackling the drawbacks of aspect-level sentiment analysis task on Twitter social
networking.
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Chapter 4

Tweet-level Sentiment Analysis

We introduce a novel Multiple Features-Aware Contextual Neural Network for
Twitter-level sentiment classification which tries to learn Multi-characteristics of
each word in a tweet. More specifically, our approach performs a series of feature
augmentation methods to cast scalar features upon word embeddings and provide
real-valued hints (high-level features) to enrich word embeddings for improving the
representation learning process. Such feature-enriched words are incorporated into
a neural network by modeling tweet structures which allow the model learns to
adaptively focus on the correct sentiment words and contextualize the sentiment
words in a tweet. This improves the drawbacks of state-of-the-art models which
utilize simple word structures to capture the semantics of words in a tweet. Our
model is an end-to-end differentiate neural network and achieves state-of-the-art
performance on three Twitter datasets: STS, Sanders, and HCR.

4.1 Introduction

Recent years have witnessed the development of information technology and ma-
chine learning technology applied to social media. Social networking such as Face-
book, Twitter, and Flickr, where people share their opinions or emotions by up-
loading texts, pictures or expressing their sentiments of events, products, and
phenomenon. Such user data are extensive for investigating useful knowledge. For
example, companies want to know the opinion of customers about their products
or a person can notify an important event to people and listens to people about
this event.

These works are involved in text mining and NLP (Natural Language Pro-
cessing) tasks in which tweet-level sentiment classification is one of the critical
tasks of sentiment analysis. Recently, neural networks (or deep learning) have
garnered considerable attention for sentence-level sentiment classification [Socher
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et al., 2011], [Collobert et al., 2001], [Kalchbrenner et al., 2014], [Santos and Gatti,
2014], [Wang et al., 2015]. Notably, the dominant state-of-the-art systems for many
benchmarks are now neural models, almost completely dispensing with traditional
feature engineering techniques altogether. With utilizing the distributed represen-
tations of words to represent phrases or sentences, the laborious feature engineering
can be extracted automatically by deep learning models using multiple layers and
capture the semantics of words. Such distributed representations or word embed-
dings encode the different features of words in their dimension. Specifically, words
with similar context but opposite sentiment polarities may be mapped to nearby
vectors in the embedding space such as C&W [Collobert and Weston, 2008a], Neu-
ral network language model [Bengio et al., 2003] and CBOW (Continuous Bag-
of-Word) [Mikolov et al., 2013a]. Later on, the works of [Bespalov et al., 2011],
[Labutov and Lipson, 2013], [Levy and Goldberg, 2014], [Qian et al., 2015], [Vo
and Zhang, 2015] and [Ren et al., 2016] tried to incorporate additional features
into word embeddings such as N-gram, logistic regression, dependency tree and
topic-enriched multi-prototype to learn both semantic and sentiment information.
The additional features are a form of feature augmentation and learned from neu-
ral networks or lexicon resources in order to enrich the information of each word
for word embeddings. We can realize that building good word embeddings can
assist deep learning models to learn word relationship for improving classification
performance. However, these works were performed for sentence-level sentiment
classification in which a sentence is formal and different from a tweet. The ubiq-
uitous nature of Twitter social networking is the use of short text messages in
term of noise, relevance, emoticons, folksonomies, and slangs (unique properties).
In other words, it is difficult to exploit features and capture the unique charac-
teristics of words. For example, the tweet ”@kirstiealley my dentistis great but
shes expensive...=(”. We can observe that the tweet is very short, even wrong
vocabulary at the word ”dentistis” and contains the emoticon. Additionally, the
main sentiment part of the tweet is ”she’s expensive... =(”, instead of focusing
on the whole tweet. To tackle these problems, our approach is targeted at serv-
ing two important purposes: 1) Tweets are normalized assisted by a Semantic
rule-based approach. 2) Modeling multiple views of each word in a tweet by in-
tegrating multiple flavor-features via a Bidirectional Contextual Gated Recurrent
Neural Network (Bi-CGRNNet). The Bi-CGRNNet is improved from Gated Re-
current Neural Network (GRNNet) which applies a Gating mechanism to control
how much interactive information between the features would pass through to the
final result.

We introduce three flavor-features: Character Attention Vectors (CharAVs),
Lexicon Embeddings (LexW2Vs) and Dependency-based Word Vectors (Depen-
dencyW2Vs). Such multiple features provide different views of words and learn
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high-quality representations that could be used for prediction. More specifically,
CharAVs is developed from a DeepCNN network to extract local features around
each character window of a word in order to capture the morphology of the word.
The purpose of LexW2Vs is to highlight the essential sentiment words in a tweet.
Finally, DependencyW2Vs is to derive the syntactic contexts of a word via syn-
tactic relations of the word. These features are constructed as an Input Tensor for
Bi-CGRNNet.

In summary, our novel model is a differentiate end-to-end neural network that
a Tweet processor firstly deals with the problems of Twitter social networking in
which Semantic rules are utilized to assist model in attending important parts of
tweets. Subsequently, the multiple features are developed and incorporated into
word embeddings, then, scoring word relationship via Bi-CGRNNet. There are
several advantages to this design, e.g., it allows to reduce noise and deal with
negation and specific PoS particles in tweets, multi-features provide multiple fla-
vors to each word and learn to attend the correct contextual words in a tweet.
Our Contributions:

The principal contributions of this chapter are as follows:

• We propose a Tweet processor which normalizes tweets using Semantic rules.

• An Input tensor constructing flavor-features is developed to capture multiple
perspectives of each word and learn to attend the contextual tweet words.

• A standard Bi-GRNNet is improved into Bi-CGRNNet in order to connect
the information of words in a sequence and maintain the order of words for
a Tweet-specific representation.

• We conduct a comprehensive and in-depth analysis of the inner workings of
our proposed model.

We introduce related works in Section 4.2. Next, the model architecture is de-
scribed in Section 4.3. This section illustrates our idea and the structure of our
model. We show experimental results along with discussion and analysis in Section
4.4. We finish by drawing important conclusions.

4.2 Related Works

Sentiment analysis task can be often interpreted as a multi-class (or binary) classi-
fication problem in which many decades of research have been dedicated to building
features and running them through Traditional machine learning models such as
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Support Vector Machine (SVM), Naive Bayes (NB) and Maximum Entropy (Max-
Ent) classifiers [da Silva et al., 2014], [Saif et al., 2012]. These models utilize
feature engineerings such as lexicons, n-gram features or parse-tree features.

Recently, end-to-end neural networks such as the Long Short-Term Memory
networks have demonstrated promising performance on tweet-level sentiment anal-
ysis. The work of [Socher et al., 2011] proposed a Semi-supervised Recursive Auto-
encoders Network (RAE) for Tweet-level sentiment classification, which obtains a
reduced dimensional vector representation for a tweet. Later on, the authors [Col-
lobert et al., 2001] proposed a Unified Neural Network architecture (MAX-TDNN)
and learning algorithm that can be applied to various natural language process-
ing tasks. The models mainly learn internal representations by vast amounts of
mostly unlabeled training data instead of exploiting human-made input features
optimized for each task.

From the idea of [Collobert et al., 2001], a Generalization of MAX-TDNN
named Dynamic CNN (DCNN) by [Kalchbrenner et al., 2014] is for semantic mod-
eling of sentences by improving from Convolutional Neural Network (CNN). DCNN
uses a Dynamic max-pooling as a Non-linear subsampling function. Our work is
most relevant to the work of [Santos and Gatti, 2014] using Character Convolu-
tional Neural Network (CharSCNN). CharSCNN uses two Convolutional layers to
extract relevant features from words and sentences of any size to perform sentiment
analysis of short texts. Inspired by CharSCNN, we propose a novel Convolutional
mechanism which tries to cast a single real-valued character hint of each word.

It is worthy to mention that Long Short-Term Memory (LSTM) can be used
for Tweet-level Sentiment Classification. For example, [Wang et al., 2015] pro-
posed the variations of Long Short-Term Memory Recurrent Network (RNN-FLT,
RNN-TLT, LSTM-TLT) for Twitter-level sentiment prediction. With the help of
Gates and Constant error carousels in a Memory block structure, the model could
handle interactions between words flexibly. The LSTM with Gating operation is
efficient for exploiting word relationship and controlling information in a tweet.
In our model, the interactive information amongst multi-features is computed and
controlled via the Gating mechanism. Additionally, the most above models focus
on improving the computational architecture of a model in order to capture word
relationship. However, the characteristic of a word improved via adopting different
flavors may assist a deep learning model to adaptively learns to attend the correct
contextual words in a tweet.

4.3 Proposed Model

The overall model architecture illustrated in Figure 4.1 has three major compo-
nents: Tweet processor, Input tensor and Deep neural network. In this model,
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Figure 4.1: The Multiple Features-Aware Contextual Neural Network.

Tweet processor normalizes tweets before feeding into Input tensor for building
multiple features. Bi-CGRNNet computes the interactive knowledge between these
features and learns to score word relationship for a Tweet-specific representation.
In this section, we describe our model architecture module-by-module.

4.3.1 Task definition

A tweet consists of a sequence of n words, denoted as S = {w1, w2, ..., wi, ..., wn},
where wi referring to the position of i-th word in the tweet. The purpose of
this task is to classify the sentiment overall of a tweet into positive or negative.
For example, the tweet ”I love iPhone #Iphone”. The sentiment overall of this
sentence is positive. Our model like an ensemble model by combining multiple
modules to increase the important information of words.
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4.3.2 Tweet Processor

In this section, the Tweet processor has two main phases: 1) Pre-processing tweets
to remove the unique properties of tweets. 2) Eliminating unnecessary parts of a
tweet by Semantic rules (SR). In our view, the pre-processing steps are important
for the deep learning models and contribute to affect the classification accuracy.

Pre-processing

Figure 4.2: The work-flow of the Pre-processing step.

Twitter is a famous micro-blogging and social networking service which users
share, deliver their status as a tweet. In the micro-blogging services, users make
spelling mistakes and use emoticons for expressing their views and emotions. In
most of the social media, languages used by the users is very informal. Users
create their own words: spelling shortcuts, punctuation, emoticons, misspellings,
slangs, new words, URLs, genre-specific terminology and abbreviations. There-
fore, the Pre-processing steps are playing a big role and can be used to reducing the
feature space and such kinds of text need to be corrected. Figure 4.2 illustrates the
Pre-processing work-flow in which unique properties such as Username, None and
Repeated Letters are processed firstly. Then, retweets, tweet repetition, stop words,
links, mentions, folksonomies and accentuation are processed. We keep emoticons
instead of removing them as the study of [Go et al., 2009]. The authors [Go et al.,
2009] indicated that emoticons make noise for traditional machine learning models.
However, we consider emoticons as a kind of flavor-features captured by Lexicon
embeddings. We believe that emoticons are significant for deep learning models
since deep neural networks are capable of capturing the semantic of words.
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Semantic Rules (SR)

Rule Semantic rules Example - STS Corpus Output

R11 If a sentence contains ”but”,
disregard all previous senti-
ment and only take the senti-
ment of the part after ”but”.

@kirstiealley my dentist
is great but she’s expen-
sive...=(

she’s expen-
sive...=(

R12 If a sentence contains ”de-
spite”, only take sentiment of
the part before ”despite”.

I’m not dead despite ru-
mours to the contrary.

I’m not dead

R13 If a sentence contains ”un-
less”, and ”unless” is followed
by a negative clause, disregard
the ”unless” clause.

laptop charger is broken
- unless a little cricket
set up home inside it
overnight. typical at
the worst possible time.

laptop charger is
broken

R14 If a sentence contains ”while”,
disregard the sentence follow-
ing the ”while” and take the
sentiment only of the sentence
that follows the one after the
”while”.

My throat is killing me,
and While I got a decent
night’s sleep last night,
I still feel like I’m about
to fall over.

I still feel like I’m
about to fall over

R15 If the sentence contains ”how-
ever”, disregard the sentence
preceding the ”however” and
take the sentiment only of
the sentence that follows the
”however”.

@lonedog bwaha-
hah...you are amazing!
However, it was quite
the letdown.

it was quite the
letdown.

Table 4.1: Semantic rules

In a tweet, some sub-sentences of a tweet can be un-important and need to
be removed because the sentiment overall of a tweet may focus on a sub-sentence
only instead of the whole tweet. For example:

• @lonedog bwahahah...you are amazing! However, it was quite the letdown.

• @kirstiealley my dentist is great but she’s expensive...=(

In two above examples, the sentiment overall polarities are negative. However, the
sub-sentences expressing the overall sentiment of tweets follow but and however.
This inspires an approach to remove unessential parts in the tweets. We realize that
tweets with sub-sentences connected together by Conjunction and Conjunctive
adverbs such as ”but, while, however, despite, however” always have opposite
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polarity and the sentiment overall only focus on a sub-sentence instead of the
whole tweet. We propose the Semantic rules to handle such cases in tweets. Table
4.1 describes the summarization of the five rules including the examples which are
used for the Tweet Processor.

4.3.3 Input Tensor

Input tensor tries to learn the multiple features and converts each flavor-feature
to a dense word representation. Dense word representations are concatenated
together in order to construct into two Advanced word embeddings:

• Advanced continuous word embedding vi = [ri; ei; li] is constructed by three
sub-vectors: the continuous word-level embedding ri ∈ Rdword

, the charac-
ter attention embedding ei ∈Rl, where l is the length of the filter of wide
convolutions, the lexicon embedding li ∈Rdscore where dscore is list of senti-
ment scores for that word in lexicon datasets. Advanced continuous word
embedding contains semantic and is improved information from LexW2Vs
and CharAVs.

• Advanced dependency-based word embedding di = [dei, ei; li] is also built
by three sub-vectors: the dependency-based word embedding dei ∈ Rdword

,
the character attention embedding ei and the lexicon embedding li. The
advanced dependency-based word embedding contains syntactic contexts and
is enhanced information from LexW2Vs and CharAVs.

These advanced embeddings deal with three main problems:

• Sentences have any different size.

• Important information of characters that can appear at any position in a
word is extracted.

• The interactive knowledge between flavor-features are captured via Bi-CGRNNet
in order to produce a Tweet-specific representation.

Different from LexW2Vs and DependencyW2Vs, to learn CharAVs, we use a
DeepCNN to capture the morphology of each word via character embeddings as
Sub-section 4.3.3. The output of DeepCNN is a single real-valued feature. In
the next Sub-sections, we introduce methods to build LexW2Vs, CharAVs and
DependencyW2Vs features.
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Word/Character Embeddings

The different kinds of embeddings are constructed by using a fixed-sized word
vocabulary Vword and a fixed-sized character vocabulary Vchar. Given a word
wi is composed from characters {c1, c2, ..., cM}, the character-level embeddings are
encoded by column vectors ui in the embedding matrixW char ∈Rdchar×|Vchar|, where
Vchar is the size of the character vocabulary. For continuous word-level embedding
rword, each word wi ∈ Vword, where Vword is a fixed-sized word vocabulary. The
word embedding matrix is simply WE ∈ Rd×Vword

, where d is the dimension of
the word embeddings. Each word embedding wi is mapped by using a pre-trained
word embeddings. The character embeddings are constructed by initialization
randomly.

