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Abstract

In recent decades, key software systems on which human beings heavily rely on are in the
form of distributed systems. Such systems are quite complex and thus very hard to design
and verify. Model checking is a popular automatic formal technique and highly suitable
for verifying distributed systems. Several researchers have attempted to formally analyze
and verify distributed systems. However, these are several tough problems or new forms
of distributed systems that have not been tackled well by existing approaches (or tools).

Control algorithms are a large important class of distributed algorithms, which deal with
significant problems, such as snapshot recording algorithms and checkpointing algorithms.
One main characteristic of these algorithms is that they are superimposed on underlying
distributed systems. Although some research have been conducted to formally verify
control algorithms, all of them directly require humans to specify by hand underlying
distributed systems on which control algorithms are superimposed. It is expected to have
more general approaches. However, it is challenging to specify control algorithms in almost
all existing specification languages for model checkers because it is necessary to treat an
underlying distributed system as the data that is handled by these algorithms. Therefore,
it is one of the challenging problems to be solved that how to specify control algorithms
but not underlying distributed systems on which control algorithms are superimposed is.

Recent advances in distributed computing highlight models and algorithms for au-
tonomous mobile robots that self-organize and cooperate together in order to solve a
global objective. Due to the mobility aspect, robot algorithms are often complex, ar-
guably even more complex than classical distributed systems. Designing and analyzing
mobile robot algorithms is notoriously difficult.

Rewriting logic is a natural model of computations for concurrency and communica-
tion systems. Several specification languages based on rewriting logic, such as Maude,
CafeOBJ and Elan have been designed and implemented. Moreover, rewriting logic is a
reflective logic that can be faithfully interpreted in itself. Rewriting logic is highly suitable
to formalyze distributed algorithms. However, rewriting logic only at the object level may
not be powerful enough to precisely specify some distributed algorithms.

This thesis focuses on exploiting Rewriting logic meta-programming facilities to formal-
ize the distributed algorithms that have not been tackled well by existing approaches (or
tools), as well as by any methods (or tools) based on rewriting logic at the object level.
The aim of the research is to achieve how to tackle two important families of distributed
systems, namely control algorithms and mobile robot algorithms, with rewriting logic
meta-programming facilities. Theoretically, we have faced the above mentioned problems
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by moving from the object level to the meta level, namely that it is necessary to deal
with the specifications of underlying distributed systems as data for the specification of
a control algorithm and the succinct specification of mobile robot algorithms as data for
a translator by which the succinct ones are transformed to those that can be directly
treated by Maude.

First of all, we propose a new approach to specifying and model checking control al-
gorithms. Meta-programming technique is applied to the challenges above-mentioned.
We have used meta-programs as formal specifications of control algorithms. A control
algorithm is specified as a meta-program that takes the specification of an underlying dis-
tributed system as an input and generates the specification of the underlying distributed
system on which the control algorithm is superimposed (UDS-CA). A control algorithm
is only specified at once, and for each underlying distributed system, the specification of
the UDS-CA is automatically obtained. Furthermore, we propose a technique that takes
the number of each kind of entities used, generate all possible initial states that satisfy
some constraints and conduct model checking experiments for all the initial states, which
makes it more likely to detect a subtle flaw lurking in a control algorithm or improves the
confidence in the correctness of a control algorithm. We have conducted two case studies,
which specify and model check snapshot and checkpointing algorithms.

Several classic distributed algorithms have been formally verified with some techniques
based on rewriting logic. We aim to obtain similar achievements for distributed mobile
robot systems - a new form of distributed systems. We come up with formal specifi-
cation and model checking based on rewriting logic for mobile robot algorithms. We
have conducted two case studies in which we specify and model check an exploration
algorithm and a gathering algorithm on rings in Maude. However, no existing specifi-
cation language is designed for mobile robot algorithms on rings: rings are not directly
supported by such languages and specifications of such algorithms are far from the corre-
sponding mathematical descriptions. This is because of the particular symmetries owned
by rings. Consequently, we need to specify rings by adapting other defined structures,
such as sets and sequences. It, therefore, makes the specification task tedious as well
as time-consuming, while the specifications obtained are complicated and lengthy. It is
worth providing a specification environment in which rings are directly supported. An
environment and a domain-specific language (DSL) for specifying and model checking mo-
bile robot algorithms on rings (or mobile ring robot algorithms) are proposed. First, we
develop Maude Ring Specification Environment (Maude RSE), a ring specification envi-
ronment that explicitly supports ring-shaped networks. Then, we build our DSL, Mobile
Ring Robot Maude (MR2-Maude), on top of Maude RSE. MR2-Maude makes it possible
to specify mobile ring robot algorithms in such a way that the specifications are as close
as possible to their mathematical descriptions. One key underlying these tools is pattern
matching between ring patterns and ring instances, called “ring pattern matching.” The
advantages of Maude RSE and MR2-Maude are demonstrated by case studies analyzing
exploration and gathering mobile robot algorithms.

Keywords: control algorithm, mobile robot algorithm, model checking,
meta-programming, domain-specific language.
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Chapter 1

Introduction

1.1 Distributed Systems

In recent decades, key software systems on which humans heavily rely on are in the form
of distributed systems, which consist of multiple nodes (or processes) connected with
networks (or channels). Distributed system is an essential form of today software with
many significant applications, such as telephone networks and aircraft control systems. A
distributed system consists of independent entities that cooperate to solve a problem that
cannot be individually solved. The entities are connected and communicate by passing
messages though communication networks. Modern applications of distributed systems,
such as cloud computing and web search engine, usually provide their services to a large
number of customers.

1.1.1 Control Algorithms

Because distributed systems are collections of many individual components, it has raised
many global problems, which cannot be detected and handled by a single component and
thus require global solutions. Among such problems are detecting termination, detect-
ing distributed deadlock, detecting global stable predicates, recording global states and
checkpointing. It is, therefore, necessary to use many non-trivial distributed algorithms,
such as termination detection algorithms, deadlock detection algorithms, global stable
predicate detection algorithms, snapshot recording algorithms and checkpointing algo-
rithms. These algorithms need to be executed in order to monitor underlying application
executions or to perform various auxiliary functions. They are essential to distributed
systems. One main characteristic of these algorithms is that a control algorithm execu-
tion is superimposed on an underlying application execution and in many cases does not
interfere with the application execution (Fig 1.1). Said differently, they run concurrently
with underlying distributed systems (UDSs). Such distributed algorithms are called Con-
trol algorithms [43]. An underlying distributed system is regarded and treated as data by
control algorithms.

Based on our surveys of [43] and [60], there are around 30% problems tackled by control
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A UDS

The UDS on which the algorithm is superimposed (UDS-CA)

A Control Algorithm
Output Global 

Observations 

Figure 1.1: The control algorithm execution is superimposed on an underlying application
execution.

algorithms. Control algorithms, therefore, is a large and important class of distributed
algorithms.

1.1.2 Mobile Robot Algorithms

Traditionally, distributed computing has focused on systems that consist of immobile en-
tities connected with fixed communication networks in which communication is explicit.
However, distributed computing is extending to solve problems relevant to a distributed
mobile environment where entities are mobile and communication might not be explicit.
Mobile distributed computing has become the heart of various different systems, such as
software mobile agent in communication networks, mobile sensor networks, swarms and
robotic networks. Motivated by the various tasks that can be performed by autonomous
mobile robots, many researchers have been investigating the field of autonomous mobile
robot. Recent developments in theoretical computer science (especially in distributed com-
puting) focus on models and algorithms for autonomous mobile robots that self-organize
and cooperate in order to achieve global goals. Autonomous mobile robots have been pro-
posed for several promising applications, such as working in damaged environments. The
seminal model introduced by Suzuki and Yamashita [40] proposes a distributed system
of k robots that have low capacities: identical (they are indistinguishable and all execute
the same algorithm), oblivious (they have no memory of their past actions), and disori-
ented (they share no common orientation). Moreover, the robots do not communicate
by sending or receiving messages, but have the ability to sense their environment and
see the relative positions of the other robots. Researchers have proposed formal models
for these systems and have designed algorithms for solving some predefined tasks. Most
papers focus on the computability of mobile robots; one of the main goals is usually to
find the weakest assumptions (on robots and/or model), such as synchrony, multiplicity
detection, and chirality that might make a problem solvable or unsolvable. In this context,
various models and algorithms have been proposed to solve particular problems. There
exist several different models, but they can be classified in two main classes: (i) discrete
models in which movement is restricted to a graph [10, 11, 22] and (ii) continuous models
in which entities move on a continuous space [34, 40, 64]. For both cases, a large variety
of tasks have been considered, especially gathering and exploration. In discrete models,
robots perform their activities in specific shape networks, such as rings and grids. They
can be observed only at specific discrete locations of these networks.

What and how problems can be solved by a group of autonomous mobile robots on
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ring-shaped networks is an important topic in the area, as shown by the large number
of algorithms that have been proposed: e.g. the papers [10, 24, 26, 27, 33, 44] propose
algorithms for exploration on ring, robot gathering on rings is solved in [11, 21, 23, 39, 41,
55], and some other problems are solved in [22, 59]. In this thesis, we focus on discrete
models where robots move on a ring-shaped network.

1.2 Formal Verification of Distributed Systems

Distributed systems are quite complex and thus very hard to design and verify. Formal
verification is one of the main approaches to distributed system verification and model
checking [4, 32] is a popular automatic formal technique and highly suitable for verifying
such systems. Several researchers [3, 42, 65, 66] have attempted to formally analyze and
verify distributed systems (or algorithms) and many tools are developed to that purpose.
However, these are several tough problems that have not been tackled well by existing
approaches and more new forms of distributed systems that require new methods (or
tools) to deal with.

Control algorithms have raised a challenge to verification by model checking because
such algorithms cannot be specified independently of the underlying systems. Although
some control algorithms have been specified and model checked in [7, 12, 57], all of them
directly require humans to specify by hand the underlying systems on which control algo-
rithms are superimposed (Fig. 1.2(a)). When the same control algorithm is to be verified
for different underlying systems (or different variants of the same underlying system),
we need to write new specifications of the underlying systems on which the algorithm is
superimposed. This consumes time and exhausts specifiers due to repetitions. We may,
therefore, want to propose a new approach such that we only need to specify a control
algorithm at once and the specification of the system on which a control algorithms is
superimposed (UDS-CA) is automatically generated from the specification of an underly-
ing system. However, it is challenging to specify control algorithms in almost all existing
specification languages for model checkers, such as PROMELA [37], because it is neces-
sary to treat an underlying system as data handled by control algorithms. Moreover, two
different systems (an underlying distributed system and the UDS-CA) may be taken into
account to model check some properties for control algorithms, while almost all existing
model checkers (to our knowledge), such as SPIN [37], NuSMV [14], and TLC [45], do
not support it.

Designing and analyzing mobile robot algorithms is notoriously difficult. In the litera-
ture, the correctness of such algorithms relies on handmade mathematical proofs, which
are error-prone. Most of these proofs are handmade and may consist of a large number of
cases, especially when the algorithm is given explicitly as a set of transition rules (e.g. [10])
in opposition to a more abstract algorithm where movements are implicitly given by some
mathematical rules (e.g. [22]). It is not easy and not trustful to check the correctness of
these algorithms only by hand. We believe that the research field of distributed mobile
robots is now mature; some main models have emerged and have been adopted by the
community. It is time to study how to automatically verify such algorithms and this
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Figure 1.2: The existing approaches and our new approach to specifying control algo-
rithms. Sys1, . . . , Sysn are underlying distributed systems and Sys1-CA, . . . , Sysn-CA
are the underlying distributed systems on which a control algorithm is superimposed.

thesis presents an example of automatic verification. However, due to the mobility as-
pect, mobile robot algorithms are often complex, arguably even more complex than classic
distributed systems. This inherent difficulty explains probably the limited number of at-
tempts in obtaining formal verifications. The untruthfulness of handmade mathematical
proofs has been pointed out in [5, 9, 28, 29]. Formal, automatic techniques could help us
increase the confidence of the existing algorithms/proofs, as shown in [5, 9, 19, 28, 29].
For discrete models, model-checking has been proven useful to find errors in the proposed
algorithms [9, 28, 29]. However, ring discrete models are not well supported by any exist-
ing specification languages, such as SPIN [37], DVE [6], and Maude [16]. This is because
of the particular symmetries owned by rings. Consequently, the specifiers, such as Berard
et al. [9] and Doan et al. [28, 29], need to specify rings by adapting other defined struc-
tures, such as sets and sequences. For instance, Doan et al. [28] need to use commutative
binary operators to specify rings in Maude. It, therefore, makes the specification task
tedious as well as time-consuming, while the specifications obtained are complicated and
lengthy.

Recent publications, such as [5], have attempted to include formal proofs. Such proofs
require the hard efforts of researchers to have the knowledge for specifying an algorithm in
a particular specification language. However, no existing specification language is designed
for mobile robot algorithms on rings: rings are not directly supported by such languages
and the specifications of such algorithms are far from the corresponding mathematical
descriptions. Therefore, it is worth providing a specification environment in which rings
are directly supported. The environment would allow users to concentrate on mobile
ring robot algorithms. It is also worth designing a domain-specific language dedicated to
mobile ring robot algorithms on top of the environment. The domain-specific language
allows users to specify mobile ring robot algorithms such that the specifications are as
close as possible to their mathematical descriptions. It also provides predefined LTL

4



formulas as well as atomic propositions to model check that such algorithms enjoy the
desired properties.

Rewriting logic is a natural model of computations for concurrency, parallel and com-
munication systems. Several specification languages based on rewriting logic, such as
Maude, CafeOBJ and ELAN have been designed and implemented. Moreover, rewriting
logic is a reflective logic that can be faithfully interpreted in itself. This makes some of
these languages, such as Maude able to provide meta-programming facilities. Rewriting
logic is highly suitable to formalyze distributed algorithms. This is demonstrated by many
researches on formalization of distributed systems based on the rewriting logic framework.
However, rewriting logic only at the object level may not be powerful enough to precisely
specify some tough distributed algorithms.

1.3 Contributions

This thesis focuses on exploiting rewriting logic meta-programming facilities to formalize
the distributed algorithms that have not been tackled well by existing approaches (or
tools), as well as by any methods (or tools) based on rewriting logic at the object level. The
aim of the research is to achieve the formal specification and model checking of distributed
systems with rewriting logic meta-programming facilities. Theoretically, we have faced
the above mentioned problems by moving from the object level to the meta level. We have
manipulated rewriting logic as a reflective logic and used meta-programming techniques
to specify distributed algorithms.

1.3.1 A New Approach to Specifying and Model Checking Con-
trol Algorithms

We carefully take into account the important aspect of control algorithms — they run
concurrently with an underlying distributed system. We have investigated one possible
solution that is to apply meta-programming techniques to the challenges above-mentioned.
A meta-program is a program that takes a program (or specification) as an input and
performs some useful computations, such as analyzing the program and transforming
the program into another. Metaprogramming is very powerful with many important
applications. Translators and debuggers, for instance, are such applications.

As we have mentioned, when the same control algorithm is to be verified for different
underlying distributed systems (or different variants of the same underlying distributed
system), we need to write new specifications of the underlying distributed systems on
which the control algorithm is superimposed (UDS-CA). We present an approach that
aims at avoiding this repetition by specifying a control algorithm as a transformation that
converts the specification of an underlying distributed system into one that combines both
the underlying distributed system and the algorithm. A control algorithm is specified as
a meta-program that takes the specification of an underlying distributed system as an
input and generates the specification of the UDS-CA. A control algorithm is specified
at once, and for each underlying distributed system, the specification of the UDS-CA is
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automatically obtained. This is depicted in Fig. 1.2(b). The model checking is conducted
at the meta level as well. The meta level makes it possible to model check the properties
that involve both an underlying distributed system and the UDS-CA. The distributed
snapshot reachability property is one of these properties. We explain how to model check
it in a case study presented in Section 4.3.1.

Model checking is a verification technique that explores all possible system executions
and checks whether a desired property that should be satisfied by an algorithm is sat-
isfied. It is necessary to provide the initial states of an underlying distributed system
to model check that the UDS-CA enjoys a desired property. One main challenge is that
counterexamples may be found for some initial states, while they may not be for others.
Even fixing the number of every kind of entities, used in an underlying distributed sys-
tem, there may be more than one underlying distributed system due to many options,
such as network topologies, such as mobile support stations and mobile hosts in a mobile
checkpointing algorithm. Facing the challenge, then, one piece of our work is to come
up with a verification technique that generate all possible initial states of an underlying
distributed system for a fixed number of each kind of entities. Because too many initial
states could be generated, however, we use some constraints to make the number of initial
states moderate. One possible constraint is that mobile support stations are strongly
connected with a reliable wired network. We demonstrate the usefulness by reporting
on a case study in which a counterexample is found for some specific initial states but
not for the other initial states, detecting a subtle flaw lurking in a mobile checkpointing
algorithm.

We have conducted two case studies in which the approach is utilized to specify and
model check a snapshot algorithm and a checkpointing algorithm. Two main contribu-
tions of this work are:

(1) Specification: It is an approach to specifying control algorithms as meta-programs,
which allows us:

• to specify a control algorithm once and automatically generate the specification of
the UDS-CA for each underlying distributed system;

• to faithfully specify and model check properties that involve both an underlying
distributed system and the UDS-CA.

(2) Model checking: We propose a technique that takes the number of each kind of entities
used, generate all possible initial states and conduct model checking experiments for all
the initial states, which makes it more likely to detect a subtle flaw lurking in a control
algorithm. Our model checking has found two subtle errors in a checkpointing algorithm.

1.3.2 An Environment and a Domain-Specific Language for Spec-
ifying and Model Checking Mobile Ring Robot Algorithms

Several classic distributed algorithms have been formally verified with methods based on
rewriting logic, while few studies have been conducted to formally verify distributed mobile
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robot systems — a new form of distributed systems — with those based on rewriting logic.
Our work implies that the rewriting logic framework is powerful and flexible to successfully
express a new form of distributed system.

Formal Analyzing Mobile Robot Algorithms in Maude

We come up with formal specification and model checking based on writing logic to mobile
robot algorithms. We present how to formalize a mobile robot algorithm as a state ma-
chine and then specify the state machine in Maude, a language and a system supporting
executable specification and declarative programming in rewriting logic. We have demon-
strated in [28, 30, 31] that Maude allows us to specify distributed algorithms/systems
more succinctly than others. For instance, it supports associative and commutative op-
erator attributes that are very necessary to concisely specify mobile robot algorithms as
shown in [28]. A case study of how to specify and model check a given robot exploration
algorithm is conducted. A formal model of a system consisting of three robots on the
ring shaped network is given. The main work consists in using the model checking ap-
proach to automatic verification of a perpetual ring exploration algorithm. Rewriting
logic makes it possible to naturally specify dynamic systems, and the Maude system has
an LTL model checker. The two significant properties which the algorithm should satisfy
have been specified as Linear Temporal Logic (LTL) formulas [38]. We then model check
the two properties for the algorithm with the LTL model checker. As the result of our
model checking for the algorithm, a counterexample has been found. This states that the
algorithm is not correct since it does not satisfy the two properties.

Furthermore, we have proposed a formal model for mobile robot algorithms on anony-
mous ring shaped network under multiplicity and asynchrony assumptions. About timing
assumption, we consider the more general asynchronous model ASYNC. We take into
account multiplicity assumption, which makes it much harder to formalize mobile robot
algorithms. We focus on the gathering problem and analyze the algorithm proposed by
D’Angelo et al. [21] as a case study. As the result of the model checking, counterexamples
have been found. We refute by model checking that the algorithm enjoys desired prop-
erties. We detect the sources of some unforeseen design errors. We, furthermore, give
our explanations on these errors. Two main results are: (1) a formal model for mobile
robot algorithms on anonymous ring shaped network under multiplicity and asynchrony
assumptions – our model is general enough and could be applied to other problems (in
the ring); (2) a refutation by model checking that the algorithm enjoys desired properties
— in detail, the algorithm contains design errors that prevent robots from gathering into
one location. The additional contributions are a preliminary set of Maude modules that
could be re-used for future verifications and the interpretations of the errors found.

The contribution of our work is the proof by example that formal methods must be
used to verify distributed robot algorithms. Indeed, even algorithms described and proven
using mathematical abstractions (may) still contain errors. While some of them are minor
and could have been detected by a careful reader (simple typos), some errors would have
been almost impossible to detect without model-checking. Said differently, we claim that
informal and semi-formal mathematical proofs are not enough for this kind of algorithms.
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The complexity of analyzing all situations may be too high for human brains. Another
valuable contribution of our work is that we discover the challenges to specify and model
check mobile ring robot algorithms. Because rings are not supported in Maude, we need
to specify rings by adapting other defined structures, such as sets and sequences. It, thus,
makes the specification task tedious as well as time-consuming, while the specifications
obtained are complicated and lengthy.

An Environment and a Domain-Specific Language

An environment and a domain-specific language for specifying and model checking mo-
bile robot algorithms on rings (or mobile ring robot algorithms) are proposed. First, we
develop Maude Ring Specification Environment (Maude RSE), a ring specification envi-
ronment that explicitly supports ring-shaped networks. Maude RSE is implemented in
Maude. Then, we build our domain-specific language, Mobile Ring Robot Maude (MR2-
Maude), on top of Maude RSE. MR2-Maude makes it possible to specify mobile ring
robot algorithms in such a way that the specifications are as close as possible to their
mathematical descriptions. One key underlying these tools is pattern matching between
ring patterns and ring instances, called “ring pattern matching.” Because rings are not
commonly available data structures in any existing specification language, we encode
ring patterns as sets of sequence patterns and simulate ring pattern matching by pattern
matching between sets of sequence patterns and sequence instances, which is proven cor-
rect and transparent to both Maude RSE and MR2-Maude users. MR2-Maude predefines
some LTL formulas as well as atomic propositions to model check that such algorithms en-
joy desired properties. The advantages of Maude RSE and MR2-Maude are demonstrated
by case studies analyzing exploration and gathering mobile robot algorithms.

Maude RSE and MR2-Maude themselves are the main achievements. Our research
illustrates the power of rewriting logic in that Maude RSE can be implemented by ex-
tending Maude, more precisely Full Maude, and MR2-Maude can be implemented by
further extending Maude RSE. That is, we do not need to implement such formal tools
from scratch but we can do so by extending Maude and/or new formal tools on top of
Maude. Case studies are conducted with Maude RSE as well as MR2-Maude, demon-
strating that because Maude RSE supports ring structures, mobile ring robot algorithm
specifications in Maude RSE are more concise and compact than those in Maude; the
overhead incurred by handling rings is almost nothing and mobile ring robot algorithm
specifications in MR2-Maude are close to their mathematical descriptions. From a theo-
retical point of view, we prove that ring pattern matching can be correctly simulated by
pattern matching between sets of sequence patterns and sequence instances. Therefore,
Maude RSE as well as MR2-Maude will benefit researchers in both the formal methods
community and the distributed computing community.

1.3.3 Summary

Our research discovers the power of rewriting logic as well as its meta-programming facil-
ities to formal specification and model checking of distributed systems. We have demon-
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strated that meta-programs can be used as formal specifications of distributed algorithms.
The main contributions of the thesis are: (1) a formal specification and model checking
approach based on meta-programming to control algorithms, (2) a specification environ-
ment and a domain-specific language for specifying and model checking mobile ring robot
algorithms.

1.4 Thesis Structure

We organize the structure of this thesis into seven chapters. We summarize each chapter
as follow:

Chapter 1 is an introductory chapter. It first gives a brief introduction to control algo-
rithms and mobile robot algorithms. It then summaries the problems of formal verification
of distributed algorithms followed by our contributions, and thesis structure.

Chapter 2 provides preliminaries to this thesis. Many researchers have attempted
to formally analyze and verify distributed systems (or algorithms). This chapter will
present a careful investigation on the advancements of some related researches as well.
This chapter then introduces rewriting logic and its applications, and explains about its
important aspects as reflective logic.

Chapter 3 introduces Maude and its LTL model checker. It then describes how to
specify and model check a distributed system in Maude. It also introduces Maude meta-
progamming facilities and show how to implement a meta-program in Maude.

Chapter 4 proposes a new approach to specifying and model checking control algo-
rithms. The approach is explained by applying it to specifying and model checking a
termination detection algorithm. We give our idea on generation of all possible initial
states that fulfill some constraints so as to make it more likely to detect subtle errors
lurking in control algorithms. Two case studies are given at the end of the chapter.

Chapter 5 focuses on how to specify and model check mobile robot algorithms in
Maude. Namely, we analyze a perpetual exploration algorithm and a gathering algorithm.

Chapter 6 introduces Maude RSE and describes the theory of ring-patten matching. It
presents how to specify mobile ring robot algorithms in Maude RSE. Maude RSE allows
us to concisely and naturally specify mobile robot algorithms on ring shape networks. It
then introduces MR2-Maude and evaluates Maude RSE and MR2-Maude.

Chapter 7 concludes the thesis, summarizing the main contributions made. It also
reveals future directions.
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Chapter 2

Preliminaries

This chapter provides preliminaries to this thesis. It first introduces control algorithms
and mobile robot algorithms. Many researchers have attempted to formally analyze and
verify distributed systems (or algorithms). This chapter will present a careful investigation
on the advancements of some related research as well. This chapter then introduces
rewriting logic and its applications, and explains about its important aspects as reflective
logic.

2.1 Distributed Algorithms

A distributed system consists of a collection of computation units abstractly named process
that cooperate to achieve a common goal. A set of n processes could be denoted as Π
= {p1, . . . , pn}, where each pi, 1 ≤ i ≤ n, represents a distinct process. The processes
communicate by sending and receiving messages through channels, which are wired or
wireless network. In some case, channels are assumed to be reliable (no lost, modify,
or duplicate messages) and first in first out (FIFO), which means that the messages are
received in the order sent.

2.1.1 Control Algorithms

This section introduces a class of distributed algorithms - Control algorithms to which
our methods are going to apply.

In distributed systems, an underlying application executes its own program, which rep-
resents the logic of the application. An application execution involves processes and their
related communication channels. In many cases, however, some extra additional tasks
should be carried out in order to monitor the application execution or to perform various
global functions, such as: detecting termination, detecting distributed deadlock, detect-
ing global stable predicates, recording global states, and checkpointing. It is, therefore,
necessary to use many non-trivial distributed algorithms, such as termination detection
algorithms, deadlock detection algorithms, global stable predicate detection algorithms,
snapshot recording algorithms, and checkpointing algorithms. The essential characteris-
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tics of such algorithms is that an algorithm execution is superimposed on the underlying
application execution. An underlying distributed system may be regarded and treated as
data by control algorithms (Fig 2.1).

A Control Algorithm
 

Input Output
A UDS

Global 
Observations or 

Agreements

The UDS on which the algorithm is superimposed 

The UDS

Figure 2.1: A control algorithm is superimposed on an underlying distributed system
(UDS), which may be regarded and treated as data by the control algorithm.

The following part presents three different control algorithms. They are a termination
detection algorithm, a snapshot recording algorithm and a checkpointing algorithm.

Four-Counter Algorithm

Let us consider the following simple, but non-trivial, control algorithm. The algorithm
is called “Four-Counter Algorithm” for termination detection in an asynchronous atomic
model.

Computation Model. A distributed system consists of a finite set of processes that
are connected and communicate with the communication network, which is fully con-
nected. Assuming the processes do not share a common global memory. Let p1, . . . , pn
be n asynchronous processes. Each pi has a local variable denoted modei whose value is
either active or passive. Initially, some processes, at least one, are in the active mode,
while the others are in the passive mode. When a process pi is active, it can execute
local computations and send messages to the other processes. When a message reaches
a process pj, pj instantaneously sets modej to active. Messages are delivered reliably
without any error in finite but arbitrary time that may or may not be in the sent order.
The atomic model is a simplified model in that it takes only time to deliver a message to
a destination process from a source process but the destination process does anything in
it instantaneously, such as updating its internal state, on receipt of the message.

p q

r

t1 t2

Figure 2.2: The initial state of the 3-processes, 6-channels and 2-tokens system
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Fig. 2.2 describes an underlying distributed system consisting of three processes p, q, r
and two tokens t1 and t2. The state of a process mainly depends on the set of tokens
owned by the process. pi has two actions: (1) consuming one of its tokens or sending
the token to another process by putting the token into one of its outgoing channels if the
process is active and (2) receiving a token from one of its incoming channels and becom-
ing active in case it is in the passive mode. When a process does not hold any tokens, it
may become passive and then remains passive unless it receives a message from another
process. Initially, p is active and holds t1, and q is passive, and holds t2, while r is passive
and does not have any tokens and all channels are empty.

Termination Detection Problem. It is very important to know when the distributed
computation has terminated so that the result could be used or the next computation
could be started. Intuitively, a distributed computation has terminated when all the pro-
cesses are passive and all the channels are empty. The termination detection problem
consists in designing an algorithm in order to detect the termination. Let c[i, j] denote
the channel from pi to pj and emp denote the empty channel. A distributed computation
is said to be terminated if and only if:

For all i, j, modei = passive and if there exists c[i, j], then c[i, j] = emp.

This is called the “termination prediate.”

Four-Counter Algorithm. The idea that underlies the algorithm is simple: it detects
the termination by counting and comparing the number of messages that have been sent
and received. The system is claimed to be terminated when the total number of messages
sent is equivalent to the total number of messages received. Messages used in the under-
lying computation are called computation messages, and messages used for the purpose
of termination detection (by Four-Counter Algorithm) are called control messages. The
algorithm does not block any computation messages. Let us consider a simple version of
the algorithm based on an inquiry-based principle. Each process pi is required to count
the number senti of messages it has sent, and the number reci of messages it has received.
Let us assume that there is an observer in charge of the termination detection. To start,
the observer requests each process pi to answer to let it know the pair (senti, reci) by
sending the pair to it. When the observer has all the pairs, it computes the total number
S of the messages sent, and the total number R of the messages received. If S = R, it
claims that the system has terminated. Otherwise, it starts its next inquiry.
At each process pi:

• Receiving a computation message:

reci := reci + 1;

• Sending a computation message:

senti := senti + 1;
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• Receiving a request from the observer:

send the pair (senti, reci) to the observer.

At the observer:

repeat

S := 0; R := 0;

for each i ∈ {1, ..., n} do send a request to pi end for;

wait for an answer message (senti, reqi) from each pi;

S :=
∑

1≤i≤n senti ; R :=
∑

1≤i≤n reci ;

if (R = S) then claim termination; exit loop

end if

// start the next inquiry.

endrepeat.

Chandy-Lamport Distributed Snapshot Algorithm (Chandy-Lamport Algo-
rithm)

CLDSA [50] is the first and fundamental snapshot algorithm to record a consistent global
state of a distributed system.

Underlying Distributed System. Channels are unbounded reliable queues (FIFO).
The state of a channel is characterized by the sequence of in-trans messages sent along
the channel and not yet received by the destination process. Fig. 2.3 shows a system that
consists of three processes p, q, r and four channels, in which there are two channels from
p to q.

p q

r

t1 t2
empty

empty

empty em
pt
y

Figure 2.3: The initial state of a toke system with 3-processes & 4-channels

Chandy-Lamport Algorithm. Chandy and Lamport have proposed Chandy-Lamport
algorithm by which processes can record their own states and the states of incoming
channels such that the combination of all process states and all channel states forms a
consistent global state. Chandy-Lamport algorithm guides each process when it should
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record its own state and the state of each incoming channel by using a special message
called marker. Each process can record its state at any time when it has not yet received
any markers from other processes. These rules must be followed:

Marker-Sending Rule for a process p: for each of its outgoing channels c, p sends
one marker along c after recording its state and before sending further messages along c.

Marker-Receiving Rule for a process p: when the process p gets a marker from
one of its incoming channels c,

if p has not yet recorded its state

then p records its state according to Marker-Sending Rule for p and the state of
channel c as the empty sequence

else p records the state of c as the sequence of messages received along c after
recording p’s state and before receiving the marker along c.