Lexicon Embeddings (LexW2Vs)

Semantic embeddings ignore the sentiment polarity of words in the sentence and
map words with similar semantic context but opposite sentiment polarity. To inte-
grate the sentiment polarity for words in the sentence, LexW2Vs are constructed
by taking scores from various lexicon datasets. Sentiment lexicons are valuable
resources that can be considered much for building embeddings for deep learn-
ing models. The sentiment lexicons present the different states of each word in
different contexts which can be trained by using neural networks.

In lexicon datasets, each word contains key-value pairs in which the key is a
word, and the value is a list of sentiment scores for that word.

For each word wi ∈ V word, where V word is a fixed-sized word vocabulary, a
lexicon embedding is constructed by concatenating all of the scores among lexicon
datasets with respect to wi. If wi does not exist in a certain dataset, 0 value is
substituted. The lexicon embedding is a form of a vector li ∈ Rdscore , where dscore

is the total number of scores across all lexicon datasets. We use seven lexicon
datasets for building LexW2Vs:

• Bing Liu Opinion Lexicon [Hu and Liu, 2004].

• NRC Hashtag Sentiment Lexicon [Mohammad et al., 2013].

• Sentiment140 Lexicon [Go et al., 2009].

• NRC Sentiment140 Lexicon [Go et al., 2009].

• MaxDiff Twitter Sentiment Lexicon [Kiritchenko et al., 2014b].

• National Research Council Canada (NRC) Hash-tag Affirmative and Negated
Context Sentiment Lexicon [Kiritchenko et al., 2014b].
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• Large-Scale Twitter-specific Sentiment Lexicon [Tang et al., 2014a].

The LexW2Vs capture the different sentiments of words in tweets and is worth
incorporating to improve the coverage. Table 4.2 illustrates the type of words for
each dataset.

Lexicon dataset The type of words
Bing Liu Opinion Lexicon Sentiment adjective words
NRC Hashtag Sentiment Lexicon Hashtag emotion words & Hashtag

topic words
Sentiment140 Lexicon Emoticons & Sentiment words
NRC Sentiment140 Lexicon Affirmative context words & Senti-

ment140 Negated Context words
MaxDiff Twitter Sentiment Lexi-
con

Twitter sentiment words

Hashtag Affirmative and Negated
Context Sentiment Lexicon

Hashtag affirmative words & Negated
contextual words

Large-Scale Twitter-Specific Sen-
timent Lexicon

Colloquial words & Emoticons

Table 4.2: The types of words in lexicon dataset.

Lexicon-based features are considered as lexicon embeddings/ sentiment em-
beddings because they are a feature input of deep learning model and describe
the properties of words in tweets. Each word in each lexicon datasets has many
values that can be built by training a neural network. The deep learning model
uses this input for calculating a computational graph (weight matrix) that describe
relatedness among words (n-gram order).

Character Attention Vectors (CharAVs)

In this sub-section, we introduce a neural network to develop a Character attention
vector (CharAVs feature) which represents the morphology of each word. Figure
4.3 describes DeepCNN with two wide convolutions to form a Character attention
vector. The first convolution produces a fixed-size character feature vector named
n-gram features by extracting local features around each character window of the
given word and using a max pooling over vertical character windows. The second
convolution retrieves the fixed-size character feature vector (Character feature ma-
trix) and transforms the representation to yield a Character attention vector. This
method is most relevant to our work [Nguyen and Nguyen, 2018]. However, we
distinguish their work by improving the second convolution. The second convolu-
tion transforms the representation by performing max pooling on each row of the
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Figure 4.3: DeepCNN for the sequence of character embeddings of a word. For
example with one region size is 2 and Four feature maps in the first convolution
and one region size is 3 with three feature maps in the second convolution. The
CharAVs is then created by performing max pooling on each row of the attention
matrix.

Character feature matrix instead of each column. The purpose of this method is
to attend on the highest n-gram feature in order to transform this n-gram features
at previous level into representation at a focused abstract level and to produce
attention over the best feature vector.

Additionally, DeepCNN is constructed from two wide convolutions which can
learn to recognize specific n-grams at every position in a word and allow features
to be extracted independently of these positions in the word. These features
maintain the order and relative positions of characters and are formed at a higher
abstract level. Character attention vector has two advantages: 1) This model could
adaptively assign an importance score to each piece of word embeddings concerning
its semantic relatedness. 2) Another advantage is that this attention model is
differentiated so that it could be easily trained together with other components
in an end-to-end fashion. In the next sub-section, we introduce the background
structure of Convoluational Neural Network (CNN) with Wide convolution.
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The Effect of Convolutional Neural Network: The convolution is an op-
eration between a vector of weights m ∈ Rm and a vector of inputs viewed as a
sequence w ∈ Rw. The vector m is the filter of the convolution. Concretely, s as an
input word and si ∈ R is a single feature value associated with the i− th character
in the word. The convolution has a filter vector m and take the dot product of
filter m with each m-grams in the sequence of characters si ∈R of a word in order
to obtain a sequence c:

cj = mT sj−m+1:j (4.1)

Based on Equation 1, we have two types of convolutions that depend on the range
of the index j. The narrow type requires that s ≥ m and produce a sequence
c ∈Rs−m+1. The wide type does not require on s or m and produce a sequence
c ∈ Rs+m−1. Out-of-range input values si where i < 1 or i > s are taken to be
zero. The result of the narrow convolution is a subsequence of the result of wide
convolution.
Wide Convolution: Given a word wi composed of M characters {c1, c2, ..., cM},
we take a character embedding ui ∈Rdchar for each character ci and construct a
character matrix W char ∈Rdchar × |V char| as following Equation 4.2:

W char =

 | | |
u1 ... uM
| | |

 (4.2)

.
The values of the embeddings ui are parameters that are optimized during

training. The trained weights in the filter m correspond to a feature detector
which learns to recognize a specific class of n-grams, where n ≤ m, and m is
the width of the filter. The use of a wide convolution has more advantages than
a narrow convolution because a wide convolution ensures that all weights of the
filter m reach the whole characters of a word at the margins. Besides, the wide
convolution guarantees that the filter m always produces a valid non-empty result
c, independently of the width of m and the sequence length s. Therefore, this
is particularly significant when the width of the filter m is set from 7 to 14 to
represent a word. The resulting matrix has dimension d× (s+m− 1).

Dependency-based Word Vectors (DependencyW2Vs)

To construct context embeddings, we use the idea of [Levy and Goldberg, 2014] to
derive syntactic contexts based on the syntactic relations of a word. Most previous
works on neural word embeddings take the contexts of a word by computing linear-
context words that precede and follow the target word. However, these contexts
can be exploited similar by generalizing the SKIP-GRAM model. The model for
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learning Dependency-based Word Vectors is improved from SKIP-GRAM model
in which the linear bag of words contexts are replaced with arbitrary word contexts
from a dependency tree. Syntactic contexts are derived from produced dependency
parse-trees. Specifically, the bag-of-words in the SKIP-GRAM model yield broad
topical similarities, while the dependency-based contexts yield more functional
similarities of a cohyponym nature. In the SKIP-GRAM model, the contexts of
a word are the words surrounding it in the text. However, there is a limitation
of SKIP-GRAM word embeddings: Contexts no need to correspond to all of the
words and the number of context-types maybe larger than the number of word-
types. Therefore, dependency-based contexts capture more information than bag-
of-words contexts. In Figure 4.4, the contexts are extracted for each word in the
sentence, and the contexts of a word are derived from syntactic relations of a
word in the sentence. For parsing syntactic dependencies, we use a parser from
[Goldberg and Nivre, 2013] for Stanford dependencies and the corpus are tagged
with parts-of-speech using Stanford parser 1.

After parsing each sentence, we consider word context as Figure 4.4: For a
target word w with modifiers m1,m2, ...,mn and a head h, we form the contexts as
(m1, lbl1), ..., (mn, lbln), (h, lbl−1h ), where lbl is the type of the dependency relation
between the head and the modifier, lbl−1 is used to marking the inverse-relation.
The advantages of syntactic dependencies are inclusive and more focused than
bag-of-words. Besides, they can capture relations that out-of-reach with small
windows and filter out contexts that are not directly related to the target word.
For example, Australian is not used as the context for discovers. We have more
focused embeddings that capture more functional and less topical similarity. As
such, DependencyW2Vs contains syntactic information captured via dependency
trees.

4.3.4 Contextual Gated Recurrent Neural Network (CGRN-
Net)

In this section, we describe the formulation of CGRNNet architecture from scratch
based on a Gated Recurrent Neural Network.

Gated Recurrent Neural Network

The Bi-GRNN is a version of [Cho et al., 2014] in which a Gated Recurrent Unit
(GRU) has two gates, a reset gate rt and an update gate zt. Intuitively, the reset
gate determines how to combine the new input with the previous memory, and
the update gate defines how much of the previous memory to keep around. The

1https://nlp.stanford.edu/software/lex-parser.shtml
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Figure 4.4: Dependency-based context extraction example [Levy and Goldberg,
2014]

idea behind a GRU layer is quite similar to that of an LSTM layer. The basic
idea of using a gating mechanism to learn long-term dependencies is the same as
in an LSTM, but there are a few key differences: a) A GRU has two gates, an
LSTM has three gates. b) GRUs do not possess an internal memory (ct) that is
different from the exposed hidden state. They do not have the output gate that is
present in LSTMs. c) The input and forget gates are coupled by an update gate
z, and the reset gate r is applied directly to the previously hidden state. Thus,
the responsibility of the reset gate in an LSTM is split up into both r and z. d) A
second nonlinearity is not applied when computing the output.

We use GRUs for our model instead of LSTMs because GRUs are quite new
and their tradeoffs have not been fully explored yet. On the other hand, GRUs
have fewer parameters (U and W are smaller) and thus may train a bit faster or
need fewer data to generalize. The equation 4.3 illustrates the construction of a
GRU cell:

rt = σ(Wxrxt +Whrht−1 + br)

zt = σ(Wxzxt +Whzht−1 + bz)

ĥt = g(xtWxh + (rt � ht−1)Whh + bh)

ht = (1− zt)� ht−1 + zt � ĥt.

(4.3)
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Contextual Gated Recurrent Neural Network

Based on the idea of GRNN model, we build a power of syntactic contexts into a
standard Bi-GRNN model which adapts GRNN cell to take both words and syntac-
tic contexts by modifying the equations representing the operations of the GRNN
cell. A GRNN cell is added a Dependency-based word vector T to reset gate,
update gate and hidden state. In the Equation 4.4, the term in bold is the mod-
ification made to the original GRNN equation. Based on these equations, adding
the Dependency-based word vector T is corresponding to considering a composite
input [xi, T ] to the GRNN cell that concatenates the Advanced continuous word
embeddings and Advanced dependency-based word embeddings.

rt = σ(Wxrxt +Whrht−1 + WTiT + br)

zt = σ(Wxzxt +Whzht−1 + WTiT + bz)

ĥt = g(xtWxh + (rt � ht−1)Whh + WTiT + bh)

ht = (1− zt)� ht−1 + zt � ĥt.

(4.4)

This approach of concatenating syntactic contexts and word embeddings works
better in practice and deal with the context challenge in sentiment analysis. The
CGRNNet is constructed into Bi-CGRNNet and take two Advanced word embed-
dings from Input Tensor as input. Bi-CGRNNet computes the interactive knowl-
edge between these Advanced word embeddings and controls the information via
the Gating mechanism. Word relationship is calculated in order to produce a final
Tweet-specific representation.

4.3.5 Model Training

The deep learning model is trained in a supervised manner by minimizing the
cross-entropy error of sentiment classification. The deep learning model can be
trained in an end-to-end way by back-propagation to calculate the gradients of all
the parameters, and update them with stochastic gradient descent. The goal of
training is to minimize the cross-entropy error between y and ŷ for all sentences,
where y be the target distribution for sentence, ŷ be the predicted sentiment
distribution.

loss = −
∑
i

∑
j

yji logŷ
j
i + λ||θ||2 (4.5)

4.4 Evaluation

This section shows models are used to comparing to our model and presents an
evaluation metric for comparison. We perform Binary classification for evaluation.
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To evaluate the significant of our model, a series of evaluations is conducted in
which Accuracy and F1-measures is applied. We set the sizes of word embeddings
amongst {50, 100, 200, 300} and apply multiple Word2Vec such as GoogleW2V,
Twitter GloveW2V and SSWE ?.

4.4.1 Datasets and Experimental Setting

Three datasets are used for evaluating binary classification accuracy of our model.
These datasets are popular and applied in many early studies:

• Stanford - Twitter Sentiment Corpus (STS Corpus): STS Corpus contains
1,600K training tweets collected by a crawler from [Go et al., 2009]. [Go et al.,
2009] constructed a test set manually with 177 negative and 182 positive
tweets. The Stanford test set is small. However, it has been widely used in
different evaluation tasks [Go et al., 2009], [Santos and Gatti, 2014], [Bravo-
Marquez et al., 2013].

• Sanders - Twitter Sentiment Corpus: This dataset consists of hand-classified
tweets collected by using search terms: #apple, #google, #microsoft and
#twitter. We construct the dataset as [da Silva et al., 2014] for binary
classification.

• Health Care Reform (HCR): This dataset was constructed by crawling tweets
containing the hashtag #hcr [Speriosu et al., 2011]. The task is to predict
positive/negative tweets [da Silva et al., 2014].

The summary statistics of datasets is described in Table 4.3.

Hyperparameters

Table 4.4 shows the summary of Hyperparameters which is applied to our model.
Training is done through stochastic gradient descent over shuffled mini-batches
with Adadelta update rule.

Pre-trained Word Vectors

The publicly available Word2Vec2 is trained from 100 billion words from Google
and Twitter Glove3 of Stanford is performed on aggregated global word-word co-
occurrence statistics from a corpus. Additionally, three kinds of Sentiment-Specific
Word Embedding for Twitter sentiment classification (SSWE) from [Tang et al.,

2code.google.com/p/word2vec/
3https://nlp.stanford.edu/projects/glove/
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Data Set N c lw lc |Vw| |Vc| Test

STS
Train 80K

2
33 110

67083 134 -Dev 16K 28 48
Test 359 21 16

Sanders
Train 991

2
31 33

3379 84 CVDev 110 27 47
Test 122 28 21

HCR
Train 621

2
25 70

3100 60 -Dev 636 26 16
Test 665 20 16

Table 4.3: Summary statistics for the datasets after using semantic rules. c: the
number of classes. N : The number of tweets. lw: Maximum sentence length. lc:
Maximum character length. |Vw|: Word alphabet size. |Vc|: Character alphabet
size.

Hyperparameters STS HCR Sanders
Mini-batch Size 100 4 4
Filter Window Size for Layer 1 7, 6
Filter Window Size for Layer 2 1, 14
Dropout Rate 0.5
l2 Constraint True
Learning Rate 0.1
Momentum 0.9

Table 4.4: The summary of hyperparameters

2014b] are applied. These pre-train word embeddings are used for cross compari-
son. Word2Vec has the dimensionality of 300, Twitter Glove has the dimension-
ality of 200 and SSWEs have the dimensionality of 50. Words that do not present
in the set of pre-train words are initialized randomly.

Evaluation Metric

In the Stanford Twitter Sentiment Corpus (STS Corpus), the training data is
selected 80K tweets randomly, and the development set is selected 16K tweets
randomly from the training data. The STS dataset is a corpus from [Go et al.,
2009].