The algorithm will be terminated when each process has recorded its state and the states
of all of its incoming channels. The global snapshot then is collected by combining those
recorded process and channel states. An important aspect of the algorithm is that the
algorithm runs concurrently with, but does not alter, the behavior of an underlying dis-
tributed system.

The Distributed Snapshot Reachability Property. Let s1, s∗ and s2 be the state
in which Chandy-Lamport algorithm is initiated (the start state), the snapshot taken,
and the state in which Chandy-Lamport algorithm is terminated (the finish state), re-
spectively. Although the snapshot s∗ may not be identical to any of the global states
that occur in the computation from s1 to s2, one desired property (called the distributed
snapshot reachability property) Chandy-Lamport algorithm should satisfy is that s∗ is
reachable from s1 and s2 is reachable from s∗, whenever Chandy-Lamport algorithm is
terminated. Note that s1, s2 and s∗ are states of the underlying distributed system but
not those of the underlying distributed system on which Chandy-Lamport algorithm is
superimposed (UDS-CLDSA).

Checkpointing Algorithm

Checkpointing is an essential technique for fault tolerance distributed systems. It helps
to reduce the amount of lost work by periodically saving the state of a process during the
failure-prone execution. A failure system could restart its execution from the saved state
upon to the failure. The saved state by a process is called local checkpoint and a global
checkpoint is a set of local checkpoints, one from each process. However, an arbitrary
set of local checkpoints may not form a consistent global checkpoint. A consistent global
checkpoint is a global checkpoint such that no message that is sent by a process after
taking its local checkpoint is recorded as a received message by another process in its
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local checkpoint. There are two main approaches for checkpointing: coordinated check-
pointing and uncoordinated checkpointing. In this case study, we specify and model check
a coordinated checkpointing algorithm for mobile distributed systems with our approach.

Mobile Distributed Systems. A mobile computing system consists of the set of mobile
hosts that can move and the set of mobile support stations that act as access points to
connect mobile hosts to the rest of the network. Mobile support stations communicates
with other mobile support stations by wired networks, but it communicates with mobile
hosts by wireless networks. The location of a mobile host is represented by its current
local mobile support station. The system as shown in Fig. 2.4 consists of three mobile
support stations and seven mobile hosts. Because of the mobility of a mobile host, it
may connect to different mobile support stations from time to time. A mobile host may
voluntarily disconnect from the network and a disconnected mobile host is unreachable
from the rest of the network. Wired networks provide reliable FIFO message delivers.
Messages are delivered in the order sent and arbitrary, but limited time. A mobile host
can pass messages in a reliable FIFO wireless channel to communicate with an mobile
support station when it locates in the cover of the mobile support station (called cell).

mss1 mss3

mss2

mh1

mh2

mh5

mh4

mh6

mh3

mh7

Mobile support station Mobile host Wired channel Wireless channel

Figure 2.4: A mobile distributed system that consists of three mobile support stations
and five mobile hosts.

Mutable Checkpointing Algorithm. Due to the mobility of mobile hosts and the lim-
ited capacity of wireless networks, it has raised some new issues in recording consistent
global checkpoints, such as: (1) the communication delay and message complexity are
increased because of the changes of the location of a mobile host; (2) the disk storage on
a mobile host, which could be loss, theft, or physically damaged, cannot be considered
as the stable storage and thus only minimum number of processes should be forced to
take checkpoints, which need to be transferred to stable stores in mobile support stations
through low bandwidth wireless channels; (3) a disconnected mobile host is not able to
record its local checkpoints.
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A checkpointing algorithm is executed in order to record a consistent global checkpoint.
A checkpointing algorithm is superimposed on an underlying mobile distributed system
(UMDS). There are two kinds of messages: computation underlying messages generated
by the underlying distributed application and control messages generated by processes
to advance checkpoints. Among several checkpointing techniques proposed, coordinated
checkpointing is a commonly used technique, by which a process needs to synchronize their
checkpointing activities in order to record a consistent global checkpoint. When a process
records its local checkpoint, it asks (by sending control request messages) all relevant
processes to take checkpoints. Cao and Singhal [13] have proposed a coordinated check-
pointing algorithm, by which only the minimum number of processes have to take their
checkpoints on the stable storage. The concept of “mutable checkpoints” is introduced.
A mutable checkpoint is neither a tentative checkpoint nor a permanent checkpoint, but
it can be turned into a tentative checkpoint at some points. It could be saved at any-
where, e.g, local storages in mobile hosts or stable storage. Intuitively, a process could
start the algorithm at anytime when it is not in any checkpoint process. It takes its local
checkpoint, and then sends checkpoint requests to its relative processes from which it has
received messages. Requests made by a process can be inherited by other processes. A
process may take a mutable checkpoint when it receives a computational message from a
checkpointing process that has recorded its local state. The mutable checkpoint is turned
to a tentative checkpoint if and only if the process is inherited a request message. Other-
wise, it is discarded. In [13], the algorithms are described and explained in plaintext and
also given in terms of pseudo-code.

2.1.2 Mobile Robot Algorithms

For the last two decades, the Distributed Computing community has been investigating
what can be solved by a team of autonomous mobile robots. Following a different approach
compared to the AI and Robotic communities, researchers started to propose formal
models for these systems and design algorithms solving some predefined tasks. Theoretical
research on distributed mobile robot focuses mainly on computability aspects; the goal is
to determine whether a problem can be solved given some assumptions, such as synchrony,
multiplicity detection and chirality. In this context, various models and algorithms have
been proposed to solve various problems. There exist several different models, but they
can be classified in two main classes: (i) discrete models in which movement are restricted
on a graph [10, 11, 22] and (ii) continuous models in which entities move on a continuous
space [34, 40, 64]. For both cases, a large variety of tasks have been considered such
as gathering, pattern formation, scattering, flocking for continuous environments, and
gathering, exploration, patrolling for discrete environments. For more details, we invite
the interested reader to check the book [34] of Flocchini et. al that surveys many results
(mostly on continuous models). In the discrete models, robots perform their activities in
specific shape networks, such as rings and grids. They are observed at specific discrete
locations. This thesis focuses on the ring discrete model. What and how problems can
be solved by a group of autonomous mobile robots on ring shaped networks is a very
interesting topic in the area, as shown by the large number of algorithms that have been
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proposed. The authors in [10, 26, 27, 33, 44] have proposed algorithms to exploration on
ring. Robot gathering on ring is solved in [11, 21, 23, 39, 41] and some other problems are
solved in [22, 59]. There have been already some efforts to unify and formalize existing
results [21, 22, 23, 33].

Computational Model

We considers the classic problems in the ring. The ring is anonymous, that is, there is
neither node nor edge labeling. The robots are identical, i.e., they are indistinguishable
and all execute the same algorithm. Moreover, the robots are oblivious and disoriented,
meaning that they have no memory of past actions, and they share no common orien-
tation (no chirality). The robots cannot explicitly communicate, but have the ability to
sense their environment and see the relative positions of the other robots, in their local
coordinate system. When there is more than one robot, the node is called a multiplicity
(or a tower). In some problems, such as robot gathering problem robots are assumed to
have the global multiplicity detection. If robots have weak multiplicity detection, they
can distinguish whether a node is empty, occupied by one robot, or more than one robot,
but are not able to count the actual number of robots. With strong multiplicity detec-
tion, robots can count the exact number of robots in the multiplicity. In case they have
no multiplicity detection, robots simply detect whether a node is empty or occupied by
robots.

Robots follow a three-phase behavior: Look, Compute, and Move. During its Look phase
a robot takes a snapshot of all robots’ positions. The collected information (position of
the other robots in the egocentric view) is used in the Compute phase during which the
robot decides to move or stay idle. In the Move phase, the robot may move to one of the
two adjacent nodes, as computed in the previous phase. The moves are assumed to be
instantaneous which means that, during a Look phase, robots can be located on nodes
only.

There are different types of synchronization for the robots: fully synchronous model
(FSYNC), the semi-synchronous model (SSYNC) and the asynchronous model (ASYNC).
We consider here the classic asynchronous ASYNC model [34]. The start and duration of
each Look-Compute phases and the start of each Move phase of each robot are arbitrary
and determined by an adversary. Note that it is possible for a robot to make a move
based on a previously observed configuration which is not the current one anymore (e.g.
if its Look phase occurred before the Move phase of another robot). A move that has
been computed (during a Compute phase) but not yet executed (in the subsequent Move
phase) is called a pending move.

The following part presents three mobile robot algorithms that solve three main prob-
lems on the ring shaped network: perpetual exploration, exploration with stop and gath-
ering problems.
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Perpetual Exploration

We consider the exclusive perpetual exploration of the ring and analyze one of the first
algorithm proposed to solve this problem. More specifically we focus on the algorithm
designed for three robots1 by Blin et al. [10]. In the remaining of this part, we present
successively the problem, and the algorithm under study. For each part, a more complete
description can be found in the original paper [10].

Problem. The perpetual exploration problem requires each agent to visit each location
(here, nodes of the ring) infinitely often. Moreover the exclusive nature of the exploration
implies that two agents are not allowed to be on the same location at the same time; two
robots cannot be on the same node and two robots cannot cross each-other on the same
edge.

In order to verify the correctness of an algorithms, two properties have to be model-
checked:

• The perpetual exploration property, and

• The mutual exclusion property.

where the former is a liveness property, while the latter is a safety property.

Algorithm. We recall here first some notations used to describe configurations and al-
gorithms, and then present succinctly the 3-robot exploration algorithm.

Configuration encoding: In order to represent in a concise way any configuration of
the system, we use the classical encoding as the sequence of occupied/free nodes of the
ring (as in [10]). A configuration is an alternative (circular and non oriented) sequence
of symbols R and F, indexed by integers: Ri stands for i consecutive nodes, each of
them occupied by a robot, and Fj stands for j consecutive nodes free of any robot. For
example the configuration of Figure 2.5 depicting 3 robots on a 10-nodes ring is encoded
as (R2, F2, R1, F5) since there are 2 adjacent robots followed by 2 free nodes, followed by
1 robot, followed finally by 5 free nodes. Note that, due to the lack of orientation and
origin, the very same configuration could also be encoded differently, for example with
the sequence (R1, F2, R2, F5).

The configurations can be parametrized with integer variables when the size of the ring
is unknown. For example, one can consider the configurations (R2, F2, R1, Fz) in which
there are two adjacent robots separated from the third robots by a gap of two empty
nodes on one side, and z empty nodes on the side. Such notations allow to define generic
algorithms for arbitrary size of ring.

Similar encoding will be used in the formal specification of the algorithm (see Sec-
tion 5.1) in Maude. The only difference is that we use the number of edges between two

1It is natural to consider 3-robot algorithms, since, for non-trivial rings, any exploration algorithm
requires at least three robots.
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Figure 2.5: Configuration (R2, F2, R1, F5) with 3 robots on a 10-node ring.

robots, instead of counting the number of free nodes.

Move encoding: Each robot computes its next move based on the position of other
robots. Therefore, designing an algorithm means giving the function that associates a
move to any possible snapshot. A concise way of representing such algorithm is to write
transition rules such as:

(R2, F2, R1, Fz)→ (R1, F1, R1, F2, R1, Fz)

Such a rule encodes the computed movement of each of the three robots when they took
a snapshot corresponding to the configuration on the left. For example, in this case (see
Figure 2.6), the isolated robot (corresponding to R1) should not move, and among the
two other robots (corresponding to R2), only the furthest one (wrt. the isolated robot)
should compute a move to go away. On Figure 2.6, the computed move is anti-clockwise.

Figure 2.6: Rule RL1: (R2, F2, R1, Fz)→ (R1, F1, R1, F2, R1, Fz).

Again, a similar encoding will be used in the formal specification of the algorithm (see
Section 5.1). Each rule of the algorithm has a corresponding conditional rewriting rule in
Maude.

Algorithm rules: The algorithm for three robots designed by Blin et al. [10] works in
two phases. First there is a Convergence Phase which guarantees that starting from any
initial configuration, the system reaches one of the three legitimate2 configurations. Then
during the Legitimate Phase, the system cycles between three configurations to explore
perpetually the ring. The Legitimate Phase consist of the three rules RL1, RL2, and

2The terminology comes from the Self-Stabilization concept. One can understand such configurations
as “good” configurations.
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RL3 represented3 on Figures 2.6, 2.7, and 2.8. One can “easily check” that applying
successively these rules to the three robots indeed solves the perpetual exploration.

Figure 2.7: Rule RL2: (R1, F1, R1, F2, R1, Fz)→ (R2, F3, R1, Fz).

Figure 2.8: Rule RL3: (R2, F3, R1, Fz)→ (R2, F2, R1, Fz+1).

The set of rules for the Convergence Phase is omitted here, but can be found in [10].

Exploration with Stop

This part consider another problem of exploring, the exploration with stop an anonymous
unoriented ring by a group of identical, oblivious, asynchronous mobile robots.

Problem. It is assumed that there may be more than one robot located at the same
node. Each robot can distinguish whether a node is empty, occupied by one robot, or
more than one robot. The problem of exploring with stop requires that within finite time
and regardless of the initial placement of the robots, each node must be visited by at least
one robot and the robots must be in a configuration in which they all remain idle.

Algorithm. We analyze the algorithm [33] by which, starting from any initial config-
uration of the k robots without towers, allows the robots to explore the entire ring and
brings all robots to a configuration in which they all remain idle. The algorithm works
following a sequence of three distinct phases: Set-Up, Tower-Creation, and Exploration.
The purpose of the Set-Up phase is to transform an initial configuration into one from a
predetermined set of configurations (called no-towers-final) with special properties. More
precisely, in the Set-Up phase, the robots create a configuration where there is a single set
of consecutive nodes occupied by robots, or two such sets of the same size (called blocks).
The purpose of the Tower-Creation phase is to transform the no-towers-final configuration

3Pictures represent a ring of size 14, but the rules are defined for arbitrary size, as written in the
corresponding captions.
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created in the previous phase, into one from a predetermined set of configurations (called
towers-completed) in which everything is prepared for exploration to begin. During the
Exploration phase, the ring is actually being explored. The configuration reached upon
exploration depends solely on the configuration at the beginning of this phase. The set
of these special terminal configurations is uniquely identified, and once in a configuration
of this type, no robots will make any further move.

Robot Gathering

We consider the classic gathering problem in the ring under the asynchronous scheduler
(ASYNC). We analyze the most general algorithm that solves the problem for (almost) all
initial configurations. In the remainder of this section, we succinctly present the problem,
and the algorithm under study. For each part, a more complete description can be found
in the original paper [21].

Gathering Problem. Robots in the system have the global weak multiplicity detec-
tion. The gathering problem requires each robot to terminate on the same node. The
problem is solved if all robots are on the same location and there is no pending move.

Gathering Algorithm. The considered algorithm is said to be general in a sense that
it solves the problem for all valid (i.e. without multiplicity) initial configurations outside
of NG∪SP4, where (1) NG is the set of non-gatherable configurations (such as periodic
configurations), from which it is impossible to gather robots, and (2) SP4 is the “small”
set of special configurations with 4 robots from which it is still unknown whether it is
possible to gather robots (Bonnet et al. [11] gave a partial answer).

We analyze the gathering algorithm [21] for robot gathering. The algorithm executes
these four phases sequentially:

1. Starting from an initial configuration without multiplicity, the algorithm executes a
procedure MULTIPLICITY-CREATION that creates either one or two symmetric
multiplicities.

2. A second phase named COLLECT consists in moving all but four robots in the
previously created multiplicities.

3. A third phase called MULTIPLICITY-CONVERGENCE makes the two multiplic-
ities to merge into a single one.

4. Finally the phase CONVERGENCE allows the remaining single robots to join the
unique multiplicity, which concludes the gathering.

This is a short (partially incorrect) summary. In some rare cases, the sequence of four
phases may be temporarily broken. (e.g. the system may go back to the COLLECT phase
while executing the CONVERGENCE phase). But eventually all robots should gather at
the same location.

22



The algorithm contains some specific subroutines for configurations with four or six
robots. The precise algorithm is not given for four or six robots, but refers to other
papers. At the moment, we decided not to include them in our analysis; as in the paper,
they could be dealt separately.

Plaintext vs. Pseudo-code: the algorithms are described and explained in plaintext
and also given in term of pseudo-code. We think that the pseudo-code version contains
less ambiguities than the plaintext version. In (pseudo-)code, there is usually no place
for interpretation; it is thus either correct or incorrect. Since our goal is to formally
model-check, we believe that it makes more sense to base our analysis on the most formal
available version. That is why we analyze the pseudo-code version of the algorithms.

This is certainly an arguable decision. Indeed, some of the errors, may or may not exist
in the plaintext description of the algorithms. We can not conclude anything about the
correctness of the plaintext algorithm since it is subject to interpretation.

2.2 Literature Review on Formal Verification of Dis-

tributed Systems

Distributed algorithms are both important and difficult. Because model checking is pow-
erful and highly suitable, it is a favorite choice to formally verify these systems. Several
specification languages and model checker, such as DVE, Spin, NuSMV, TLC, Maude,
CafeOBJ and Elan support to specify and model check concurrent systems including dis-
tributed systems. Among them, Maude, CafeOBJ and Elan are based on rewriting logic.
However, distributed algorithms is really complex, error-prone and hard to intentionally
design. Model checking of distributed algorithms has not been approached in a structured
way. Several research on formal specification and verification of such systems have been
conducted [42][2][65][66][12] to address specific algorithms in a fixed computation environ-
ment. The authors in [65] deal with the problem of verification of asynchronous consensus
algorithms. The authors propose a semi-automatic verification approach based on model
checking technique. The authors’ approach is similar to k-induction implemented in Sym-
bolic Analysis Laboratory (SAL) [25]. The approach can deal with an arbitrary number
of sessions made but needs to fix the number of processes. Up to 10 processes can be
treated. The authors of [2] develop an extension of the linear temporal logic (LTL) model
checker of Maude such that an extension of LTL called a fair linear temporal logic of
rewriting (LTLR) is used as the logic for properties and properties expressed in LTLR
can be model checked under fairness assumption. The most distinguished feature of their
approach is to make it possible to model check a system to and/or from which entities
are dynamically added and/or removed under fairness assumptions.

Grov et al. [36] & [35] use Maude to formalize and analyze Google’s Megastore, which is
a cloud data store that provides transactions and ensures serializability for certain classes
of transactions. Those papers also focus on correctness analysis. In [36], they provide
a precise formal model of Megastore given in [18]. The formal model gives more detail
and precise description of Megastore than the original version. The paper shows how to
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model, specify and model check Megastore in the rewriting-logic-based Real-Time Maude
language and tool [58]. In [35], they extend Megastore to provide an extra consistency
for transactions accessing data from multiple entity groups. The proposed extension,
Megastore-CGC, is developed by using the formal specification language and analysis
tool Real-Time Maude. The paper gives the Real-Time Maude specification of Megastore-
CGC and show how Real-Time Maude can model check Megastore-CGC and estimate its
performance.

Liu et al. [48, 49, 61, 62] give a long-term research efforts to the formalization of cloud-
based transaction systems based on rewriting logic. The verification of these systems
involves not only the consistency guarantees, but also the performance of the systems. In
[61] & [62], they use Maude to model and analyzes Read Atomic Multi-Partition (RAMP)
transition systems. In [61], the authors formalize RAMP transitions in rewriting logic and
some proposed extensions, and used Maude model checking to analyze their correctness
properties. In [62], the paper focuses on analyzing the performance of RAMP and its
variations using statistical model checking with PVeStA. In addition, the paper proposes
a new RAMP design alternative: RAMP- Faster that is expected to outperforms all
others. Recently, in [48], the authors provide a formal executable specification of Walter
in Maude. It then model checks the snapshot isolation and the parallel snapshot isolation
properties for the algorithm. The paper also provides a parametric method to generate all
initial states for given parameters and then performing model checking analysis to verify
the snapshot isolation and the parallel snapshot isolation properties for all initial states
for various parameter choices. Although the paper proposes a technique similar to us, but
their technique does not take into account network topologies, while our approach takes
into account different network topologies. The authors in [49] design a new distributed
transition protocol, ROLA, that supports applications that only require read atomicity
(RA) and prevention of lost update (PLU). ROLA is given with its formal verification.
Namely, the protocol is formally specified in Maude and then model checked that it
satisfies RA and PLU. The author analyze performance properties by using the statistical
model checking. The performance of the protocol is compared with Walter protocol.

The authors in [46] proposes cache-based model checking, which concentrates on ver-
ifying a single process in a distributed system, which is a software model checking that
model check directly an implementation, not a model specification. The tool is built of
top of a Java model checker as its extension. It frees the limitation of stand-alone process
by verify one process at a time and running other process in the another execution envi-
ronment. The tool offers a scalable method to verify a system because the state space of
one process is visited, but not the composite set of state space of all processes. Closely
to our method, Meseguer et al. [53] proposes formal patterns for distributed systems. He
tries to give a genetic and reusable pattern to design and specify distributed algorithms.
Several patterns as theory transformations are given. Reflective logic and the meta level
is used to describe one of these formal patterns.

Several studies are motivated by verification of snapshot algorithms. Among them,
Gerard et al. [37] and Bruno et al. [12] consider Chandy-Lamport algorithm. The al-
gorithm and its distributed snapshot reachability property were introduced early in the
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original paper [51]. In [37], Chandy-Lamport algorithm is modelled in PROMELA, and
then the model is simplified to be verifiable. However, only the underlying distributed
system superimposed by Chandy-Lamport algorithm is modelled. The authors in [12] fo-
cus on developing snapshot algorithm with a formal proof that guarantees its correctness.
Some existing snapshot algorithms, such as Chandy-Lamport algorithm and Lai-Yang are
re-developed by using the Event-B framework and refinement. Starting with a model
providing an abstract view of a system and its behavior, the model then is enriched more
concretely by many refinement steps to derive the algorithms. Not only two, but many
state machines are modelled. Their experiments are conducted on fixed networks.

Although the current model checking techniques allow us to detect counterexamples,
they cannot guarantee that distributed algorithms surely enjoy desired properties because
all possible cases may not be covered. Some abstraction techniques have been introduced
to overcome this challenge. Many such techniques [15][8] have been proposed. In the
Maude community, equational abstraction [54][52] is one such technique. Abstract logical
model checking has been proposed to deal with infinity in the Maude community as well.
Assuming that a distributed system has been specified by means of a rewrite theory R =
(4, E, R), with (4, E) an equational theory specifying the set of states as an algebraic
data type, and R specifying the system transitions as a set of rewrite rules, the main
technique of the equational abstraction consists on adding more equations, E ′, to get a
quotient system specified by the rewrite theory R/E ′ = (4, E ∪ E ′, R). Such a system
is called an equational abstraction of R.

Meta-programming technique is powerful in the processing of other programs, which
are treated as data. In [56], the authors developed a meta-program for debugging normal
logic programs. In [20], a meta-interface mechanism (called a Quality Connector) for
reducing the life-cycle costs of distributed real-time and embedded systems is proposed.
Meta-programming technique is investigated to use in order to provide distributed real-
time and embedded applications that can specify the qualities of service they require from
their middleware. Although many researches have been conducted on application of meta-
programming technique, as far as we know, the research on applying meta-programming
to specification of distributed algorithms have not been conducted so far.

Due to the mobility aspect, mobile robot algorithms are often complex, arguably even
more complex than classic distributed systems. This inherent difficulty explains probably
the limited number of attempts in obtaining formal verifications. Formal, automatic
techniques could help to increase the confidence of the existing algorithms/proofs as the
works in [1, 5, 9, 19]. Courtieu et al. [19] and Balabonski et al. [5] formally proved the
correctness of two gathering algorithms using the Coq proof assistant. In both cases,
robots move on the continuous 2-dimensional plane. The difference lies in the timing
model; the first paper considers the semi-synchronous (SSYNC) model while the second
studies the fully-synchronous (FSYNC) model (and remove some other assumptions).
The asynchronous model (ASYNC) is not considered in these papers since the gathering
problem is generally not solvable in ASYNC in continuous space (except for trivial cases).
Closely related to our current approach, Berard et al. [9] proposed a formal model to
describe mobile robot algorithms in a discrete model with a finite set of possible robot
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positions, under synchrony and asynchrony assumptions. The model then is transferred
into the DVE language using DiVinE and ITS tools. The authors formally specifies the
algorithm and then encode in Linear Temporal Logic (LTL) the properties that should
be satisfied. The paper analyzes the perpetual exploration algorithm described in [10].
The algorithm, while being quite simple (only 3 robots on the ring and 8 rules), was
refuted. They then give a correct version of the algorithm together with the formal proofs.
These studies [5, 9, 19] basically consider either FSYNC or ASYNC without multiplicity
assumption. The lack of multiplicity, of course, simplifies the model.

Recently, Aminof et al. [1] provided a general framework for modeling and verifying
the systems in which multiple mobile robots evolves in a partially-known environment,
e.g a robot in a ring may know about positions of other robots, but not the size of the
ring. The authors apply formal methods to the parameterised verification problem in
which it is the environment that is parameterised. Another parameterised verification
is given in [63]. The paper presents a study to the verification problem of mobile robot
algorithms in the parameterized case. Namely, the authors focus on formally verifying
algorithms parameterized by the number of ring positions, assuming a fixed number of
robots. The approach then is applied by using an SMT-solver to verify safety properties
to some proposed algorithms.

2.3 Reflection and Meta-programming

This section introduces Rewriting logic and explains its important aspects as reflective
logic, as well as introduces Metaprogramming, which is the main technique used in our
method.

2.3.1 Rewriting Logic as a Reflective Logic

Rewriting logic is a natural model of computations for concurrency, parallelism and com-
munication systems. Several specification languages based on rewriting logic, such as
Maude, CafeOBJ and ELAN have been designed and implemented. Moreover, rewriting
logic is a reflective logic that can be faithfully interpreted in its self. Informally, a re-
flective logic is a logic in which important aspects of its metatheory can be represented
at the object level in a consistent way, so that the object level representation correctly
simulates the relevant metatheoretic aspects. In other words, a reflective logic is a logic
which can be faithfully interpreted in itself. The essential of a reflective logic is that there
is a universal theory U in which we can represent any other theories of the logic. In term
of rewriting logic, we can represent any finitely presented rewrite theory R including U
itself as a term R, any term t, t′ in R as terms t, t′, and any pair (R, t) as a term 〈R, t〉.
Since U can be represented in itself, we can achieve the following equivalence reflective
tower with an arbitrary number of levels of reflections:

R ` t → t′ ⇔ U ` 〈R, t〉 → 〈R, t′〉 ⇔ U ` 〈U , 〈R, t〉〉 → 〈U , 〈R, t′〉〉 . . .

26



2.3.2 Meta-programming

Metaprogramming is a programming technique that is equipped with the ability to treat
programs as data. A meta-program takes programs as inputs and perform some useful
computations, such as analysing the program and transforming the program into another
(Fig. 2.9). It requires to move from the object level to the meta-level, where programs are
treated as data. Metaprogramming is necessary and also powerful with many important
applications. Translators and debuggers, for instance, are such applications.

 A meta-program

 

Programs

Other programs

Analyses

Transform

Analyze

Figure 2.9: A meta-program takes programs as inputs and perform some useful compu-
tations, such as transforming and analyzing.

The language in which a meta-program is written is called the metalanguage. Because
rewriting logic is a reflective logic, this makes specification languages based on rewriting
logic, such as Maude able to provide meta-programming facilities. Metaprogramming is
the main technique used in our method. Our method is based on rewriting logic meta-
programming facilities.
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Chapter 3

Maude and Meta-programming in
Maude

This chapter first gives a brief introduction of Maude and shows how to specify a dis-
tributed system in Maude. It then explains how to use meta-progamming facilities in
Maude.

3.1 Maude and Its LTL Model Checker

Maude [17] is a rewriting logic-based programming and specification language and equipped
with a powerful system (or environment). Rewriting logic makes it possible to naturally
specify dynamic systems, and the Maude system has a linear temporal logic (LTL) model
checker. Therefore, Maude allows to model check if dynamic systems specified in Maude
enjoy properties expressed in LTL.

The basic units of specifications and programs are modules. A module contains syntax
declarations, providing a suitable language to describe a system. A module consists of sort,
sub-sort, operator, variable, equation and membership declarations, as well as rewrite rule
declarations. A sort denotes a set, corresponding to a type in conventional programming
languages. For example, the sort Nat denotes the set of natural numbers. There is the
relation among sorts that is a same as the subset relation. A sort is a subsort of another
sort iff the set denoted by the former is a subset of the one by the latter, and the latter
is called a supersort of the former. Let Zero and NzNat be the sorts denoting {0} and the
set of non-zero natural numbers, both of which are subsets of the set of natural numbers.
Zero and NzNat are subsorts of Nat and Nat is a supersort of Zero and NzNat. An operator
is declared as follows: f : S1 . . . Sn → S, where S1, . . . , Sn, S are sorts and n ≥ 0. Note
that -> may be used instead of →. S1 . . . Sn, S and S1 . . . Sn → S are called the arity,
the sort and the rank of f . When n = 0, f is called a constant. f takes a sequence of
n things of S1, . . . , Sn and makes something of S, where “things” and “something” are
what are called terms and will be described soon. Operators denote functions or data
constructors. Each variable has its own sort. Terms of a sort S are inductively defined as
follows: (1) each variable whose sort is S is a term of S and (2) for each operator f whose
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rank is S1 . . . Sn → S and n terms t1, . . . , tn of S1 . . . Sn, f(t1, . . . , tn) is a term of S. Note
that when n = 0, f as it is is a term of S. An operator may contain underscores, such
as _+_ : Nat Nat -> Nat. If that is the case, a different notation than f(t1, . . . , tn) is
used. For example, if X is a variable of Nat, then X + X is a term of Nat. Use of operators
containing underscores allows us to define context-free grammars. An equation declares
that two terms are equal. A rewrite rule declares that a term changes to another one.
Equations can be used to define functions, while rewrite rules can be used to define state
transitions.

A simple example is used to briefly describe Maude and its LTL model checker. The
simple system is a ring-shaped network consisting of four nodes whose identifications are 0,
1, 2, and 3 clockwise (see Figure 3.1). There is one mobile robot in the system, located at
one node. Initially, the robot is located at node 0. We take two versions of the system into
account: System 1 and System 2. System 1 has four transitions: if the robot is located at
node N , then one of the four transition moves the robot at node (N+1) mod 4. System 2
has four more transitions as well: if the robot is located at node N , then one of the four
transitions moves the robot at node (N − 1) mod 4. We take two properties into account.
One property is that the robot never visits node 4, and the other property is that the
robot visits node 3 infinitely many times. The two properties are denoted nv4 and v3im,
respectively. nv4 is a safety property, while v3im is a liveness property.

0

1

2

3

Figure 3.1: The initial configuration of the system.

The state in which the robot is located at N is expressed as term {N}. First we declared
the following operators and equations:

sort NatMod4 .

ops 0 1 2 3 4 : -> NatMod4 [ctor] .

op inc : NatMod4 -> NatMod4 .

op dec : NatMod4 -> NatMod4 .

eq inc(0) = 1 . eq inc(1) = 2 . eq inc(2) = 3 . eq inc(3) = 0 .

eq dec(0) = 3 . eq dec(1) = 0 . eq dec(2) = 1 . eq dec(3) = 2 .

where NatMod4 is a sort, 0, 1, 2, 3 and 4 are constants of NatMod4, and inc and dec

are operators that are defined in the following equations. The constants 0, 1, 2 and 3 of
NatMod4 are used to denote the node identifications. The constant 4 of NatMod4 is used
for expressing the property nv4. ctor stands for constructor, meaning that the operators
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concerned are used to construct data. The operators inc and dec are the ordinary ones
for natural numbers modulo 4.

The following sort and operator are declared:

sort Config .

op {_} : NatMod4 -> Config [ctor] .

As written, {N} denotes the state in which the robot is located at node N.
The four transitions in System 1 can be described as the following rewriting rule:

rl [rr] : {X} => {inc(X)} .

where rr is the label of the rule. Note that the rule has four instances for N = 0, 1, 2
and 3. The other four transitions in System 2 can be described as the following rewriting
rule:

rl [lr] : {X} => {dec(X)} .

The system 2 is declared in the following module SYSTEM:

mod SYSTEM is

sort NatMod4 .

sort Config .

ops 0 1 2 3 4 : -> NatMod4 [ctor] .

op inc : NatMod4 -> NatMod4 .

op dec : NatMod4 -> NatMod4 .

op {_} : NatMod4 -> Config [ctor] .

eq inc(0) = 1 . eq inc(1) = 2 . eq inc(2) = 3 . eq inc(3) = 0 .

eq dec(0) = 3 . eq dec(1) = 0 . eq dec(2) = 1 . eq dec(3) = 2 .

rl [rr] : {X} => {inc(X)} .

rl [lr] : {X} => {dec(X)} .

endm

For System 1, the second rule is commented out or deleted.
To express the two properties in LTL, we need to prepare one proposition (at N)

checking if the robot is located at node N in a given state. The proposition is declared
in the following module SYS-PROP:

mod SYS-PROP is

pr SYSTEM .

inc SATISFACTION .

30



subsort Config < State .

op at_ : NatMod4 -> Prop .

var X : NatMod4 .

var C : Config .

var P : Prop .

eq {X} |= (at X) = true .

eq C |= P = false [owise] .

endm

SATISFACTION is one module provided in the file model-checker.maude available in the
Maude distribution. In the module, model satisfaction relation |= and some more are
declared. SATISFACTION is imported in the including mode. The first equation in the
module says that (at X) holds in the state {X}. owise stands for otherwise. The second
equation in the module says that (at X) does not hold in any other states.

The two properties are defined in the following module SYS-FORMULA:

mod SYS-FORMULA is

inc SYS-PROP .

inc MODEL-CHECKER .

inc LTL-SIMPLIFIER .

ops nv4 v3im : -> Formula .

eq nv4 = [] ~(at 4) .

eq v3im = [] <> (at 3) .

endm

The operator [] is the always temporal operator, and the <> is the eventually temporal
operator. [] ~(at 4) says that the robot never visits node 4, and [] <> (at 3) says
that the robot visits node 3 infinitely many times. The two properties are model checked
as follows:

red in SYS-FORMULA : modelCheck({0},nv4) .

red in SYS-FORMULA : modelCheck({0},v3im) .

The Maude LTL model checker concludes that System 1 satisfies both properties, while
System 2 satisfies nv4 but not v3im. The counterexample shown is as follows:

result ModelCheckResult: counterexample({{0},’rr}, {{1},’rr} {{2},’lr})

saying that once the robot moves to node 1 from node 0, the robot always moves clockwise
when it is located at node 1 and always moves counterclockwise when it is located at
node 2, never visiting node 3. If we assume Strong Fairness of transitions to model
check v3im, then even System 2 enjoys v3im, an extended version of the Maude LTL
model checker that facilitates model checking liveness properties under fairness has been
developed [2].
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3.2 Specifying an Underlying Distributed Systems as

a Module

A distributed system is formalized as a state machine, which is specified in Maude as a
module. A state machine consists of a set of states, some of which are initial states, and
a binary relation over states. The definition is as follows:

Definition 1 (State Machine). A state machine M , 〈S, I, T 〉 consists of

1. a set of states S;

2. a set of initial states I ⊆ S;

3. a total binary relation over states T ⊆ S × S.

Elements (denoted s→ s′) of the binary relation are called state transitions, where s→ s′

says that s can change to s′.

The reachable states of a state machine are inductively defined as follows: (1) each initial
state is reachable and (2) for each reachable state s and each state transition s→ s′, s′ is
reachable. A state predicate p is an invariant property of the state machine iff p(s) holds
for all reachable states s of the state machine.

A sort and the set denoted by the sort are interchangeably used in this thesis. We
often use associative-commutative collections as key data structures. Such collections
are called soups. Let Soup be the sort for soups and Elt be the sort for their elements.
Elt is declared as a subsort of Soup meaning that an element is treated as a singleton
soup that only consists of the element. We use associative-commutative binary operators
as data constructors of soups. The juxtaposition operator _ _ is used as such a binary
operator in this thesis. Let e1, e2, e3 be terms of Elt. The term e1 e2 e3 represents the soup
that consists of the three elements. Since the juxtaposition operator is associative and
commutative, there are other terms, such as e3 e2 e1 and e2 e1 e3, that exactly represent
the same soup. Each element ei(i = 1, 2, 3) is treated as the singleton soup that only
consists of ei. We also use a constant of Soup as the empty soup that is treated as an
identity of the associative-commutative binary operator. For Soup, empSoup is used as
such a constant in this thesis and then e1 e2 e3 empSoup, e3 empSoup e2 empSoup e3,
etc. represent exactly the same soup as denoted by e1 e2 e3. The sort and constructor for
such soups are declared as follows:

subsort Elt < Soup .

op empSoup : -> Soup [ctor] .

op _ _ : Soup Soup -> Soup [ctor assoc comm id: empSoup].

The following part shows how to formalize and specify a UDS. Let us consider the
system shown in Fig. 2.2 as an example.
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State Expressions

Let Pid, Mode & Token be the sorts for process identifiers, process modes & tokens, p, q
& r be the constants of Pid, active & passive be the constants of Mode and t1 & t2 be
the constants of Token. Let TknSet be the sort for token soups. Local states of processes
and channels are expressed as what are called observable components that are name-value
pairs. Let OCom be the sort for observable components. The local state of each process
whose identifier is p is expressed as the observable component <p: md,ts>, where p is the
name, “md,ts” is the value, md is a process mode and ts is a token soup. Let Msg be the
sort for messages and the supersort of Token. Thus, tokens are messages. Let Chan be the
sort for message soups. The local state of each channel from a process p to a process q
is expressed as the observable component [p,q: ms], where “p,q” is the name and ms is
the value, which is a message soup. Global states of the system are expressesd as soups
of observable components for which Config is used as the sort.

sorts Pid Msg Token Mode

MsgSet OCom Config .

subsort Token < TknSet .

subsort Token < Msg .

subsort Msg < Chan .

subsort OCom < Config .

ops active passive : -> Mode .

ops t1 t2 : -> Token .

ops p q r : -> Pid .

op empTknSet : -> TknSet [ctor] .

op _ _ : TknSet TknSet -> TknSet [ctor assoc comm id: empTknSet] .

op empChan : -> Chan [ctor] .

op _ _ : Chan Chan -> Chan [ctor assoc comm id: empChan] .

op <_:_,_> : Pid Mode TknSet -> OCom [ctor] .

op [_,_:_] : Pid Pid Chan -> OCom [ctor] .

op empConfig : -> Config [ctor] .

op _ _ : Config Config -> Config [ctor assoc comm id: empConfig].

Initial States

In this system, there is only one initial state in which the process p is active and holds
the token t1, and the process q is passive, and holds the token t2, while r is passive and
does not have any tokens and all channels are empty. The initial state is expressed as a
term of Config.
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op init : -> Config .

eq init = (<p: active, t1>)(<q: passive, t2>)(<r: passive, empTknSet>)

([p, q: empChan])([p, r: empChan])([q, p: empChan])

([q, r: empChan])([r, p: empChan])([r, q: empChan])

where init equals the term expressing the initial state.

State Transitions

An action performed by a process is specified as a rewrite rule. One rewrite rule is as
follows.

rl [sndToken] :

(<P: active, T TS> [P, Q: CS] BC) => (<P: active, TS> [P, Q: T CS] BC) .

where P, Q, T, TS, CS and BC are variables of Pid, Pid, Token, TknSet, Chan and Config,
respectively. sndToken is the label given to the rewrite rule. The rule sndToken says that
if P owns T and has an outgoing channel to Q, then P can put T into the channel. By
substituting P, Q, T, TS, CS and BC with p, q, t1, empTknSet, empChan and

(<q: passive, t2>)(<r: passive, empTknSet>)

([q, p: empChan])([p, r: empChan])([q, r: empChan])

([r, p: empChan])([r, q: empChan])

respectively, the left-hand side of the rule sndToken is the same as the term init and then
can be applied to the term. If so, the term changes to the following:

(<p: active, empTknSet>)(<q: passive, t2>)

(<r: passive, empTknSet>)

([p, q: t1])([q, p: empChan])([p, r: empChan])

([q, r: empChan])([r, p: empChan])([r, q: empChan])

In this way, state transitions are specified as rerwrite rules. The other actions can be
specified likewise.

Let SYS be the module in which the system is specified. We will interchangeably use
“state transitions” and “rewrite rules” (or simply “rules”) in the rest of the thesis.

3.3 Meta-program in Maude

In Maude, metaprogramming has a logical, reflective semantics [17] because Maude is
designed and implemented based on the fact that rewriting logic is a reflective logic.
Maude strongly supports metaprogramming since all essential functionalities have been
implemented in the functional module META-LEVEL. This module includes the modules
META-MODULE and META-TERM.

34



Terms are only data structures available in Maude and programs/specifications in
Maude are composed of modules. Thus, it is necessary and sufficient to be able to build
modules as terms in metaprograms in Maude. To build a module as a term, we need to
represent its components, such as operator and rewrite rule declarations, as terms. Terms
representing modules, operator declarations, rewrite rule declarations, etc. are called their
metarepresentations.

In the module META-TERM, sorts are metarepresented as data in the sort Sort, which is
a subsort of the sort Qid of quoted identifiers. For example, ’Bool and ’Nat are terms of
this sort. Maude terms are metarepresented as elements of the sort Term for terms. The
sort Term is a supersort of the sorts Constant for constants and Variable for variables,
which are subsorts of the sort Qid. Constants are quoted identifiers that contain the
constant’s name and its type separated by a ‘.’, e.g, ’true.Bool. Similarly, variables
contain the variables’ names and their types separated by a ‘:’, e.g, ’X:Bool. Arguments
of an operator are expressed as a list of terms for which the sort TermList that is a
supersort of the sort Term is prepared. A list of terms is built with the constructor , .
For example, the term (< P : active, t1 > in the module SYSTEM is meta-represented in
the following term of the sort Term:

’<_‘:_‘,_>[’P:Pid,’active.Mode,’t1.Token]

where ’< ‘: ‘, > is the metarepresentations of the operator (< : , >) and ’P:Pid,

’active.Mode,’t1.Token is a list of terms and its sort is TermList. The term list is
constructed by one variable ’P:Pid and two constants ’active.Mode and ’t1.Token.

The module META-MODULE imports the module META-TERM. Maude modules are metarep-
resented as a term of the sort Module of modules. A functional module and system module
are expressed as the following operators:

op fmod_is_sorts_._ _ _ _endfm : Header ImportList SortSet SubsortDeclSet

OpDeclSet MembAxSet EquationSet -> FModule [ctor] .

op mod_is_sorts_._ _ _ _ _endm : Header ImportList SortSet SubsortDeclSet

OpDeclSet MembAxSet EquationSet RuleSet -> SModule [ctor].

where Header, ImportList, SortSet, SubsortDeclSet, OpDeclSet, MembAxSet, EquationSet
and RuleSet are the sorts for the metarepresentations of the name of the module, imported
submodules, sort declarations, subsort declarations, operator declarations, membership
declarations (that are not used in the thesis), equation declarations, and rule declarations,
respectively. The sorts FModule and SModule are subsorts of the sort Module. They denote
functional modules and system modules, respectively.

Maude is equipped with rich metaprogramming facilities to make it possible to do so and
some more. Module META-LEVEL provides many useful and efficient built-in functions for
moving among reflective tower levels, such as upModule, upSorts, upTerm and downTerm.
We can use the function upTerm to obtain the metarepresentation of a term and use
the function downTerm to recover the term. The functions upModule takes as arguments
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the metarepresentation of the name of the module M and a Boolean b and returns the
metarepresentation of the module M . If b is true, the metarepresentations of the module
imported by M are also generated. Given a name name, such as a module name, a sort
name and an operator name, its metarepresentation is the quoted ID ’name, which is a
term of the sort Qid. We can get the metarepresentation of the module SYS a by using
the function upModule as follows:

upModule(’SYS, false) .

We can write a meta-program in Maude by importing the functional module META-LEVEL.
A meta-program can be implemented as a function that has modules as its arguments.
Given a module whose name is M , let us consider to change the name to M-FCA and add
a new sort Obs-state and a constant terminate of the sort to the module. To this end,
we will define a meta-program as the following function modify in the module MODIFY.

mod MODIFY is

pr META-LEVEL .

op modify : Module -> Module .

op reName : Module Qid -> Module .

op addSort : Module SortSet -> Module .

op addOpe : Module OpDeclSet -> Module .

var M : Module .

eq modify(M) = addOpe(addSort(reName(M, ’FCA),

’Obs-mode), op ’terminate : nil -> ’Obs-mode [none].).

...

endm

where Module is the sort for modules. M is a variable of Module. For a given module M,
reName, addSort & addOpe are operators that changes the name to M-FCA, adds the sort
Obs-mode to the module and add the operator declaration op terminate : -> Obs-mode .

to the module. The term op ’terminate : nil -> ’Obs-mode [none] . is the metarep-
resentation of the operator declaration. “...” are some other variable and equation
declarations.
Computing (or reducing) the term modify(upModule( ’SYS, false)), we obtain the mod-
ule that is made by adding the sort Obs-mode and the constant terminate of Obs-mode to
SYS and whose name is changed to SYS-FCA.

Although the above example is very simple, it introduces our idea to specify a CA as a
meta-program in Maude.
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Chapter 4

Specifying and Model Checking
Control Algorithms at the Meta
Level

This chapter proposes a new approach to specifying and model checking control algo-
rithms. Meta-programming is the main technique used in our approach. A control al-
gorithm is specified as a meta-program. The approach is explained by applying it to
specifying and model checking a termination detection algorithm. We then give our idea
on generation of all possible initial states that fulfill some constraints so as to make it
more likely to detect subtle errors lurking in control algorithms. Two case studies are
given at the end of the chapter.

4.1 Specifying Control Algorithms at the Meta Level

4.1.1 Meta-programs as Formal Specifications

Because a control algorithm runs concurrently with the underlying distributed system,
the underlying distributed systems on which control algorithms are superimposed (UDS-
CA) is considered as two layers: the underlying distributed systems as a core layer and
the working of the algorithm as the cover layer. The cover layer monitors the behavior of
the core. The system is the combination of the two layers. Given the formalization of an
underlying distributed system and the working of the algorithm, it is possible to obtain
the formalization of the UDS-CA from them.

The fundamental of our method is that an algorithm is specified as a parameterized
specification, where parameters are the specifications of underlying distributed systems.
Given the specification of an underlying distributed system, the specifications of the
UDS-CA are generated by the parameterized specification. The implementation of the
idea is, however, problematic at the object level because a specification of an underlying
distributed system that is considered as a program at the object level need to be treated
as input data to the parameterized specification. We solve the problem by moving from
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the object level to the meta level and therefore meta-programming is used. Indeed,
an algorithm is specified as a meta-program that takes a specification of an underlying
distributed system as an input and generates the specification of the UDS-CA as shown
in Fig 4.1.

The specification of 

a UDS
The specification of 

the UDS-CA 

A meta-program

Figure 4.1: A control algorithm is specified as a meta-program

Although the idea is generic, we use Maude and meta-programming in Maude to im-
plement the idea. An underlying distributed system is specified as a module. The meta-
programming is implemented based on the working of the algorithm such that it takes
the module as its meta-representation, computes and returns the module that is the spec-
ification of the UDS-CA. Let us call it the meta-program T . As explained in Section 3.2,
the specification of a system includes three parts:

1. The syntax part defining all notations to describe the system, in which sorts and
operators are declared;

2. The initial part defining initial states of the system; and

3. The transition part defining the behavior of the system.

It is, therefore, convenient and possible to divide T into three sub-programs TState, TInit
and TTrans to deal with each above part. Later, T, T-State, T-Init and T-Trans may be
used instead.

TState

We may need to change some of the notations for a control algorithm and/or add some
more notations so as to describe the UDS-CA. For example, the UDS-CA may need to
use control messages that are different from computation messages used by an underlying
distributed system and/or use extra components to save some information observed by
the control algorithm. TState takes a syntax part, modifies it and returns a new set of
syntax declarations in which all notations to describe the UDS-CA are included.

op T-State : Module -> Module .

eq T-State(M) = setSyn(M, modifySyn(getSyn(M))) .

where setSyn gets the set of syntax declarations of a module M, modifySyn modifies this
set and setSyn replaces the current set of syntax declarations of M by the modified one.
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TInit

An initial global state of the UDS-CA needs to include not only the initial state of the
underlying distributed system, but also the initial values that only depend on the control
algorithm. TInit takes an initial state of the underlying distributed system, changes its
form by adding the latter initial values to the initial state.

op T-Init : Module -> Module .

op T-Init-Ops : OpDeclSet -> OpDeclSet .

op T-Init-Eqs : EquationSet -> EquationSet .

eq T-Init(M) = setOpsEqs(M, T-Init-Ops(getOps(M)), T-Init-Eqs(getEqs(M))) .

where getOps (getEqs) gets the set of operators (equations) in M. T-Init-Ops (T-Init-Eqs)
converts each constant (equation) that defines an initial state of the underlying distributed
system into another that defines the corresponding initial state of the UDS-CA. setOpsEqs
replaces sets of operators and equations in M by the ones obtained by the conversions.

TTrans

A control algorithm may preserve all behaviors of an underlying distributed system, but
processes in the system need to do some more actions to perform the control algorithm.
The rules of the UDS-CA could be separated into two parts: (1) the UDS&CA part
that includes those specific to an underlying distributed system but modified to perform
the control algorithm and (2) the control algorithm part that includes those independent
from the underlying distributed system. TTrans takes all rules of an underlying distributed
system, modifies them and returns all rules of the UDS&CA part as well as rules of the
CA part.

op T-Trans : Module -> Module .

op T-Trans : Module RuleSet -> RuleSet .

eq T-Trans(M) = setRls(M, t-Trans(M, getRls(M))).

where getRls gets the set of rules in M and setRls replaces it by the rules set of both the
UDS&CA and CA parts.

T

T is the composition of the three sub-programs:

eq T(M) = T-Trans(T-Init(T-State(M))).

We give here a practical view of our approach by using Four-Counter algorithm as an
example.

State Expression: Each process in the underlying distributed systems on which Four-
Counter algorithm is superimposed (UDS-FCA) needs to observe the system locally to
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operate Four-Counter algorithm. The pieces of information to be observed by each pro-
cess are are the numbers of messages sent and received by it and the flag telling if it has
sent the two numbers to the observer.
The observer has one of the following three modes:

- sleep: it is sleeping (means that Four-Counter algorithm has not yet started);

- request: it has started executing Four-Counter algorithm by requesting each process
to send it the two above numbers;

- terminate: it claims that the system has terminated.

Let Obser-mode be the sort for the three modes.

sort Obser-mode .

ops request terminate sleep : -> Obser-mode .

The pieces of information owned by the observer are a soup pss of process statuses, the
number tn of processes in the system, the number x of processes that has sent the two
numbers to the observer and the observer mode om, expressed as (pss, tn, x, om) called
global observations. pss stores the process statuses (essentially the numbers of messages
sent and received by each process; let PStatus be the sort for process statuses) sent by
processes to the observer. Let Global-obser be the sort for global observations.

subsort PStatus < PStatSet.

op (_: _, _, _) : Pid Nat Nat Nat -> PStatus [ctor] .

op empPStatSet : -> PStatSet [ctor] .

op _ _ : PStatSet PStatSet -> PStatSet [ctor assoc comm id: empPStatSet] .

op _, _, _, _ : PStatSet Nat Nat Obser-mode -> Global-obser [ctor] .

A global state of the UDS-FCA is expressed as Base-state(cfg) Local-OB(lpss)
GlobalOB(gobs), where cfg is a configuration of the underlying distributed system, lpss
is a soup of process statuses (referred as the local observation later), storing the pieces
of information, such as the numbers of messages sent & received by each process, for
processes to perform Four-Counter algorithm (let PStatSet be the sort for such soups)
and glbs is the global observation, called a meta-configuration. Let Meta-config be the
sort for it.

op Base-state(_) Local-OB(_) Global-OB(_) : Config PStatSet Global-obser ->

Meta-config [ctor] .

Initial States: The initial state of the UDS-FCA for the underlying distributed system
shown in Fig. 3 is expressed as follows:
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op initial : -> MConfig .

eq initial = Base-state((< p: active, t1 >)(< p: passive, t2 >)

(< r: passive, none >) ([p, q: empChan])([p, r: empChan])

([q, p: empChan]) ([q, r: empChan])([r, q: empChan])([r, q: empChan]))

Local-OB((p, 0, 0, 0) (q, 0, 0, 0) (r, 0, 0, 0))

Global-OB(empPStatSet, 3, 0, sleep)

State Transitions: Each process preserves its actions in the underlying distributed system
but needs to count the numbers sent and received and send them to the observer if
required. The rule sndToken is modified as follows:

rl[sndToken] :

Base-state(< P, active, T ; TL > [P, Q, CS] BC)

Local-OB((P, N1, N2, N3) LB) Global-OB(GB)

=>

Base-state(< P, active, TL > [P, Q, T CS] BC)

Local-OB((P, N1 + 1, N2, N3) LB) Global-OB(GB) .

The other rules in the underlying distributed system are modified likewise.
The observer (1) starts Four-Counter algorithm by changing its mode to request from

sleep and (2) judges if the system has terminated when all processes have already sent
the numbers of messages sent and received to the observer. (2) is split into two cases:
(2.1) the two numbers of messages sent and received are equal and (2.2) the two number
are not. (2.1) is described as the following rule:

crl[terminate] :

Base-state(BC) Local-OB(LB) Global-OB(LB1, N1, N2, request)

=>

Base-state(BC) Local-OB(LB) Global-OB(LB1, N1, N2, terminate)

if (N1 == N2) and compare(LB1) .

where compare counts and compares the numbers of messages sent and received.
(1) and (2.2) are described likewise.

We show now how to implement Four-Counter algorithm as T .

The function T-State. In addition to the sorts and operators used in an underlying
distributed system, we need to use some more sorts, such as PStatus and Meta-config,
and some more operators, such as those used in (p: sms, rms, f) and Base-state(cfg)
Local-OB(lpss) GlobalOB(gobs). Those new sorts and operators are added by T-state,
which has already been introduced. For example, the sort Obser-mode and the three
constants of the sort are added to a module M as follows:

addOpe(addSort(M, ’Obs-mode),

op ’sleep : nil -> ’Obs-mode [none] .

op ’request : nil -> ’Obs-mode [none] .

op ’terminate : nil -> ’Obs-mode [none] .) .
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The function T-Init. Let us suppose that there are n processes p1, . . ., pn. Let cfg0
be the initial configuration of an underlying distributed system. Then, the initial state of
the UDS-FCA is as follows:
Base-state(cfg0)

Local-OB((p1, 0, 0, 0) . . . (pn, 0, 0, 0))

GlobalOB(empPStatSet, n, 0, sleep)

This conversion is done by genInitial.

op genIntial : Config -> Meta-config .

eq genIntial(I) = Base-state(I) Local-OB(InitLocal(I))

Global-OB(InitGlobal(I)).

where InitLocal and InitGlobal initialize the local and global observations.
By convention, a term representing an initial state is referred by a constant. For example,
we declare an equation “eq init = cfg0.”, where init becomes a constant of Config.
Such an equation is converted to another one such that init is a constant of Meta-config
and cfg0 becomes what has already been described. Let us suppose cfg2mcfg be in charge
of the conversion of init. T-Init-Eqs is defined as follows:

eq T-Init-Eqs(eq T = T’ [AtS]. EqS) = if (getType(T) == ’Config) then

(eq cfg2mcfg(T) = upTerm(genIntial(downTerm(T’, empConfig))) [AtS].)

T-Init-Eqs(EqS) else (eq T = T’ [AtS].) T-Init-Eqs(EqS) fi.

eq T-Init-Eqs(none) = none .

where “eq T = T’ [AtS] .” is a meta-representation of an equation, namely a term of
the sort Equation. If the equation is used to define a constant as an initial state of
an underlying distributed system, the equation is converted to the one used to define a
constant as an initial state of the UDS-FCA.

The function T-Trans. T-Trans first constructs the rules in the underlying distributed
system&FCA part from the rules for the underlying distributed system. We have described
how to convert the rule sndToken. The one of the equations that define T-Trans in charge
of this conversion is as follows:

ceq cl-Trans(M, rl T => T’ [AtS] . RlS) =

(rl ’Base-state‘(_‘) Local-OB‘(_‘) Global-OB‘(_‘)

[T, ’__[’LB:ListPair,’_‘,_‘,_‘,_[’P:Pid,’N1:Nat,’N2:Nat,’N3:Nat]], ’GB:Global-obser]

=>

’Base-state‘(_‘)Local-OB‘(_‘)Global-OB‘(_‘)[T’, ’__[’LB:ListPair,’_‘,_‘,_‘,_[

’P:Pid,’_+_[’N1:Nat,’s_[’0.Zero]],’N2:Nat, ’N3:Nat]],’GB:Global-obser] [AtS] .)

cl-Trans(M, RlS)

if (checkPart(T, T’) == ’send) .

where “rl T => T’ [AtS] .” is the meta-representation of a rule and checkPart judges
what a rule belongs to based on the left- & right-hand sides of the rule. The equations
conducts the conversion as mentioned. If the rule rl T => T’ [AtS].” is SendToken, then
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the equation returns the meta-representation of the rule obtained by the conversion from
the rule. In the meta-representation, for instance, ’_+_[’N1:Nat, ’s_[’0.Zero]] is the
meta-representation of the term N1 + (s 0) where N1 is a variable of Nat and s_ is the
successor function of natural numbers.

Lastly, T-Trans adds to the module all the remaining rules in the FCA part, which are
constructed regardless of any underlying distributed system. For example, it adds the
above terminate rule.

The function T. T just composition of the three functions as described.

4.1.2 Model Checking at the Meta Level

In our approach, the model checking is conducted at the meta-level as well. For the
metarepresentation of a system module in which a state machine is specified, Maude
makes it possible to search its reachable states for states such that some requirements are
satisfied, which is done by the operator metaSearch. Given the metarepresentation M of
a module, a starting term t1, a pattern term t2, a condition term c, the kind k of search,
and a bound value b and a natural number n, the search metaSearch(M,t1,t2,c,k,b,n)
searches the reachable state space from t1 in a breadth-first manner with the maximum
depth b of the search for at most n states that match t2 such that c holds. When t1 is an
initial state of a state machine and the negation of a state predicate p is expressed as t2
and c, the search conducts the model checking that p is an invariant property of the state
machine.

op metaSearch : Maude Term Term Condition Qid Bound Nat ~>

ResultTriple? [special(...)] .

The result of the function is a term of the sort ResultTriple?.

sorts ResultTriple ResultTriple?

subsort ResultTriple < ResultTriple?

op failure : -> ResultTriple? [ctor] .

op {_,_,_} : Term Type Substitution -> ResultTriple [ctor] .

The result can be a failure denoted as a constant (failure).ResultTriple? of the sort
ResultTriple? that means any such patterns are not reachable from the start term, or a
term of the sort ResultTriple, which is a subsort of the sort ResultTriple?, consisting of
the searched term, the type of the searched term and the substitution that matches the
searched term with the pattern.

We demonstrate how to use metaSearch by model checking that UDSs-FCA for some
underlying distributed system enjoy the property (called the termination property) that
whenever the observer claims that the underlying distributed system has terminated, it
has surely done. To this end, we define the predicate unTerm judges if an underlying
distributed system has terminated or not:
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Figure 4.2: The state-transition diagram of a process.

eq unTerm(Base-state(BC) Local-OB(LB) Global-OB(OB))

= (not passive(BC) or not checkMsg(BC)).

where passive returns true if all processes are passive and false otherwise, and checkMsg

returns true if all channels are empty and false otherwise. unTerm, therefore, returns
false iff all processes are passive and all channels are empty, and true otherwise.
The model checking is performed as follows:

metaSearch(T(upModule(’SYS, false)), ’initial.MConfig, ’MC:MConfig,

unTermCon(’MC:MConfig) = ’true.Bool, ’*, unbounded, 0) .

where unTermCon is the meta-representation of unTerm, ’* means that all reachable states
from the given initial state (including the initial state) are candidates, unbounded means
that all the reachable states are traversed and 0 means that the search tries to find all
states that matches a variable of MConfig such that unTerm holds.

4.1.3 Experiments

We conduct model checking experiments for two underlying distributed systems. The
first is the system specified in Section 4.3.1 (shown in Fig. 2.2 ) and the second is another
one in which each process has three statuses ps1, ps2 and ps3. For the second system, a
process may change its status when it sends or receives a message; it changes its status to
either ps1 or ps3 when its status is ps2 and it is not able to send a message when its status
is ps3. A process turns to passive after it sends a message or its status is ps3. The state
transitions of a process are depicted in Fig. 4.2(a) and we make a model for the concrete
system in Fig. 4.2(b) with three processes and the initial state in which one is active. An
advantage of our method is demonstrated by that we do not need to specify the UDS-
FCA for each underlying distributed system. All what we need to do is specifying only
underlying systems. The two underlying systems are specified as the modules SYS1 and
SYS2, respectively, and T takes each module as an input, generating T(SYS1) and T(SYS2)

as the specifications of the two UDS-FCAs.
As the results of our model checking, counterexamples are found. This implies that

the Four-Counter algorithm does not work correctly. The counterexample for SYS1 is
depicted as shown in Fig. 4.3. Intuitively, the observer cannot conclude from S = R that
the computation has terminated. This is due to the asynchrony of communication. All
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processes may not receive or reply to the request from the observer at the same time.
According to the counterexample, p receives a request after it sends t1 to q and turns to
passive. It sends (p, 1, 0) back. q receives a request before it receives the token t1 from p.
It sends (q, 0, 0) back. It then sends t1 to p and t2 to r. r receives a request after it receives
and comsumes t2 and then it sends (r, 0, 1) back. The observer counts the numbers of the
messages sent and received when it has already received all the answers from the three
processes. Because S = 1 and R = 1, the observer claims that the system has terminated
while the computation has not been actually terminated because the channel from q to p
is carrying t1.

Counterexamples were also found for T(SYS2).

4.2 Generating and Model Checking All Possible Ini-

tial States

We have illustrated in Section 4.1.2 how to conduct model checking experiments of a
control algorithm for concrete underlying distributed system. Note that even for a fixed
number of each kind of entities, such as processes, there may be multiple initial states
and some initial states may lead to a counterexample for a property, while some may
not. It is better to model check as many as possible initial states as shown in Fig. 4.4(a).
However, it is time-consuming and mistake-prone to create all possible initial states of a
system and model check them by human beings.

4.2.1 Generating All Possible Initial States

It suffices to use some parameters, such as the number of processes, to systematically
generate all initial states of a system such that some conditions are fulfilled, for example,
that the network is fully connected. The idea is depicted in Fig. 4.4(b). For a system
that has 3 processes fully connected and 3 tokens, for example, all possible initial states
are shown in Fig. 4.5. For another system that has 3 processes partially connected and 4
channels, some possible initial states are shown in Fig. 4.6. Note that all processes play
the same role in these systems.

For the underlying systems of Four-Counter algorithm, for example, the function to
generates all such initial states could be implemented as follows:

op InitGen : Nat Nat -> ConfigSet .

where ConfigSet is the sort for system configuration soups.
InitGen takes the number of processes and the number of the tokens and returns all

possible initial states of the system. Note that we have supposed that the underlying
system network is fully connected.
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Figure 4.3: The counterexample found
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function InitGene takes some system parameters of an underlying distributed system as
inputs and returns all possible initial states of the underlying distributed system.
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Figure 4.5: All possible initial states of a fully connected system.