For Sander dataset, standard 10-fold cross validation is conducted for Binary
classification. A development set is selected about 10% randomly from 9-fold
training data.
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In Health Care Reform Corpus (HCR Corpus), the development set is selected
10% randomly in a training set.

For evaluation measures, we apply Accuracy and F1 measures [Balikas and
Amini, 2016] to evaluate the effectiveness of our proposed model. The evaluation
F1 - measure F PN

1 is as follows:

F PN
1 =

F P
1 + FN

1

2
(4.6)

Where F P
1 is the F1 score for the POSITIV E class:

F P
1 =

2πPρP

πP + ρP
(4.7)

Here, πP and ρP denote precision and recall for the POSITIV E class, respectively:

πP =
PP

PP + PU + PN
(4.8)

ρP =
PP

PP + UP +NP
(4.9)

where PP , UP , NP , PU , PN are the cells of the confusion matrix shown in Table
4.5. Additionally, the evaluation accuracy measure is as follows:

Accuracy =

∑
i=1...N(1− (targeti − threshold(f(−→xi ))))

N
(4.10)

Where threshold(f(−→xi )) equal 0/1.

Gold Standard
POSITIVE NEUTRAL NEGATIVE

Predicted
POSITIVE PP PU PN
NEUTRAL UP UU UN
NEGATIVE NP NU NN

Table 4.5: The confusion matrix.

4.4.2 Baselines

We compare our proposed model to strong state-of-the-art models on the Twitter
datasets. The methods are separated into two classes: Traditional methods and
Deep learning methods as follows:
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• (SVM, Maximum Entropy (MaxEnt), Random Forest (RF), Logistic Regres-
sion (LR), Multinominal Naive Bayes (MNB))-BoW + lex [da Silva et al.,
2014]: Traditional separate methods are combined with Bag-of-Word (BoW),
feature hashing (FH), and lexicon (lex).

• ENS(SVM + RF + LR + MNB)-BoW + lex [da Silva et al., 2014]: an en-
semble model incorporating SVM, Random Forest, Logistic Regression, and
Multinominal Naive Bayes together is combined with Bag-of-Word (BoW),
feature hashing (FH), and lexicon (lex).

• Naive Bayes (NB) - NG + POS + SF [Saif et al., 2012]: the model of [Saif
et al., 2012] using a Naive Bayes is combined with N-Gram (NG), Part-of-
Speech (POS) and Semantic feature (SF) as useful features.

• RAE [Socher et al., 2011]: is a semi-supervised Recursive auto-encoders net-
work (RAE) for sentence-level sentiment classification, which obtains a re-
duced dimensional vector representation for a sentence.

• MAX-TDNN [Collobert et al., 2001]: is a Unified Neural Network archi-
tecture and learning algorithm that can be applied to various natural lan-
guage processing tasks. The model learns internal representations from vast
amounts of mostly unlabeled training data instead of exploiting human-made
input features optimized for each task.

• DCNN [Kalchbrenner et al., 2014]: is a generalization of MAX-TDNN. Dy-
namic CNN (DCNN) is for semantic modeling of sentences by improving
from standard CNN. The DCNN uses Dynamic max-pooling as Non-linear
subsampling function.

• RNN-FLT, RNN-TLT, LSTM-TLT [Wang et al., 2015]: Long Short-Term
Memory Recurrent Networks for Twitter sentiment prediction. With the
help of Gating mechanisms and Constant error carousels in a Memory block
structure, the model could handle interactions between words through a
flexible compositional function.

• CharSCNN [Santos and Gatti, 2014]: a Deep learning model uses Convolu-
tion Neural Network (CNN). The model of Santos and Gatti [2014] applies
two convolutions to capture the information of characters instead of words
in a sentence.
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Model STS HCR Sander

MaxEnt 83.00 - -
NB 82.70 - -
SVM 82.20 - -
SVM-BoW - 73.99 82.43
SVM-BoW + lex - 75.94 83.98
RF-BoW - 70.83 79.24
RF-BoW + lex - 72.93 82.35
LR-BoW - 73.83 77.45
LR-BoW + lex - 74.73 79.49
MNB-BoW - 72.48 79.82
MNB-BoW + lex - 75.33 83.41
ENS (RF + MNB + LR) - BoW - 75.19 -
ENS (SVM + RF + MNB + LR) - BoW + lex - 76.99 -
ENS (SVM + RF + MNB + LR) - BoW - - 82.76
ENS (SVM + RF + MNB) - BoW + lex - - 84.89

CharSCNN/Pre-trained 86.40 - -
CharSCNN/Random 81.90 - -
SCNN/Pre-trained 85.20 - -
SCNN/Random 82.20 - -
MAX-TDNN 78.80 - -
DCNN 87.4 - -
RAE 77.60 - -
RNN-FLT 80.20 - -
RNN-TLT 86.40 - -
LSTM-TLT 87.20 - -

Bi-CGRNN + CharAVs + LexW2Vs + GoogleW2Vs
+ SR

88.57 78.47 84.96

Bi-CGRNN + CharAVs + LexW2Vs + GloveW2Vs
+ SR

87.74 81.00 85.79

Bi-CGRNN + CharAVs + LexW2Vs + SSWE-h + SR 85.23 77.74 84.69
Bi-CGRNN + CharAVs + LexW2Vs + SSWE-r + SR 84.67 74.58 85.42
Bi-CGRNN + CharAVs + LexW2Vs + SSWE-u + SR 84.67 79.24 85.42

Bi-CGRNN + CharAVs + LexW2Vs + GoogleW2Vs 84.67 78.79 83.40
Bi-CGRNN + CharAVs + LexW2Vs + GloveW2Vs 83.84 80.00 85.32
Bi-CGRNN + CharAVs + LexW2Vs + SSWE-h 83.56 78.34 83.77
Bi-CGRNN + CharAVs + LexW2Vs + SSWE-r 82.72 78.79 85.60
Bi-CGRNN + CharAVs + LexW2Vs + SSWE-u 81.33 77.74 85.42

Table 4.6: Accuracy of different models for binary classification.
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Model Pos. F1 Neg. F1 Avg. F1
STS Corpus
SVM-BoW 68.50 66.30 67.40
SVM-BoW + lex 74.90 72.70 73.80
RF-BoW 69.10 63.60 66.35
RF-BoW + lex 75.70 72.90 74.30
LR-BoW 72.70 50.80 61.75
LR-BoW + lex 78.30 74.00 76.15
MNB-BoW 71.50 71.10 71.30
MNB-BoW + lex 79.30 79.40 79.35
ENS (SVM + RF + LR + MNB)-BoW 73.80 70.20 72.00
ENS (SVM + RF + LR + MNB)-BoW + lex 81.80 80.20 81.00
NB-NG + POS + SF 82.50 85.30 83.90

Bi-CGRNN + CharAVs + LexW2Vs + SR + GoogleW2Vs 91.01 89.01 90.01
Bi-CGRNN + CharAVs + LexW2Vs + SR + GloveW2Vs 92.31 86.91 89.60
Bi-CGRNN + CharAVs + LexW2Vs + SR + SSWE-h 92.30 84.98 88.64
Bi-CGRNN + CharAVs + LexW2Vs + SR + SSWE-r 93.25 84.05 88.65
Bi-CGRNN + CharAVs + LexW2Vs + SR + SSWE-u 92.62 84.24 88.43
HCR Corpus
SVM-BoW 36.60 83.60 60.10
SVM-BoW + lex 41.60 84.80 63.20
RF-BoW 31.70 81.50 56.60
RF-BoW + lex 32.30 83.10 57.70
LR-BoW 31.50 83.80 57.65
LR-BoW + lex 33.90 84.40 59.15
MNB-BoW 48.50 81.20 64.85
MNB-BoW + lex 53.10 83.30 68.20
ENS (SVM + RF + LR + MNB)-BoW 35.80 84.60 60.20
ENS (SVM + RF + LR + MNB)-BoW + lex 41.80 85.70 63.75
NB-NG + POS + SF 50.30 86.00 68.15

Bi-CGRNN + CharAVs + LexW2Vs + SR + GoogleW2Vs 60.63 76.31 68.47
Bi-CGRNN + CharAVs + LexW2Vs + SR + GloveW2Vs 55.39 86.72 71.06
Bi-CGRNN + CharAVs + LexW2Vs + SR + SSWE-h 18.82 85.94 52.38
Bi-CGRNN + CharAVs + LexW2Vs + SR + SSWE-r 25.98 84.84 55.41
Bi-CGRNN + CharAVs + LexW2Vs + SR + SSWE-u 43.65 87.31 65.48

Table 4.7: Cross comparison results for different traditional methods. LR, RF,
SVM, MNB and NB refer to Logistic Regression, Random Forest, Support Vector
Machine, Multinominal Naive Bayes and Naive Bayes, respectively. BoW refers to
Bag-of-Words, lex refers to lexicon, NG refers to N-gram, POS refers to Part-of-
Speech and SF refers to Semantic.
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Model Pos. F1 Neg. F1 Avg. F1
Sanders Corpus
SVM-BoW 81.50 83.30 82.40
SVM-BoW + lex 83.20 84.70 83.95
RF-BoW 78.60 79.80 79.20
RF-BoW + lex 81.80 82.90 82.35
LR-BoW 75.50 79.10 77.30
LR-BoW + lex 78.30 80.60 79.45
MNB-BoW 77.70 81.60 79.65
MNB-BoW + lex 82.00 84.60 83.30
ENS (SVM + RF + LR + MNB)-BoW 81.70 83.70 82.70
ENS (SVM + RF + LR + MNB)-BoW + lex 84.20 85.50 84.85

Bi-CGRNN + CharAVs + LexW2Vs + SR + GoogleW2Vs 90.46 85.51 87.98
Bi-CGRNN + CharAVs + LexW2Vs + SR + GloveW2Vs 88.63 79.31 83.97
Bi-CGRNN + CharAVs + LexW2Vs + SR + SSWE-h 91.18 84.78 87.98
Bi-CGRNN + CharAVs + LexW2Vs + SR + SSWE-r 92.49 85.65 89.07
Bi-CGRNN + CharAVs + LexW2Vs + SR + SSWE-u 91.33 85.87 88.60

Table 4.8: Cross comparison results for different traditional methods. LR, RF,
SVM, MNB and NB refer to Logistic Regression, Random Forest, Support Vector
Machine, Multinominal Naive Bayes and Naive Bayes, respectively. BoW refers to
Bag-of-Words, lex refers to lexicon, NG refers to N-gram, POS refers to Part-of-
Speech and SF refers to Semantic.

4.4.3 Experimental results

Table 4.6 shows the accuracy results of our model compared to other models.
The variations of our model are constructed to evaluate the effectiveness of our
model on classification accuracy. We compare our model performance with the
approaches of [Go et al., 2009], [Socher et al., 2011], [Collobert et al., 2001], [Saif
et al., 2012], [Kalchbrenner et al., 2014], [Santos and Gatti, 2014], [Wang et al.,
2015] for STS corpus.

The models of [Go et al., 2009], [Socher et al., 2011], [Collobert et al., 2001],
[Saif et al., 2012], [Kalchbrenner et al., 2014], [Santos and Gatti, 2014] display the
good results in previous time and the model of [Wang et al., 2015] reports the
state-of-the-art model so far. Our model shows the best prediction accuracy for
STS Corpus.

For Sanders and HCR Corpus, we compare the performance with the models
of [Saif et al., 2012], [da Silva et al., 2014] using the ensemble of multiple base
classifiers (ENS) such as Naive Bayes (NB), Random Forest (RF), Support Vector
Machine (SVM) and Logistic Regression (LR). The ENS model of [da Silva et al.,
2014] is combined with Bag-of-Words (BoW), Feature hashing (FH) and Lexicons
(lex). The model of [Saif et al., 2012] utilizes N-gram, Part-of-Speech and Semantic
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Word embedding Size 50 Size 100 Size 200 Size 300
STS Corpus
SSWE-h 85.23 - - -
SSWE-r 84.67 - - -
SSWE-u 84.67 - - -
Twitter Glove 87.74 87.74 86.9 -
GoogleW2V - - - 88.57

HCR Corpus
SSWE-h 77.74 - - -
SSWE-r 74.58 - - -
SSWE-u 79.24 - - -
Twitter Glove 77.89 78.34 80 -
GoogleW2V - - - 78.47

Sanders Corpus
SSWE-h 84.69 - - -
SSWE-r 85.42 - - -
SSWE-u 85.42 - - -
Twitter Glove 83.41 85.60 85.79 -
GoogleW2V - - - 84.96

Table 4.9: Accuracy of models using the different sizes of word embeddings for
binary classification.
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Model STS HCR Sander
Bi-CGRNN + GoogleW2Vs 85.70 77.74 83.68
Bi-GRNN + CharAVs + GoogleW2Vs 86.00 79.09 83.41
Bi-GRNN + LexW2Vs + GoogleW2Vs 88.00 78.79 84.42

Table 4.10: Accuracy of models using GoogleW2Vs for binary classification.

Model STS HCR Sander
Bi-CGRNN + GloveW2Vs 84.95 76.99 83.96
Bi-GRNN + CharAVs + GloveW2Vs 86.35 79.25 82.77
Bi-GRNN + LexW2Vs + GloveW2Vs 88.02 78.34 84.6

Table 4.11: Accuracy of models using GloveW2Vs for binary classification.

feature as effective features for Naive Bayes. Our model outperforms the model of
[da Silva et al., 2014] and [Saif et al., 2012] so far. To sum up, Figure 4.5 illustrates
the summary of the accurate comparison of the models for each dataset.

On the other hand, the cross-comparison between the different traditional
methods and our model are conducted for F1-measure in Table 4.7 and Table
4.8. Our model outperforms other models on three datasets. In order to evalu-
ate the effectiveness of the separate flavor-features, the experiments of them are
controlled one-by-one and showed in Table 4.10 and Table 4.11. Additionally, the
experiments of the different size of Word embeddings are handled to evaluate the
effectiveness of the word embeddings in Table 4.9 and Figure 4.6.

4.4.4 Analysis

Table 4.6 indicates that our model built on top of GoogleW2Vs is more effec-
tive than GloveW2Vs for STS corpus meanwhile GloveW2Vs is effective on HCR
and Sanders corpus. We believe GoogleW2Vs captures many words more than
GloveW2Vs and SSWEs for STS dataset. However, the experiment results of
SSWEs and GloveW2Vs still achieve the good performance compared to early
models. Generally, the models assisted by Semantic rules are more effective than
the models without Semantic rules.

In Table 4.7 and Table 4.8, SSWEs performs well for negative tweets compared
to other Word embeddings in HCR and Sanders corpus. GoogleW2Vs still works
well for STS Corpus and GloveW2Vs is for HCR Corpus.

Additionally, we can observe that the experimental results of the separate
flavor-features in Table 4.10 and 4.11 show that CharAVs and LexW2Vs achieve
good performance and contribute to enhancing information of words. LexW2Vs
is more effective than CharAVs on STS and Sanders datasets, whereas, Char-
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Figure 4.5: The chart of accuracy comparison for each corpus

AVs is better than LexW2Vs on HCR dataset. On the other hand, when the
flavor-features are constructed separately, GloveW2Vs is more impressive than
GoogleW2V. Because GloveW2Vs is Twitter embeddings and sufficient for Twitter-
level classification since the datasets are Twitter datasets.