4.2.2 Model Checking All Possible Initial States

Once all possible initial states of a system have been generated, the next to do is to
conduct model checking experiments for all of them with checkAll defined as follows:

op checkAll : Nat Nat -> CounterSet .

op checkList : ConfigSet -> CounterSet .

eq checkAll(N1, N2) = checkList(InitGene(N1, N2)) .

eq checkList(C Cs) = modelCheck(upTerm(init(C))) and checkList(Cs) .

eq checkList(empConfigSet) = empCounterSet .

where N1 & N2 are variables of Nat, C is a variable of Config, Cs is a variable of ConifgSet,
CounterSet is the sort for counterexample soups, modelCheck conducts model checking for
one configuration (which is defined in the same way as described in Section IV-B) and
checkList conducts model checking for a configuration set.

checkAll first calls InitGen to make all initial states for given parameters and then
conducts model checking for all of them. An algorithm is more likely to enjoy a desired
property if no counterexample is found for any of those initial states. In case time taken
is considered and it is sufficient to detect only one counterexample, checkList could be
modified such that we can stop model checking as soon as a counterexample is found.

4.2.3 Experiments

For Four-Counter algorithm, we conduct experiments for six underlying systems, which
are described by the numbers of processes and tokens as shown in Table. 4.1. The number
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of all possible initial states for each system is presented in the fourth column. Thanks to
the result of checkAll, we know that counterexamples are not found for any initial states.
Let us consider the system that includes three processes and two tokens. Some possible
initial states of the systems are shown in Fig. 4.7.
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Figure 4.7: Some initial states of the system with 3 processes & 2 tokens.

We have shown in the previous section that a counterexample is found when we model
check the initial state (a). This means that the algorithm does not work correctly. How-
ever, model checking for the initial state (b), there is no counterexample found. Generally,
an counterexample may appear in some initial states, but not in some others. Assuming
we only model check for (b), but not (a), the counterexample is not found and the er-
ror is not detected. The experimental results are shown in Table. 4.1. The experiments
were conducted on a computer that carried a 2.9GHz Intel Xeon E5-4655 processor with
256GB of RAM. The fifth column presents the numbers of initial states from which the
counterexample is found. Moreover, the times taken to find the first of these initial states
are shown in the time taken column.

In summary, checking all possible initial states of a system increases the capacity of
counterexample detection or improves the confidence in the correctness of an algorithm.
Another example to demonstrate this point is shown in Section 4.3.2.

4.3 Case Studies

We apply our approach to specifying and model checking Chandy-Lamport algorithm and
Checkpointing algorithm, which have already been described in Section 2.1.1. The first
case study demonstrates that our approach makes it faithful to model check a property
that involves both an underlying distributed system and the underlying distributed system
on which Chandy-Lamport algorithm is superimposed (the distributed snapshot reacha-
bility property). The second case study shows the usefulness of our idea to specifying and
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Table 4.1: Results of the nine model checkings for Four-Counter Algorithm

System The num-
ber of Pro-
cesses

The num-
ber of To-
kens

All Initial
states

Counter-
Initial
States

Time-
Taken
(Minutes)

Sys 1 2 2 3 1 0.001

Sys 2 3 2 5 2 5.563

Sys 3 3 3 14 5 35.867

Sys 4 3 4 38 16 49.765

Sys 5 4 2 7 2 62.378

Sys 6 4 3 19 7 158.459

Sys 7 5 2 12 4 204.845

Sys 8 5 4 72 28 421.642

Sys 9 6 3 31 10 642.851

model checking all possible initial states.

4.3.1 Specification and Model Checking of Chandy-Lamport Al-
gorithm

The Chandy-Lamport distributed snapshot algorithm (Chandy-Lamport algorithm)[51]
is the first distributed snapshot algorithm. The algorithm should satisfy distributed snap-
shot reachability property as follows. Let s1, s∗ and s2 be the state in which Chandy-
Lamport algorithm initiates (the start state), the snapshot taken, and the state in which
Chandy-Lamport algorithm terminates (the finish state), respectively. Although s∗ may
not be identical to any of the global states that occur in the computation from s1 to s2,
one desired property Chandy-Lamport algorithm should satisfy is that s∗ is reachable
from s1 and s2 is reachable from s∗, whenever Chandy-Lamport algorithm terminates.
Note that s1, s2 and s∗ are states of the underlying distributed system but not those of
the underlying distributed system on which Chandy-Lamport algorithm is superimposed
(UDS-CLDSA). The distributed snapshot reachability property relates to two different
systems: an underlying distributed system and the UDS-CLDSA. It is not straightfor-
ward to express the property in typical existing temporal logics, such as linear temporal
logic (LTL) and computation tree logic (CTL). This is because the semantics of such a
logic is defined for a single system formalized as a Kripke structure (an extension of a
state machine). As a result, few research on model checking Chandy-Lamport algorithm
and any other distributed snapshot algorithms have been conducted. Model checking
Chandy-Lamport algorithm means model checking UDS-CLDSAs in this thesis. To the
best of our knowledge, there are only two case studies in which Chandy-Lamport algo-
rithm has been model checked [7][57]. In [7], SPIN is used to model check that a system
(in which there are two processes and one channel from one process to the other) on
which Chandy-Lamport algorithm is superimposed enjoys a property that is different
from the distributed snapshot reachability property. In [57], the authors have specified
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UDS-CLDSAs and model checked that they satisfy a property, which they claim is the
distributed snapshot reachability property in Maude. However, the property is not exactly
the same as the distributed snapshot reachability property. It is encoded in the Maude
search command and does not reflect the informal description of the property originally
given in [51]. In addition, their way to model check is to compare the numbers of solu-
tions obtained by three search experiments. Hence it is not straightforward to construct
a counterexample when the property is not fulfilled.

The Specification of an Underlying Distributed System

The system shown in Fig. 4.8 is used as an example. The state of a process only depends
on the set of tokens owned by the process. Each process has two actions: (1) sending a
token to another by putting the token to one of its outgoing channels if it holds the token
and (2) receiving a token from one of its incoming channels if any.

State Expression. Let Pid, PState & Token be the sorts for process identifiers, process
states & tokens, p, q & r be the constants of Pid, and t1 & t2 be the constants of Token.
Let TknSet be the sort for token soups. Let Msg be the sort for messages and the supersort
of Token. Thus, tokens are messages. The state of a channel is expressed as a queue of
messages for which the sort MsgQueue is used. The empty queue of messages is denoted
as empQ. A queue of n messages m0,m1, . . . ,mn−1 in this order is denoted as m0 | m1 | . . .
| mn−1 | empQ. Process states and channel states are expressed as observable components
for which the sort OCom is used: (p-state[p]: ts) for process, where p-state[p]: is the
name, p is a process and ts is the value and a token soup and (c-state[p,q,n]: ms)
for channel, where c-state[p,q,n]: is the name, p & q are the source and destination
processes, n is a natural number used to identify the channel because there may be more
than one channel from p to q and ms is the value that is a message queue. For this
system, one channel from p to q is identified by 0 and the other is by 1. The system state
is expressed as the soup of the observable components for which the sort Config is used.

p q

r

t1 t2
empty

empty

empty em
pt
y

Figure 4.8: The initial state of a token system

sorts Pid Msg Token PState MsgQueue OCom Config .

subsort Token < PState .

subsort Token < Msg .

subsort OCom < Config .
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ops t1 t2 : -> Token .

ops p q r : -> Pid .

op empPState : -> PState [ctor] .

op _ _ : PState PState -> PState [ctor assoc comm id: empPState] .

op empQueue : -> MsgQueue [ctor] .

op _|_ : Msg MsgQueue -> MsgQueue [ctor] .

op p-state[_] :_ : Pid PState -> OCom [ctor] .

op c-state[_, _, _] :_ : Pid Pid Nat MsgQueue -> OCom [ctor] .

op empConfig : -> Config .

op _ _ : Config Config -> Config [ctor assoc comm id: empConfig].

Initial States. In this system, there is only one initial state in which p holds the two
tokens t1 and t2, the other processes do not and all the channels are empty. Let the
constant initial of Config equal the following term:

(p-state[p]: t1 t2) (p-state[q]: empTknSet) (p-state[r]: empTknSet)

(c-state[p, q, 0]: empQ) (c-state[p, q, 1]: empQ)

(c-state[q, r, 0]: empQ) (c-state[r, p, 0]: empQ) .

State Transitions. The two actions of a processes are described as follows:

rl[sndToken] :

(p-state[P]: T PS) (c-state[P, Q, N]: CS) BC =>

(p-state[P]: PS) (c-state[P, Q, N]: enq(CS, T)) BC.

rl[recToken] :

(p-state[P]: PS) (c-state[Q, P, N]: T | CS) BC =>

(p-state[P]: T PS) (c-state[Q, P, N]: CS) BC .

where where P, Q, T, PS, CS and BC are variables of Pid, Pid, Token, TknSet, MsgQueue

and Config, respectively. enq is a standard function for queues, taking a queue q and an
element e and putting e into q at bottom.
Let SYS-TK be the module in which the system is specified.

Specifying Chandy-Lamport Algorithm as a Meta-program

Let cl be the meta-program. Its three sub-functions are cl-State, cl-Init and cl-Trans.
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The function cl-State. Among messages in the UDS-CLDSA are not only data mes-
sages but also markers. Moreover, to describe the UDS-CLDSA, we need to express more
information, such as the start state, the snapshot, the finish state and the information to
control behaviours of the algorithm. Thus, we need to use new notations to express the
states of the system. For example, we need to use a new sort MMsg to denote tokens and
markers. The sort for the states of the UDS-CLDSA is MConfig and a state is expressed
as follows:

base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc) control(ctl)

where bc, sc, ssc. fc and ctl are terms that represent an underlying distributed system
state, a start state, a snapshot, a finish state and the information to control the algorithm,
respectively.
cl-State modifies a given set of notations for an underlying distributed system, generating
a set of notations for the UDS-CLDSA. The function cl-State will take into account the
syntax part of the module. All what to do is replacing all notations for describing an
underlying distributed system by all notations for describing the UDS-CLDSA. It also
replaces the sorts of constants and variables in the input module by the corresponding
sorts for a UDS-CLDSA, e.g replacing MsgQueue, which is the sort for the states of channels
in an underlying distributed system, with MMsgQueue, which is the sort for the states of
channels in the UDS-CLDSA. To this end, we define several functions. For example, the
following function to change the sort of a constant of the sort Config, which is the sort
for states of an underlying distributed system, to be MConfig, which is the sort for states
of the UDS-CLDSA.

op reConfigToMConfig : Constant -> Constant .

ceq reConfigToMConfig(C) = qid(string(getName(C)) + "." + "MConfig")

if getType(C) == ’Config .

The function takes as an argument a constant, and changes the sort of the constant to
MConfig if the sort of the constant is Config.

The function cl-Init. Each initial state of the UDS-CLDSA can be obtained from
an initial state of an underlying distributed system. Specifically, for each initial state s
of an underlying distributed system, the corresponding initial state of the UDS-CLDSA
is base-state(s) start-state(empBConfig) snapshot(empBConfig) finish-state(empBConfig)
control(t), where empBConfig denotes the empty soup of the observable components and
t is a term in which all information to control behaviours of Chandy-Lamport algorithm
is initialized. This is done by the function named genIntial. For a given initial state BC

of an underlying distributed system, genInt generates the corresponding initial state of
the UDS-CLDSA as follows:

op genInit : Config -> MConfig .

eq genInit(BC) = base-state(BC) start-state(empConfig) snapshot(empConfig)

finish-state(empConfig) control(InitCtlConfig(BC)).

52



where the function InitCtlConfig initializes values for all control information components.
The function cl-Init uses genInit to convert each equation for initial states of an

underlying distributed system to one for those of the UDS-CLDSA. The function cl-Init

is defined as follows:

eq cl-Init(M) = setEqSet(M, cl-Init(M, getEqs(M))).

eq cl-Init(M, eq T = T’ [AtS] . EqS) =

if (getType(T) == ’Config) then (eq reConfigToMConfig(T) =

upTerm(genIntial(downTerm(T’, empConfig))) [AtS] .) cl-Init(M, EqS)

else (eq T = T’ [AtS] .) cl-Init(M, EqS) fi .

where the function getEqs gets the set of equations of the module and the function
setEqSet replaces all current equations of the module by another set of equations.

The function cl-Trans. cl-Trans first constructs the rules in the UDS&CLDSA part
based on those in an underlying distributed system. From the rule sndToken, for example,
the following one is generated:

rl : base-state((p-state[P]: T PS)(c-state[P, Q, N]: CS) BC)

=>

base-state((p-state[P]: PS)(c-state[P, Q, N]: enq(CS, T)) BC) .

The function cl-Trans deals with this case as follows:

ceq cl-Trans(M, rl T => T’ [AtS] . RlS) =

(rl ’base-state[T] => ’base-state[T’] [AtS] .) cl-Trans(M, RlS)

if (checkPart(T) == ’UDS&CLDSA1) .

The function cl-Trans then generates all rules in the CLDSA part.

The function cl. cl combines the three functions together.

eq cl(M) = cl-Trans(cl-Init(cl-State(M))) .

Model Checking of the Distributed Snapshot Reachability Property

The existing model checking approach in [57] uses Maude search command to model check
a property for Chandy-Lamport algorithm. The result of the model checking is based on
the numbers of solutions obtained by three search experiments. The disadvantage of this
method is that it is difficult to find a counterexample in case the algorithm does not
satisfy the property. Moreover, the property they have used is not exactly the same as
the distributed snapshot reachability property. A faithful formal definition of the property
has been given in [29]. It is checked that Chandy-Lamport algorithm is terminated in
the UDS-CLDSA, but it is checked that some states of an underlying distributed system
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are reachable from some others in the underlying distributed system but not the UDS-
CLDSA. Accordingly, the property involves two systems, an underlying distributed system
and the UDS-CLDSA.

We propose a new model checking method by which a counterexample is shown when
the algorithm does not enjoy a property. Our method directly deals with the faithful
formal definition of the property. The essential idea of our method is that metaSearch is
used to find any taken snapshots that satisfy the unReachable condition as follows: either
the snapshot is not reachable from the start state or the finish state is not reachable from
the snapshot. If there is no such snapshot taken then the algorithm is likely to satisfy
the property. Since the unreachable predicate is not built-in Maude, we define it. Given
a state machine M and two states s1 and s2, s2 is said to be unreachable from s1 iff s1
cannot go to s2 by any state transition steps in M . We implement this predicate by using
metaSearch. Assuming that M, T1 and T2 are the metarepresentation of the module that
specifies M , the term that expresses s1 and the term that expresses s2, respectively, we
define the predicate unreachable as follows:

op unReachable : Module Term Term -> Term .

eq unReachable(M, T2, T1) = if metaSearch(M, T1, T2, nil,’*, unbounded, 0)

== (failure).ResultTriple? then ’true.Bool else ’false.Bool fi .

The model checking is performed as follows:

metaSearch(cl(upModule(’SYS-TK, false)), ’initial.MConfig,

’__[’MC:MConfig,’start-state[’SC:Config],’snapshot[’SSC:Config],

’finish-state[’FC:Config]], ’_!=_[’FC:Config, ’empBConfig.Config]

= ’true.Bool /\ unReCon(upModule(’SYS-TK, false), ’SC:Config,

’SSC:Config, ’FC:Config) = ’true.Bool, ’*, unbounded, 0)

Termination is detected with respect to (wrt) cl(upModule(’SYS-TK, false)), the UDS-
CLDSA, while reachability is checked wrt upModule(’SYS-TK, false), the underlying dis-
tributed system. unReCon takes the meta-representations of an underlying distributed
system, a start state SC, a snapshot SSC and a final state FC and use unReachable to
check if SSC is not reachable from SC wrt the underlying distributed system or FC is not
reachable from SSC wrt the underlying distributed system. This model checking approach
shows counterexamples if any.

Experiments

First, we take the “token system” described in Section 4.3.1. Secondly, we consider the
systems in which each process has three statuses ps1, ps2 and ps3, and there are three
messages m1, m2 and m3. A process may change its status when it sends a message. The
state-transitions of a process are depicted in Fig. 4.9. We call such systems the “switch-
message” systems. Lastly, we consider systems called the “multi-token” systems, in which
there are one or more tokens. Processes exchange tokens to others or may consume them.
For each underlying distributed system, we only need to specify the underlying distributed
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Figure 4.9: The state-transition diagram of a process.

Table 4.2: A comparison of performance between the two approaches

System The num-
ber of
Processes

The num-
ber of
channels

The num-
ber of
tokens

Time taken
by the
existing
approach
(Minutes)

Time taken
by the
proposed
approach
(Minutes)

Sys 1 2 2 1 0.0036 0.0006

Sys 2 2 2 3 0.1472 0.0393

Sys 3 2 3 2 28.7403 0.5373

Sys 4 3 3 2 96.0883 2.3606

Sys 5 3 4 1 0.9459 0.0405

Sys 6 3 4 2 245.9765 5.9551

Sys 7 3 5 2 985.5643 52.6838

Sys 8 4 8 1 589.3522 32.1800

system and cl automatically generates the specification of the UDS-CLDSA. There is no
counterexample found.

We compare the performance of our proposed method with the existing one [57]. To
this end, we consider to model check the distributed snapshot reachability property for
the “multi-token” systems, which have been specified in the existing study. We conduct
model checking for eight different systems. We take into account the time to perform the
model checking. Experiments were conducted on a computer that carries a 4GHz Intel
Core i7 processor with 32GB of RAM. The results are shown in Table 4.2. A system is
described by the three factors that are the number of processes, the number of channels
and the number of tokens. The experiment time of the system, however, depends on not
only these numbers but also its topology.

The results of experiments have shown that our proposed approach surpasses in per-
formance the existing one. The existing method uses three search commands to find: (1)
all snapshots taken, (2) all snapshots taken such that the snapshot is reachable from the
start state and (3) all snapshots taken such that the finish state is reachable from the
snapshot, while our proposed method uses only one search to find all snapshots taken
such that the unReachable condition is satisfied.

Our model checking shows that Chandy-Lamport algorithm satisfies the distributed
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snapshot reachability property for the underlying distributed system used since a coun-
terexample was not found. However, to demonstrate an advantage of our approach that
a counterexample is found when the algorithm does not satisfy a property, we propose
to check a property that is not satisfied by Chandy-Lamport algorithm. Conveniently,
we use a property that is opposed to the distributed snapshot reachability property. We
call it UDSR property as follows. Let s1 be the start state, s2 be the terminated state,
and s∗ be the snapshot, then s∗ is not reachable from s1, or s2 is not reachable from s∗.
To model check, we will find any snapshots taken such that the snapshot is reachable
from the start state and the finish state is reachable from the snapshot (called reachable
condition). To this end, we define a predicate ReCon for this reachable condition. We then
define the search to conduct the model checking the UDSR property for Chandy-Lamport
algorithm. A counterexample is found and shown.

4.3.2 Formal Analysis of a Checkpointing Algorithm

Checkpointing algorithm [13] requires each pi of mobile hosts to store the following pieces
of information (let n be the total number of mobile hosts and mobile support stations):

- Ri: an array of bits at pi such that its size is n. Ri[j] = 1 means that pi has received
computation messages from pj in the current checkpointing interval.

- csmi: an array of checkpoint numbers at pi such that its size is n. csmi[j] represents
checkpoint numbers of pj that pi knows.

- weighti: a nonnegative number whose maximum value is 1. It is used to detect the
termination of the algorithm.

- triggeri: a pair (pid, imun) at a component pi; pid is the identification of the last
checkpoint initiator for which pi has processed the request and imun is the initiator’s
csm.

- senti: a Boolean at pi that is set to 1 if pi has sent messages in the current checkpoint.

- cp-statei: a Boolean at pi that is set to 1 if pi is in the current checkpoint.

- old-csm: a number that stores the csm of the current tentative checkpoint.

- CPi: 4-tuple: (A,B,C,D) where A is the mutual checkpoint of pi, B is its own
Ri before it takes mutual checkpoint, C is the trigger which is associated with the
current checkpoint and D is its own senti before taking the mutual checkpoint.

- Mr: a soup that stores the information of csmi and Ri for a component (a mobile
host or a mobile support station) to decide whether it should inherit a checkpoint
request or not.
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Note that 0 and 1 are used as the Boolean values in the specification.
A component could start Checkpointing algorithm at anytime when it is not in any

checkpoint process. It takes its local checkpoint, increases its csmi[i], sets weighti to 1
and cp-statei to 1 and stores its own identifier and the csmi[i] to triggeri. It then sends
checkpoint requests to all of its relative components j such that Ri[j] =1 (meaning that
the component from which it has received messages). Each request carries the trigger
of the initiator and the portion of weight of the initiator, whose weight is decreased by
an equal amount. When a component receives a checkpoint request, it checks whether it
needs to inherit the request. If it does not, it sends a reply to the initiator. Otherwise, it
deals with the request: either takes a new local checkpoint or makes the mutual checkpoint
tentative, sends a reply message to the initiator and then propagates the request to all its
relatives. When a component sends a computation message, it adds more information to
the message: its own csmi[i] and triggeri if it is in a checkpoint process. Each component
that receives a computation message checks whether it needs to take a mutual checkpoint
or not. A mutual checkpoint is turned to a tentative checkpoint when the component
receives a checkpoint request. Otherwise, the mutual checkpoint will be discharged. When
an initiator receives all replies from its relative components, it announces the termination
of the checkpoint process and sends a broadcast message to all components in the system.

The Specification of an Underlying Mobile Distributed System (UMDS)

State Expression. There are three observable components in the systems: mobile
hosts, mobile support stations and channels. Let Mid, MidSet & Mssid be the sorts for
mobile identifiers, soups of mobile identifiers & station identifiers and Id, which is a super
sort of Mid and Mssid be the sort for the union set of mobile and station identifiers. The
connection state of a mobile host is either disC denoting that it is disconnected from the
network or the MSS’s identifier to which it is connected. The sort MState is used for the
connection states of an mobile host.

A message is expressed as (p, q, d), where p is the source process, q is the destination
process, and d is data carried by the message. Let Data & Msg be the sorts for data &
messages.

sort Msg .

op (_,_,_) : Id Id Data -> Msg [ctor] .

The sort MsgQueue, queues of messages, is used for the states of channels. The three
observable components are: <mb: loc, cos> for mobile hosts, where the name mb is a
mobile identifier and the value “loc, cos” is its local state and its connection state, {mss:
mbl, ms} for stations, where the name mss is its identifier and the value “mbl, ds” is
the set of mobile identifiers, which are connected to it and ms is the queues of incoming
messages before processing, and [sp, ds: st] for channels, where the name “sp, ds” is
composed of two parameters sp and ds that are its source and destination processes,
respectively, and its state. The sorts Mobile, Station and Channel are used to denote
mobile, station and channel observable components, respectively. The state of a system
is a soup of observable components and the sort for it is Config.
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sorts Mobile Station Channel Config .

subsort Mobile Station Channel < Config .

op <_:_,_> : Mid LState MState -> Mobile [ctor] .

op {_:_,_} : Mssid MidSet MsgQueue -> Station [ctor] .

op [_,_:_] : Id Id MsgQueue -> Channel [ctor] .

op empConfig : -> Config [ctor] .

op _ _ : Config Config -> Config [ctor assoc comm id: empConfig] .

State Transition. A mobile host could do three kinds of actions: (1) sending messages,
(2) receiving messages and (3) disconnecting or reconnecting to the network. The following
rule specifies the action when a mobile host sends a computation message to another
mobile host located in another cell by sending the message to its local station: in what
follows, MB1, MB2 ∈ Mid, MSS1, MSS2 ∈ Mssid, CS1, CS2 ∈ MState, D ∈ Data, C ∈ Config,
LMS ∈ MsgQueue and MS ∈ Msg are variables of those sorts.

crl [sendMobile] :

<MB1, D CS1, MSS1> <MB2, CS2, MSS2>[MB1, MSS1, LMS] C

=>

<MB1, CS1, MSS1> <MB2, CS2, MSS2> [MB1, MSS1, enq(LMS, (MB1, MB2, D))] C

A mobile support station can extract a message from one of its incoming channel if any
and then puts it at the end of its message queue, which is specified as the following rule:

rl [receiveStation] :

{MSS1, IDL1, LMS1} [ID, MSS1, MS | LMS] C}

=>

{MSS1, IDL1, enq(LMS1, MS) } [ID, MSS1, LMS] C} .

The other actions can be specified likewise.
Let SYS-MB be the module in which the system is specified.

Specifying Checkpointing Algorithm

Let cp be the meta-program as the formal specification. It has three sub-functions
cp-State, cp-Init and cp-Trans.

The function cp-State. There are three kinds of control messages: “request,” “reply”
and “broadcast” messages, which contain information needed to be exchanged by compo-
nents to perform Checkpointing algorithm. Msg-request, Msg-reply and Msg-broadcast

are used as the sorts for those messages. Because a computation message sent by a
component pi needs to carry more information, namely csmi[i] and triggeri, a new form
of computation messages, which are called meta-computation messages, is utilized, for
which the sort Mdata is used. Both control messages and meta-computation messages are
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called meta-messages, for which the sort M-msg is used. Let M-msgQueue be the sort for
meta-message queues. Thus, the expressions of the local states of mobile, station and
channel are different from the ones of a UMDS. The sorts mobile , station and channel

are replaced by the sorts M-mobile, M-station and M-channel, respectively. Each mobile
(or station) observable component needs to to be added some pieces of information to
perform Checkpointing algorithm. Such revised observable components are called meta-
observable components and expressed in the form of m-pro(ms ar cs we tr se cs ol cp ms1
ms2 cS), in which ms is an element of Meta-state, which is a super sort of M-mobile and
M-station, ar, cs, we, tr, se, cs, ol and cp are Ri, csmi, weighti, triggeri, senti, cp-statei,
old-csm and CPi, respectively, ms1 and ms2 are soups of messages that the component
has sent and received, and cS is a list of tentative checkpoints. The meta-observable com-
ponent of a channel is in the form of m-chan(cn), in which cn is an element of M-channel.
A global state of a UMDS on which Checkpointing algorithm is superimposed (UMDS-
CP) is expressed as a soup of meta-observable components. The corresponding sort is
M-config. Some notations used in the specification of a UMDS, such as Mid, Id and Msg,
are still used in the specification of the UMDS-CP. However, some notations are no longer
used, such as Channel that is replaced with M-channel. cl-State needs to get rid of all
unused notations and adds all the other necessary notations for describing the UMDS-CP.

The function cp-Init. Each initial state of a UMDS is in the form<mh1>,. . . ,<mhn>,
{mss1},. . . ,{mssm}, [cn1],. . . ,[cnk], where each <mhi>, {mssj} and [cnk] is an observ-
able component as described. Each initial local state of mobile host (or mobile support
station) in the UMDS-CP is the same as those of the UMDS, but we need to add all the
other necessary meta-observable components that have the appropriate initial values. The
corresponding initial state of the UMDS-CP is m-pro(<mh1> MC1),. . . ,m-pro(<mhn>
MCn), m-pro({mss1} SC1),. . . , m-pro({mssm} SCm), m-chan([cn1]),. . . ,m-chan([cnk]),
where MC1,. . . , MCn and SC3,. . . , SCn are terms in which control information is initial-
ized. This is done by initial as follows:.

op initial : Ocom -> Meta-com.

eq initial(MB) = pro(MB, controlI-nit(MB)).

eq initial(MSS) = pro(MSS, control-Init(MSS).

eq initial(CN) = meta-chan(CN) .

where control-Ini initializes all control information.
The function cp-Init uses initial to convert each equation for initial states of a UMDS

to one for those of the UMDS-CP.

The function cp-Trans. The rules of the UMDS-CP are classified into two parts:
UMDS&CP and CP. In the UMDS&CP part, for example, the following is one such rule:

crl [sendMobile1] :

{m-pro(<MB1, D CS1, MSS1> R1 CSM[(MB1, N1) LPC] W1 TR1 (Sent: N2)

(CP-state: 1) OLD1 CP1 CM1 CM2 CL1)
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m-pro(<MB2, CS2, MSS2> R2 CSM2 W2 TR2 S2 CS2 OLD2 CP2 CM3 CM4 CL2)

m-chan([ MB1, MSS1, LMS ]) C}

=>

{m-pro(< MB1, CS1, MSS1 > R1 CSM[(MB1, N1) LPC] W1 TR1 (Sent: 1)

(CP-state: 1) OLD1 CP1 ((MB1, MSS1, (MB1, MB2, D)) CM1) CM2 CL1)

m-pro(<MB2, LCS2, MSS2 > R2 CSM2 W2 TR2 S2 CS2 OLD2 CP2 CM3 CM4 CL2)

m-chan([ MB1, MSS1, put(LMS, M-msg((MB1, MB2, D) (MB1, N1) TR1))]) C} .

The rule is generated from the rule sendMobile of the UMDS. When a mobile host sends
the messages to its local mobile support station, it changes the value of sent to “1”
(expressed as (Sent: 1) in the right-hand side of the above rule, while it is (Sent: N2)

of the left-hand side, where N2 may not be 1), which means that the mobile host has sent
messages. Such a message contains not only the computation information, but also the
information about its csm and trigger, which are attached as pairs (MB1, N1) and TR1.
cp-Trans. deals with this case as follows:

ceq cl-Trans(M, rl T => T’ [AtS] . RlS) =

(rl downtern(modifyrls(upTerm(T)), empM) =>

downtern(modifyrls(upTerm(T)), empM) [AtS] .) cl-Trans(M, RlS)

if (checkPart(T, T’) == ’MUDS) .

where modifyrls modifies a state of a UMDS as described. For instance, < MB1, D CS1,

MSS1 > changes to m-pro(< MB1, D CS1, MSS1 > R1 CSM[(MB1, N1) LPC] W1 TR1 (Sent:

N2) (CP-state: 0) OLD1 CP1 CM1 CM2 CL1). < MB1, D CS1, MSS1 > is kept and
R1 CSM[(MB1, N1) LPC] W1 TR1 (Sent: N2) (CP-state: 0) OLD1 CP1 CM1 CM2 CL1 is not
dependent on the state of the UMDS.

cl-Trans then adds all rules of the CP part.

The function cp. The function cp combines the three functions.

eq cp(M) = cp-Trans(cp-Init(cp-State(M))) .

Model Checking

A checkpointing algorithm needs to guarantee that any recorded global checkpoint is
consistent. A consistent checkpoint must contain no orphan message that is sent by a
process after taking its local checkpoint, but recorded as a received message by another
process in its local checkpoint. This is called “orphan-consistent property.” This property
is used in our model checking to model check for the algorithm.

To model check the property, we define the predicate checkInCons that judges if there
exists an orphan message in a given state of a UMDS-CP:

eq checkInCons(MC) = checkOrphanMsg(getCP(MC)) .
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Figure 4.10: A mobile distributed system consists of three mobile support stations and
five mobile hosts, in which mobiles directly communicate with other mobiles in the same
cell.

where getCP gets the current checkpoint of a system, checkOrphanMsg checks whether there
exists an orphan message.
The model checking is performed as follows:

red metaSearch(cp(upModule(’SYSTEM, false)), ’initial.Meta-config,

’MC:Meta-config, TermCon(’MC:Meta-config) /\ InCons(’MC:Meta-config),

’*, unbounded, 0) .

where TermCon and InCons are the meta-representations of the conditions to check
the termination of the algorithm and “orphan-inconsistent” condition.

Experiments

We have conducted model checking for two UMDSs. In the first one, a mobile host is not
allowed to send messages directly to other mobile hosts, but to its local mobile support
station. The UMDS as shown in Fig. 2.4 is an example. The second system allows mobile
hosts to send messages directly to the other mobile hosts that are located in the same cell
with it. The system as shown in Fig. 4.10 is an example.

As the results of the model checking, counterexamples are found. Analyzing these
counterexamples, we find a minor error in the pseudo-codes of Checkpointing algorithm,
which is as follows. If a component pi propagates the request to all components on which
it depends, it may result in a large number of redundant system messages because some of
these components may have already received the request messages from other components.
The designers of Checkpointing algorithm solve this problem by adding some information
saved in the structure Mr. If pi knows (by checking Mr) that pk on which it depends has
received the request from another component with req-csm ≥ csmi[k] (req-csm is saved
in Mr), then pi does not send the request to pk. The idea is implemented in the procedure
prop-cp in the pseudo-codes. pi only sends the request to pk iff Ri[k] is equal to 1 (meaning
that pi depends on pk) and csmi[k] is greater than Mr[k].csm (meaning that pk has not
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Table 4.3: Results of the six model checkings for the algorithm

System MSSs MHs All
Initial
states

Counter
Initial
States 1

Time
Taken 1
(Seconds)

Counter
Initial
States 2

Time
Taken 2
(Seconds)

Sys 1 3 3 2 2 0.507 N/C 0.000
Sys 2 3 5 3 3 3.617 N/C 0.000
Sys 3 4 4 10 10 5.867 3 65.633
Sys 4 4 6 16 16 19.453 3 265.986
Sys 5 5 5 148 148 22.341 52 305.657
Sys 6 5 8 186 186 57.559 74 562.393

received the request from other components). Unfortunately, the algorithm does not work
correctly. Let us consider the following case. Based on Checkpointing algorithm, cmsi[k]
is initially set to 0. Assuming that pi has received a computation message from pk (Ri[k]
is set to 1). pi then starts Checkpointing algorithm. It sets Mr[k].csm to 0. Because
pi depends on pk and pk has not received the request, pi should send the request to pk.
However, according to Checkpointing algorithm, the request is sent iff Ri[k] is equal to
1 and csmi[k] is greater than Mr[k].csm. Thus, pi does not send to the request to pk
because both csmi[k] and Mr[k].csm are equal to 0.

The above counterexample appears in model checking of any initial states of a system.
However, we will show another error that demonstrates the usefulness of our method to
generate and model check all possible initial states of a system. We prepare cp-checkAll

for the first underlying system. We have conducted experiments for six instances of the
system that are described by the numbers of mobile support stations (MSSs) and mobile
hosts (MHs) as shown in Table. 4.3. The second column presents the number of mobile
support stations, the third column presents the number of mobile hosts and the number
of all possible initial states is shown in the fourth column1.

Considering a very simple mobile system with 4 mobile support stations and 4 mobile
hosts, there are many possible initial states of the system and some of them are as shown
in Fig. 4.11. Let us just concentrate on the two initial state (a) and (b) and take into
account two mobile hosts mb1 and mb4. When mb1 sends a message to mb4, there
is only one route in (a) to pass the message from mb1 to mb4 through mss1, mss2,
mss3 and mss4, while there are two routes to pass the message in (b) through either
mss1, mss2, and mss4, or mss1, mss3 and, mss4. Assuming that mb1 has received
computation messages from some other components, but not yet from mb4. It starts the
first checkpointing process, records its local checkpoint and asks all its relative components
to take their local checkpoints. After receiving all replies from these components, it

1The experiments focus on the working of the algorithm for different wired channels among mobile
support stations. mobile hosts are simply assigned to mobile support stations such that at leat one mobile
host is connected to a mobile support station and mobile support stations that have more channels are
given more priority to have mobile hosts assigned.
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terminates the checkpoint process and sends broadcast messages to all components in the
system including mb4. The messages are passed to mb4 by the route mss1, mss2 and
mss4. It may happen that while the broadcast message is on the way to mb4, mb4 sends a
computation message to mb1 and after that mb1 starts the second checkpoint process. It
thus sends the checkpoint request to mb4. We assume that the request is delivered to mb4
with the different routes mss1, mss3 and mss4. When mb4 receives the request, it takes
its local checkpoint and sends a reply to mb1. The broadcast message now arrives at mb4.
According to the pseudo-code of the algorithm, mb4 terminates the checkpoint process
by setting cp-statemb4 to 0. This is an error because the broadcast message corresponds
to the first checkpoint, but not the current checkpoint. It occurs because there are two
different routes to pass a message from mb1 to mb4. The checkpoint request of the second
checkpoint process arrives before the broadcast message. This counterexample is found
when we model check the initial state as shown in (b). However, this counterexample
does not occur in the initial state (a) because there is only one route from mb1 to mb4.
The broadcast message definitely arrives at mb4 before the checkpoint request. The error
is very simply and can be simply fixed by checking whether the broadcast cast message
corresponds to the current checkpoint of a component. When a component receives an
broadcast message, it compares its own trigger and the message trigger. If they are
the same, it terminates its checkpoint process, and otherwise it refuses the message.
However, the point is that an counterexample may occur in some initial configurations,
but may not in the others. Thus, if we only conduct model checking for configurations
as in (a), the counterexample cannot be found. It is almost impossible for humans to
predict all cases in advance. Fortunately, by generating all possible initial states, our
method makes it possible to detect counterexamples lurking in the UMDS-CPs for the
property concerned. Said differently, it increases the counterexample detection ratio or
the correctness confidence of an algorithm.

Table. 4.3 shows the results of the model checking experiments. Experiments were
conducted on a computer that carries a 2.9GHz Intel Xeon E5-4655 processor with 256GB
RAM. The fifth column of the table shows the number of initial states from which the
counterexample of the first error is found and N/C denotes that the counterexample is
not found in any initial state. The next column presents the time taken to find the
counterexample. In the same meaning, two last columns present the number of initial
states and the time taken for the counterexample of the second error.
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Figure 4.11: Some possible initial states of a mobile distributed system consisting of four
mobile support stations and four mobile hosts.
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Chapter 5

Formally Analyzing Mobile Robot
Algorithms in Maude

This chapter shows how to model, specify and model check mobile robot algorithms in
Maude. We restrict our attention to discrete models only, and more specifically to the ring
topology. About timing assumption, we consider the more general asynchronous model
ASYNC. We have demonstrated in [30, 31] that Maude allows us to specify distributed
algorithms/systems more succinctly than others. For instance, it supports associative and
commutative operator attributes that are very necessary to concisely specify distributed
algorithms/systems. To describe the model, we use state machines. A distributed mobile
robot system is formalized as a state machine and then the state machine is specified in
Maude as a module. We then use the Maude LTL model checker to formally verify an
algorithm enjoys some desired properties. Namely, we analyze a perpetual exploration
algorithm and a gathering algorithm, which have been already described in Section 2.1.2.

5.1 Specification and Model Checking of a Perpetual

Exploration Algorithm

We consider the exclusive perpetual exploration of the ring and analyze one of the first
algorithm proposed to solve this problem. More specifically we focus on the algorithm
designed for three robots by Blin et al. [10]. This section describes our way to formalize
the system and specify it in Maude.

5.1.1 System Specification

The system in which robots operate under the control of the algorithm will be modeled
and then specified in order to model check the algorithm. The system is specified in our
system module EXPLORATION, which defines the behavior of the system. We consider
first how to express the states of the system and then the state transitions for the system.
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State Expressions

Robots are denoted as r1, r2, ..., and the sort is Robot. In the Compute phase, a robot,
based on the perceived configuration, makes a decision to stay idle or move to one of its
adjacent nodes: either the node on the right or the node on the left. Pending moves are
denoted as L, R, and nil corresponding respectively to moving to the right, moving to
the left, and staying idle, and the sort is Pending.

Since the algorithm works on a ring shape network, our modeling of the system respects
the ring. Although the ring is an anonymous ring without orientation and the robots on
the ring are anonymous, for model checking purpose, we name the robots and number
the nodes of the ring. For a ring of size n, nodes are labeled from 0 to n − 1 following
an arbitrary clockwise ordering. Each robot is given a different name. We want to note
that this does not affect the fact that the ring and the robots are anonymous since our
implementation of the rules for the algorithm recognizes the robots are identical, and
likewise with the nodes.

Each robot is located in one node of the ring. When a node is occupied by robots, the
node is called a non-empty node. Otherwise, it is called an empty node. We actually
represent the ring by the set of all non-empty nodes. Each such node is denoted as
<r,d,p>, where r is the name of the robot, d is the label of the node, and p is the

pending move of the robot. The corresponding sort is Node.
The ring is denoted as a commutative and associative set of these non-empty nodes

and the sort is Ring. Rings without any robots are called empty rings and we use empR,
a constant of the sort Ring, for them.

subsort Node < Ring .

op <_,_,_> : Robot Nat Pending -> Node [ctor] .

op empR : -> Ring [ctor] .

op __ : Ring Ring -> Ring [ctor assoc comm id: empR] .

where Nat is the sort for natural numbers.
We define the sort Size for the size of a ring. This sort is a super-sort of the sort

Nat. The constant size, an element of the sort Size, is used for the size of a ring. The
configuration of a system is denoted as {R}, where R is an element of the sort Ring, and
the sort is Config. The system is described by the configuration and the size of the ring.

op {_} : Ring -> Config .

op size : -> Size .

Some examples of how to describe a system are showed in Figure 5.1.
In any initial configuration of the system, there is no two robots located on the same

node and the pending move of any robots is nil.
We define two important concepts: interval and order. Given two robots r1 and r2

located respectively on the nodes n1 and n2, we define the intervals between the two
robots as the number of edges between n1 and n2. Since the environment is a ring, for
each pair of robots there are two different intervals, (1) the clockwise interval which counts
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Figure 5.1: Describing a system by the configuration and the size of the ring

edges from n1 to n2 following the clockwise orientation, and (2) the counter-clockwise
interval, which counts edges in the other direction.

The latter concept takes into account the order of robots on the ring. Since the algo-
rithm under study works for three robots, we define the notion only for this case. It is
possible to extend the notion for arbitrary number of robots. Given three robots r1, r2,
and r3 located respectively in the node n1, n2, and n3, the three robots are said to be in
the right (or clockwise) order if and only if n2 is between n1 and n3 on the ring according
to the clockwise orientation (e.g. the three first configurations of Figure 5.1). Conversely,
the three robots are said to be in the left (or counter-clockwise) order if and only if n2
is after n1 and before n3 on the ring according to counter-clockwise orientation (e.g. the
last configuration of Figure 5.1). We calculate the interval of two robots and the order of
three robots by using the following functions:

op order : Nat Nat Nat -> Pending .

op interval : Nat Nat Pending -> Nat .

The function order(N1, N2, N3) returns the order of three robots located in the nodes
N1, N2 and N3. The order can be L (left order), R (right order), or nil in case the three
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robots are not in any order.1 Function interval(N2, N1, M) returns the interval of the two
robots located on N1 and N2. The third parameter M, which can be L, R, or nil, is used
to determine which way we calculate the interval.

State Transitions

All robots execute the same algorithm and they do not have the ability to distinguish
themselves from others. The algorithm is given as the set of rules as presenting in Sec-
tion 2.1.2. A robot first takes a look at the system in the Look phase to capture the
snapshot of the system, which contains the positions of all robots on the ring. Then
based on the snapshot and following the set of the rules of the algorithm, it decides the
next movement in the Compute phase. The pending move will be executed in the Move
phase. The state transition for the system is conducted from the rules of the algorithm.
The rules of the algorithm will be implemented as rewriting rules in Maude. The follow-
ing rewriting rules do not identify robots and also nodes. They totally depend on the
positions of all robots on the ring. This ensures that the ring and robots are considered
anonymous. Since the Compute phase uses the snapshot of the system taken in the Look
phase as input and a robot does not perform any movements during two phases, we com-
bine the two phases in the one called the Look-Compute phase in which a robot takes the
snapshot of the system and calculates the movement. A robot decides to take a snapshot
of the system and calculate a movement only when it dose not hold a pending move. The
pending move is stored in the third parameter of the notation of a non-empty node as
<r,d,p>. We separate the set of rewriting rules for the system into two sets: the set of
rules for the Look-Compute phases corresponding to the set of the rules of the algorithm
and the set of rules for the Move phase.

The rules for the Look-Compute phase. Each of the following rewriting rule corresponds
to one rule in the set of rules of the algorithm. For each rule, we keep the same name as
in the original paper [10] to easily match them. In the following part, R1, R2, and R3 are
variables of the sort Robot; N1, N2, and N3 are variables of the sort Nat; and M, M1, M2,
and M3 are variables of the sort Pending.

1. The rewriting rule corresponding to the rule RL1 given on Figure 2.6:

crl [RL1] : { <R1,N1,nil> <R2,N2,M2> <R3,N3,M3> }

=> { <R1,N1,change(M)> <R2,N2,M2> <R3,N3,M3> }

if M := order(N1,N2,N3) /\ interval(N2,N1,M) == 1

/\ interval(N3,N2,M) == 3 .

where the function change(M) returns the opposite value of M. If M is L then it returns R,
if M is R then it returns L, and nil otherwise.

The lefthand side and the conditional part of the rule encodes the initial configuration
of the rule RL1 (i.e. the left picture of Figure 2.6). The initial configuration contains

1When two robots are located on the same nodes, there is no order.
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three robots such that, given an orientation (clockwise or counterclockwise), the two first
robots are at distance 1 (i.e. neighbors) and the third robot is at distance 3 from the
second one; both distances/intervals being computed in the same orientation.

The topmost robot of Figure 2.6 corresponds to robot R1 of the Maude rule. According
to the rule RL1, this robot has to move if it takes a snapshot of this configuration. In
Maude, it is specified by having no pending move initially (the parameter nil on the
lefthand side), while having a pending move (change(M) on the righthand side). The
direction of the pending move is chosen to match the direction of the move in rule RL1.

Since the two other robots are not supposed to move in RL1; the parameters M2 and
M3 respectively are not updated in the conditional rule.

Note that the rule RL1 could have equivalently be written by exchanging the roles of
the first and third robot, as proposed below. We choose the previous specification to
match as closely as possible the rules given in the original paper.

crl [RL1] : { <R1,N1,M1> <R2,N2,M2> <R3,N3,nil> }

=> { <R1,N1,M1> <R2,N2,M2> <R3,N3,M> }

if M := order(N1,N2,N3) and interval(N2,N1,M) == 3

and interval(N3,N2,M) == 1 .

2. The rewriting rule corresponding to the rule RL2 given on Figure 2.7.

crl [RL2] : { <R1,N1,M1> <R2,N2,nil> <R3,N3,M3> }

=> { <R1,N1,M1> <R2,N2,change(M)> <R3,N3,M3> }

if M := order(N1,N2,N3) /\ interval(N2,N1,M) == 2

/\ interval(N3,N2,M) == 3 .

3. The rewriting rule corresponding to the rule RL3 given on Figure 2.8.

crl [RL3] : { <R1,N1,M1> <R2,N2,M2> <R3,N3,nil> }

=> { <R1,N1,M1> <R2,N2,M2> <R3,N3,change(M)> }

if M := order(N1,N2,N3) /\ interval(N2,N1,M) == 1

/\ interval(N3,N2,M) == 4 .

4. The rewriting rule corresponding to the rule RC1.

crl [RC1] : { <R1,N1,M1> <R2,N2,M2> <R3,N3,nil> }

=> { <R1,N1,M1> <R2,N2,M2> <R3,N3,change(M)> }

if M := order(N1,N2,N3) /\ interval(N2,N1,M) == 1

/\ interval(N3,N2,M)> 4

/\ (interval(N3,N2,M) < interval(N1,N3,M)) .
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5. The rewriting rule corresponding to the rule RC2.

crl [RC2] : { <R1,N1,M1> <R2,N2,M2> <R3,N3,nil> C }

=> { <R1,N1,M1> <R2,N2,M2> <R3,N3,M> C }

if M := order(N1,N2,N3) /\ (interval(N2,N1,M)> 0)

/\ (interval(N3,N2,M)> 1)

/\ (interval(N3,N2,M) == interval(N1,N3,M)) .

6. The rewriting rule corresponding to the rule RC3.

crl [RC3] : { <R1,N1,M1> <R2,N2,nil> <R3,N3,M3> C }

=> { <R1,N1,M1> <R2,N2,change(M)> <R3,N3,M3> C }

if M := order(N1,N2,N3)

/\ (interval(N3,N2,M) > interval(N2,N1,M))

/\ (interval(N1,N3,M) > interval(N3,N2,M))

/\ (interval(N2,N1,M) > 1) .

7. The rewriting rule corresponding to the rule RC4.

crl [RC4] : { <R1,N1,nil> <R2,N2,M2> <R3,N3,M3> C }

=> { <R1,N1,change(M)> <R2,N2,M2> <R3,N3,M3> C }

if M := order(N1,N2,N3)

/\ (interval(N2,N1,M) == 1)

/\ (interval(N3,N2,M) == 1) .

This rule is more subtle than other rules and the formalization from the original rule
is less straightforward. The initial configuration (lefthand side of the rewriting rule) is
symmetrical; three robots are adjacent to each other. The commutativity of the sort Ring
and our notions of order and interval guarantee that this specification is conform to the
original rule; it is possible that either one or two robots compute a move.

8. The rewriting rule corresponding to the rule RC5.

crl [RC5] : { <R1,N1,M1> <R2,N2,M2> <R3,N3,nil> C }

=> { <R1,N1,M1> <R2,N2,M2> <R3,N3,M> C }

if M := order(N1,N2,N3)

/\ (interval(N2,N1,M) == 1)

/\ (interval(N3,N2,M) == 2) .

The rules for the Move phase. Each robot may move to its adjacent node on the left, its
adjacent node on the right or stay idle. This movement is based on its pending move. In
the following, the function moveL(N) is to move the robot located on the node N to the
adjacent node on the left and the function moveR(N) is to move the robot located on the
node N to the adjacent node on the right .
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1. If the stored pending move is L, the robot will move to the adjacent node on the left.

rl [RL-Lpending] : { <R1,N1,L> C } => { <R1,moveL(N1),nil> C } .

2. If the stored pending move is R, the robot will move to the adjacent node on the
right.

rl [RL-Rpending] : { <R1,N1,R> C } => { <R1,moveR(N1),nil> C } .

5.1.2 Model Checking

In order to verify the correctness of an algorithm, two properties have to be model-checked:

• The perpetual exploration property, and

• The mutual exclusion property.

where the former is a liveness property, while the latter is a safety property.
The perpetual exploration property guarantees that each robot visits infinitely often

each node. It is a liveness property which ensures that something good eventually happens.
The mutual exclusion property ensures that no two robots are located on any node at any
given time. This property is a safety property, which guarantees that something bad never
happens. Maude is equipped with an LTL model checker [17, 38]. These two properties
can be expressed in the LTL used by Maude.

State Predicates

We define the state predicates perexp and mutual which are used to specify the two prop-
erties as LTL formulas. The two predicates are specified in the module EXPLORATION-PREDS,
which protects the module EXPLORATION and includes the module SATISFACTION. The sort
Config is chosen as our kind for states and declared as sub-sort of the sort State.

mod EXPLORATION-PREDS is

pr EXPLORATION .

inc SATISFACTION .

subsort Config < State .

...

endm

where ‘...’ indicates the part in which the syntax and semantics of the state predicates
are specified. The specification of predicate perexp(R, N) is as follows:

op perexp : Robot Nat -> Prop .

eq { < R, N, M > C } |= perexp(R, N) = true .

eq { C } |= perexp(R, N) = false [owise] .
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where R is a variable of the sort Robot, N a variable of the sort Nat, and M a variable of
the sort Pending. The predicate perexp(R, N) is true in the configuration S if and only
if the robot R is located in the node N in S, as <R,N,M>, and false otherwise.

The mutual predicate is specified as follows:

op mutual : -> Prop .

op checkMutual : Config -> Bool .

op checkMutual1 : Robot Nat Config -> Bool .

eq { C } |= mutual = checkMutual({ C }) .

eq checkMutual({ empR }) = false .

eq checkMutual({ < R1, N1, M1 > C }) =

checkMutual1(R1, N1, { C }) or checkMutual({ C }) .

eq checkMutual1(R1, N1, { empR }) = false .

eq checkMutual1(R1, N1, { < R2 , N2, M2 > C }) =

(N1 == N2) or checkMutual1(R1, N1, { C }) .

where R1 and R2 are variables of the sort Robot, N1 and N2 are variables of the sort
Nat, M1 and M2 are variables of the sort Pending, and C is a variable of the sort Ring.

The value of the predicate mutual depends on the result of the function checkMutual

which is false if and only if there are no two robots located in the same node and true
otherwise.

Property Specifications as LTL Formulas

The perpetual exploration property and the mutual exclusion property will be specified
as LTL formulas. The LTL formula saying that the robot r eventually visits the node 0,
eventually visits the node 1, ..., and eventually visits the node n-1 is as follows:

([]<> (perexp(r, 0))) /\ ([]<> (perexp(r, 1)))

/\ ([]<> (perexp(r, 2))) /\ ...

/\ ([]<> (perexp(r, n-2))) /\ ([]<> (perexp(r, n-1))) .

where n is the size of the ring.

We define a function named perexpGen as the following function to automatically
generate this formula:

op perexpGen : Robot Nat -> Formula .

eq perexpGen(R, 0) = ([]<> (perexp(R, 0))) .

ceq perexpGen(R, N) = ([]<> (perexp(R, N)))

/\ perexpGen(R, sd(N, 1)) if N > 0 .

72



where R and N are variables of the sort Robot and Nat respectively.

The perpetual exploration property is satisfied if and only if the LTL formula
perexpGen(r,n) is satisfied for all robots r in the system of a n-node ring:

perexpGen(r1,n) and perexpGen(r2,n) and ... and perexpGen(rk,n) .

where k is the number of robots in the system.

The mutual exclusion property is expressed as the following LTL formula:

[]~ (mutual)

This formula says that mutual predicate is always false, meaning that the mutual exclusion
will never happen.

5.1.3 Experiments and Counterexample

The module EXPLORATION specifying the system in which robots execute the algorithm has
been given. In the module EXPLORATION-PREDS, which protects the module EXPLORATION,
the two predicates and their semantics have been defined. The two properties have been
specified as LTL formulas. All requirements to perform the model checking are satisfied.
We define a new module, called EXPLORATION-CHECK. The module EXPLORATION-CHECK

imports the module MODEL-CHECKER, which supports LTL model checking. We then model
check the two given LTL formulas specifying the two properties for a given initial config-
uration. An initial configuration is defined as the constant initial of the sort Config in
the module EXPLORATION-CHECK. First, we perform the model checking for the ring with
size 10.

op initial : -> Config .

ops r1 r2 r3 : -> Robot .

eq initial = { < r1, 1, nil > < r2, 2, nil > < r3, 3, nil > } .

eq size = 10 .

We are now ready to model check the two properties. We use the key operator modelCheck,
which takes a state and the LTL formula and returns either the Boolean true if the for-
mula is satisfied, or a counterexample when it is not satisfied. The first property to check
is perpetual exploration:

red modelCheck(initial, perexpGen(r1, 9)) .

red modelCheck(initial, perexpGen(r2, 9)) .

red modelCheck(initial, perexpGen(r3, 9)) .

The second property to check is mutual exclusion:

red modelCheck(initial, []~ (mutual)) .
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For the ring with of 10, we can define all possible initial configurations of the system. It
takes less than 30 seconds to model check both properties for all initial configurations.

For the ring of size 10, there is one initial configuration for which the model checker finds
a counter example for each formula; this is the initial configuration with three adjacent
robots. This means that all the formulas specifying the two properties are not satisfied.
The counter example is shown as follows:

reduce in M-CHECK : modelCheck(initial, []~ mutual) .

rewrites: 284597 in 89ms cpu (91ms real) (3163946 rewrites/second)

result ModelCheckResult: counterexample(...)

reduce in M-CHECK : modelCheck(initial, perexpGen(r1, 9)) .

rewrites: 284597 in 89ms cpu (91ms real) (3163946 rewrites/second)

result ModelCheckResult: counterexample(...)

reduce in M-CHECK : modelCheck(initial, perexpGen(r2, 9)) .

rewrites: 284597 in 89ms cpu (91ms real) (3163946 rewrites/second)

result ModelCheckResult: counterexample(...)

reduce in M-CHECK : modelCheck(initial, perexpGen(r3, 9)) .

rewrites: 284597 in 89ms cpu (91ms real) (3163946 rewrites/second)

result ModelCheckResult: counterexample(...)

where ‘...’ is the following counter-example:

{{< r1,1,nil > < r2,2,nil > < r3,3,nil>},’RC4}

{{< r1,1,L > < r2,2,nil > < r3,3,nil >},’RC4}

{{< r1,1,L > < r2,2,nil > < r3,3,R >},’RL-Lpending}

{{< r1,0,nil > < r2,2,nil > < r3,3,R >},’RC5}

{{< r1,0,L > < r2,2,nil > < r3,3,R >},’RL-Rpending}

{{< r1,0,L > <r2,2,nil > < r3,4,nil >},’RC2}

{{< r1,0,L > < r2,2,R > < r3,4,nil >},’RL-Rpending}

{{< r1,0,L > < r2,3,nil > < r3,4,nil >},’RL1}

{{< r1,0,L > <r2,3,nil > < r3,4,R >},’RL-Rpending}

{{< r1,0,L > < r2,3,nil > < r3,5,nil>},’RL2}

{{< r1,0,L > < r2,3,R > < r3,5,nil >},’RL-Lpending}

{{< r1,9,nil > < r2,3,R > < r3,5,nil >},’RC2}

{{< r1,9,L > < r2,3,R > < r3,5,nil >},’RL-Lpending}

{{< r1,8,nil > < r2,3,R > < r3,5,nil >},’RL2}

{{< r1,8,nil > < r2,3,R > < r3,5,L >},’RL-Lpending}

{{< r1,8,nil > < r2,3,R > < r3,4,nil >},’RL-Rpending}

{{< r1,8,nil > < r2,4,nil > < r3,4, nil >},deadlock}

The scenario of the counter example is depicted in Figure 5.2. Looking at the counter
example, we can recognize that a collision situation occurs, in which there are two robots
located in the same node at the same time. This shows that the mutual exclusion property
is not satisfied.
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Figure 5.2: Scenario of the counter example
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Figure 5.2: Scenario of the counter example (continued)
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The perpetual exploration property is also not satisfied since the two robots collide. No
robot, after that, can move anymore.

The counter example states that the two properties are not satisfied, and conclusively,
the algorithm does not work correctly. While being outside the scope of this paper, it
is worth mentioning that the algorithm can be fixed by changing the rule RC5. Unfor-
tunately, it is not possible to deduce the required modification directly from the counter
example.

Although the counter-example has been found, we still conduct some more experiments
for other sizes of rings. In our experiments, it takes less than 5 minutes to model check
the first property and less than 30 second to model check the second property for rings of
size up to 20. Computations were executed on a 4GHz Intel Core i7 processor with 32GB
of RAM.

We have described how to specify and model check a mobile robot algorithm in Maude.
The model checker found counterexamples showing that the analyzed algorithm is not
correct since it does not satisfy the two properties.

5.2 Model Checking of Robot Gathering

We propose a formal model for mobile robot algorithms on anonymous ring shape network
under multiplicity and asynchrony assumptions. Robots are assumed to have the weak
multiplicity detection capacity. We then use the Maude LTL model checker to formally
verify an algorithm for robot gathering problem on ring enjoys desired properties. We
focus on the gathering problem and analyze the algorithm proposed by D’Angelo et al. [21]
as a case study. As the result of the model checking, counterexamples have been found.
We detect the sources of unforeseen design errors. We, furthermore, give our explanations
on these errors. Unavoidably, multiplicity and asynchrony make arduous to formalize the
systems. We pay much attention to this problem and solve it in our model.

5.2.1 Formal Model

For these systems, a state of the system is called a configuration. A configuration is de-
scribed in terms of a view starting from any robot and traversing the ring in one arbitrary
direction. When a robot wakes up, it takes the snapshot of the current configuration of
the system, and computes a move (called a computed move) based on this snapshot. The
computed move is either staying idle or moving to one of its adjacent nodes. In the latter
case, it moves to the adjacent node, eventually. In the following part, Maude notation is
used to describe state machines. We consider how to express a state and how to describe
an event as a state transition.

State Expressions

We denote a robot as a pair 〈 I, P 〉, where I denotes the size of the interval, an interval is
a maximal set of empty consecutive nodes, between it and the next robot, and P denotes
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the computed move. The value of P could be nil, fc or fc- (fc stands for following the
configuration). nil means that the robot has no pending move (i.e last computed move
was idle). fc (resp. fc-) means that the robot has a pending move to the adjacent node
located after it (resp. before it) following the direction of the configuration. Initially,
the computed move of each robot is nil. If P is nil, the robot may be activated and
will compute a new move and update P accordingly. If P is not nil, the robot may be
activated and will execute the move and update P to nil after the move. We use the
sort Pending to denote computed moves and the sort Pair to denote pairs. They are
expressed by the following operators that are constructors as specified with ctor.

op <_, _> : Int Pending -> Pair [ctor] .

The sort Int is used for denoting integers. The operator < , > is used to construct Pair.
For c1 ∈ Int, c2 ∈ Pending, < c1, c2 > ∈ Pair.

A configuration is expressed as a sequence of pairs. It contains the information about the
locations of all robots and their states. The corresponding sort is Config. Configurations
are defined by the following operators.

subsort Pair < Seq .

op empS : -> Seq [ctor] .

op _ _ : Seq Seq -> Seq [ctor assoc id: empS] .

op {_} : Seq -> Config [ctor].

where the sort Seq is used for sequences of pairs. empS denotes the empty sequence of
pairs. Seq is a supersort of Pair, which means that each Pair is treated as the singleton
sequence only consisting of the pair. The juxtaposition operator is used to construct
non-trivial sequences of pairs. For c1, c2 ∈ Seq, c1 c2 ∈ Seq. The juxtaposition operator

is associative as specified with assoc, and empS is an identity of the operator specified
with id: empS.

A configuration is of the form { } of a sequence. States of the system are expressed as
terms of the sort Config. A term of a sort S is a variable of S or f(t1, . . . , tn) if f is an op-
erator declared as f : S1 . . . Sn→ S (n ≥ 0) and t1, . . . , tn are terms of S1, . . . , Sn. If f has
any underscores , such as 〈 , 〉, then a different notation than f(t1, . . . , tn) is used, such
as 〈I, P 〉 that is a term of the sort Pair, where I is term of the sort Int and P is a term
of the sort Pending. Constructor terms are those consisting of constructors and variables.
Ground term are those having no variables. Ground constructor terms hence are those
composed of constructors only and no variables . Ground constructor terms of the sort
Config express concrete states of the system. For example, the initial configuration of the
system as shown in Fig. 5.3(a) could be expressed as the view starting from the robot r in
clockwise order, {〈1, nil〉〈0, nil〉〈5, nil〉〈0, nil〉〈1, nil〉〈3, nil〉}. Let us assume that robot
r1 is activated, takes a look at the configuration, and computes a move. Assuming that
the move is to move to the node located after it, the system reaches the configuration as
shown in Fig. 5.3(b). It is expressed as {〈1, nil〉〈0, nil〉〈5, fc〉〈0, nil〉〈1, nil〉〈3, nil〉}. If the
robot r1 is activated again, it executes the move; the system becomes as shown Fig. 5.3(c)

78



r

(a) (d)(b) (c)

r
1

r
1

r

r
1

r
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Figure 5.4: A transition graph of one specific initial configuration (a)

which is expressed as {〈1, nil〉〈1, nil〉〈4, nil〉〈0, nil〉〈1, nil〉〈3, nil〉}. A robot is not allowed
to look at the second element of the pairs of other robots and it calculates a move based on
its own view of the system. For example, the view of robot r1 in Fig. 5.3(a) could be either
{〈5, nil〉〈0, nil〉〈1, nil〉〈3, nil〉〈1, nil〉〈0, nil〉} or {〈0, nil〉〈1, nil〉〈3, nil〉〈1, nil〉〈0, nil〉〈5, nil〉}
without knowing anything about clockwise order. It is worth noting that this allows us
to guarantee that robots have no sense of direction and do not know the pending moves
of other robots.