Besides, the size of Word embeddings affects the classification accuracy as
well. Table 4.9 indicates the model achieves good performance with the larger
word embedding size. However, for Twitter Glove, the embedding size of 100 is
better than other sizes for STS corpus.

For error analysis, we show the experimental results in Table 4.12 to show
the effectiveness of our model in predicting some cases. We can observe that
the Bi-GRNNet using LexW2Vs captures the positive words (green words) and
negative words (red words) for computing scores and predicts wrong labels due
to the contexts of tweets meanwhile the Bi-CGRNNet enhanced with CharAVs
and LexW2Vs can recognize contexts of the tweet. For example, the model using
LexW2Vs predicts the third tweet to be positive because the ’strong’ word has
sentiment stronger than ’no’ word, however, the context of this tweet is negative.
The syntactic feature supports in dealing context problems in tweets, and the lex-
icon feature supports in dealing the sentiment of tweets. The differences between
our model and other approaches are the ability of our model to capture multiple
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Figure 4.6: The chart of accuracy comparison on the different sizes of word em-
beddings for each corpus

features, combine these features at the high level and increase the information
of words in tweets. Besides, the usage of DeepCNN for characters can learn a
structure of words at a higher abstract level. LexW2Vs and syntactic contexts
contribute to support information for word embeddings. This helps the model not
only learns to recognize single n-grams of a word, negation, but also patterns in
n-grams towards to form a structure significance of a tweet.

4.5 Conclusions

This chapter proposes a novel approach which tries to learn the different per-
spective of each word via multiple features. There are three main contributions
of our proposed method. First, we propose a Tweet processor combined with
Semantic rules to deal with the unique properties of Twitter social networking.
Second, flavor-features which represent the characteristics of each word in a tweet
are developed in order to attend the contextual sentiment words of the tweet.
Third, Bi-GRNNet is proposed to capture the semantics of words and tries to
learn a tweet-specific representation via the multiple perspectives of words. We
can observe that the multiple useful features are important ingredients in increas-
ing classification accuracy for Twitter sentiment classification. Additionally, this
works is an effort to see the effectiveness of pre-processing on twitter data for the
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Model Input from HCR Corpus Gold Label Prediction

Bi-CGRNN +
CharAVs +
LexW2Vs

seanbaran74 well that’s what’s
next. after #hcr they’ll save the
environment, give us CFLs and
take away our TVs.

Negative
True

Bi-GRNN +
LexW2Vs

False

Bi-CGRNN +
CharAVs +
LexW2Vs

All of us fighting for #HCR ask
ourselves who #imherefor. Who
are you fighting for?
http://bit.ly/9-st

Positive
True

Bi-GRNN +
LexW2Vs

False

Bi-CGRNN +
CharAVs +
LexW2Vs

Stephen Lynch strong ’no’ on
health bill despite talk with
President obama
http://bit.ly/cQIujP #hcr
#tcot #tlot

Negative
True

Bi-GRNN +
LexW2Vs

False

Bi-CGRNN +
CharAVs +
LexW2Vs

Another reason we need #HCR
now. RT @GordBarnes 15
Executives Who Get Paid
Millions To Deny You Health
Care Coverage

Negative
True

Bi-GRNN +
LexW2Vs

False

Bi-CGRNN +
CharAVs +
LexW2Vs

@MPOTheHill: Rep. Allen
Boyd (D-Fla.) will vote for
#hcr. A flip from no to yes.
http://bit.ly/9nTKHH

Positive
True

Bi-GRNN +
LexW2Vs

False

Table 4.12: The label prediction between the Bi-GRNN model using LexW2Vs and
the Bi-CGRNN model using CharAVs and LexW2Vs (The red words are negative,
and the green words are positive).
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fortification of sentiment classification, especially regarding semantic rules.
Our results indicate that the flavor-features are useful for the deep learning

model to improve classification performance. Our model outperforms other models
which mainly utilized the simple word embeddings and improved the architecture
of deep neural networks. The main advantage of deep neural networks is trying
to learn the probability distribution of a sequence in which words are recognized
and differentiated from others. This means that the semantics of a word and the
relationship between words are captured better if the sequential data has specific
perspectives which represent the nature of that sequence.
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Chapter 5

Aspect-level Sentiment Analysis

In this chapter, we propose novel methods to tackle the challenges of the aspect-
level task. A Lexicon-Aware Word-Aspect Attention Network (LWAAN) and
a Deep Memory Network-in-Network (DMNN) are proposed by using effective
multiple attention mechanisms and lexicon information to form an aspect-specific
representation at two levels: Phrase level and Context level. In order to deal with
this, the aspect and its context in a sentence are treated separately and learn their
representations by attention mechanisms. Additionally, the important information
of aspect and its context are highlighted by the sentiment lexicons and encoded
by Long Short-Term Memory (LSTM) to produce a lexicon pooling aspect vector.
Such the pooling aspect vector is to preserve the information of full context aspect
and increase the information of the aspect-specific representation. To evaluate the
performance, we construct many kinds of models and evaluate our models in three
domains: Twitter, Laptop, and Restaurant. The experimental results indicate
that our models improve the performance for aspect-level sentiment classification.

5.1 Introduction

With the advent of social networking websites such as Facebook, Twitter, and
Flickr as well as the development of machine learning technology, we have observed
an increase in the number of opinions shared by people on social networking. The
people often share their opinions about the aspects of an event and a product
through social websites. Therefore, a large of the number of such useful data can
be widely applied in public opinions analysis and product recommendation. These
works are involved in the problem of aspect-level sentiment classification in which
aspects can be identified as the aspects of the product or the event. For instance,
a company would like to know the quality of the ”screen” of a phone or the people
situation after an earthquake (an event).
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Recent years, the ASA task has grown to be one of the most active research
areas in natural language processing (NLP) and become important to business
and society. This work is involved in the problem of modeling the relationship of
a specific aspect term and its context. In order to tackle this, traditional machine
learning approaches and lexicon-based approaches were utilized in the first time
by [Go et al., 2009] [Liu, 2010] [Saif et al., 2012] and [Kiritchenko et al., 2014a].
While most of the traditional machine learning is supervised machine learning
(e.g., Support Vector Machine, Maximum Entropy, Naive Bayes) which requires
significant laborious feature engineering, lexicon-based approaches were applied
as additional features for the traditional machine learning models. Specifically,
lexicon-based approaches mainly use knowledge-based or lexicon-based methods,
which utilize public available lexicon resources (e.g., WordNet, SentiWordNet) and
classify the sentiment of texts based on the overall sentiment polarity of lexicons
[Taboada et al., 2011]. However, the drawbacks of these methods are not capable of
modeling the semantic relationship between an aspect and its context sufficiently.
Additionally, another problem with these methods is difficult to adapt well to
different domains or different languages. As such, the task of ASA introduces a
challenging problem of incorporating aspect information into learning models for
making predictions.

With the success of deep neural networks using the distributed representa-
tions of words (Word embeddings) to merge word representations to represent
phrases or sentences, such models are capable of capturing the semantic relation
between an aspect and its context without the particular features engineering.
More specifically, end-to-end neural networks ([Dong et al., 2014], [Wang et al.,
2016c], [Sukhbaatar et al., 2015], [Tang et al., 2016b], [Ma et al., 2017], [Liu and
Zhang, 2017] and [Chen et al., 2017]) have demonstrated promising performance
on aspect-level sentiment analysis tasks without requiring any laborious feature
engineering. Such models can incorporate aspect information into neural archi-
tectures by learning to attend the different parts of a context sentence towards a
given aspect term via an attention mechanism. Furthermore, such models are the
attention-based LSTM models which try to fuse aspect information by adopting
a naive concatenation of an aspect and its context words to extract important
parts towards the given aspect. Consequently, these models meet the following
drawbacks: First, the simple concatenation causes an extra burden for attention
layers of modeling sequential information dominated by aspect information. Sec-
ond, most of the models are heavily rooted in LSTM networks as well and do not
treat an aspect and its context separately. As such, it incurs additional parameter
costs to LSTM layers towards to hardly model the relationship between the aspect
and its context words. Third, the attention-based models assume that the words
of an aspect have the equal contribution, while the aspect information should be
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an important factor for judging the aspect sentiment polarity. Finally, these mod-
els capture the correct context words based on the semantics of pre-trained word
embeddings (e.g., Glove) that ignore the sentiments of the words.

To overcome the above challenges, we propose a deep neural network which
treats an aspect and its context separately and utilizes multiple attention mech-
anisms to focus on the crucial parts of the aspect and its context. The atten-
tion mechanisms are (Intra attention and Interactive attention)in which the intra-
attention mechanism is to extract the critical parts of an aspect (informative
phrase-level information) first and then, learn the word-aspect relationship be-
tween the informative words of the aspect and its sentiment context words via
the interactive-attention mechanism. More specifically, an aspect and its context
words are augmented by sentiment lexicon information to form lexicon-augmented
word embeddings first. The purpose of the lexicon information is to enforce the
model to pay more attention to the sentiment of words instead of only the se-
mantics of the words. Then, the lexicon-augmented word embeddings are encoded
into their representations by LSTM encoders. Subsequently, the vital informa-
tion words of the aspect are captured via an intra-attention mechanism and are
utilized to learn to attend correct sentiment context words. Furthermore, to cap-
ture the different perspectives of each sentiment context word, we try to develop
two kinds of the aspect representations (the phrase-level representation and the
aggregation-level representation to compute two interactive-attention vectors and
interact knowledge between them.

Our model performs well and tackles the challenges of the aspect-level task via
multiple attention mechanisms. However, there is a remaining challenge that the
attention cannot allow the model to consider the entire history explicitly so far
and look back previous examples which are relevant. We propose a Deep Memory
Network-in-Network (DMNN) to tackle this by using an iterative attention mech-
anism. The iterative attention mechanism is developed by constructing an inter-
active attention mechanism into many computational layers. This mechanism is a
searching mechanism which confirms the internal representation of context words
based on the relevant information from an aspect many times and tries to extract
the correct sentiment words.

Our contributions:
The principal contributions of this chapter are as follows:

• A novel model is developed to try to learn the associative word-aspect rela-
tionship via the multiple attention mechanisms.

• Lexicon information is proposed to highlight the important information of
an aspect and its context via lexicon-augmented word embeddings. These
embeddings enforce the model to pay more attention to the sentiment context
words in a sentence via multiple attention mechanisms.
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• We conduct a comprehensive and in-depth analysis of the inner workings of
our proposed model.

In the remaining sections, the task definition of aspect-level sentiment classification
is formed in Section 5.2.1. The proposed models are described in Section 5.2.
We express the experiments, and analysis in Section 5.3 and finish by drawing
important conclusions.

5.2 Proposed Models

In this section, an ILWAAN model is introduced to learn to attend correct sen-
timent context words given an aspect term. Subsequently, the variants of the
ILWAAN model is developed to conduct the partial evaluation of our model to as-
sess the significance of our model for aspect-level sentiment analysis. To the best
understanding, we illustrate the architecture of the ILWAAN model layer-by-layer
with the functionality of each component.

5.2.1 Task definition

This section describes the ultimate goal of our model in identifying the sentiment
polarity of an aspect in the context of a tweet/ sentence. the tweet consists of a
sequence of n words, denoted as S = {wC

1 , w
C
2 , ..., w

C
i , ..., w

C
N} with with wi referring

to the position of i-th word in the tweet. An aspect term is constructed from a
sequence of M words, denoted as T = {wT

1 , w
T
2 , ..., w

T
i , ..., w

T
M}. The purpose of

this task is to classify the sentiment polarity of the aspect in the context of the
tweet into positive, negative or neutral. For example, given the tweet: ”the great
screen, but the battery life is not good”, the sentiment of the aspect ”screen” is
positive while the sentiment of the aspect ”battery life” is negative.

5.2.2 Basic Idea

Our proposed model is comprised of three major components: Lexicon-aware In-
put tensor, LSTM layers, and Attention layers. In this model, a specific aspect and
its context sentence are treated separately to model the associative relationship
effectively. Specifically, given aspect embeddings and its context word embed-
dings augmented sentiment lexicon embeddings, LSTM models encode the aspect
and its context into their representations. Then, an average-pooling and an intra-
attention mechanism are applied to the aspect embeddings to form an aggregation-
level aspect vector and a phrase-level aspect vector. Next, interactive attention
mechanisms compute the associative relationship between the informative words
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Context word embeddings

w1 w2 w3 wn 

Aspect word embeddings
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Figure 5.1: The architecture of ILWAAN model.

of the aspect and each sentiment context word to form an aggregation-level inter-
attention vector and a phrase-level inter-attention vector. These inter-attention
vectors are consolidated by exploiting the knowledge between them. Finally, the fi-
nal representation is formed by concatenating two inter-attention vectors for mak-
ing predictions. We believe that these inter-attention vectors provide different
perspectives for our model to learn to attend the relationship between an aspect
and its sentiment context words.

5.2.3 Interactive Lexicon-Aware Word-Aspect Attention
Network (ILWAAN)

As shown in Figure 5.1, our model consists of three major components: Lexicon-
aware Input Tensor, LSTM layers and Attention Layers. We describe the detail of
each component in the next sections.

Lexicon-aware Input Tensor

As the name of this component, the lexicon-aware input tensor is a feature input for
a deep neural network which is augmented the crucial feature: sentiment lexicon
information. Specifically, three features are utilized to construct the lexicon-aware
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input tensor for capturing the different views of an aspect and its context words:
sentiment lexicon embeddings, an aspect vector, and semantic word embeddings.

Lexicon Embeddings (LexW2Vs): The Lexicon embeddings in the aspect-
level task are same as in Subsection 4.3.3. The Lexicon embeddings are built by
utilizing various useful lexicon resources. The purpose of the Lexicon embeddings
is to highlight the critical sentiment words to assist multiple attention mechanisms
in order to capture the informative parts of an aspect and its context.

Aspect Vector: A given aspect term is composed of M words. Each word
wT

i is associated with pre-trained word embeddings as the idea of [Mikolov et al.,
2013b] to form an aspect embedding. An aspect vector va is formed by applying
average-pooling over the aspect embeddings as:

va =
M∑
i=1

wT
i /M (5.1)

Where va ∈ Rd′ , with d′ is the dimension of the aspect embedding. The aspect
vector is an internal feature to compute inter-dependence between the aspect and
its context words.

Lexicon-augmented Word Embeddings: The inputs to our model are a
context sentence along with an aspect term which are indexed into semantic word
embedding matrices. The context word embedding matrix and aspect embedding
matrix are WC ,WA ∈ Rd×|V |, where d is the dimension of the word embedding and
|V | is the size of a vocabulary. To develop the lexicon-aware input tensor, each
context word embedding is built up by adopting a lexicon context embedding and
an aspect vector into [wC

i ⊕ va ⊕ lCi ] ∈ Rd+d′+ld to form a lexicon-augmented word
embedding, where, ld is the dimension of the lexicon context embedding, wC

i is
the context word embedding mapped by using pre-trained word embeddings, va
and lCi are the aspect vector and the lexicon context embedding, respectively.

Similarly, each aspect embedding is constructed into [wT
i ⊕lTi ] ∈ Rd+ld to form a

lexicon-augmented aspect embedding, where, wT
i is the aspect embedding mapped

by using pre-trained word embeddings and lTi are the lexicon aspect embedding.
The lexicon embeddings and the aspect vector is commonly imagined as internal
flavor-features dispensing with word embeddings altogether.