Due to the multiplicity assumption, it is possible that a robot moves to a node that
is occupied by other robots. The node is, or becomes a multiplicity. There may be
more than one of such robots in one multiplicity. Since the robots are anonymous, we
can denote all of them by a pair 〈I, P 〉 in which the value of I is set to the negative of
the additional number of robots located on the multiplicity (−3 indicates 3 additional
robots, which means a multiplicity of 4 robots). Note that this notation allows us to
represent the exact number of robots in multiplicities. But robots do not have access to

79



this information; they can only know if there is a multiplicity (i.e. a negative number).
Our encoding allows a simple conversion to consider global strong multiplicity detection.
For instance, the configuration as shown in Fig. 5.3(d) assuming that there are two robots
in each multiplicity, is expressed as {〈2, nil〉〈−1, nil〉〈5, nil〉〈−1, nil〉〈2, nil〉〈3, nil〉}. We
use this encoding to match as closely as possible the definitions introduced in [21].

State Transitions

Because the Compute phase uses the snapshot of the system taken in the Look phase
as input and a robot does not perform any movements during two phases, to model the
system, we combine the two phases into one called the Look-Compute phase in which a
robot takes the snapshot of the system and computes a move. When either (1) a robot
takes the snapshot of the system and then computes a move, or (2) a robot executes its
pending move, the current configuration of the system changes to another. Such changes
are called a state transition (or a transition). A transition is expressed as a pair (l, r),
where l and r are configurations.

Let us examine the following scenario. Given an initial configuration as shown in
Fig. 5.4(a) and assumed that both robots r1 and r2 are allowed to move, it may happen
that only one robot (assuming r1) looks at the system and computes a move, or both
r1 and r2 do. In the former case, the configuration of the system is transferred to the
one as shown in Fig. 5.4(b). The transition is named trans1 and expressed by the pair
(〈1, nil〉〈0, nil〉〈5, nil〉〈0, nil〉〈1, nil〉〈3, nil〉, 〈1, nil〉〈0, nil〉〈5, fc〉〈0, nil〉〈1, nil〉〈3, nil〉). In
the latter case, the configuration of Fig. 5.4(c) is established. The configuration of
Fig. 5.4(d) is obtained after r1 in the configuration of Fig. 5.4(b) executes its pending
move. The configurations of Fig. 5.4(e) and Fig. 5.4(f) are obtained from the configu-
ration of Fig. 5.4(c). The graph in Fig. 5.4 shows possible transitions from the initial
configuration. A sequence of transitions starting from an initial configuration, e.g trans1,
trans3, trans6, ..., is called a possible execution. There may exist more than one execu-
tion from a given initial configuration.

We describe the actions of robots as transition rules. A transition rule is described in
the form of a rewrite rule. Each rewrite rule is defined only over Config that does not
have any sub-sorts and in the form L ⇒ R such that L only consists of constructors and
variables. We give here a simple example to explain how an action can be expressed as
a transition rule. The following transition rule describes the action corresponding to a
robot executing its pending move when there is no multiplicity in the system.

crl [fc-pending] : {S1 < I1, P > < I2, fc > S2} =>

{S1 < I1 + 1, P > < I2 - 1, nil > S2}

if nonMul({S1 < I1, P > < I2, fc > S2}).

where S1, S2 ∈ Seq, I1, I2 ∈ Int and P ∈ Pending are variables of those sorts; The func-
tion nonMul returns true when the configuration has no multiplicity and false otherwise.

The above rule is a conditional writing rule and the condition is specified in the if
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part. The rule then will be applied if the condition is satisfied. The configuration {S1 〈
I1, P 〉 〈 I2, fc 〉 S2} expresses any state such that the robot 〈 I2, fc 〉 holds a pending
move fc and the robot before it is 〈 I1, P 〉. Such a state may have some more robots
before and after the two robots that are expressed as S1 and S2, respectively. The ground
constructor term {〈1, nil〉〈0, nil〉〈5, fc〉〈0, nil〉〈1, nil〉〈3, nil〉} expresses the state as shown
in Fig. 5.4(b). There is no multiplicity in this configuration. The left-hand side of the
above rewrite rule fc-pending matches this ground term by substituting S1, I1, P, I2 and
S2 with 〈1, nil〉, 0, nil, 5 and 〈0, nil〉〈1, nil〉〈3, nil〉, and the rewrite rule can be applied to
the term, changing it to {〈1, nil〉〈1, nil〉〈4, nil〉〈0, nil〉〈1, nil〉〈3, nil〉} expressing the state
as shown in Fig. 5.4(d). In this way, a rewrite rule expresses a set of state transitions.

To make T, a set of transitions (s, s′), from rewrite rules L⇒ R, let σ be a substitution
from the variables in L to appropriate constructor terms, σ(L) is a constructor term,
but σ(R) is not necessarily, and then it is necessary to reduce σ(R) with equations. Let
nf(t) be the term obtained by reducing t with equations. So, (σ(L), nf(σ(R))) is a state
transition obtained from L ⇒ R. Let σ(L)⇒ nf(σ(R)) be called a ground instance of L
⇒ R.

Definition 5.2.1 (TRRS). Let TRRS be the set of all ground instances of the all transition
rules.

Formal Model

We formalize a mobile robot system as a state machine. The state machine includes the
set of all possible states as the set of all ground constructor terms SRS, the set of initial
states IRS and the binary relation over states TRS. IRS is a subset of SRS such that for
each state s ∈ SRS, there is no multiplicity and the configuration does not belong to
NG ∪ SP4. TRS is the binary relation over SRS made from TRRS.

Definition 5.2.2 (MRS). The state machine formalizing a mobile robot system is MRS,
where

1. SRS is the set of all ground constructor terms whose sorts are Config ;

2. IRS is a subset of SRS such that (∀s ∈ IRS) (numMul(s) = 0) and (not ng&sp4(s));

3. TRS is the binary relation over SRS defined as follows:

{(l, r) | l ⇒ r ∈ TRRS}.

The function numMul counts the number of the multiplicities in the system and the
function ng&sp4 returns true when a configuration is in NG ∪ SP4 and false otherwise.

We specify this formal model in Maude specification languages. Note that our specifi-
cation is coherent [17].
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5.2.2 Model Checking

Model checking is a verification technique that explores all possible system states and
checks whether a desired property that should be satisfied by an algorithm is satisfied.
The desired property is required to be formally expressed. A model checker then verifies
whether the formula is satisfied for all possible executions. If the formula is not satisfied,
a counterexample is found. We specify the formal model of the system in Maude. We then
apply Maude LTL model checker to formally verify the algorithm. The original paper [21]
has given very important lemmas, such as Lemma 5, 6, and 7, that state properties
that need to be satisfied at the end of each phase. These lemmas are used to model
check the algorithm. We have formally expressed these lemmas as LTL formulas [38].
We give here the formalization of Lemma 6 as an example. Lemma 6 states a property
that must be satisfied at the end of the COLLECT phase. Namely, it states that the
configuration obtained at the end of the COLLECT phase contains two multiplicities and
satisfies a condition (called located condition) that the configuration needs to be in some
specific configurations in which robots are located in some specific locations. Note that
the COLLECT phase can start only if the initial configuration is symmetric or at one
step from specific symmetric configurations. To model check this lemma, we expressed it
as an LTL formula. We define the atomic propositions endOfColl and coll as follows:

C |= endOfColl = checkOfColl(C) .

C |= coll = checkColl(C) .

checkColl(C) = checkAllowedSym(C) and (numMul(C) == 2) and

checkCondition(C) .

The function checkOfColl checks whether a system state C is at the end of the COLLECT
phase. The atomic proposition endOfColl, thus, is true if and only if the COLLECT phase
has just finished. The function checkAllowedSym checks whether a configuration is an
allowed symmetric configuration. The function checkCondition returns true when the
configuration satisfies the located condition and false otherwise. The atomic proposi-
tion coll, thus, is true when the configuration is an allowed symmetric configuration
containing two multiplicities and satisfies the located condition and false otherwise. .
The mathematical notation == stands for equivalence
The lemma then is formally expressed as an LTL formula as follows.

lemma6 = [] (endOfColl -> coll) /\ <> endOfColl .

where[] stands for always (globally) and <> stands for eventually (in the future).

Intuitively, the formula states that it is always true that the phase COLLECT will fi-
nally terminate and whenever the phase has been just over, then coll is true. This
means that the Lemma 6 is satisfied at the end of the COLLECT phase.
This formula is used to conduct the model checking for the algorithm. To model check,
we separate the formula into two sub-formulas and model check them separately in order
to easily detect the source of errors (if some are found). Namely, we use the two following
formulas:
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lemma6-1 = <> endOfColl .

lemma6-2 = [] (endOfColl -> coll) .

5.2.3 Experiments and Counterexamples

As the result of the model checking, counterexamples are found. A counterexample is
of the form of a possible execution: it includes all visited states and the sequence of
transition rules applied. This helps to analyze counterexamples to detect the source of
the detected errors. We present two counterexamples as follows:

The first one results from the model checking of the formula lemma 6-1.

reduce in EXPERIMENT : modelCheck(init, lemma6-1) .

rewrites: 89524096 in 40088ms cpu (40173ms real) (2233163 rewrites/second)

result ModelCheckResult: counterexample(

{{< 0,nil > < 1,nil > < 0,nil > < 3,nil>

< 0,nil > < 1,nil > < 0,nil > < 0,nil >},’w5-fo}

{{< 0,nil > < 1,nil > < 0,nil > < 3,nil > < 0,fc >

< 1,nil > < 0,nil > < 0,nil >},’FC22-pending}

{{< 0,nil > < 1,nil > < 0,nil > < 4,nil > < -1,nil >

< 1,nil > < 0,nil > < 0,nil >},’coll-a-1-fo2}

{{< 0,nil > < 1,nil > < 0,nil > < 4,fc- > < -1,nil >

< 1,nil > < 0,nil > < 0,nil >},’FC-23-pending},

{{< 0,nil > < 1,nil > < -1,nil > < 5,nil > < -1,nil >

< 1,nil > < 0,nil > < 0,nil >},deadlock})

The counterexample shows that the system falls into a deadlock state. Indeed, the config-
uration {〈0, nil〉〈1, nil〉〈−1, nil〉〈5, nil〉〈−1, nil〉〈1, nil〉〈0, nil〉〈0, nil〉} belongs to the kind
of configurations that need to be handled by the COLLECT phase. However, the COL-
LECT phase could not deal with it. Thus, the system is not able to reach a valid state
at the end of the COLLECT phase. Analyzing this counterexample, we detect the er-
ror, which is described later in Section 4.1. This also means that the algorithm fails in
gathering all robots in the same location.

The second counter-example results from the model checking of the formula lemma 6-2.

reduce in EXPERIMENT : modelCheck(init, lemma6-2) .

rewrites: 15982060 in 7064ms cpu (7114ms real) (2262435 rewrites/second)

result ModelCheckResult: counterexample(

{{< 0,nil > < 1,nil > < 0,nil > < 3,nil >

< 0,nil > < 1,nil > < 0,nil > < 0,nil >},’w5-fo}

{{< 0,nil > < 1,nil > < 0,nil > < 3,nil >

< 0,fc > < 1,nil > < 0,nil > < 0,nil >},’FC22-pending}

{{< 0,nil > < 1,nil > < 0,nil > < 4,nil >

< -1,nil > < 1,nil > < 0,nil > < 0,nil >},’coll-a-1-fo1}

{{< 0,nil > < 1,nil > < 0,fc- > < 4,nil >
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< -1,nil > < 1,nil > < 0,nil > < 0,nil >},’FC-23-pending},

{{< 0,nil > < 0,nil > < 1,nil > < 4,nil >

< -1,nil > < 1,nil > < 0,nil > < 0,nil >},’ofColl})

This counterexample occurs because the state {〈0, nil〉〈0, nil〉〈1, nil〉〈4, nil〉〈−1, nil〉〈1, nil〉
〈0, nil〉〈0, nil〉} is at the end of the COLLECT phase, but the atomic propositions coll
returns false. Specifically, at end of the COLLECT phase, the configuration does not
contain two multiplicities and satisfy the located condition.

Since counterexamples are found, the lemma does not hold. The remainder of this
section reports on some errors that we have found. In addition, we also give our opinions
about the origins of these errors.

Omission of Special Cases

We report here the error that corresponds to the first counterexample. The error occurs
when the algorithm deals with symmetric configurations with two multiplicities. Single
robots in such configurations should move such that the configuration eventually reaches
a symmetric one with (i) size nodes occupied, (ii) two multiplicities, (iii) two robots
adjacent to these multiplicities, and (iv) other robots in specific locations. However, it
is not straightforward to design a strategy for these robots. Two examples are shown
in Fig. 5.5. For the configuration of Fig. 5.5(a), the two symmetric robots are expected
to move such that either the configuration of Fig. 5.5(b) or Fig. 5.5(c) is obtained. In
the same way, the configurations of Fig. 5.5(e) and Fig. 5.5(f) are obtained from the
configuration of Fig. 5.5(d).

Unfortunately, a counterexample is found. Our model checking detects that the algo-
rithm does not work correctly for the configuration of Fig. 5.5(d). The two single robots
do not move as expected. The same configuration is obtained instead of the configura-
tions of Fig. 5.5(e), 5.5(f). Indeed, the algorithm only works correctly for configurations in
which there are two single robot adjacent to the two multiplicities, e.g. the configurations
similar to the one of Fig. 5.5(a), but it does not work for configurations such as the one
of Fig. 5.5(d).

This error occurs because some cases are missing in the algorithm. For instance, the
configurations as the configuration of Fig. 5.5(d) are not considered. That is why the
algorithm is not able to deal with them. This would be very difficult to detect without
the help of an automatic tool. The error leads to the fact that the system will fall to
a deadlock state and all robots in the system are unable to locate at the same location.
This error could be fixed by finding a strategy to deal with these case. However, we need
to take care of the fact that the new strategies may be conflicting with exiting strategies.

Design Errors (difficult to detect by mathematical proof)

This part reports errors of a different kind compared to the one of Section 4.1. One of the
main issues to be handled by the algorithm concerns symmetric configurations in which
two symmetric robots are supposed to move symmetrically. Let us explain the idea with
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Figure 5.5: Expected executions for the two specific symmetric configurations with two
multiplicities.

an example. For the symmetric configuration as shown in Fig. 5.6(a), the two symmetric
robots r and r1 are allowed to symmetrically move. It may happen that both r and r1
move and the configuration of Fig. 5.6(c) is obtained. It may also happen that only r
moves, while r1 already computed the move, but has not yet moved (means that it holds a
pending move) or r1 has not yet performed its Look-Compute phase and the configuration
of Fig. 5.6(b) is obtained. This configuration is an asymmetric configuration that may
contain a possible pending move (only robot r1 knows if it has already computed its move;
other robots do not know it). The procedures CHECK-REDUCTION and PENDING-
REDUCTION are designed to deal with this case. The robots in such configuration are
supposed to detect this situation and the robot r1 is expected to move in order to reach
the configuration of Fig. 5.6(c). It is not so difficult to design procedures that let robots in
these configurations to recognized these configurations and move as expected. However,
the problem is when these procedures are included in the entire program.

(a)

r r
1

(c)(b)

r rr
1

r
1

Figure 5.6: Three configurations where (a) is some initial configuration, (b) is the con-
figuration obtained if only one robot moves, and (c) the one obtained if both symmetric
robots move.

As written in [21], the procedure CHECK-REDUCTION also recognizes some other
configurations where PENDING-REDUCTION should not be applied. One of them is
the configuration depicted in Fig. 5.7(b). The authors use this configuration as an ex-
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(a) (b) (c) (d) (f)

Figure 5.7: Five configurations. The gathering algorithm should follow the sequence (a),
(b), (c), (d), but the configuration (f) is actually obtained from (b).

ample to explain the algorithm (Figure 3 in [21]). The algorithm is expected to work as
follows: since the configuration of Fig. 5.7(a) is symmetric with one robot on the axis,
the robot on the axis has to move, obtaining the configuration of Fig. 5.7(b). This con-
figuration is asymmetric and and contains only one supermin2. There is one important
point emphasized by authors: the robots can recognize that there are no pending moves
in this configuration. Therefore, the unique supermin is reduced until a multiplicity is
created. In this example, the configuration Fig. 5.7(c) is obtained, and then all robots
join the unique multiplicity one-by-one, until achieving the gathering as in Fig. 5.7(d).
However, the algorithm actually works as follows: from configuration of Fig. 5.7(b), the
robot which is supposed to create a multiplicity does not move. Instead two other robots
move and we obtain the configuration of Fig. 5.7(f) (instead of Fig. 5.7(c)). Checking each
step of the execution and the transition rules applied, we discover that the source of this
error: Robots do not recognize the correct type of the configuration of Fig. 5.7(b), which
is classified into a group named W7 that performs the procedure CHECK-REDUCTION
and PENDING-REDUCTION. When executing the procedure CHECK-REDUCTION on
this configuration, robots incorrectly categorize it as an asymmetric configuration with
possible pending moves. Then the PENDING-REDUCTION is executed while it should
not be for this configuration. Thus, the two symmetric robots decide to move. The
configuration of Fig. 5.7(f) is obtained. This means that the CHECK-REDUCTION and
PENDING-REDUCTION procedures are not correct. This error would be very difficult to
detect manually. Indeed, the procedures are correct for the configurations for which they
are supposed to be used. It is only incorrect because it is also applied to configurations
that are not supposed to use these procedures3.

The second error is in the COLLECT phase. When entering into this phase, the
configuration of the system belongs to one of three categories. One of them is called COLL-
A-1. They are asymmetric configurations with one multiplicity that can be obtained from
symmetric configurations and while satisfying also some other conditions. To simulate how
the algorithm works, the authors give the scenario depicted in Fig. 5.8. The configuration
of Fig. 5.8(b) is in COLL-A-1. It is at one move from the symmetric configuration of
Fig. 5.8(a). When the configuration is in COLL-A-1, the algorithm checks whether the

2The definition of supermin is given in [21]. One characteristic of a supermin is that it is smallest
interval.

3As explained in Section 2, we analyze the pseudo-code of the algorithms [21]. It is unclear whether
such error exists in the informal plaintext description of the algorithm.
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current configuration satisfies some conditions. If the conditions are satisfied, it moves the
robot and re-establish the previous axis of symmetry, leading to a symmetric configuration
with two multiplicities. In this specific case, the configuration of Fig. 5.8(c) is obtained.

(a) (b) (c) (d)

Figure 5.8: Four configurations. The gathering algorithm should follow the sequence (a),
(b), (c), but the configuration (d) is actually obtained from (b)

Unfortunately, instead of moving the robot and re-establishes the previous axis of sym-
metry, the algorithm moves both adjacent robots in the same direction. That means the
symmetric configuration with two multiplicities is not obtained. In this specific case, the
configuration of Fig. 5.8(d) is obtained. This error is somehow similar to the previous
design error, but at a different level; robot instead of configuration. Here, the robot that
is supposed to move (from the plaintext description of the algorithm) really moves, but
an additional robot also moves.

These design errors prevent the robots from gathering. Said differently, the algorithm
fails in gathering all robots in one location. Both errors could certainly be fixed by
including additional tests before computing the moves. However adding these tests may
lead to other problems and is therefore not straightforward.

Some Minor Errors

We also want to report some other small errors. They could be detected by carefully
checking the pseudo-code. However, it may be difficult to find where they are in the code.
Fortunately, we can also detect them by model checking.

Minor “typo” error. If a configuration is periodic, it is impossible to gather all robots
to one location. Therefore, it is important to detect whether a configuration is periodic
or not. To check the periodicity, the authors give the following procedure:

Input: a configuration C = (q0, q1, ..., qj) .

Output: true if C is periodic, false otherwise.

1. periodic := false .

2. for i := 0, 1, ..., j do if C = Ci then periodic = true.

3. return periodic .

where periodic is a boolean variable. It is expected to return true if the configuration
C is periodic, false otherwise. We discover that periodic returns true also for aperiodic

87



configurations. This is obviously wrong. The source of the error is that the condition
C = C0 is true for any configuration C. Thus, the procedure always returns true for any
input configuration C. One needs to simply start iterations from i = 1 instead of i = 0.

Error of inattention. The second error detected is in the main procedure for phase
MULTIPLICITY-CREATION whose purpose is to create one multiplicity or two sym-
metric multiplicities. Since this is the first phase of the algorithm, which deals with
initial configurations, all possible initial configurations are partitioned into seven groups.
One of them is called W6. In this case, the procedure is given as follows:

Input: CT, C = Q(r) = (q0, q1, ..., qj).

Case CT = W6

1. C ′ := (q0 + 1, q1 − 1, ..., qj).

2. if C ′ = C ′ and q0 is odd then move towards q0;

3. else

C ′′ := (q0, ..., qj−1 − 1, qj + 1).

if C ′′j = C ′′j and qj is odd then move towards qj ;

where C = Q(r) = (q0, q1, ..., qj) is the configuration that is perceived by robot r. C
corresponds to (q0, qj, qj−1, ...q1) in the case where C = (q0, q1, ..., qj−1, qj).

This code is supposed to handle asymmetric configurations that could have been ob-
tained from symmetric configurations with an odd number of nodes and a node-edge
symmetric axis. In the above code, C ′ (or C ′′) is the configuration of the symmetric
configuration. The intention of the authors is to move a robot r in order to reach a new
symmetric configuration with the same original axis. One example taken from the Ap-
pendix of [21] is given in Fig. 5.9. The configuration of Fig. 5.9(b) can be obtained from
the symmetric configuration of Fig. 5.9(a). Thus, the robot r is supposed to move and
the configuration of Fig. 5.9(c) is obtained.

(a) (b) (c)

r r

r

Figure 5.9: Three configurations, where (a) may lead to (b), and (c) presents the expected
behavior of the algorithm for the specific asymmetric configuration (b).

However, the algorithm does not make the robot r to move. We found that the error
lies in the conditions: q0 (or qj) is odd. Let us take a look at symmetric configurations
(e.g as shown in Fig. 5.9(a)) with odd number of nodes and one axis passing through an
edge, we can see that the interval crossed by the axis is on an odd interval. That means
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that q0 + 1 (or qj + 1) is odd, but not q0 (or qj). The error can be fixed by updating the
conditions to test if q0 + 1 (or qj + 1) is odd. This error was probably made due to the
confusion between the configurations C and C ′ (or C ′′).

5.2.4 Summary of Model Checking

It is very common to use case analysis techniques to tackle non-trivial problems, such
as robot gathering. The authors in [21] have split the problem into many cases and
used different strategies to deal with them. In detail, they have partitioned not only the
initial configurations, but also the configurations in each phase. Since the authors need
to consider a large number of cases, there is a risk of missing some cases. Moreover,
since different strategies are used for each case, there could be some conflicts between
these strategies. To prove the algorithm, the authors have to consider all possible cases.
However, it is exhausting for a person to figure out all possible executions. Fortunately,
a model checker strongly supports to automatically check all possible executions. We
have showed how to formally express the desired properties as LTL formulas and conduct
the model checking of the algorithm. The model checking has found counterexamples.
Analyzing these counterexamples, we found the source of some errors that would be
difficult to detect by handmade proof. These errors make the algorithm fail in gathering
all robots in one location. We also gave some explanations about why such errors may
have occurred. We hope it may be useful to avoid them in the future.
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Chapter 6

An Environment and a
Domain-Specific Language for
Specifying and Model Checking
Mobile Ring Robot Algorithms

An environment and a domain-specific language for specifying and model checking mo-
bile robot algorithms on rings (or mobile ring robot algorithms) are proposed. First, we
develop Maude Ring Specification Environment (Maude RSE), a ring specification envi-
ronment that explicitly supports ring-shaped networks. Maude RSE is implemented on
top of Maude. Then, we build our domain-specific language, Mobile Ring Robot Maude
(MR2-Maude), on top of Maude RSE. MR2-Maude makes it possible to specify mobile
ring robot algorithms in such a way that the specifications are as close as possible to
their mathematical descriptions. One key underlying these tools is pattern matching be-
tween ring patterns and ring instances, called “ring pattern matching.” Because rings are
not commonly available data structures in any existing specification language, we encode
ring patterns as sets of sequence patterns and simulate ring pattern matching by pattern
matching between sets of sequence patterns and sequence instances, which is proven cor-
rect and transparent to both Maude RSE and MR2-Maude users. MR2-Maude predefines
some LTL formulas as well as atomic propositions to model check that such algorithms en-
joy desired properties. The advantages of Maude RSE and MR2-Maude are demonstrated
by case studies analyzing exploration and gathering mobile robot algorithms.

6.1 Overview

This section gives an overview of mobile ring robot algorithms and describes the problems
of specifying these algorithms in Maude. It then introduces our solutions.
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6.1.1 Mobile Robot Computing on Rings

In the following part, we work under the following assumptions. Robots are identical, i.e.,
they are indistinguishable and all execute the same algorithm. Robots cannot explicitly
communicate, but they have the ability to sense their environment and see their relative
positions w.r.t. other robots. Robots follow a three-phase behavior: Look, Compute,
and Move. During its Look phase a robot takes a snapshot of other robots’ positions.
The collected information is used in the Compute phase during which the robot decides
whether to move or stay idle. A move decided by a robot in a Compute phase may not be
immediately conducted by the robot. There may be lag between a Compute phase and
the subsequent Move phase and then some other movements by other robots may be done
in-between. A move that has been decided by a robot in a Compute phase but has not
yet been conducted by the robot in the subsequent Compute phase is called a pending
move. In the Move phase, the robot may move to one of the two adjacent according to the
decision made by the robot in the preceding Compute phase. Rings may be anonymous,
that is, there is neither node nor edge labeled. Moreover, robots may be assumed to be
oblivious and disoriented, meaning that they have no memory of past actions and they
share no common orientation (no chirality).

6.1.2 Problems

Although mobile ring robot algorithms have been specified in some exiting specification
languages, these specifications are usually complicated and lengthy. This is because the
ring characteristics peculiar to such algorithms are not well supported. Let us illustrate
these problems with a simple example. Assume that we specify the ring (the system state
on a ring) shown in Fig. 6.1(a), in which robots are disoriented. Such a system state
can be expressed as a sequence {q0, q1, . . . , qj−1, qj} of intervals, where an interval qi is
the number of consecutive empty nodes between two non-empty nodes, in a view starting
from any robot and traversing the ring in one arbitrary direction. We call configurations
to the particular representation of system states.

The system state shown in Fig. 6.1(a) could be expressed as {0, 3, 1, 2, 1} in the
(clockwise) view starting from the one at the bottom. Because it is a ring, the state could
be also expressed, starting from other robots, as {3, 1, 2, 1, 0}, {1, 2, 1, 0, 3}, {2, 1,
0, 3, 1}, and {1, 0, 3, 1, 2}. Since robots are disoriented, the state could be expressed
as {1, 2, 1, 3, 0}, {0, 1, 2, 1, 3}, {3, 0, 1, 2, 1}, {1, 3, 0, 1, 2}, and {2, 1, 3, 0, 1}

(a) (b) (c) (d)

Figure 6.1: The four configurations are considered the same.
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by reversing (i.e., considering counterclockwise) these sequences. All these configurations
should be considered the same. Generally, given a sequence {q0, q1, . . . , qj−1, qj}, the state
it expresses is equivalent, in a ring, to all sequences obtained by rotating it — {q0, q1, . . .,
qj−1, qj}, {q1, . . ., qj−1, qj, q0}, . . . , {qj, q0, q1, . . . , qj−1}— and by reversing it — {qj, qj−1,
. . . , q1, q0}, {qj−1, . . . , q1, q0, qj}, . . . , {q0, qj, qj−1, . . . , q1}. Moreover, let us assume that
robots in Fig. 6.1(a) decide to move and the system reaches the states (b), (c), and (d).
Because the ring and the robots are anonymous, all of them are considered the same
state. Unfortunately, it is impossible to directly specify this in any existing specification
language, such as SPIN [37], DVE [6], and Maude [16]. Actually, the configurations above
are considered totally different from any existing specification language point of view, so
specifiers are required to implement their own strategies to handle them. Consequently,
the specifiers need to specify rings by adapting other defined structures, such as sets and
sequences. For instance, Doan, et al. [29] use binary operators that are associative in
Maude.

Figure 6.2: (a) A system with two adjacent robots and (b) The obtained system after the
movement.

To illustrate the idea used in [29], let us show how to specify a mobile ring robot
algorithm in Maude. Given a ring on which there are two robots located at two adjacent
nodes, respectively (such two robots may be called adjacent robots), we want to put them
together (which is called a multiplicity) by moving one to the node at which the other
is located, where there is a non-empty node closer to the node at which the former is
located than to the other node. For example, in Fig. 6.2(a) we have two adjacent robots
on the top, the one on the left is separated from the rest of nodes by one empty node,
while the one on the right is separated by three empty nodes. Hence, we would move the
one on the left to the node at which the other one is located, as shown Fig. 6.2(b), where
the black node indicates that there are two robots. Assuming we use -1 to denote that
two robots are at the same node, we can use a rewrite rule to specify this transition. The
source state would use (i) 0 to indicate that two robots are adjacent, (ii) variables I1 and
I2 to denote the intervals next to the adjacent robots, and (iii) a variable S to denote
the remaining sequences. Assuming I2 is larger than I1, we will increment the smaller
interval (I1) and replace 0 (robots are adjacent) by -1 (robots are in the same node):

crl {0, I2, S, I1} => {-1, I2, S, I1 + 1} if I2 > I1 .

In the particular case depicted in Fig. 6.2(a) the state could be expressed as {0, 3, 1,
2, 1}. This configuration matches (the left-hand side of) the rule by substituting I2 with
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3, I1 with 1, and S with 1, 2. The state is rewritten to {-1, 3, 1, 2, 2}, which expresses
the configuration in Fig. 6.2(b). However, the state shown in Fig. 6.2(a) could be also
expressed as another sequence {3, 1, 2, 1, 0}. In this case, there is no substitution such
that the sequence can match the rule. For this reason we need another rule to handle it:

crl {I2, S, I1, 0} => {-1, I2, S, I1 + 1} if I2 > I1 .

The configuration {3, 1, 2, 1, 0} matches this rule by substituting I2 with 3, I1 with 1,
and S with 1, 2. Likewise, we need to have all the rules by rotating and reversing the
left-hand side of the first rule to handle all possible sequences.

Splitting problem. The state in Fig. 6.2(a) could be also expressed as {2, 1, 0, 3, 1},
but it is impossible to apply any of the rules above to this configuration. We, thus, need
to generate another rule by rotating the first rule to deal with this case. However, the rest
of the sequence is split into two sub-sequences at both sides of the previously complete
sequence. It, thus, is necessary to split the variable S into two variables S1 and S2 that
denote the remaining sequences on the left- and right-hand sides, respectively.

crl {S2, I1, 0, I2, S1} => {-1, I2, S1, S2, I1 + 1} if I2 > I1 .

In our theoretical framework we need to formally define and work on splitting and joining
(which puts together two sub-sequences that substitute two sequence variables obtained
by splitting before) functions that deal with these cases.

Reversing problem. Let’s take look at the state in Fig. 6.2(a) (counter-clockwise),
which could be expressed as {1, 2, 1, 3, 0}. We need the following rule for this case:

crl {I1, S, I2, 0} => {-1, I2, rev(S), I1 + 1} if I2 > I1 .

Note that the result of reversing S1, I, S2, for S1 and S2 sequences and I a natural number,
is not S2, I, S1, because we might need to reverse the two sequences that substitute S1

and S2. We, thus, need in this case to reverse the sequence S. The function rev reverses
a sequence, e.g rev(2,1) is 1, 2. The configuration {1, 2, 1, 3, 0} matches this rule by
substituting I2 with 3, I1 with 1, and S with 2, 1. The state is rewritten to {-1, 3, 1, 2,
2}, which expresses the configuration in Fig. 6.2(b).

Consequently, we need to use 10 rules to specify the transition above-mentioned.
Rotating

crl {0, I2, S, I1} => {-1, I2, S, I1 + 1} if I2 > I1 .

crl {I2, S, I1, 0} => {-1, I2, S, I1 + 1} if I2 > I1 .

crl {S, I1, 0, I2} => {-1, I2, S, I1 + 1} if I2 > I1 .

crl {I1, 0, I2, S} => {-1, I2, S, I1 + 1} if I2 > I1 .

crl {S2, I1, 0, I2, S1} => {-1, I2, S1, S2, I1 + 1} if I2 > I1 .