Long Short Term Memory Networks (LSTMs):

To encode the lexicon-augmented word embeddings and the lexicon-augmented
aspect embeddings, we utilize Long Short Term Memory networks (LSTMs) from

[Hochreiter and Schmidhuber, 1997]. The model calculates the hidden states [
−→
hi ]

from these embeddings (feature vectors). The LSTMs have the number of LSTM
units corresponding to the number of the feature vectors. The LSTM unit has an
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input gate it, a memory cell ct, a forget gate ft and an output gate ot . that ht is
computed as follows:

it = σ(Wixt + Uiht−1 + Vict−1 + bi)

ft = 1.0− it
gt = tanh(Wgxt + Ught−1 + bg)

ct = ft � ct−1 + it � gt
ot = σ(Woxt + Uoht−1 + Voct + bo)

ht = ot � tanh(ct)

(5.2)

Where xt can be a word embedding or an aspect embedding (the feature vector) of
the context word wC

i or the aspect word wT
i , σ is sigmod function, � is element-wise

multiplication. Wi, Ui, Vi, bi, Wg, Ug, bg, Wo, Uo, Vo and bo are trainable LSTM

parameters. Therefore, we have the hidden states [
−→
hT1 ,
−→
hT2 , ...,

−→
hTM ], [

−→
hC1 ,
−→
hC2 , ...,

−→
hCN ]

corresponding to an aspect and a context sentence, respectively.

Attention Layers

Traditional LSTM model cannot capture the information about which words are
important to the meaning of a specific aspect. In order to address this problem,
we design multiple attention mechanisms which drive the model to concentrate on
such words.

Intra-attention Layer: The intra-attention called self-attention is used for
mapping a variable-length sequence of symbolic representation to another sequence
of an equal length where the output is computed as a weighted sum of the values.
The intra-attention is applied on the hidden states of a specific aspect to construct

a phrase-level vector vatt ∈ Rdatt . Let the set [
−→
hT1 ,
−→
hT2 , ...,

−→
hTM ] is the hidden states

of the aspect. The intra-attention function is define as follows:

vatt = Hα =
M∑
i=1

αi · hTi ; vatt ∈ Rdatt (5.3)

Where the attention vector α = {α1, α2, ..., αM} is a self-attention vector and
computed by feeding the hidden states into a bi-layer perceptron, as:

αi =
exp(γ(hTi ))∑M
j=1 exp(γ(hTj ))

γ(hTi ) = tanh(Wa · hTi + ba)

(5.4)

The purpose of the intra-attention mechanism is to capture the informative words
of an aspect term. For example, given a aspect term ”Iphone screen”, the word
”screen” is going to has a higher attention weight compared to the word ”Iphone”.
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Interactive-attention Layers (IALs): After obtaining the informative words
of a specific aspect via the phrase-level vector vatt, the interactive-attention lay-
ers are utilized to compute the word-aspect correlation between the informative
aspect words and each sentiment context word by using multiple Feedforward net-
works (MLPs). As shown in Figure 5.1, two interactive-attention mechanisms
perform parallel in which the model learns to attend the sentiment context words
conditioned on the aspect words. To capture the different perspectives of each
sentiment context word, we try to develop two kinds of the aspect representations
(the phrase-level representation vatt and the aggregation-level representation vavg)
to compute two inter-attention vectors and interact knowledge between them.

Let [
−→
hT1 ,
−→
hT2 , ...,

−→
hTM ] and [

−→
hC1 ,
−→
hC2 , ...,

−→
hCN ] are the aspect hidden states and its

context hidden states, respectively. An average pooling layer is applied for the
aspect hidden states to form the aggregation-level vector vavg as:

vavg =
M∑
i=1

hTi /M ; vavg ∈ Rdatt (5.5)

Noted that the aggregation-level vector and the phrase-level vector have the same
dimension. Subsequently, the inter-attention vectors are generated as follows:

vs =
N∑
i

βi · hCi ; vs ∈ Rd′att (5.6)

vp =
N∑
i

β′i · hCi ; vp ∈ Rd′att (5.7)

Where β and β′ are interactive attention weights as:

βi/β
′
i =

exp(γ(hCi , vrep))∑n
j=1 exp(γ(hCj , vrep)

γ(hCi , vrep) = tanh(hCi ·Wa · vTrep + ba)

(5.8)

Where vrep ∈ Rdatt is the representative notation of vatt or vavg, datt is the length
of vatt and vavg, v

T
rep is the transpose matrix of vrep and Wa is the shared weight

matrix between two interactive-attention mechanisms. Finally, the aspect-specific
representation is built by concatenating vs and vp for final prediction vfinal =
[vs ⊕ vp]; vfinal ∈ Rd′att+d′att .

5.2.4 The variants of ILWAAN model

In this section, we construct the variants of ILWAAN model in order to evaluate the
crucial components such as the sentiment lexicon embeddings and the aggregation-
level aspect vector in our proposed model.
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Figure 5.2: The architecture of LWAAN.

The model is different from the ILWAAN model in computing an aggregation-
level inter-attention vector. As shown in Figure 5.2, the aggregation-level aspect
vector vavg encapsulated the sentiment information of a specific aspect is concate-
nated into the aspect-specific representation vfinal for final prediction, i.e.,

vfinal = [vavg ⊕ vs] ∈ Rdatt+d′att (5.9)

Where⊕ denotes the concatenate operator, datt is the dimension of the aggregation-
level vector and d′att is the dimension of the phrase-level inter-attention vector.
In this case, we try to enrich the sentiment information of an aspect into the
aspect-specific representation so that the model recognizes the aspect information
concerning its sentiment context words in the final representation.

Word-Aspect Attention Network (WAAN)

In this model, sentiment lexicon information is eliminated to evaluate the affec-
tation of the sentiment lexicon information. In this case, The model computes
the word-aspect relationship based on the semantics of words. To better take ad-
vantage of aspect information, an aspect vector appended into each context word
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Figure 5.3: The architecture of WAAN.

vector form an aspect-augmented word embedding ŵC
i , i.e.,

ŵC
i = [wC

i ⊕ va] ∈ Rd+d′ ; i ∈ [1,M ] (5.10)

where ⊕ denotes the concatenate operator, d′ is the dimension of the aspect vector,
wC

i is the context word embedding mapped by using pre-trained word embeddings,

va is the aspect vector. The output hidden states [
−→
hC1 ,
−→
hC2 , ...,

−→
hCN ] of a context

sentence have the information of the aspect vector va in order to allow the model
to compute the inter-dependence between an aspect and its context.

Similar to the LWAAN model, the aggregation-level vector vavg is adopted into
the final aspect representation to increase the sentiment information of an aspect
concerning its sentiment context words.

Attention Network (AN)

This is our basic baseline which only constructs an aspect and its context sepa-
rately. As shown in Figure 5.4, we utilize the LSTM models and the multiple atten-
tion mechanisms to form an aspect-specific representation. Specifically, the aspect
vector and the lexicon embeddings are eliminated from the model. The model tries
to model the word-aspect relationship between an aspect and its context without
the inter-dependence between the aspect and its context and sentiment lexicon
information. In this case, the word-aspect relationship is captured by computing a
phrase-level inter-attention vector between the informative aspect words and each
context words via the semantics of words. The aggregation-level vector is concate-
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Figure 5.4: The architecture of AN.

nated into the final aspect representation for increasing the sentiment information
of an aspect concerning its semantic context words.

5.2.5 Deep Memory Network-in-Network (DMNN)

In previous models, the multiple attention mechanisms contribute a big role to
overcome the challenges of aspect-level task: 1) Reducing the extra burden for the
attention layer of trying to score the relationship between aspect and its context
words as well as minimize parameter costs to LSTM Layer. 2) The informative
phrases of an aspect are captured. Indeed, the multiple attention mechanisms solve
the drawbacks of encoders (e.g., RNN, LSTM) which are the limitation of com-
pressing all the necessary information of sequential data into a single fixed-length
vector. Instead, the attention mechanism let the model learn to generate a context
vector for each output time step. Such context vector extracts the important part
of aspect and its context. However, there is a remaining challenge that the atten-
tion cannot allow the model to consider the entire history so far explicitly and look
back previous examples which are relevant. Additionally, the attention mechanism
cannot refine the internal representation based on the relevant information in order
to make sure that either the necessary information is enough or not. To tackle this,
we propose a novel Deep Memory Network-in-Network (DMNN) improved from
ILWAAN models which utilize the benefit of the multiple attention mechanisms to
solve the remaining challenge for aspect-level sentiment classification. Our model
is inspired by End-to-End Memory Network of [Sukhbaatar et al., 2015] in which
our model iteratively performs multiple attention mechanisms to score the impor-
tance of context words and reduce them into a final joint representation of aspect
and its context.
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Figure 5.5: The architecture of Deep Memory Network-in-Network.

In Figure 5.5, the left side is the structure of our model with one hop operation,
while we construct a model with three hops in the right side. Our Deep Memory
Network-in-Network is described in a single layer case, which implements a single
memory hop operation. It subsequently can be stacked to give multiple hops in
memory.

Single Layer

• Input memory representation: Suppose that a given input set {wC
1 , w

C
2 , ..., w

C
N}

is stored in memory. The memory slot mi of dimension d is computed by first
embedding each word wC

i . Thus, the entire set of [wC
i ] are converted into

internal memories [−→mi] through a Long-Short-Term Memory network. The
aspect embeddings [ai] is also embedded by a Long-Short-Term Memory net-
work and then used for building an internal state [vi] via an intra-attention.
An interactive attention mechanism is applied on the memory vectors [mi],
conditioned on vavg, to produce an inter-attention vector [pi], where vavg is a
aggregation-level vector encoded by average pooling over the aspect’s hidden

states (
−→
hT1 ,
−→
hT2 , ...,

−→
hTM).

• Output memory representation: Another interactive attention mecha-
nism is proposed to filter away un-important context and produce an inter-
attention vector [bi]. The function from input to output is smooth. We can

71



easily compute gradients and back-propagate through it. Two inter-attention
vectors represent the different perspectives of each context word: informative
phrase-level and aggregation-level information.

• Generating the final prediction: In the single case, the output vector oi
of the inter-attention vector [bi] and the inter-attention vector [pi] is passed
through a feed-forward network (MLP) and a softmax function to achieve a fi-
nal sentiment prediction. The role of MLP is an aggregator which aggregates
the information of two inter-attention vectors and computes the correlation
between them. The parameter matrix Wa learns the information of this new
vector space at two levels: informative phrase-level and aggregation-level in-
formation according to their relevance to the problem at hand. The overview
of our model is shown in Figure 5.5.

oi = tanh(p.Wa.b
T ) (5.11)

ŷ = softmax(oi) (5.12)

Multiple Layers We extend our model to handle K hop operations. The
output of hop K is parametrized by the feed-forward network with a softmax layer
and this network is jointly trained with other parts of the model in order to produce
an aspect-specific representation. The weights of the feedforward network is shared
between hops:

ok = tanh(p.Wa.b
T
k ) (5.13)

aspectk = softmax(ok) (5.14)

From second hop onwards, the output of the first hop is the input of the next
hop. The vector ok is fed into another interactive-attention layer in order to form
another interactive-attention weights bk.

By iteratively applying attention mechanism on the context words, we refine
the internal representation of the context words based on the relevant information
from the aspect. By aggregating relevant information into the final representation,
we provide necessary information to the answer selection layer, to predict the
sentiment polarity to the aspect. This form of multi-hop search on context words
allows the model to learn to perform some sophisticated reasoning for solving
specific challenging tasks.

The deep memory network which contains many computational layers can learn
representations of data with multiple levels of abstraction [LeCun et al., 2015].
Each layer receives important context and transforms the representation in pre-
vious layers into higher abstract level representation. When the transformation
constructs enough composition, the complex functions of sentence representation
towards an aspect can be learned.
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5.2.6 The Effect of Multiple Attention Mechanisms

Attention Mechanism has become an integral part of neural network-based mod-
els designed for Natural language processing. Both sequence-to-sequence tasks,
like machine translation, document summarization, and classification tasks, like
sentiment analysis, PoS tagging, document classification benefit by including this
ability to focus on segments of the sequence selectively.

In this chapter, we try to throw light on the fragments of attention mecha-
nisms by building the variant of deep learning models using the benefit of multiple
attention mechanisms. The works of [Vaswani et al., 2017] show the effectiveness
of attention mechanism which plays a crucial role in selective reduction and is an
essential component of state-of-the-art models so far.

5.2.7 Model Training

The deep learning model is trained in a supervised manner by minimizing the
cross-entropy error of sentiment classification. The deep learning model can be
trained in an end-to-end way by back-propagation to calculate the gradients of all
the parameters, and update them with stochastic gradient descent. The goal of
training is to minimize the cross-entropy error between y and ŷ for all sentences,
where y be the target distribution for sentence, ŷ be the predicted sentiment
distribution.

loss = −
∑
i

∑
j

yji logŷ
j
i + λ||θ||2 (5.15)

5.3 Evaluation

This section shows early studies are used to comparing to our models and presents
an evaluation metric, datasets and the configuration of our models utilized for the
comparison.

5.3.1 Datasets and Experimental Setting

We conduct experiments on three datasets to evaluate the performance of our
model as early studies by using accuracy and F1-score measures. The Twitter
dataset is built by [Dong et al., 2014] containing twitter posts and the aspects
with respect to the twitter posts. To evaluate the significance of our models, we
use more the SemEval 2014 datasets containing two categories: Restaurant, Laptop
from [Pontiki et al., 2014]. Laptop and Restaurant contain user reviews in laptop
domain and restaurant domain, respectively. We also remove a few examples
having the ”conflict” label as the compared models. All tokens are lowercased

73



without removal of stop words, symbols or digits, and sentences are zero-padded
to the length of the longest sentence in the dataset.

Each dataset contains three classes (Negative, Neutral, Positive). Table 5.1
and 5.2 display the statistics of datasets for evaluation.

Dataset Set #Sents. #Positive. #Neutral. #Negative.

Laptop
Train 2291 994 870 464
Test 639 341 128 169

Restaurant
Train 3589 2164 807 637
Test 639 728 196 196

Twitter
Train 6248 1567 1563 3127
Test 692 174 174 346

Table 5.1: The statistic of datasets

Data Set N c lw |Vw| |Vm| |Vl|

Laptop
Train 2291

3 83 3641 3328 3642
Test 639

Restaurant
Train 3589

3 79 4559 4378 4560
Test 1118

Twitter
Train 6248

3 45 16362 10248 16363
Test 692

Table 5.2: Summary statistics for the datasets. c: the number of classes. N : The
number of sentences. lw: Maximum sentence length. |Vw|: Word alphabet size.
|Vm|: The number of words mapped into an embedding space (Glove). |Vl|: The
number of words mapped into a lexicon embedding space.

Hyper-parameters

Table 5.3 shows the summary of the hyper-parameters which is applied to our
deep learning models. We utilize Random search for choosing the best hyper-
parameters. Training is done through stochastic gradient descent over shuffled
mini-batches with Adam optimizer. In our experiments, the uniform distribu-
tion U(−0.1, 0.1) is used for initializing all out-of-vocabulary words. All weight
matrices are given their initial values by sampling from the uniform distribution
U(−0.1, 0.1), and all of biases are set to zeros.

We utilize Glove2Vec1 which is performed on aggregated global word-word co-
occurrence statistics from a corpus.

1https://nlp.stanford.edu/projects/glove/

74



Hyper-parameters # Laptop # Restaurant # Twitter
Mini-batch size 100
Embedding dim 300
Lexicon dim 16
Epochs 300
RNN dim 100
Learning rate 2e-3
Dropout Rate 0.5
l2 Constraint 0.00001

Table 5.3: The summary of hyperparameters

Evaluation Metric

For evaluation measures, we apply the accuracy and F1-score to evaluate the ef-
fectiveness of our proposed model. The evaluation accuracy measure is as follows:

Accuracy =

∑
i=1...N(1− (targeti − threshold(f(−→xi ))))

N
(5.16)

Where threshold(f(−→xi )) equal 0/1.
The F1 score can be interpreted as a weighted average of the precision and

recall. The formula for the F1 score is:

F1 = 2 ∗ (precision ∗ recall)/(precision+ recall) (5.17)

5.3.2 Baselines

We compare our proposed models to the early state-of-the-art models. The meth-
ods are separated into two categories: traditional methods and deep learning meth-
ods. The methods are listed as follows:

• Majority is a basic baseline approach. This baseline model assigns the
majority sentiment polarity in training dataset to each sample in the test
dataset.

• Feature-SVM is a state-of-the-art model using N-gram features, parsing
features and lexicon features [Kiritchenko et al., 2014a].

• AdaRNN is proposed by [Dong et al., 2014] which learns the sentence rep-
resentation toward target for sentiment.

• LSTM uses one LSTM network only in order to form a context represen-
tation of words. The last hidden vector is used as a sentence representation
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and fed into a softmax function to estimate the probability of each sentiment
label [Tang et al., 2016a].

• TD-LSTM is extended from LSTM using two LSTM networks in order
to model left context and right context towards the target. The left and
right target dependent representation are concatenated for predicting the
sentiment polarity of the target [Tang et al., 2016a].

• TD-LSTM + ATT is also the work of [Tang et al., 2016a] and an extended
model from TD-LSTM combined with an attention mechanism over hidden
vectors.

• ContextAVG is implemented by [Tang et al., 2016a]. Context word vectors
are averaged and added to an aspect vector. The output vector is fed into a
softmax function for predicting the sentiment label of the aspect.

• AE-LSTM models context words by using LSTM and combines hidden vec-
tors with an aspect vector in order to generate attention vectors to produce
the final representation of the aspect [Wang et al., 2016c].

• ATAE-LSTM is designed based on AE-LSTM. However, ATAE-LSTM ap-
pends aspect embeddings with each word embedding to present the context
[Wang et al., 2016c].

• MemNet is a model based on the idea of Memory Network of [Sukhbaatar
et al., 2015] with many hops improved by [Tang et al., 2016b].

• IAN is an idea of [Ma et al., 2017] in which word context embeddings and
aspect embeddings are formed by one LSTM network separately. Hidden
states are fed into attention mechanism and pooling to produce representa-
tions. The representations are concatenated into final representation and fed
into a softmax function for predicting the sentiment polarity of the aspect.

• BILSTM-ATT-G is proposed by [Liu and Zhang, 2017]. It models left
and right contexts using two attention-based LSTMs and introduces gates
to measure the importance of left context, right context, and the entire
sentence for the prediction.

• RAM [Chen et al., 2017] is a multilayer architecture where each layer con-
sists of an attention-based aggregation of word features and a GRU cell to
learn the sentence representation.
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Model Laptop (Acc.) Restaurant (Acc.) Twitter (Acc.)
Majority 53.45 65.00 -
LSTM 66.45 74.28 -

TD-LSTM+ATT 66.24 74.31 -
ContextAVG 61.22 71.33 -
AE-LSTM 68.90 76.20 -

ATAE-LSTM 68.70 77.20 -
IAN 72.10 78.60 -

Feature-SVM 70.49 80.16 63.40
TD-LSTM 68.13 75.63 66.62

BILSTM-ATT-G 74.37 80.38 72.70
MemNet 70.33 78.16 68.50

RAM 75.01 79.79 71.88
AN 74.00 79.58 75.71

WAAN 74.14 80.00 75.85
LWAAN 73.42 80.44 76.28
ILWAAN 75.85 81.25 76.71
DMNN 76.00 82.00 77.42

Table 5.4: The experimental results compared to other models on three benchmark
datasets.

5.3.3 Experimental results

As shown in Table 5.4, the majority model is the worst, only occupies 53.45%
and 65%, respectively. Additionally, the SVM method is still alive and achieves
remarkable performance on Restaurant dataset. We can observe the LSTM model
is effective compared to Majority model. Generally, the LSTM-based model can
identify the sentiment polarity of an specific aspect. However, the drawback of
the LSTM model is heavily rooted in LSTMs to treat aspects and their contexts
equally. Therefore, the LSTM model can not attend the informative words of the
context words conditioned on the aspect.

TD-LSTM and TD-LSTM+ATT are attention-based models improved from
the LSTM model which capture the left context and right context of a specific
aspect and then, utilize an attention mechanism to extract correct context words
towards the given aspect. Therefore, they outperform the LSTM model about
1% and 2%. However, these models are mainly rooted in LSTMs as well and do
not treat an aspect and its context separately. As such, this causes a difficulty to
model the relationship between the aspect and its context.

Inspire by the problems of TD-LSTM and TD-LSTM+ATT models, AE-LSTM,
ATAE-LSTM and IAN models utilize an attention mechanism and construct an
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aspect and its context separately. These models can incorporate aspect informa-
tion into the deep neural networks by adopting a naive concatenation of an aspect
and its context words to extract the critical parts of the context words. However,
this causes an extra burden for the attention layer of modeling the sequential in-
formation conditioned on the aspect information and incurs parameter costs to
LSTM layers. On the other hand, to tackle the limitation of above models heavily
rooted in LSTMs, a gating mechanism is utilized by BILSTM-ATT-G model to
control the information of the attention mechanism and capture the left and right
contexts towards a given aspect. Therefore, the BILSTM-ATT-G model achieves
the best performance on Laptop and Twitter datasets.

MemNet and RAM called End-to-End Memory networks [Sukhbaatar et al.,
2015] utilize the benefit of an attention mechanism and external memory to capture
the importance of context words with respect to a given aspect. The critical point
of these models is to construct multiple computational layers to transform the
aspect representation into more abstract-level representation. However, MemNNs
still consider that the words of an aspect are the equal contribution. On the
other hand, MemNNs do not combine the results of multiple attentions, and the
vector fed to softmax is the result of the last attention, which is essentially the
linear combination of word embeddings. Therefore, MemNNs form the final aspect
representation into more abstract-level representation, instead of improving the
relationship between the aspect and its context words sufficiently.

In our view, the previous models make use of the contexts without consideration
of the critical degrees of the different words in a specific aspect. Additionally, the
feature input used for the attention mechanism is semantic word embeddings.
As such, the models mainly capture the semantics of words via the attention
mechanism that ignores the sentiment of the words. On the other hand, the
performance of those above methods is mostly unstable. For example, for the tweet
in the Twitter dataset, BILSTM-ATT-G and RAM cannot perform as efficiently
as they do for the reviews in Laptop and Restaurant datasets, due to the fact that
they are heavily rooted in LSTMs, and the ungrammatical sentences hinder their
capability in capturing the context features. Another difficulty caused by the
ungrammatical sentences is that the dependency parsing might be error-prone,
which will affect those methods such as AdaRNN using dependency information.
Our observation and analysis are that the LSTM-based models (e.g., TD-LSTM,
BILSTM-ATT-G, RAM) relying on sequential information can perform well for
formal sentences by capturing more useful context features. However, these LSTM-
based models are sensitive to informal texts which are tackled by the sentiment
lexicon information in our model.

We can observe that our model achieves resonable improvement in accuracy
against the dominant state-of-the-art models so far. Compared to IAN, AE-LSTM,
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ATAE-LSTM and BILSTM-ATT-G, our model improves about 1% - 6% on three
benchmark datasets. To evaluate the significant improvement of our model, the
Macro-F1 is conducted and showed in Table 5.5. Our model achieves the best per-
formance against other models about 1 - 4% on Restaurant and Twitter datasets.
We believe that our model help to better capture opinion words due to additional
knowledge from the sentiment lexicon information via the multiple attention mech-
anisms.

# Laptop # Restaurant # Twitter
Macro-F1

Feature-SVM - - 63.30
AdaRNN - - 65.90

TD-LSTM 68.43 66.73 64.01
MemNet 64.09 65.83 66.91

BILSTM-ATT-G 69.90 70.78 70.84
RAM 70.51 68.86 70.33

ILWAAN 68.89 71.22 75.24
DMNN 69.85 72.76 75.50

Table 5.5: The Macro-F1 scores of IALAN models compared to other models.

5.3.4 Analysis

We can observe the sentiment lexicon information contributes a significant role to
the deep neural network. Specifically, ILWAAN model is the best model compared
to other models. Additionally, LWAAN model with the sentiment information is
more effective than AN and WAAN models without the sentiment information.
This provides more evidence about the effectiveness of the sentiment lexicon infor-
mation. Indeed, DMNN model improved from ILWAAN model is the best model
compared to others.

We show case studies by the heat-map of interactive attention weights as Figure
5.6 to observe the effectiveness of our model. β (beta) and γ (gamma) are the
attention weights of context words extracted by the lexicon pooling aspect vector
and attention aspect vector, respectively:

• their dinner special are fantastic. (Aspect: dinner special)

• food was decent; but not great. (Aspect: food)

• they make the best izza in new jersey. (Aspect: izza)

• dessert was also to die for !. (Aspect: dessert)
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Attention can compute the important parts from the whole sentence dynamically.
Obviously, the model can detect the important context words affecting to the
sentiment polarity of the aspect terms such as the phrases the best, new jersey
from (b) and even the negation but not great for (c). Besides, from (c), the multi-
keywords can be detected if more than one keyword is existing. decent and but not
great are both detected.

In the previous works, most of the errors can be summarized as follow: the
first factor is non-compositional sentiment expression. For example, the sentence
”dessert was also to die for !” is the example described by [Tang et al., 2016b]
where the aspect is dessert. The sentiment expression is ”die for”, whose meaning
could not be composed from its constituents ”die” and ”for”. The second factor is
complex aspect expression consisting of many words, for example, ”dinner special”,
where many words construct the aspect term. Clearly, for sentence (a), the model
recognizes the important words of the aspect dinner special in which the word
dinner is more important than the word special at the attention vector beta. We
can observe that the lexicon pooling aspect vector and the attention aspect vector
contribute much adequate information for the aspect-specific representation in
order to extract the importance of its context.

5.4 Conclusions

In this chapter, we propose novel models for aspect-level sentiment classification
by using LSTM, Intra-attention, Interactive-attention and Sentiment lexicons in
which the model learns to attend word-aspect association at two levels: Phrase-
level and Context-level information. Our models indicate that lexicon-based ap-
proaches is still alive and contribute effectively to deep learning models.

Our method no requires laborious feature engineering as well as flavor-features
as Chapter 4. Our model tries to learn an aspect-specific representation via mul-
tiple attention mechanisms. The multiple attention mechanisms contribute to a
significant role and enable the model to look at the crucial parts of an aspect and
its context. Additionally, an iterative attention mechanism allows the model to
refine context information which is relevant to the aspect. On the other hand, the
sentiment lexicons assist the multiple attention mechanisms to focus on sentiment
words and capture the special cases of Twitter social networking. Therefore, our
model performs well, although we do not need to provide the multiple views of
each word in a sequence.

Our experiments on SemEval2014 and Twitter show that our model can learn
useful features and provide enough information for predicting the aspect sentiment
polarity. Our model shows a significant improvement in performance compared to
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multiple strong neural baselines. Our source code is available at Github2.

2https://github.com/huynt-plus/LWAANet

81



(b) Aspect term: izza

(a) Aspect term: dinner special

(c) Aspect term: food

(d) Aspect term: dessert

Figure 5.6: The attention visualization. The aspect terms are dinner special, izza,
food and dessert, respectively. The color depth illustrates the importance of the
context words affecting by the aspect terms. As can be seen, the model can detect
the word fantastic for (a), the phrases the best, die for for (b) and (c), respectively
and even negation but not great for (c)
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Chapter 6

Multitask-based Aspect-level
Sentiment Analysis

In this chapter, we develop an End-to-End Multi-task Lexicon-Aware Attention
Network (MLAANet) to address the drawbacks of aspect-level data and enhance
the classification performance of aspect-level sentiment classification. The model
learns to attend associative relationships between sentence words and an aspect
term via Lexicon-aware attention operations and Interactive knowledge. More
specifically, we incorporate the aspect information assisted by lexicon informa-
tion into a neural model by modeling word-aspect relationships by an Interactive
Word-Aspect Attention Fusion (IWAA-F). This allows the model to simultaneously
focus on exacting context words given the aspect term and integrate interactive
knowledge from annotated and un-annotated corpora being much less expensive
for improving the performance of aspect-level sentiment classification. This also
deals with the difficulty in aspect-level data is that existing public data for this
task are small which largely limits to the effectiveness of deep learning models.
The experimental results show that our model outperforms the state-of-the-art
models on the data: Laptop and Restaurant domains.

6.1 Introduction

Aspect-level sentiment analysis (ASA) aims to identify the sentiment polarity of
an aspect term in its context. For example, the sentence ”The Iphone screen is
good, but the battery life is short.”. In this sentence, there are two aspects having
opposite polarities, ”Iphone screen” is positive, whereas, ”battery life” is negative.
As such, the task of ASA introduces a challenging problem of incorporating aspect
information into learning models for making predictions. Recently, end-to-end
neural networks ([Tang et al., 2016a], [Wang et al., 2016c], [Ma et al., 2017]) have
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garnered considerable attention and have promising performance in incorporating
aspect information into neural architectures by learning to attend the different
parts of a sentence towards a given aspect term. Similar to Chapter 5, we also
consider the drawbacks of the state-of-the-art models so far and try to improve
the previous models in Chapter 5 to tackle the drawbacks.

On the other hand, the limitation of aspect-level data is small which largely
limits to the performance of deep neural networks. Therefore, we develop a mul-
titask learning model which tries to overcome the limitations of previous models
as well as the limitation of aspect-level data in order to increase the performance
of our proposed model. Specifically, our multitask learning model is developed by
utilizing the advantages of the aspect-level model and the sentence-level model in
Chapter 4 and Chapter 5. We expand the problem of sentiment classification by
using various opinion data such as document-level data.

In this chapter, we state the drawbacks of early models again. Specifically, most
dominant state-of-the-art models utilize attention layers to focus on learning the
relative importance of context words by simply concatenating the context words
and aspect information. Consequently, this causes an extra burden for the atten-
tion layer of modeling sequential information dominated by the aspect information
and incurs additional parameter costs to LSTM layer towards to hardly model the
relationship between the aspect and its context words. Second, such models just
make use of the contexts without consideration of the aspect information while the
aspect information should be an important factor for judging the aspect sentiment
polarity. In other words, the importance degrees of different words are different for
a specific aspect. For example, the aspect term ”Iphone screen”, ”screen” plays
a more important role than ”Iphone” in its context. Finally, the attention-based
models mainly utilized pre-trained word embeddings (e.g., Glove) which captures
the semantics of words. This leads the attention mechanism via Dot product in
extracting context words based on the semantics of the words that ignore the
sentiment of the words.