Reversing
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crl {I1, S, I2, 0} => {-1, I2, sev(S), I1 + 1} if I2 > I1 .

crl {0, I1, S, I2} => {-1, I2, sev(S), I1 + 1} if I2 > I1 .

crl {I2, 0, I1, S} => {-1, I2, sev(S), I1 + 1} if I2 > I1 .

crl {S, I2, 0, I1} => {-1, I2, sev(S), I1 + 1} if I2 > I1 .

crl {S1, I2, 0, I1, S2} => {-1, I2, sev(S1), sev(S2), I1 + 1} if I2 > I1 .

This makes the specification complicated and specifiers exhausted. If a ring is not faith-
fully specified, the formal verification of a mobile ring robot algorithm may overlook some
cases.

6.1.3 Our solutions

Maude Ring Specification Environment (Maude RSE). One possible way to
solve the problems of specifying mobile ring robot algorithms is to develop a specification
environment in which rings are explicitly supported. We extend Maude by creating “ring”
attributes that allow users to specify rings. The main idea is that given a user ring
specification as a ring pattern, Maude RSE generates all corresponding sequence patterns
to deal with the “ring” characteristic. For example, in the problem above-mentioned,
users only need to specify the first rule while all other rules are automatically generated
by Maude RSE. Users, therefore, do not need to deal with the “ring” characteristic, which
is handled transparently by Maude RSE.

Mobile Ring Robot Maude (MR2-Maude). For the problem above-mentioned, us-
ing of a ring operator attribute does not require users to generate those rules. However,
using such ring attributes requires users to come up with how to handle pending moves
or the moves at a multiplicity (see Section 6.3). Analyzing several published algorithms,
we conclude that there are three common ways to express the states of mobile ring robot
systems as follows: a sequence of intervals, a sequence of all nodes, and a sequence of
nodes on which robots are located. For example the system as shown Fig. 6.2(a) could
be expressed in these three ways, respectively: {0, 3, 1, 2, 1}, {1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
1, 0} in which 0 denotes an empty node and 1 denotes a node occupied by 1 robot, and
{< r1, 0 >,< r2, 1 >,< r3, 5 >,< r4, 7 >,< r5, 10 >} in which robots are named from
r1 to r5 and nodes are labeled from 0 to 10. MR2-Maude provides three ways to specify
mobile ring robot algorithms, covering most of such algorithms proposed in the literature
by which user do not need to handle pending moves or the moves at a multiplicity. More-
over, even in Maude RSE, users need to specify some propositions and formulas to model
check that such algorithms enjoy desired properties. MR2-Maude, therefore, predefines
some useful LTL formulas as well as atomic propositions specific to such algorithms.

6.2 Maude RSE

Maude RSE is a specification environment that solves the problem of specifying mobile
ring robot algorithms. Maude RSE explicitly supports ring-shaped networks. It is rea-
sonable, and saves time and effort, if the environment is built on an available specification
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system. For this reason Maude RSE is implemented on top of Maude, a rewriting logic-
based programming and specification language, taking advantage of its meta-programming
features. This section gives a theory of pattern matching on rings (or “ring-patten match-
ing”) that guarantees that our way of dealing with ring-pattern matching makes sense and
briefly describes how Maude RSE is built, its architecture, and how to define a ring topol-
ogy in it.

6.2.1 Ring Patterns

The main question to design and built the environment is how to construct a “ring” data
structure, which has “rotative” and “reversible” properties. We define “ring patterns”
by using “sequence patterns.” Definition 6.2.1 presents sequence patterns and Definition
6.2.8 introduces our definition of ring patterns based on sequence patterns.

Sequences

Let Elt be the set of (concrete) elements, EV be the set of element variables and SV be
the set of sequence variables.

Definition 6.2.1 (Sequence Patterns). The set SP of sequence patterns are inductively
defined as follows:

1. ε ∈ SP (the empty sequence);

2. For each element e ∈ Elt, e ∈ SP;

3. For each element variable E ∈ EV, E ∈ SP;

4. For each sequence variable S ∈ SV, S ∈ SP;

5. For any sequence patterns SP1, SP2 ∈ SP, SP1 SP2 ∈ SP.

The binary juxtaposition operator used in SP1 SP2 is associative, namely that (SP1 SP2)
SP3 = SP1 (SP2 SP3) for any sequence patterns SP1, SP2, SP3 ∈ SP. ε is an identity
of the binary juxtaposition operator, namely that ε SP = SP and SP ε = SP for any
sequence patterns SP ∈ SP.

Sequence patterns that do not have any variables at all are called sequences. Let
Seq ⊆ SP be the set of all sequences.

A substitution σ is a function from the disjoint union EV ] SV of EV and SV to the
disjoint union Seq ] EV ] SV of Seq, EV and SV. For E ∈ EV, σ(E) is an element
e ∈ Elt or E and for S ∈ SV, σ(S) is a sequence seq ∈ Seq or S. The domain of a
substitution σ can be naturally extended to SP such that σ(ε) is ε, for an element e ∈ Elt,
σ(e) is e and for a sequence pattern SP1, SP2 ∈ SP, σ(SP1 SP2) is σ(SP1) σ(SP2).

Definition 6.2.2 (Sequence pattern match). Pattern match between sp ∈ SP & seq ∈
Seq is to find all substitutions σ such that σ(sp) = seq. Let sp =?= seq be the set of all
such substitutions.
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Elements, element variables and sequence variables used in sequence patterns are called
components in the sequence patterns. For sp ∈ SP, let |sp| be the number of components
in it. sp ∈ SP can be in the form ES1 ES2 . . . ES|sp|, where each ESi is an element, an
element variable or a sequence variable. For sp ∈ SP, let sp(i), where i ∈ {1, 2, . . . , |sp|},
be the ith element ESi in sp. Let e, e1, e2, . . . ∈ Elt, E,E1, E2, . . . ∈ EV, S, S1, S2, . . . ∈
SV and ES,ES1, ES2, . . . ∈ Elt ] EV ] SV. A binary construct sv(S, I) that is not in
SV, where S is a sequence variable and I is either 0 or 1, is used as an extra sequence
variable. Let SSV be {sv(S, I) |S ∈ SV, I ∈ {0, 1}}. SV ∪ SSV may be used as the set
of sequence variables instead of SV.

Definition 6.2.3 (Split sequence patterns). For sp ∈ SP, split(sp) is a sequence pattern
such that each sequence variable S in sp is replaced with sv(S, 0) sv(S, 1). split(ε) = ε,
split(e) = e for e ∈ Elt, split(E) = E for E ∈ EV, split(S) = sv(S, 0) sv(S, 1) for S ∈ SV
and split(SP1 SP2) = split(SP1) split(SP2) for SP1, SP2 ∈ SP.

Definition 6.2.4 (Joining split sequence variables). For sp ∈ SP and seq ∈ Seq, let
σ be in (split(sp) =?= seq). join(σ) is the substitution σ′ such that for each sequence
variable S in sp σ′(S) = σ(sv(S, 0)) σ(sv(S, 1)) and for any other variables X σ′(X) =
σ(X). The domain of join can be naturally extended to the set of substitutions such that
join(split(sp) =?= seq) is {join(σ) |σ ∈ (split(sp) =?= seq)}.

rtt (that stands for rotate) takes a sequence pattern sp and returns the sequence
pattern obtained by rotating sp clockwise. rev (that stands for reverse) takes a se-
quence pattern sp and returns the sequence pattern obtained by reversing sp. Let sp
be ES1 ES2 . . . ES|sp|−1 ES|sp|. rtt(sp) = ES|sp| ES1 ES2 . . . ES|sp|−1 and rev(sp) =
ES|sp| ES|sp|−1 . . . ES2 ES1. Let us suppose that a subscript exp of ESexp used as an
element in sp is interpreted as (exp mod |sp|) + 1.

Definition 6.2.5 (Reversing substitutions). σrev is defined as follows: for an element
e ∈ Elt σrev(e) = σ(e) = e, for an element variable E ∈ (E) σrev(E) = σ(E) and for a
sequence variable S ∈ (SV ) σrev(S) = rev(σ(S)) and σrev(ε) = σ(ε) ε σrev(SP1SP2) =
σrev(SP1)σrev(SP2).

Given two sequence patterns sp, sp′ ∈ SP, sp � sp′ holds if there exists a natural
number n such that sp = rttn(sp′), namely that sp is obtained by rotating sp′ finitely
many times; sp 	 sp′ holds if there exists a natural number n such that sp = rttn(rev(sp′)),
namely that sp is obtained by reversing sp′ once and rotating it finitely many times. For
example, let sp and sp′ be e1 S1 e2 and e1 e2 S1 (= rtt(sp)) and then (sp � sp′) holds,
while (sp 	 sp′) does not; let sp and sp′ be e1 S1 e2 and e2 e1 S1 (= rtt(rev(sp))) and
then (sp � sp′) does not, while (sp 	 sp′) holds; let sp and sp′ be e1 S1 e2 and e2 e1 S1

(= rtt(rev(sp))) and then both (sp � sp′) and (sp 	 sp′) hold.

Definition 6.2.6 (Sequence pattern contexts). A sequence pattern context is a sequence
pattern sp ∈ SP in which one component (say, ith component, where 1 ≤ i ≤ |sp|) is
replaced with a special symbol � called a hole, denoted sp(i){�}. A hole � is treated as
an element. Let sp be ES1 . . . ESi . . . ES|sp| and then sp(i){�} is ES1 . . .� . . . ES|sp|.
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For a sequence pattern or a sequence pattern context spc and a sequence pattern sp,
spc(i){sp} is spc in which the ith component in spc is replaced with sp. (sp(i){�})(i){sp(i)}
= sp(i){sp(i)} = sp.

Definition 6.2.7 (Correspondent components). Let sp ∈ SP be ES1 . . . ESi−1 ESi ESi+1

. . . ES|sp|, where 1 ≤ i ≤ |sp| and sp′ ∈ SP be ES ′1 . . . ES
′
j−1 ES

′
j ESj+1 . . . ES

′
|sp′|, where

1 ≤ j ≤ |sp′|. If ESi ESi+1 . . . ES|sp| ES1 . . . ESi−1 = ES ′j ES
′
j+1 . . . ES

′
|sp′| ES

′
1 . . . ES

′
j−1

or ESi ESi+1 . . . ES|sp| ES1 . . . ESi−1 = ES ′j ES
′
j−1 . . . ES ′1 ES

′
|sp′| . . . ES

′
j+1, then ES ′j

is the corresponding component in sp′ to ESi in sp.

Proposition 6.2.1. For any sequence patterns sp, sp′ ∈ SP and any natural numbers
i ∈ {1, . . . , |sp|} and j ∈ {1, . . . , |sp′|} such that the jth component sp′(j) in sp′ is the
corresponding component in sp′ to sp(i) in sp, (1) (sp � sp′)⇔ sp(i){�} � sp′(j){�} and

(2) (sp 	 sp′)⇔ sp(i){�} 	 sp′(j){�}.

Proof. (1) (⇒) There exists a natural number m such that rttm(sp) is sp(i) sp(i +
1) . . . sp(i − 1) and there exits a natural number n such that rttn(sp′) is sp′(j) sp′(j +
1) . . . sp′(j − 1). Because of sp � sp′, rttm(sp) = rttn(sp′) and then (rttm(sp))(1) {�} =
(rttn(sp′))(1){�}. rtt−m((rttm(sp))(1){�}) = sp(i){�} and rtt−n((rttn(sp′))(1){�}) =
sp′(j){�}. Therefore, sp(i){�} � sp′(j){�}. (⇐) There exists a natural number m

such that rttm(sp(i){�}) is � sp(i + 1) . . . sp(i − 1) and there exits a natural number
n such that rttn(sp′(j){�}) is � sp′(j + 1) . . . sp′(j − 1). Because of sp(i){�} � sp′(j){�},
rttm(sp(i){�}) = rttn(sp′(j) {�}) and then (rttm(sp(i){�}))(1){sp(i)} = (rttn(sp′(j){�}))(1)
{sp(i)}. Because sp′(j) in sp′ is the corresponding component to sp(i) in sp, sp′(j) =
sp(i). Therefore, (rttm(sp(i){�}))(1) {sp(i)} = (rttn(sp′(j){�}))(1){sp′(j)} and then rtt−m

((rttm(sp(i) {�}))(1){sp(i)}) = sp and rtt−n((rttn(sp′(j){�}))(1){sp′(j)}) = sp′. Thus,
sp � sp′.

(2) (⇒) There exists a natural number m such that rttm(sp) is sp(i) sp(i+1) . . . sp(i−1)
and there exits a natural number n such that rttn(rev(sp′)) is sp′(j) sp′(j−1) . . . sp′(j+1).
Because of sp 	 sp′, rttm(sp) = rttn(rev(sp′)) and then (rttm(sp))(1) {�} = (rttn (rev
(sp′)))(1){�}. rtt−m ((rtt m(sp))(1) {�}) = sp(i){�} and rtt−n ((rttn(rev(sp′)))(1){�}) =
(rev(sp′))(j){�}. Therefore, sp(i){�} 	 sp′(j){�}. (⇐) There exists a natural number

m such that rttm(sp(i){�}) is � sp(i + 1) . . . sp(i − 1) and there exits a natural num-
ber n such that rttn(rev(sp′(j){�})) is � sp′(j − 1) . . . sp′(j + 1). Because of sp(i){�} 	
sp′(j){�}, rttm(sp(i){�}) = rttn(rev(sp′(j) {�})) and then (rttm(sp(i) {�}))(1){sp(i)} =

(rttn(rev(sp′(j){�})))(1) {sp(i)}. Because sp′(j) in sp′ is the corresponding component

to sp(i) in sp, sp′(j) = sp(i). Therefore, (rttm(sp(i){�}))(1) {sp(i)} = (rttn(rev(sp′(j)
{�})))(1){sp′(j)} and then rtt−m((rttm(sp(i){�}))(1){sp(i)}) = sp and rtt−n((rttn(rev
(sp′(j){�})))(1){sp′(j)}) = rev(sp′). Thus, sp � sp′.

Rings

Definition 6.2.8 (Rings). For sp ∈ SP, [sp] is called a ring pattern and satisfies (1) the
rotative law ([sp] = [rtt(sp)]) and (2) the reversible law ([sp] = [rev(sp)]). When sp is a
sequence seq ∈ Seq, [seq] is called a ring.
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Proposition 6.2.2. For any sequence patterns sp, sp′ ∈ SP and natural numbers m,n,
if [sp] = [sp′], then (1) [sp] = [rttm(sp′)] and (2) [sp] = [revn(sp′)].

Proof. Let us suppose [sp] = [sp′]. (1) By induction on m. (1.1) Base case (m = 0)
can be discharged from the assumption [sp] = [sp′]. (1.2) Induction case (m = k + 1).
From Definition 6.2.8, [rttk(sp′)] = [rttk+1(sp′)]. From this and the induction hypothesis
[sp] = [rttk(sp′)], [sp] = [rttk+1(sp′)]. (2) By induction on n. (2.1) Base case (n = 0)
can be discharged from the assumption [sp] = [sp′]. (2.2) Induction case (n = k + 1).
From Definition 6.2.8, [revk(sp′)] = [revk+1(sp′)]. From this and the induction hypothesis
[sp] = [revk(sp′)], [sp] = [revk+1(sp′)].

For any sequence patterns sp, sp′ ∈ SP, if ([sp] = [sp′]) ⇒ [sp] = [rtt(sp′)] ∧ [sp] =
[rev(sp′)], then [sp] = [rtt(sp)] and [sp] = [rev(sp)] because the equivalence relation is
reflexive, namely [sp] = [sp]. Therefore, Definition 6.2.8 can be rephrased as follows:

Definition 6.2.9 (Another definition of rings). For sp, sp′ ∈ SP, [sp] = [sp′] is inductively
defined as follows: (1) [sp] = [sp] and (2) if [sp] = [sp′], then [sp] = [rtt(sp′)] and
[sp] = [rev(sp′)].

Let sp be ES1 ES2 . . . ES|sp|−1 ES|sp|. rtt−1(sp) is ES2 . . . ES|sp|−1 ES|sp| ES1 and
rev−1(sp) is ES|sp| ES|sp|−1 . . . ES1 ES2. Therefore, rtt−1 = rev◦rtt◦rev and rev−1 = rev.

Proposition 6.2.3. For any sequence patterns sp, sp′ ∈ SP, if [sp] = [sp′], then [sp] =
[rtt−1(sp′)] and [sp] = [rev−1(sp′)].

Proof. This is derived from rtt−1 = rev ◦ rtt ◦ rev, rev−1 = rev and Proposition 6.2.2,

Definition 6.2.10 (Ring pattern match). For sp ∈ SP and seq ∈ Seq, pattern match
between [sp] and [seq] is to find all substitutions σ such that [σ(sp)] = [seq]. Let [sp] =
?= [seq] be the set of all such substitutions.

Definition 6.2.11 (Sequences rotated and/or reversed). For sp ∈ SP, [[sp]] is the set
of sequence patterns inductively defined as follows: (1) sp ∈ [[sp]] and (2) if sp′ ∈ [[sp]],
then rtt(sp′) ∈ [[sp]] and rev(sp′) ∈ [[sp]].

Proposition 6.2.4. For any sequence patterns sp, sp′ ∈ SP, if sp′ ∈ [[sp]], then rtt−1(sp′) ∈
[[sp]] and rev−1(sp′) ∈ [[sp]].

Proof. This is derived from rtt−1 = rev ◦ rtt ◦ rev, rev−1 = rev and Definition 6.2.11.

Proposition 6.2.5. For any sequences seq, seq′, seq′′ ∈ Seq and any natural number
i ∈ {1, . . . , |seq|} and j ∈ {1, . . . , |seq′|} such that seq′(j) is the correspond compo-
nent to seq(i), seq is e1 . . . ei−1 ei ei+1 . . . e|sp| and seq′ is e′1 . . . e

′
j−1 e

′
j e
′
i+1 . . . e

′
|sp′|, (1)

if seq(i){�} � seq′(j){�}, then [seq(i){seq′′}] = [seq′(j) {seq′′}], and (2) if seq(i){�} 	
seq′(j){�}, then [seq(i) {seq′′}] = [seq′(j){rev(seq′′)}].
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Proof. (1) Let seq be e1 . . . ei−1 ei ei+1 . . . e|seq| and seq′ be e′1 . . . e
′
j−1 e

′
j e
′
j+1 . . . e

′
|seq′|. (1)

Because seq(i){�} � seq′(j){�}, � ei+1 . . . e|seq| e1 . . . ei−1 = � e′j+1 . . . e
′
|seq′| e

′
1 . . . e

′
j−1 and

then seq′′ ei+1 . . . e|seq| e1 . . . ei−1 = seq′′ e′j+1 . . . e
′
|seq′| e

′
1 . . . e

′
j−1. Therefore, [seq(i){seq′′}]

= [seq′(j) {seq′′}]. (2) Because seq(i){�} 	 seq′(j){�}, � ei+1 . . . e|seq| e1 . . . ei−1 = � e′j−1
. . . e′1 e

′
|seq′| . . . e

′
j+1 and then seq′′ ei+1 . . . e|seq| e1 . . . ei−1 = seq′′ e′j−1 . . . e

′
1 e
′
|seq′| . . . e

′
j+1.

rev(seq′′ e′j−1 . . . e
′
1 e
′
|seq′| . . . e

′
j+1) is e′j+1 . . . e

′
|seq′| e

′
1 . . . e

′
j−1 rev(seq′′). Thus, [seq(i){seq′′}]

= [seq′(j){rev(seq′′)}].

Lemma 6.2.1. For sequence patterns sp, sp′ ∈ SP, (sp′ ∈ [[sp]])⇔ ([sp] = [sp′]).

Proof. (sp′ ∈ [[sp]]) ⇒ ([sp] = [sp′]) is proved by induction on Definition 6.2.11. (1)
Base case in which sp ∈ [[sp]] holds. [sp] = [sp] holds because of Definition 6.2.4. (2)
Induction case in which rtt(sp′) ∈ [[sp]] and rev(sp′) ∈ [[sp]] hold. sp′ ∈ [[sp]] holds
from Proposition 6.2.4. From the induction hypothesis ([sp] = [sp′]) and Definition 6.2.9,
therefore, [sp] = [rtt(sp′)] and [sp] = [rev(sp′)] hold.

(sp′ ∈ [[sp]])⇐ ([sp] = [sp′]) is proved by induction on Definition 6.2.9. (1) Base case in
which [sp] = [sp] holds. sp ∈ [[sp]] holds because of Definition 6.2.11. (2) Induction case in
which [sp] = [rtt(sp′)] and [sp] = [rev(sp′)] hold. [sp] = [sp′] holds from Proposition 6.2.3.
From the induction hypothesis (sp′ ∈ [[sp]]) and Definition 6.2.11, therefore, rtt(sp′) ∈
[[sp]] and rev(sp′) ∈ [[sp]] hold.

Let sp be e1 S1 e4 S2 and sp′ be rev(sp), namely S2 e4 S1 e1. Clearly, sp′ ∈ [[sp]] and
[sp] = [sp′]. Let us consider a substitution σ such that σ(S1) = e2 e3, σ(S2) = e5 e6 and
σ(X) = X for any other variable X. σ(sp) is e1 e2 e3 e4 e5 e6 and σ(sp′) is e5 e6 e4 e2 e3 e1.
Clearly, σ(sp′) 6∈ [[σ(sp)]] and [σ(sp)] 6= [σ(sp′)]. If sp � sp′ does not hold but sp 	 sp′

holds, we need to reverse the sequence that replaces each sequence variable. σrev(sp′) is
e6 e5 e4 e3 e2 e1. Therefore, σrev(sp′) ∈ [[σ(sp)]] and [σ(sp)] = [σrev(sp′)].

Lemma 6.2.2. For any sequence pattern sp ∈ SP and any substitution σ, for each
sp′ ∈ [[sp]] if sp � sp′, then [σ(sp)] = [σ(sp′)]; if sp 	 sp′, then [σ(sp)] = [σrev(sp′)].

Proof. By induction on the number of element and sequence variable occurrences in sp.
(1) Base case in which the number is 0. Because sp does not have any variables,

σ(sp) = sp, σ(sp′) = sp′ and σrev(sp′) = sp′. From Lemma 6.2.1, [sp] = [sp′].
(2) Induction case in which the number is k+ 1. Let us arbitrarily choose a component

that is a variable in sp and the component be the ith component sp(i) in sp. Let sp be
sp1 sp(i) sp2. sp

′ can be obtained by rotating and/or reversing sp and then must have
the correspondent component in sp′ to sp(i) in sp. Then, sp′ can be sp′1 sp(i) sp

′
2.

(2.1) Let us suppose that sp � sp′ holds. From Proposition 6.2.1, (sp1 � sp2) �
(sp′1 � sp′2). By induction hypothesis, [σ(sp1 � sp2)] = [σ(sp′1 � sp′2)] and then [σ(sp1)
� σ(sp2)] = [σ(sp′1) � σ(sp′2)]. From Lemma 6.2.5, [σ(sp1) σ(sp(i)) σ(sp2)] = [σ(sp′1)
σ(sp(i)) σ(sp′2)]. Hence, [σ(sp1 sp(i) sp2)] = [σ(sp′1 sp(i) sp

′
2)].

(2.2) Let us suppose that sp 	 sp′ holds. From Proposition 6.2.1, (sp1 � sp2) 	
(sp′1 � sp′2). By induction hypothesis, [σ(sp1 � sp2)] = [σrev(sp′1 � sp′2)] and then
[σ(sp1) � σ(sp2)] = [σrev(sp′1) �σrev(sp′2)]. From Lemma 6.2.5, [σ(sp1) σ(sp(i)) σ(sp2)] =
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[σrev(sp′1) rev(σ(sp(i))) σrev(sp′2)]. Because rev(σ(sp(i))) = σrev(sp(i)), [σ(sp1 sp(i)) sp2)] =
[σrev(sp′1 sp(i) sp

′
2)].

Definition 6.2.12 (Ring pattern match simulated (1)). For sp ∈ SP and seq ∈ Seq,
pattern match between sp and [[seq]] is to find all substitutions σ such that σ(sp) = seq′

for some seq′ ∈ Seq. Let sp =?= [[seq]] be the set of all such substitutions.

Lemma 6.2.3. For any sequence pattern sp ∈ SP and any sequence seq ∈ Seq, ([sp] =
?= [seq]) = (sp =?= [[seq]]).

Proof. Let σ ∈ ([sp] =?= [seq]). [σ(sp)] = [seq] by Definition 6.2.10. σ(sp) ∈ [[seq]] due
to Lemma 6.2.1. Thus, σ ∈ (sp =?= [[seq]]).

Let σ ∈ (sp =?= [[seq]]). Let seq′ ∈ [[seq]] such that σ(sp) = seq′. [seq′] = [seq] due to
Lemma 6.2.1 and then [σ(sp)] = [seq]. Hence, σ ∈ ([sp] =?= [seq])

Definition 6.2.13 (Ring pattern match simulated (2)). For sp ∈ SP and seq ∈ Seq,
pattern match between [[sp]] and seq is to find all substitutions σ such that σ′(sp′) = seq
for some substitution σ′ and some sp′ ∈ [[sp]] and if sp � sp′, then σ = σ′ and if sp 	 sp′,
then σ = σ′rev. Let [[sp]] =?= seq be the set of all such substitutions.

Note that ([[sp]] =?= seq) ⊂ ([sp] =?= [seq]) but ([sp] =?= [seq]) 6⊂ ([[sp]] =?= seq).

Lemma 6.2.4. For any sequence pattern sp ∈ SP, any sequence seq ∈ Seq and any
substitution σ ∈ (sp =?= [[seq]]), there exist σ′ and a sequence seq′ ∈ [[seq]] such that
σ = join(σ′), σ′(split(sp)) = seq′ and there exists sp′ ∈ [[split(sp)]] such that σ′(sp′) = seq.
Besides, σ ∈ join([[split(sp)]] =?= seq).

Proof. Let sp be ES1 ES2 . . . ESm and seq be e1 e2 . . . en.
If there exists i ∈ {1, . . . ,m} such that σ(ESi) is . . . en e1 . . . or . . . e1 en . . ., ESi is a

sequence variable S that is replaced with sv(S, 0) sv(S, 1) in split(sp).
If σ(S) is . . . en e1 . . ., then σ′(sv(S, 0)) is . . . en, σ′(sv(S, 1)) is e1 . . . and σ′(sv(S ′, 0)) is

σ(S ′) and σ′(sv(S ′, 1)) is ε for any other sequence variable S ′ in sp, and σ′(E) = σ(E) for
any element variable E in sp. By the construction of σ′, σ = join(σ′) and σ′(split(sp)) =
σ(sp), where σ(sp) ∈ [[seq]]. Let sp′ be sv(S, 1) split(ESi+1) . . . split(ESi−1) sv(S, 0).
Then, sp′ ∈ [[split(sp)]] and σ′(sp′) = seq. Therefore, σ′ ∈ ([[split(sp)]] = ? = seq)
because of sp � sp′ from Definition 6.2.13. Hence σ ∈ join([[split(sp)]] =?= seq) from
Definition 6.2.4.

If σ(S) is . . . e1 en . . ., then σ′(sv(S, 0)) is rev(. . . e1), σ
′(sv(S, 1)) is rev(en . . .) and

σ′(sv(S ′, 0)) is rev(σ(S ′)) and σ′(sv(S ′, 1)) is ε for any other sequence variable S ′ in sp, and
σ′(E) = σ(E) for any element variable E in sp. By the construction of σ′, σ = join(σ′rev)
and σ′rev(split(sp)) = σ(sp), where σ(sp) ∈ [[seq]]. Let sp′ be rev(sv(S, 1) split(ESi+1) . . .
split(ESi−1) sv(S, 0)). Then, sp′ ∈ [[split(sp)]] and σ′rev(sp′) = seq. Therefore, σ′rev ∈
([[split(sp)]] = ? = seq) because of sp 	 sp′ from Definition 6.2.13. Hence σ ∈ join
([[split(sp)]] =?= seq) from Definition 6.2.4.

If there exists no i ∈ {1, . . . ,m} such that σ(ESi) is . . . en e1 . . . or . . . e1 en . . ., there
must be i ∈ {1, . . . ,m} such that σ(ESi) is e1, e1 . . . or . . . e1. If σ(ESi) is e1, there are two
possible cases: (1) σ(ESi ESi+1 . . . ESi−1) = seq and (2) σ(ESi ESi−1 . . . ESi+1) = seq.
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Case (1) can be treated in the same way as the case in which σ(ESi) is e1 . . .. In either
case, σ′(sv(S ′, 0)) is σ(S ′) and σ′(sv(S ′, 1)) is ε for any sequence variable S ′ in sp, and
σ′(E) = σ(E) for any element variable E in sp. By the construction of σ′, σ = join(σ′)
and σ′(split(sp)) = σ(sp), where σ(sp) ∈ [[seq]]. Let sp′ be split(ESi) split(ESi+1) . . .
split(ESi−1). Then, sp′ ∈ [[split(sp)]] and σ′(sp′) = seq. Therefore, σ′ ∈ ([[split(sp)]] =
?= seq) because of sp � sp′ from Definition 6.2.13. Hence σ ∈ join([[split(sp)]] =?= seq)
from Definition 6.2.4.

Case (2) can be treated in the same way as the case in which σ(ESi) is . . . e1. In
either case, σ′(sv(S ′, 0)) is rev(σ(S ′)) and σ′(sv(S ′, 1)) is ε for any sequence variable
S ′ in sp, and σ′(E) = σ(E) for any element variable E in sp. By the construction
of σ′, σ = join(σ′rev) and σ′rev(split(sp)) = σ(sp), where σ(sp) ∈ [[seq]]. Let sp′ be
rev(split(ESi+1) . . . split(ESi−1) split(ESi)). Then, sp′ ∈ [[split(sp)]] and σ′rev(sp′) = seq.
Therefore, σ′rev ∈ ([[split(sp)]] =?= seq) because of sp 	 sp′ from Definition 6.2.13.

Lemma 6.2.5. For any sequence pattern sp ∈ SP, any sequence seq ∈ Seq and any
substitution σ ∈ join([[split(sp)]] =?= seq), σ ∈ ([sp] =?= [seq]).

Proof. Let sp be ES1 ES2 . . . ESm and seq be e1 e2 . . . en. Let σ′ be an arbitrary substitu-
ion in ([[split(sp)]] =?= seq) from which σ is constructed, namely that σ = join(σ′). Let
sp′ ∈ [[split(sp)]] such that σ′′(sp′) = seq, if split(sp) � sp′, then σ′ = σ′′ and if split(sp) 	
sp′, then σ′ = σ′′rev . There are four possible cases: (1) sp′ is split(Ei) split(ESi+1) . . .
split(ESi−1), (2) sp′ is rev(split(Ei)) rev(split(ESi−1)) . . . rev(split(ESi+1)). (3) sp′ is
sv(S, 1) split(ESi+1) . . . split(ESi−1) sv(S, 0) and (4) sp′ is sv(S, 0) rev(split(ESi−1)) . . .
rev(split(ESi+1)) sv(S, 1).