In this work, we propose a novel multitask learning model that aims to tackle
the weaknesses of the above challenges by considering each sentiment context
word conditioned on the crucial words of an aspect. Specifically, we develop an
end-to-end deep neural model constructing multiple attention mechanisms (Intra-
attention and Interactive-attention mechanisms) and multi-task learning assisted
by sentiment lexicon information. The purpose of the lexicon information is to en-
force the model to pay more attention to the sentiment of words instead of only the
semantics of the words. Additionally, the inter-dependence between an aspect and
its sentiment context words can be captured. Besides, the goal of multi-task learn-
ing is to improve generalization on the target task by leveraging the domain-specific
information contained in the training signals of related tasks. Our model called
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Multi-task Lexicon-Aware Attention Network (MLAANet) treats an aspect, and its
context separately and cleverly divides the responsibilities of layers to model the
relationship between the aspect and its context. More specifically, aspect embed-
dings and its context word embeddings augmented sentiment lexicon information
are firstly encoded via LSTM encoders. Subsequently, an intra-attention mecha-
nism and average pooling are applied to obtain the information of the aspect at
two levels: informative phrase-level and aggregation-level information. To the best
of our knowledge, the average pooling summarizes the information of the aspect,
while the inra-attention mechanism learns to weight the words and the sub-phrases
within the aspect based on how important they are, and then, allowing interactive-
attention mechanisms learn to attend the relative importance of the fused context
words. Such interactive-attention vectors are consolidated by its tailor-made doc-
ument representation via exploiting knowledge gained from document-level data.
Our source is available at Bitbucket1.
Our Contributions:

The principal contributions of this paper are as follows:

• We propose efficient multiple attention mechanisms to incorporate aspect
information into a neural architecture for ASA task.

• Sentiment lexicon information is proposed to enforce the model to pay more
attention to the sentiment context words via the attention mechanisms.

• A multitask learning approach is introduced to transfer knowledge from doc-
ument level to aspect level via Shared Input Tensor and Interactive Word-
Aspect Attention Fusion (IWAA-F) to deal with the limitation of aspect-level
data.

6.2 Related Works

Today, the dominant state-of-the-art models are neural networks which incredibly
are fashionable for NLP task, and ASA task is no exception. To incorporate aspect
information, there are several neural architectures which are based on LSTM to
model each sentence towards given the aspect term [Tang et al., 2016a], [Wang
et al., 2016c], [Ma et al., 2017] and [Li et al., 2018]. These models utilize the
power of LSTM layer and attention layer to model sequential information that is
dominated by aspect embeddings. Multi-task learning called transfer approaches
is considered as an additional flavor for ASA task and effectively increases the
performance of the models [He et al., 2018].

1https://bitbucket.org/huynguyenplus/mlaanet/
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It is worthy to mention that another class, known as MemNN or End-to-End
Memory Networks, also has been used for ASA task. Such models have been
applied for QA task before and recently, have formed ASA task as a question-
answering problem, where the aspect is as a query and context words are as the
external memory ([Tang et al., 2016b], [Chen et al., 2017]). The key idea of
MemNN is an attention-based model with multiple computational layers to form
aspect information into more abstract-level representation.

Our model is most relevant to [He et al., 2018] which also utilizes multi-task
learning to form a tailor-made document representation for the Aspect-level task.
However, the overall architecture in this paper differs significantly, which develops
Shared Input Tensor and Interactive Word-Aspect Attention Fusion to integrate
aspect information into the neural network.

6.3 Proposed Model

The overall model architecture illustrated in Figure 6.1 has two major tasks: Aux
and Main tasks which are trained simultaneously and transfer knowledge between
two tasks. In this section, we describe our multi-task deep learning architecture
layer-by-layer.

6.3.1 Task definition

This section describes the ultimate goal of our model in identifying the sentiment
polarity of an aspect in a tweet/ sentence. The tweet consists of a sequence of
N words, denoted as S = {wC

1 , w
C
2 , ..., w

C
N} with wC

i referring to the position of
i-th word in the tweet. A document is constructed from a sequence of K words,
denoted as D = {wD

1 , w
D
2 , ..., w

D
K}. Similarly, an aspect term is constructed from a

sequence of M words, denoted as T = {wT
1 , w

T
2 , ..., w

T
M}. The purpose of this task is

to classify the sentiment polarity of the aspect of the tweet into positive, negative
or neutral. For example, given the tweet: ”the great screen, but the battery life is
not good”, the sentiment of the aspect ”screen” is positive while the sentiment of
the aspect ”battery life” is negative.

6.3.2 Shared Input Tensor

The shared input tensor consists of three major components: Lexicon Embeddings,
Aspect Vectors and Shared Word Embeddings which are concatenated together as
an input for LSTM Encoders.
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Figure 6.1: Multi-task Lexicon-Aware Attention Network Architecture
(MLAANet).

Lexicon Embedding (LexW2Vs)

LexW2Vs in this Subsection is built as in Subsection 4.3.3. LexW2Vs is used
to maping words into an embedding space and take the different kinds of words
for capturing the different sentiment types of words. LexW2Vs support Intra-
attention and Interactive-attention to capture important sentiment words in aspect
and its context.

Aspect Vector

An aspect term is composed of M words. Each word wT
i is associated with pre-

trained word embeddings as the idea of [Mikolov et al., 2013b] and appended a
lexicon representation to form a lexicon-augmented aspect embedding, i.e., ŵi =
[wT

i ⊕ li] where ⊕ denotes the concatenate operator, ŵi ∈ Rd′+ld, i ∈ [1,M ], d′

is the dimension of the aspect embedding and ld is the dimension of the lexicon
representation. An aspect vector va is formed by applying average-pooling over the
aspect embeddings as:

va =
M∑
i=1

ŵi/M (6.1)
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Where va ∈ Rda , with (da = d′ + ld) is the dimension of the aspect vector. The
aspect vector is an internal feature to compute inter-dependence between an aspect
and its context words.

Shared Word Embedding Layer (SharedE)

The inputs of our model are a sentence and a document along with an aspect term
which are indexed into word embedding matrices. For notational simplicity, we
use WE ∈ Rd×|V | to present a document embedding matrix or a context embedding
matrix, where d is the dimension of the word embeddings and |V | is the size of
a vocabulary. Each word embedding is built up by adopting a sentiment lexicon
embedding and an aspect vector into [wC

i ⊕ va ⊕ li] ∈ Rd+da+ld, where, ⊕ denotes
the concatenate operator, ld is the dimension of the lexicon embedding, wi is the
word embedding mapped by using pre-trained word embeddings, va is the aspect
vector and li is the lexicon embedding. The lexicon embeddings and the aspect
vector here are commonly imagined as internal flavor-features dispensing with the
word embeddings altogether (lexicon-augmented word embeddings).

To develop the shared word embedding matrices from the lexicon-augmented
word embeddings, a major shared parameter Wse ∈ R(d+da+ld)×(d+da+ld) is applied
to interact knowledge between the document-level and aspect-level tasks as:

W = ReLU(WE ·Wse) (6.2)

Where W ∈ Rd×(d+da+ld) is the shared word embedding matrix of a document/ a
context sentence. We use ReLU function as a gating mechanism to control how
much the information would pass through to the final result. The shared word
embeddings may allow the model to eavesdrop more features from the related
task.

6.3.3 Long Short Term Memory Encoders

To encode the shared word embeddings, we utilize Long short-term memory (LSTM)
which is an extension of the Recurrent neural network (RNN) by [Hochreiter and
Schmidhuber, 1997]. For each shared word embedding (feature vectors), the model
calculates the hidden state hi. The LSTM has the number of LSTM units corre-
sponding to the number of feature vectors. The LSTM unit has an input gate it,
a memory cell ct, a forget gate ft and an output gate ot that ht is computed as
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follows:

it = σ(Wixt + Uiht−1 + Vict−1 + bi)

ft = 1.0− it
gt = tanh(Wgxt + Ught−1 + bg)

ct = ft � ct−1 + it � gt
ot = σ(Woxt + Uoht−1 + Voct + bo)

ht = ot � tanh(ct)

(6.3)

Where xt is shared word embedding (feature vector) of word wi, σ is sigmod
function, � is element-wise multiplication. Wi, Ui, Vi, bi, Wg, Ug, bg, Wo, Uo, Vo and
bo are LSTM parameters. Therefore, we have the hidden states (hT1 , h

T
2 , ..., h

T
M),

(hC1 , h
C
2 , ..., h

C
N) and (hD1 , h

D
2 , ..., h

D
K) corresponding to an aspect, a context sentence

and a document, respectively.

6.3.4 Batch Normalization Layer

The Batch normalization proposed by [Ioffe and Szegedy, 2015] is utilized over the
LSTM layer to increase the stability of a neural network. A Batch Normalization
normalizes |hi| to ≤ 1. Batch normalization reduces the amount by what the
hidden unit values shift around. A batch normalization allows each layer of a
network to learn by itself a little bit more independently of other layers. The
batch normalization may tackle the limitation of cross-entropy loss because neural
networks could misclassify inputs that slightly different from their training data
due to the poor margin of cross-entropy loss.

6.3.5 Interactive Word-Aspect Attention Fusion (IWAA-
F)

An IWAA-F consists of two main components: Multiple attention mechanisms and
Gated interaction which learns to attend associate relationships between individual
context word and an aspect term and investigates interactive knowledge at both
tasks in order to consolidate each context word with its tailor-made document
representation to obtain an aspect-specific representation. In this chapter, the
attention layers are reusable from the Sub-Section 5.2.3.

Intra-Attention Layer

The intra-attention is applied at both document-level and aspect-level tasks inde-
pendently to construct a document attention vector vd ∈ Rdatt and a phrase-level
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vector vatt ∈ Rd′att . The intra-attention function is define as:

vd = Hα =
K∑
i=1

αi · hDi (6.4)

vatt = H ′α′ =
M∑
j=1

α′i · hTj (6.5)

Where [
−→
hTM ] and [

−→
hDK ] is the hidden states of LSTM encoders. Similar to the

attention weights α, the attention vector α′ = {α′1, α′2, ..., α′M} is a self-attention
vector and computed by feeding the hidden states into a bi-layer perceptron, as:

α′i =
exp(γ(hTi ))∑M
j=1 exp(γ(hTj ))

γ(hTi ) = tanh(Wa · hTi + ba)

(6.6)

The purpose of the intra-attention is to capture the informative words of an aspect
term and a document. For example, given a aspect term ”Iphone screen”, the word
”screen” is going to has a higher attention weight compared to the word ”Iphone”.

Interactive-Attention Layer

After obtaining the informative words of a specific aspect via the phrase-level
vector vatt, the interactive-attention layers are utilized to compute the word-aspect
correlation between the aspect and each sentiment context word by using multiple
Feedforward networks (MLPs). As shown in Figure 6.2, two interactive-attention
mechanisms perform parallel in which the model learns to attend the sentiment
context words conditioned on the aspect words via the multiple MLPs. Then, the
softmax layer is to select the correct context words adaptively. To capture the
different perspectives of each context word, we try to develop two kinds of the
aspect representations (the phrase-level representation vatt and the aggregation-
level representation vavg) to compute two interactive-attention vectors and interact
knowledge between them.

Let [
−→
hTM ] and [

−→
hCN ] are the aspect hidden states and its context hidden states,

respectively. An average pooling layer is applied for the aspect hidden states to
form the aggregation-level vector vavg as:

vavg =
M∑
i=1

hTi /M ; vavg ∈ Rd′att (6.7)
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Subsequently, the interactive attention vectors are generated as follows:

vs =
N∑
i

βi · hCi ; vs ∈ Rdatt (6.8)

vp =
N∑
i

β′i · hCi ; vp ∈ Rdatt (6.9)

Where β and β′ are interactive attention weights as:

βi/β
′
i =

exp(γ(hCi , vrep))∑n
j=1 exp(γ(hCj , vrep))

γ(hCi , vrep) = tanh(hCi ·Wa · vTrep + ba)

(6.10)

Where vrep ∈ Rd′att is the representative notation of vatt or vavg, v
T
rep is the transpose

matrix of vrep and Wa is the shared weight matrix between two interactive-attention
mechanisms. Finally, the correlation vector vcorrel ∈ Rdatt is built via a dot product
layer to represent the correlation between two interactive-attention vectors: vs and
vp. Noted that vd and vcorrel have the same dimension.
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Figure 6.2: The Structure of an Interactive Attention Module.

Gated Attention Interaction (SharedG)

To share interactive attention knowledge between the main and auxiliary tasks, the
Gated Attention Interaction is proposed by using a combination of an element wise
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operator and a gating mechanism (ReLU function). We introduce two important
shared parameters: Watt ∈ Rdatt×datt and batt ∈ Rdatt , (datt is the length of the
attention vector) to fulfill the attention interaction between the main and the
auxiliary tasks. The formulas of SharedG are described as follows:

Rmain = vcorrel �ReLU(Watt · vd + batt)

Raux = vd �ReLU(Watt · vcorrel + batt)
(6.11)

Where vd, vcorrel are document attention vector and correlation attention vector,
respectively, Watt and batt are two shared parameters to be trained. Watt and
ReLU function work together to investigate interacting information between two
tasks and extract useful relevant information as well. This mechanism utilizes
the benefits of gating mechanism and multi-task learning as well. Therefore, the
main and auxiliary tasks are capable of not only learning the shared parameters
information but also learning the representations interaction from each other.

6.3.6 Final Softmax Layer

Equal Share (ES)

The straightforward method of ES is equally sharing knowledge between aux and
main tasks. The total loss of ES is computed as follows:

L = Amain +Daux (6.12)

Where D and A are the loss function of document-level sentiment classification
and aspect-level sentiment classification, respectively.

Weighted Share (WS)

The Weighted Share is a variation of Equal Share in which λ is utilized to control
the weight of D, where λ ∈ (0, 1) is a hyper-parameter. Therefore, the lower λ
means the main task is more important than the aux task for training. The formula
of WS as follows:

L = Amain + λUaux (6.13)

6.3.7 Model Training

The deep learning model is trained in a supervised manner by minimizing the
cross-entropy error of sentiment classification. The deep learning model can be
trained in an end-to-end way by back-propagation to calculate the gradients of all
the parameters, and update them with stochastic gradient descent. The goal of
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training is to minimize the cross-entropy error between y and ŷ for all sentences,
where y be the target distribution for sentence, ŷ be the predicted sentiment
distribution.

loss = −
∑
i

∑
j

yji logŷ
j
i + λ||θ||2 (6.14)

6.4 Evaluation

6.4.1 Datasets and Experimental Setting

As shown in Table 6.1, we evaluate the proposed model on two benchmark datasets:
Laptop and Restaurant are from SemEval ABSA challenge [Pontiki et al., 2014]
which contains user reviews in laptop domain and restaurant domain, respectively.
We also remove a few examples having the ”conflict” label as compared models.
All tokens are lowercased without removal of stop words, symbols or digits, and
sentences are zero-padded to the length of the longest sentence in the datasets.
Table 6.2 shows the document-level datasets derived from Yelp2014 [Tang et al.,
2015] and Amazon Electronics [McAuley et al., 2015], respectively and considered
3-class classification. We combine document-level and aspect-level datasets in same
domains - Amazon Electronics is used by Laptop dataset and Yelp2014 is utilized
by Restaurant dataset. Evaluation metrics are Accuracy and Macro-Averaged F1
where the latter is more appropriate for datasets with unbalanced classes.

We apply Random search for choosing hyper-parameters. Training is done
through stochastic gradient descent over shuffled mini-batches with Adam opti-
mizer. In our experiments, the uniform distribution U(−0.01, 0.01) is used for
initializing all out-of-vocabulary words. All weight matrices are given their initial
values by sampling from the uniform distribution U(−0.01, 0.01), and all of the
biases are set to zeros.

Dataset Set Sents. Pos. Neu. Neg.

Laptop
Train 2328 994 870 464
Test 638 341 128 169

Restaurant
Train 3608 2164 807 637
Test 1120 728 196 196

Table 6.1: The statistic of aspect-level datasets

6.4.2 Baselines

In this section, we discuss the compared models which are the strong state-of-
the-art deep learning models so far. Our model has three variations: MLAANet
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Dataset Sent. Classes
Yelp2014 30K

3
Amazon Electronics 30K

Table 6.2: The statistic of document-level datasets

w/o sharedE, MLAANet w/o sharedG and MLAANet. The difference is that the
shared layers are combined one by one to evaluate the effectiveness of interactive
knowledge at both tasks.

• Majority is a basic baseline approach. This baseline model assigns the
majority sentiment polarity in training dataset to each sample in the test
dataset.

• Feature-SVM is a state-of-the-art model using N-gram features, parsing
features and lexicon features [Kiritchenko et al., 2014a].

• LSTM uses one LSTM network only in order to form a context represen-
tation of words. The last hidden vector is used as a sentence representation
and fed into a softmax function to estimate the probability of each sentiment
label [Tang et al., 2016a].

• TD-LSTM is extended from LSTM using two LSTM networks in order
to model left context and right context towards the target. The left and
right target dependent representation are concatenated for predicting the
sentiment polarity of the target [Tang et al., 2016a].

• TD-LSTM + ATT is also the work of [Tang et al., 2016a] and an extended
model from TD-LSTM combined with an attention mechanism over hidden
vectors.

• AE-LSTM models context words by using LSTM and combines hidden vec-
tors with an aspect vector in order to generate attention vectors to produce
the final representation of the aspect [Wang et al., 2016c].

• ATAE-LSTM is designed based on AE-LSTM. However, ATAE-LSTM ap-
pends aspect embeddings with each word embedding to present the context
[Wang et al., 2016c].

• MemNet is a model based on the idea of Memory Network of [Sukhbaatar
et al., 2015] with many hops improved by [Tang et al., 2016b].

• IAN is an idea of [Ma et al., 2017] in which word context embeddings and as-
pect embeddings are formed by one LSTM network separately. Hidden states
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are fed into attention mechanism and pooling to produce aspect-specific rep-
resentations.

• RAM [Chen et al., 2017] is a multilayer architecture where each layer con-
sists of an attention-based aggregation of word features and a GRU cell to
learn the sentence representation.

• PRET+MULT [He et al., 2018] is a multi-task deep learning model in
which the authors utilized the pre-trained weights of Attention-based LSTM
model to update the multi-task deep learning model.

• TNet [Li et al., 2018] is a transformation network in which a novel Target-
Specific Transformation (TST) component is proposed to generate a trans-
formed word representation, and a CNN layer is employed to extract salient
features from this transformed word representations.

6.4.3 Experimental results

Models
LAPTOP RESTAURANT

Accuracy Macro-F1 Accuracy Macro-F1

Majority 53.45 - 65.00 -
Feature-SVM 70.49 - 80.16 -

LSTM 66.45 - 74.28 -
AE-LSTM 68.90 - 76.20 -

ATAE-LSTM 68.70 - 77.20 -
IAN 72.10 - 78.60 -

TD-LSTM 68.13 68.43 75.63 66.73
TD-LSTM+ATT 66.24 67.45 74.31 69.01

MemNet 70.33 64.09 78.16 65.83
RAM 74.49 70.51 80.59 68.86

PRET+MULT 71.15 69.73 79.11 67.46
TNET 76.54 70.63 80.79 70.84

MLAANet w/o sharedE 75.14 - 80.00 -
MLAANet w/o sharedG 74.28 - 79.58 -

MLAANet 77.28 71.46 81.41 72.56

Table 6.3: The experimental results compared to other models on Laptop and
Restaurant datasets.

Table 6.3 shows the performance of our models compared to others. As shown
in Table 6.3, the majority model is the worst and the SVM model achieves a re-
markable result on Restaurant dataset. The traditional approaches is still alive
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and can deal with the aspect-level sentiment classification task. We can observe
that TNET model achieves the best performance against other models by 2% -
3%. In fact, TNET computes the attention scores between each word of an aspect
term with individual context word and utilizes multi-task approach. On the other
hand, TNET utilizes mechanisms for preserving the information of the context
words since the information can be lost after transformation steps. Therefore,
TNET may significantly increase performance. Additionally, PRET+MULT ap-
proaches the multi-task learning for ASA task as well. This show that multi-task
learning is an effective associative operator and improves performance for ASA
task. However, PRET+MULT leverages ATAE-LSTM model and only constructs
multi-task learning to transfer knowledge from document level to aspect level. As
such, the model still meets the weaknesses of the Attention-based LSTM models.
The work assumes that the words of an aspect have equal distribution to its as-
pect and all context words are considered in global configuration. Additionally,
the simple concatenation between aspect and its context gives an extra burden to
the attention layer and incurs a parameter cost to LSTM layer. The multi-task
learning, in this case, is as an increment for overcoming the limitation of aspect
datasets.

RAM and MemNet called End-to-end Memory Network (MemNN) utilizes the
benefit of attention to construct models into many computational layers and out-
perform PRET+MULT and the LSTM-based models by 1% - 2%. The important
key of End-to-End Memory Network is an iteractive attention mechanism which is
utilized to refine an internal representation and update the internal representation
iteratively based on the relevant information from an aspect. However, MemNN
still considers that the words of the aspect are the equal contribution and hardly
computes the relationship between an aspect and each context word. We observe
that our model achieves consistent improvements against the dominant state-of-
the-art models so far. Additionally, the improvement of macro-F1 scores is more
significant on Laptop and Restaurant datasets. We believe that our model helps
to better capture domain-specific opinion words due to additional knowledge from
documents via the benefit of the multiple attention mechanisms.

6.4.4 Analysis

Figure 6.3 shows the affectation of λ in multi-task learning for Restaurant dataset.
As can be seen, the different share weights λ significantly influence the performance
of the model. We can observe that the best performance is using a lower value of
λ. A lower value of λ reduces the negative influence of the aux task and pay more
attention to the main task. We can observe that the best performance is using a
lower value of λ. Additionally, we can observe our model is more effective than
other models in which λ ranges from 68 to 72.56 for Macro-F1.
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Figure 6.3: The affectation of different share weights λ on both tasks for Restaurant
dataset.

We introduce case studies by the heat-map of the importance of sentence as
Figure 6.4. The model can detect the important context words affecting to the
sentiment polarity of the aspect terms such as the phrases the best, new jersey
and the negation but not great. Besides, the multiple keywords can be detected if
more than one keyword is existing (decent and but not great). The most of errors
in previous works are non-compositional sentiment expression. For example, the
model of [Tang et al., 2016b] cannot predict the sentence ”dessert was also to die
for !” for the aspect dessert. The main reason is the sentiment expression ”die for”,
whose meaning could not be composed from its constituents ”die” and ”for”. We
believe that this is due to associations learned between the words, which ignores
”for”.

6.5 Conclusion

In this chapter, we propose a novel model which fusing aspect information into a
neural network by Shared input tensor and Interactive word-aspect attention fusion.
Multiple attention mechanisms and lexicon information still contribute to modeling
the relationship between aspects and their contexts. To tackle the limitation of
aspect-level data, we propose multi-task learning to learn interactive knowledge
from other related tasks in order to improve the classification performance of our
model. Thanks to multi-task learning, the correlation information between two
tasks are modeled and manipulated via gating mechanism which controls how
much the information would pass through to the final result.

We observe that learning attentions via multi-task learning are active. The
form of inductive transfer from multi-task learning can help improve a model by
introducing an inductive bias, which causes a model to prefer some hypotheses
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Figure 6.4: The examples showing the importance of sentences are identified by
MLAANet

over others. Multiple attention mechanisms are still playing a significant role in
our models by capturing the importance of aspect and its context in order to learn
to attend associative relationships between exact context words and aspect term.
Our model shows a significant improvement against the strong baseline models.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Sentiment analysis is highly challenging, although, the research community has
attempted many subproblems and proposed a large number of solutions, none of
the subproblems have been completely solved. Recently, sentiment analysis has
been playing a big role in the real world, because, the large number of start-ups
and established companies that offer sentiment analysis services. Indeed, there is
a real need in the industry is that all businesses want to know how consumers
perceive their products and services. In the past, most people asked their friends
for experiences and advice related to many kinds of topics before making a decision.
For example, choosing a good phone or which restaurant is the best one in the city.
This is not always effective because we can not refer to many people for the best
choice. Nowadays, with the rapid development of the Internet, people can go to
websites and obtain the opinions and experiences of consumers before purchasing a
product or service. Even, governments and private organizations are also showing
strong interests in obtaining a public opinion about their policies and their public
image. For example, the president elective of the United State of America with the
winning of Mr. Trump thanks to social networking. However, with a huge amount
of information is generated every day, filtering useful and reliable information is
very difficult. Therefore, these practical needs and the technical challenges will
keep the sentiment analysis field vibrant and lively for years to come. We believe
that two main research directions are promising.

First, designing novel machine learning algorithms able to learn from large vol-
umes of textual data and to extract domain-specific knowledge (Chapter 4 and
Chapter 5). In particular, there is an increasing number of available datasets and
an ongoing community effort that supports this approach. Indeed, deep learn-
ing networks have become popular and achieve remarkable results for sentiment
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analysis task.
Second, the next generation of sentiment classification systems is to solve all

subproblems at the same time, because recently, approaches have dealt with each
individual subproblem. We believe that a holistic or integrated approach will likely
be successful if it enables us to see the full spectrum of the problem. In our models,
while tweet-level sentiment classification is sentiment summarization, aspect-level
sentiment classification task is diving more into the detail of a tweet. This inte-
gration leads us to fully understand the content and relationship information for
widespread practical applications. Although deep neural network has been gradu-
ally improving, we can be optimistic that the problem will be tackled satisfactorily
soon for widespread deep neural networks.

Considering that there are many aspects that remain unexplored. For example,
in aspect-level sentiment classification task, the available datasets are still inade-
quate to train robust classifiers. When bigger datasets are available, deep learning
methods could be effectively developed for this task. This leads transfer learning
approaches to be utilized to overcome this problem (Chapter 6). Thanks to the
advantages of deep neural networks, we propose the various deep learning models
to tackle the challenges of social networking, specifically, solving the challenges of
Twitter social networking at two levels: Tweet-level sentiment classification and
Aspect-level sentiment classification. These tasks support each other and can be
an integrated approach to sentiment analysis. Additionally, our works lead to a
better understanding of deep learning approaches applied to social networking and
potentially make major contributions to the sentiment analysis field and to society.

In summary, this thesis not only focuses on the task of detecting the overall
sentiment polarity of tweets by considering textual information but also aim to
seek other characteristics of the tweets by recognizing the sentiment polarities of
the aspects of the tweets. Our approach differs from existing studies in several
ways and can be summarized as follows:

• We develop tweet-level sentiment classification model which classify the sen-
timent polarity of a tweet. To boost the performance of the sentiment deep
neural network classifier, multi-characteristics of each word are considered
to provide flavor real-valued hints for enriching word embeddings. Such
enriched-word embeddings are modeled through the deep neural network to
extract the correct sentiment contextual words in a tweet. The experimental
results presented in Chapter 4 shows that our model improves the perfor-
mance of tweet-level sentiment classification against the baseline models.

• For aspect-level sentiment classification task, we propose novel deep learning
models which incorporate aspect information into deep neural networks by
considering the advantages of multiple attention mechanisms. On the other
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hand, sentiment lexicon feature is interpolated into word vectors in order to
highlight the important words of aspect and its context and study the effect
of this feature on Aspect-level sentiment classification. The experimental
results presented in Chapter 5 indicate that our models outperform the strong
state-of-the-art models.

• We propose a multi-task deep neural network to address the drawbacks of
aspect-level sentiment analysis task in which transfer learning is applied to
interactively study knowledge between tasks and improving the performance
of aspect-level sentiment analysis task by overcoming the large limits of as-
pect datasets. In this sentiment model, lexicon feature weighting is still
considered as an important component and contributes to the effectiveness
of deep learning models. The experimental results presented in Chapter 6
show that our models outperform the strong state-of-the-art models.

Noted that the whole processes of our models do not require any laborious
feature engineering. Our models are end-to-end deep neural networks and enable
us to apply to the sentiment analysis of various targets.

To this end, investigating and evaluating the effectiveness of our proposed
models in the different perspectives of tweet-level sentiment analysis and aspect-
level sentiment analysis allow us to deeply understand the problems of sentiment
analysis in different points of view. The experiment results indicate that our
models are effective and the deep neural network has a promising application for
sentiment analysis and address the drawbacks of traditional machine learning.
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7.2 Future Work

Sentiment analysis is a trending topic because of the changes the Web from read-
only to read-write in which users interact with each other and sharing various
information through social networks with a huge amount of useful information ev-
ery day. Future sentiment analysis systems need broader and deeper common and
commonsense knowledge bases. This will lead to a better understanding of nat-
ural language opinions and will efficiently bridge the gap between (unstructured)
multimodal information and (structured) machine-processable data. Multimodal
information such as video and audio have been growing recently and have become
useful for sentiment analysis which can be investigated by using transfer learning
approaches. We can apply the multi-task learning as Chapter 6 to explore more
complete knowledge and support text classification effectively.

Another direction is addressing the cross-language sentiment analysis task.
Since social networking websites are the domain-mixing environment which al-
lows users to post any topics in any domains without restrictions and language
style variation. The users can post status which mixes with many languages. We
can adopt a similar technique of [Pappas and Popescu-Belis, 2017] to consider
various languages for sentiment classification.

Additionally, one of the important points of social networking is user relation-
ship which has not investigated in our thesis. We can model the user relationship
by a graph and train them into Node2Vec as the work of [Grover and Leskovec,
2016] for deep neural networks. It enables the classifiers to learn more about user
similarity towards to improve the classification performance of the classifiers.

Finally, most of our methods in aspect-level sentiment classification task sup-
pose that aspects are given as an input. However, it would be better if the system
can detect both the aspects and the sentiment expressed toward given aspects au-
tomatically. For example, we can apply unsupervised deep learning or deep neural
networks combined with Conditional Random Field (CRF) to extract the aspects
in a tweet and subsequently, identifying the sentiment polarities of the aspects.
Additionally, we would like to investigate the method for analyzing the opinion on
the low resource language (e.g., Vietnamese language) in term of lack of corpus
data, sentiment lexicon, and NLP tools.
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