(1) For each ESj for j = 1, 2, . . . ,m, we calculate σ′′(split( ESj)) and σ(ESj). There
are three possible cases: (1.1) ESj is an element e, (1.2) ESj is an element variable E
and (1.3) ESj is a sequence variable S. (1.1) σ′′(split(e)) = e and σ(e) = e = σ′′(split(e)).
(1.2) σ′′(split(E)) = σ′′(E) and σ(E) = (join(σ′′))(E) = σ′′(E) = σ′′(split(E)). (1.3)
σ′′(split(S)) and σ(S) are calculated as follows:

σ′′(split(S)) = σ′′(sv(S, 0) sv(S, 1))

σ(S) = (join(σ′′))(S) = σ′′(sv(S, 0)) σ′′(sv(S, 1)) = σ′′(split(S))

Therefore, σ(ESj) = σ′′((split(ESj))) and then σ(ESi ESi+1 . . . ESi−1) is calculated as
follows:

σ(ESi ESi+1 . . . ESi−1) = σ(ESi) σ(ESi+1) . . . σ(ESi−1)
= σ′′((split(ESi))) σ

′′((split(ESi+1))) . . . σ
′′((split(ESi−1)))

= σ′′(split(ESi) split(ESi+1) . . . split(ESi−1))
= σ′′(sp′)

Because σ′′(sp′) = seq from the assumption, σ(ESi ESi+1 . . . ESi−1) = seq. Because
sp � ESi ESi+1 . . . ESi−1, [σ(sp)] = [σ(ESi ESi+1 . . . ESi−1)] from Lemma 6.2.2. Thus,
[σ(sp)] = [seq] and then σ ∈ ([sp] =?= [seq]).
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(2) For each ESj for j = 1, 2, . . . ,m, we calculate σ′′(rev( split(ESj))) and σ(ESj).
There are three possible cases: (2.1) ESj is an element e, (2.2) ESj is an element
variable E and (2.3) ESj is a sequence variable S. (2.1) σ′′(rev(split(e))) = e and
σ(e) = e = σ′′(rev(split(e))) = rev(σ′′(rev(split(e)))). (2.2) σ′′(rev(split(E))) = σ′′(E)
and σ(E) = (join(σ′′rev))(E) = σ′′(E) = σ′′(rev(split(E))) = rev(σ′′(rev(split(E)))). (2.3)
σ′′(rev(split(S))) and σ(S) are calculated as follows:

σ′′(rev(split(S))) = σ′′(rev(sv(S, 0) sv(S, 1)))
= σ′′(sv(S, 1) sv(S, 1))

σ(S) = (join(σ′′rev))(S) = σ′′rev(sv(S, 0)) σ′′rev(sv(S, 1))
= rev(σ′′(sv(S, 0))) rev(σ′′(sv(S, 1)))
= rev(σ′′(sv(S, 1)) σ′′(sv(S, 0))) = rev(σ′′(rev(split(S))))

Therefore, σ(ESj) = rev(σ′′(rev(split(ESj)))) and then σ(ESi+1 . . . ESi−1 ESi) is calcu-
lated as follows:

σ(ESi+1 . . . ESi−1 ESi) = σ(ESi+1) . . . σ(ESi−1) σ(ESi)
= rev(σ′′(rev(split(ESi+1)))) . . .

rev(σ′′(rev(split(ESi−1)))) rev(σ′′(rev(split(ESi))))
= rev(σ′′(rev(split(ESi)))

σ′′(rev(split(ESi−1))) . . . σ
′′(rev(split(ESi+1))))

= rev(σ′′(sp′))

Because σ′′(sp′) = seq from the assumption, σ(ESi+1 . . . ESi−1 ESi) = rev(seq). Be-
cause sp � ESi+1 . . . ESi−1 ESi, [σ(sp)] = [σ(ESi+1 . . . ESi−1 ESi)] from Lemma 6.2.2.
Moreover, [seq] = [rev(seq)] from Proposition 6.2.2. Thus, [σ(sp)] = [seq] and then
σ ∈ ([sp] =?= [seq]).

(3) rtt(sp′) is calculated as follows:

rtt(sp′)
= sv(S, 0) sv(S, 1) rev(split(ESi+1)) . . . rev(split(ESi−1))
= split(ESi) rev(split(ESi+1)) . . . rev(split(ESi−1))

Because σ′′(sp′) = seq, there exists a natural number k such that σ′′(rtt(sp′)) = rttk(seq).
As what has been done for case (1), we have σ(ESi ESi+1 . . . ESi−1) = rttk(seq). Be-
cause sp � ESi ESi+1 . . . ESi−1, [σ(sp)] = [σ(ESi ESi+1 . . . ESi−1] from Lemma 6.2.2.
Moreover, [seq] = [rttk(seq)] from Proposition 6.2.2. Thus, [σ(sp)] = [seq] and then
σ ∈ ([sp] =?= [seq]).

(4) rtt(sp′) is calculated as follows:

rtt(sp′)
= sv(S, 1) sv(S, 0) rev(split(ESi−1)) . . . rev(split(ESi+1))
= rev(split(ESi)) rev(split(ESi−1)) . . . rev(split(ESi+1))
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Because σ′′(sp′) = seq, there exists a natural number k such that σ′′(rtt(sp′)) = rttk(seq).
As what has been done for case (2), we have σ(ESi+1 . . . ESi−1 ESi) = rev(rttk(seq)).
Because sp � ESi+1 . . . ESi−1 ESi, [σ(sp)] = [σ(ESi+1 . . . ESi−1 ESi)] from Lemma 6.2.2.
Moreover, [seq] = [rev(rttk(seq))] from Proposition 6.2.2. Thus, [σ(sp)] = [seq] and then
σ ∈ ([sp] =?= [seq]).

Theorem 1. For any sequence pattern sp ∈ SP and any sequence seq ∈ Seq, join ([[split
(sp)]] =?= seq) = ([sp] =?= [seq]).

Proof. It is derived from Lemmas 6.2.3, 6.2.4, and 6.2.5.

Theorem 1 implies and guarantees that a ring pattern is represented by a set of sequence
patterns by rotating and reversing elements including splitting and joining sequence vari-
ables. The splitting and reversing problems are solved by splitting sequence patterns,
joining split sequence variables, and reversing substitutions (Definitions 6.2.3, 6.2.4, and
6.2.5).

6.2.2 Extending Maude with Ring Attributes

Rewriting logic is a natural model for specifying concurrent and communicating systems.
Several specification languages based on rewriting logic, such as ASF+SDF, Maude, and
ELAN have been designed and implemented. It has been demonstrated in [29, 30, 35, 36,
61, 62] that Maude allows programmers to specify distributed algorithms/systems more
succinctly than the others. Moreover, Maude supports meta-programming. A meta-
program is a program that takes a program (or specification) as input and performs some
useful computations, such as analyzing the program and transforming it into another.
Thanks to these meta-programming features, we can build Maude RSE on top of Maude.
In particular, we extend Full-Maude [16], which is an extension of Maude written in
Maude itself and provides extra features to extend Maude.

We extend Maude by creating two ring attributes that indicate that a given construc-
tor for sequences behaves as a ring. The specification environment is built as depicted in
Fig. 6.3. A specification in the environment is considered as a user specification, which
may contain specifications of a ring topology that would not be supported by the standard
Maude engine. The main player in the system is Transformer that takes a user specifi-
cation and transforms it into an ordinary Maude specification, which can be handled by
Maude. Transformer is a meta-program that handles specifications. The theory under
the transformer is given in Section 6.2.1. The main idea is that Transformer analyzes
a user specification to find out all functions related with rings and then modify them
by adding extra equations/rules that handle rings. Given a user specification as a ring
pattern, the transformer generates all corresponding sequence patterns following the ro-
tative law and the reversible law (see Definition 6.2.8). Intuitively, given a ring pattern
[ES1 . . .ESi . . .ESn], where ES1, . . . , ESi, . . . , ESn ∈ C are components, Transformer
generates as the left-hand side of a rule: n rotative patterns [ES1 . . .ESi . . .ESn], . . . ,
[ESi . . .ESn ES1], . . . , [ESn ES1 . . .ESi] and n reversible patterns [ES1 ESn . . .ESi],
. . . , [ESi . . .ES1 . . .ESn], . . . , [ESn . . .ESi . . .ES1]. When ESi (i = 1, 2, . . . , n) is a

103



User Specification

Transformer

Ordinary Maude 
Specification

Maude

Maude RSE 

Originary Maude

Figure 6.3: Architecture of Maude RSE.

variable, it is split following Definition 6.2.3. The correctness of Transformer is proven in
Theorem 1. We can basically use the right-hand side of the given rule as the right-hand
side for the other 2n-1 patterns generated as the left-hand side. We, however, need to
reverse sequences that substitute sequence variables occurring in the right-hand side for
the n reversible patterns (see Definition 6.2.5). For example, to specify the transition as
shown Fig. 6.2, users only need to specify one rule assumed as follows:

crl {0, I2, S, I1} => {-1, I2, S, I1 + 1} if I2 > I1 .

Intuitively, Transformer generates all possible rules by

1. Splitting: All sequence variables are splitted.

crl {0, I2, S1, S2, I1} => {-1, I2, S1, S2, I1 + 1} if I2 > I1 .

2. Rotating: All components in the sequence of the left-hand side are rotated.

crl {0, I2, S1, S2, I1} => {-1, I2, S1, S2, I1 + 1} if I2 > I1 .

crl {I2, S1, S2, I1, 0} => {-1, I2, S1, S2, I1 + 1} if I2 > I1 .

crl {S1, S2, I1, 0, I2} => {-1, I2, S1, S2, I1 + 1} if I2 > I1 .

crl {S2, I1, 0, I2, S1} => {-1, I2, S1, S2, I1 + 1} if I2 > I1 .

crl {I1, 0, I2, S1, S2} => {-1, I2, S1, S2, I1 + 1} if I2 > I1 .

3. Joining: Some pairs of sequence variables that are splitted from one sequence vari-
able and appeared in the splitted order are joined.

crl {0, I2, S, I1} => {-1, I2, S, I1 + 1} if I2 > I1 .

crl {I2, S, I1, 0} => {-1, I2, S, I1 + 1} if I2 > I1 .

crl {S, I1, 0, I2} => {-1, I2, S, I1 + 1} if I2 > I1 .

crl {S2, I1, 0, I2, S1} => {-1, I2, S1, S2, I1 + 1} if I2 > I1 .

crl {I1, 0, I2, S} => {-1, I2, S, I1 + 1} if I2 > I1 .
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4. Reversing: All sequences on the left-hand sides are reversed. rev is an operator
that reverses a sequence, e.g rev(1, 2) = 2, 1.

crl {0, I2, S, I1} => {-1, I2, S, I1 + 1} if I2 > I1 .

crl {I2, S, I1, 0} => {-1, I2, S, I1 + 1} if I2 > I1 .

crl {S, I1, 0, I2} => {-1, I2, S, I1 + 1} if I2 > I1 .

crl {S2, I1, 0, I2, S1} => {-1, I2, S1, S2, I1 + 1} if I2 > I1 .

crl {I1, 0, I2, S} => {-1, I2, S, I1 + 1} if I2 > I1 .

crl {I1, S, I2, 0} => {-1, I2, rev(S), I1 + 1} if I2 > I1 .

crl {0, I1, S, I2} => {-1, I2, rev(S), I1 + 1} if I2 > I1 .

crl {I2, 0, I1, S} => {-1, I2, rev(S), I1 + 1} if I2 > I1 .

crl {S1, I2, 0, I1, S2} => {-1, I2, rev(S1), rev(S2), I1 + 1} if I2 > I1 .

crl {S, I2, 0, I1} => {-1, I2, rev(S), I1 + 1} if I2 > I1 .

Because the result of the transformation is a standard Maude specification, we can guar-
antee that all Maude facilities, such as the LTL model checker, can be directly used for
user specifications.

6.2.3 Syntax declaration

This section shows how to define rings in the new environment. We consider two kinds
of rings: oriented rings in which the orientation of a ring such as clockwise order and
anti-clockwise order is taken into account, and disoriented rings in which there is no
orientation of a ring. In Maude, types are called sorts. A sort denotes the set of elements
of the same type. For example, the sort Nat denotes the set of natural numbers. A sort
is a subsort of another sort if and only if the set denoted by the former is a subset of
the one by the latter, and the latter is called a supersort of the former. Keywords sort

and subsort are used to declare a sort and a subsort relation, respectively. Elements of a
given sort are built by constructors, with keyword op, together with keyword ctor, given
the arity and the coarity. Moreover, operators can have equational axioms, such as being
associative for which keyword assoc is used.

We first consider disoriented rings, implemented by the ring attribute. In particular,
rings are constructed as a sequence of elements with this attribute. Let us assume that
the sort for elements is Elem. The sort for sequences of elements is Seq. The configurations
of a system as rings could be defined as follows:

subsort Elem < Seq .

op emp : -> Seq [ctor] .

op __ : Seq Seq -> Seq [ctor assoc id: emp] .

op {_} : Seq -> Config [ring ctor].

where the keyword ctor indicates that the operator is a constructor. An operator without
any argument is called a constant, such as emp, which stands for the empty sequence.
Underscores are placeholders where arguments are placed. Similarly, id: emp indicates
that operator emp is the identity element of the juxtaposition (empty syntax) operator
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__. Seq is a supersort of Elem, which means that each Elem is treated as the singleton
sequence only consisting of this element. The operator __ is used to construct sequences
of elements: for s1 and s2 of sort Seq, s1s2 has sort Seq. The structure __ is presented
just as an example; it could be replaced by any other structure that depends on the user’s
preferences, such as , and | . Likewise, the structure {_} is an optional preference.
A configuration is defined as a ring structure that is specified as a bounded sequence of
elements. Because a ring is disoriented, the mirror image of a ring represents the same
state represented by the ring. Therefore, for s0, s1, . . . , sj−1, sj ∈ Elem, {sj sj−1 . . . s1
s0} represents the same state represented by {s0 s1 . . . sj−1 sj}. All the configurations
{s0 s1 . . . sj−1 sj}, {s1 . . . sj−1 sj s0}, . . . , {sj s0 s1 . . . sj−1}, and { sj sj−1 . . . s1 s0},
{sj−1 . . . s1 s0 sj}, . . . , { s0 sj sj−1 . . . s1} are the same; they represent the same state.

For oriented rings, the environment provides the r-ring attribute that could be con-
sidered as a sub-class attribute of the ring attribute. For the r-ring attribute, the ring
and its mirror image do not necessarily represent the same state. Given a configuration
expressed as the ring {s0 s1 ... sj−1 sj}, all the following configurations are as the same:
{s0 s1 ... sj−1 sj} {s1 . . . sj−1 sj s0}, . . . , and {sj s0 s1 . . . sj−1}.

Let us show how to specify the system as shown in Fig. 6.1. An interval can be specified
as an element of the sort Int that is used for denoting integers. The structure is used
to construct sequences of intervals. The configurations could be defined as follows:

subsort Int < Seq .

op emp : -> Seq [ctor] .

op __ : Seq Seq -> Seq [ctor assoc id: emp] .

op {_} : Seq -> Config [ring ctor].

The ring as shown in the configurations Fig. 6.1(a) is expressed as {0, 3, 1, 2, 1} as well
as {3, 1, 2, 1, 0} , {1, 2, 1, 0, 3} , {2, 1, 0, 3, 1}, and {1, 0, 3, 1, 2} and so on because of
ring.

6.2.4 Applications

This section presents how to formalize and specify a mobile robot algorithm on a ring
in Maude RSE. We specify and model check an exploration algorithm with stop (Sec-
tion 2.1.2).

Robots Exploration on Ring under ASYNC

Exploration Problem. We consider the problem of exploring with stop a disoriented
ring populated by a group of identical, oblivious mobile robots. About timing assumption,
the ASYNC (or asynchronous) model is considered. In addition, there may be more than
one robot located at one. Each robot can distinguish whether a node is empty, occupied
by one robot, or more than one robot. When there are more than one robot, the node
is called a multiplicity (or a tower). The problem of exploring with stop requires that
regardless of the initial placement of the robots, each node must be visited by at least
one robot and the robots must be in a configuration in which they all remain idle.
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Exploration Algorithm [33]. The exploration algorithm checks whether, starting
from any initial configuration without towers, all robots explore the entire ring and reach
a configuration in which they all remain idle (no rules can be applied). The algorithm
works following a sequence of three distinct phases: Set-Up, Tower-Creation, and Ex-
ploration. The Set-Up phase transforms any initial configuration into one that is in a
predetermined set of configurations (called no-towers-final) with special properties. After
that, the Tower-Creation phase and then the Exploration phase are executed. Finally, all
nodes are visited and no robot will make any further moves.

Formal Specification of Exploration Algorithm

Let us suppose that there are n nodes denoted u0 u1, . . . , un−1 and each node may be
occupied by more than one robot. The multiplicity of robots located at node ui is denoted
di: di = 0 indicates that there are no robots, di = 1 indicates that there is exactly one
robot, and di = 2 indicates that there are more than one robot. We consider how to
express a configuration and how to describe an action as a state transition.

State Expressions. So far the state of an algorithm on a ring shape network has been
represented as a sequence of elements. For this system, each element is a node of the ring.
To deal with pending moves, we denote a node as a tuple 〈ni, pi, psi〉, where ni denotes
the multiplicity of robots located at the node, pi denotes a pending move, and psi denotes
the list of pending moves from other robots that moves to this one after they execute
their pending moves. ni can take the values: 0, 1, and 2, which correspond to the value of
di. pi is either a pending move moving to one of its adjacent nodes or nil meaning that
there are no pending moves (or the pending move is staying idle). When a robot at node
ui takes the snapshot of a configuration at some moments, the sequence ni, ni+1, . . . , ni−1
of the multiplicities taken from the snapshot is called the robot’s view of the snapshot.
Such views are used to represent pending moves. psi is either a set of pending moves from
other robots that move to this node after they execute their pending moves or emp (the
empty set). Because the ring is disoriented, a robot needs to find its pending move in the
pending move set of one of its adjacent nodes, so it can distinguish the direction of the
movement. The sort Pending denotes pending moves, PendingSet pending move sets, and
Node nodes. A configuration is expressed as a ring of nodes. The sort for configurations
is Config, which is declared with the ring attribute:

subsort Node < Seq .

op <_,_,_> : Nat Pending PendingSet -> Node [ctor] .

op emp : -> Seq [ctor] .

op __ : Seq Seq -> Seq [ctor assoc id: emp] .

op {_} : Seq -> Config [ctor ring].

The structure <_,_,_> is used to construct nodes. For n ∈ Nat, p ∈ Pending, ps ∈
PendingSet, we have 〈n, p, ps〉 ∈ Node. A configuration is defined as {_}, which takes as
argument a sequence of nodes. A term of sort S is either a variable or f(t1, . . . , tn) if f is
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Figure 6.4: Some configurations. A dashed arrow represents a pending move. Black nodes
represent multiplicities.
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Figure 6.5: Transition graph from the initial configuration (a).

an operator declared as f : S1 . . . Sn → S (n ≥ 0) and t1, . . . , tn are terms of S1, . . . , Sn.
Constructor terms are those terms consisting of only constructor operators and variables.
Ground constructor terms hence are those composed of constructors only and no vari-
ables. Ground constructor terms of sort Config express concrete states of the system. For
example, the initial configuration of the system as shown in Fig. 6.4(a) could be expressed
as the view of the robot at the top as {〈1, nil, emp〉 〈0, nil, emp〉 〈0, nil, emp〉 〈1, nil, emp〉
〈0, nil, emp〉 〈0, nil, emp〉 〈 0, nil, emp 〉 〈 1, nil, emp 〉 〈0, nil, emp〉 〈1, nil, emp〉}. Let v
and v′ be the views of the two robots holding pending moves: 1, 0, 1, 1, 0, 0, 1, 0, 0, 0 and
1, 1, 0, 0, 1, 0, 0, 0, 1, 0. The configuration of the system with two pending moves as shown
in Fig. 6.4(b) could be expressed as {〈1, nil, emp〉 〈0, nil, emp〉 〈0, nil, emp〉 〈1, nil, emp〉
〈0, nil, emp〉 〈0, nil, emp〉 〈0, nil, emp〉 〈1, v, emp〉 〈0, nil, (v; v′)〉 〈1, v′, emp〉}. The con-
figuration of the system in Fig. 6.4(c) could be expressed as {〈1, nil, emp〉 〈0, nil, emp〉
〈0, nil, emp〉 〈1, nil, emp〉 〈0, nil, emp〉 〈0, nil, emp〉 〈0, nil, emp〉 〈0, nil, emp〉 〈2, nil, emp〉
〈0, nil, emp〉}. Note that a configuration is defined as a ring.
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State Transitions. Because the Compute phase uses the snapshot of the system taken
in the Look phase as input and a robot does not perform any movements during two
consecutive phases, to model the system we combine the two phases into one called Look-
Compute phase in which a robot takes the snapshot of the system and computes a move.
When either (1) a robot takes the snapshot of the system and then computes a move, or
(2) a robot executes its pending move, the current configuration of the system changes to
another. Such changes are called a state transition (a transition for short). A transition is
expressed as a pair (l, r), where l and r are configurations. Let us examine the following
scenario. Assume that both robots r and r′ in Fig. 6.5(a) are allowed to move and the
robot r looks at the system and computes a move. The configuration of the system might
be transferred to the one in Fig. 6.5(b). The transition is named trans1 and expressed
by the pair ({〈 1, nil, emp 〉 〈 0, nil, emp 〉 〈 0, nil, emp 〉 〈 1, nil, emp 〉 〈 0, nil, emp 〉 〈
0, nil, emp 〉 〈 0, nil, emp 〉 〈 1, nil, emp 〉 〈 0, nil, emp 〉 〈 1, nil, emp 〉}, {〈 1, nil, emp 〉
〈 0, nil, emp 〉 〈 0, nil, emp 〉 〈 1, nil, emp 〉 〈 0, nil, emp 〉 〈 0, nil, emp 〉 〈 0, nil, emp 〉 〈
1, v, emp 〉 〈 0, nil, (v; emp) 〉 〈 1, nil, emp 〉}). The graph in Fig. 6.5 shows the possible
transitions from the initial configuration. We formalize state transitions by means of
rewrite rules. Each rewrite rule is defined only over Config in the form L ⇒ R such that
L is a constructor term. For example, the following rewrite rule describes the action when
a robot performs its pending move.

crl [Pending]: {S1 < 1, P, PS > < N, P’, (P ; PS’) > S2}

=> {S1 < 0, nil, PS > < N + 1, P’, PS’ > S2}

if nonMul({S1 < 1, P, PS > < N, P’, (P ; PS’) > S2}).

where S1 and S2 are variables of sort Seq, P, and P’ are variables of sort Pending, PS and
PS’ are variables of sort PendingSet, and N is a variable of sort Nat. The function nonMul

returns true when the configuration has no multiplicity and false otherwise.
The rule above is a conditional rule named Pending with the condition specified in the
if part. Since it is applied to a state in which there are no multiplicities, N is ei-
ther 0 or 1. The configuration {S1 〈 1, P, PS 〉 〈 N, P’, (P ; PS’) 〉 S2} stands for
any state such that the robot 〈 1, P, PL 〉 has a pending move P and the next node
is 〈 N, P’, (P ; PL’) 〉 in which P is in the set of pending moves. In addition to
these two nodes, such a state may have some more nodes that are expressed as S1 and
S2. The ground constructor term {〈1, nil, emp〉 〈0, nil, emp〉 〈0, nil, emp〉 〈1, nil, emp〉
〈0, nil, emp〉 〈0, nil, emp〉 〈0, nil, emp〉 〈1, v, emp〉 〈0, nil, (v; emp)〉 〈1, nil, emp〉} expresses
the state of Fig. 6.5(b). The left-hand side of the above rewrite rule matches this
ground term by substituting S1, P, PS,N, P ′, PS ′ and S2 with 〈1, nil, emp〉〈0, nil, emp〉
〈0, nil, emp〉〈1, nil, emp〉〈0, nil, emp〉 〈0, nil, emp〉〈0, nil, emp〉, v, emp, nil, v, emp and
〈1, nil, emp〉, and the rewrite rule can be applied to the term, changing it to {〈1, nil, emp〉
〈0, nil, emp〉 〈0, nil, emp〉 〈1, nil, emp〉 〈0, nil, emp〉 〈0, nil, emp〉 〈0, nil, emp〉 〈0, nil, emp〉
〈1, nil, emp)〉 〈1, nil, emp〉} expressing the state in Fig. 6.5(e). In this way, a single rewrite
rule stands for a set of state transitions.

Let us analyze the following example to show how the new environment helps to specify
the algorithm. Assume that the algorithm is specified in standard Maude. This means
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that a configuration is defined as a sequence of nodes enclosed by { and }. Considering the
(counter-clockwise) system in Fig. 6.5(b), given as {〈1, nil, emp〉〈0, nil, (v; emp)〉〈1, v, emp〉
〈1, nil, emp〉 〈0, nil, emp〉〈0, nil, emp〉〈1, nil, emp〉〈0, nil, emp〉 〈0, nil, emp〉 〈0, nil, emp〉}.
However, this term does not match the left-hand side of the rule above. To handle this
case, we need to specify another rule as follows:

crl [Pending]: {S1 < N, P’, (P ; PS’) > < 1, P, PS > S2}

=> {S1 < N + 1, P’, PS’ > < 0, nil, PS > S2}

if nonMul({S1 < N, P’, (P ; PS’) > < 1, P, PS > S2}).

Consequently, we need to use more rules to specify the algorithm. Fortunately, in
Maude RSE, the first rule Pending is enough to cover all possible cases.

Model Checking

We use the Maude LTL model checker to verify the algorithm in the previous section.
By definition in the algorithm, at the end of each phase the system should be in some
configurations with special properties. The authors in [33] give some important theorems,
such as Theorem 3.1 and Theorem 3.2, that must hold to guarantee the correctness
of the algorithm. These theorems are used to model check the algorithm. We have
formally expressed these theorems as LTL formulas [38]. We take here the formalization
of Theorem 3.1 as an example. Theorem 3.1 states a property that must be satisfied at
the end of the Set-Up phase: any initial configuration is transformed into a no-towers-final
configuration. We define the atomic propositions endOf and SetUp as follows:

• The proposition endOf holds if and only if the Set-Up phase has finished.

• The proposition SetUp holds if and only if the current state does not have towers
and robots are located adjacent to others in one or two groups.

The theorem then is expressed as the LTL formula:

theorem3-1 = [] (endOf -> SetUp) /\ <> endOf .

where [] is the always operator and <> is the eventually operator.
Intuitively, the formula states that it is always true that the phase Set-Up will finally
terminate and whenever the phase has been just over, then SetUp is true. This means
that the Theorem 3.1 is satisfied at the end of the Set-Up phase. As the result of the
model checking, no counterexamples are found. This makes us more confident on the
correctness of Theorem 3.1.
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(a) (b)

Figure 6.6: (a) A system with 10 nodes and 3 robots and (b) The system obtained after
a robot moved.

6.3 MR2-Maude

In the previous section, we presented how to specify and model check mobile ring robot
algorithms in Maude RSE, in which two ring operator attributes are available. The two
ring operator attributes make it possible to substantially reduce the number of rules
required to specify mobile ring robot algorithms because the attributes take into account
the rotative and reversible properties of rings. It would, however, be preferable that
mobile ring robot algorithms can be specified such that their specifications are closer to
their mathematical descriptions. More specifically, dealing with (i) pending moves, which
have been calculated but not performed yet, and (ii) moves of robots in a multiplicity
adds extra complexities to specifications.

For example, let us show how to specify the following action: in this case (see Fig. 6.6(a)),
the isolated robot should not move, and among the two other robots, only the furthest
one (w.r.t. the isolated robot) should compute a move to approach to the isolated node
(Fig. 6.6(b)). To represent system states, we could use sequences of natural numbers
(more precisely, 0, 1, and 2) such that each element corresponds to one node: 0, 1, and
2 stand for no robot, one robot, and more than one robot at the node, respectively. The
configuration in Fig. 6.6(a), assuming the node that is the neighbor on the left of the two
adjacent robots is the initial one, is expressed as {0, 1, 1, 0, 0, 1, 0, 0, 0, 0}. In the sense
of distributed computing, the action is simply given as the following rule:

rl {0, 1, 1, 0, 0, 1, 0, 0, 0, 0} => {1, 0, 1, 0, 0, 1, 0, 0, 0, 0} .

However, robots must follow the Look, Compute, and Move cycle. A robot looks at
the system and then calculates a movement, but it does not perform it instantly; the
movement is performed an arbitrary time after being computed. When either (i) a robot
takes the snapshot of the system and then computes a move, or (ii) a robot executes
its pending move, the current configuration changes to another (see Fig. 6.7). Thus, it
is necessary to store the information about a pending move in each node. One possible
solution as presented in Section 6.2.4 is that we could add more information to each
node to handle pending moves. A node could be expressed as a tuple 〈n, p, ps〉, where
n denotes the multiplicity of robots presented at node, p denotes a pending move, and
ps denotes the set of pending moves from other robots that move to this note after they
execute their pending moves. Let v be 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, which is the view of the
robot that is supposed to move. The above rule is revised as:
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Figure 6.7: (a) A system with 10 nodes and 3 robots, (b) a robot takes the snapshot of
the system and computes a move, and (c) the robot executes its pending move.

rl {< 0, nil, emp >, < 1, nil, emp >, < 1, nil, emp >, < 0, nil, emp >,

< 0, nil, emp >, < 1, nil, emp >, < 0, nil, emp >, < 0, nil, emp >,

< 0, nil, emp > , < 0, nil, emp >}

=>

{< 0, nil, (v ; emp) >, < 1, v, emp >, < 1, nil, emp >, < 0, nil, emp >,

< 0, nil, emp >, < 1, nil, emp >, < 0, nil, emp >, < 0, nil, emp >,

< 0, nil, emp >, < 0, nil, emp >} .

The question is how to perform the move since the configuration may be changed after
a robot has computed the move. We, thus, need at least one more rule to perform a
pending move (see the pending rule mentioned in Section 6.2.4). Moreover, to model
check a property for an algorithm, it is required to define several LTL atomic propositions.
MR2-Maude, therefore, provides a syntax to specify and analyze ring robot algorithms
such that MR2-Maude users do not need to deal with how to specify pending moves as well
as the moves at a multiplicity. All these tasks are taken by MR2-Maude and transparent
to users. For example, users are able to specify the action above-mentioned in a way that
it looks closer to its mathematical description without use of any extra rules. MR2-Maude
is built on top of Maude RSE. MR2-Maude then inherits two ring operator attributes. In
the next sections we present MR2-Maude syntax and commands.

6.3.1 Syntax

We present in this section the syntax of MR2-Maude for specifying states and transitions.

State Expression

MR2-Maude provides three ways to specify mobile ring robot algorithms, covering most
of such algorithms proposed in the literature: ring-interval, ring-fix, and ring-location.

Ring-interval: a system is described as a sequence of intervals, where an interval is
the number of consecutive empty nodes between two non-empty nodes. In this case a ring
is expressed as a sequence of numbers enclosed by { and }. Each number in the sequence
denotes the size of the interval between one robot and the next one. For example, the
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Figure 6.8: Some configurations. A dashed arrow represents a pending move. Black nodes
represent multiplicities.

configuration in Fig. 6.8(a) could be expressed as {1, 0, 5, 0, 1, 3} in the view from the
robot r in clockwise order. Due to the multiplicity assumption, it is possible that a robot
moves to a node that is occupied by other robots. As written, nodes occupied by two
or more are called multiplicities (or towers). Since robots are anonymous, we can denote
all of them by I in which the value of I is set to the negative of the additional number
of robots located on the multiplicity (-3 indicates 3 additional robots, which means a
multiplicity of 4 robots). Note that this notation allows us to represent the exact number
of robots in multiplicities (called strong multiplicity detection). Robots may (or may
not) have access to this information; they may only know if there is a multiplicity (i.e. a
negative number). For instance, the configuration in Fig. 6.8(d) assuming that there are
two robots in each multiplicity, is expressed as {2, -1, 5, -1, 2, 3}.

Ring-fix: a ring of n nodes is expressed as {u0 u1 . . . un−1}, with a natural number
ui. In this case each ui stands for the number of robots located at node i. For instance,
the configuration in Fig. 6.8(d) is expressed as {0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0 , 0, 1}.

Ring-location: a system of n nodes and k robots is represented in this case as a
sequence of pairs of the form {〈 r1, l1〉, . . ., 〈 rk, lk 〉} with ri ∈ {1, ..., k} standing for
each robot and li ∈ {1, . . . , n} standing for the node at which ri is located. We want to
note that this does not affect the fact that rings (namely nodes and edges) and robots
are anonymous because the implementation of the rules for the algorithm considers that
both robots and nodes are identical. The configuration in Fig. 6.8(d) could be expressed
as {< r1, 0 >,< r2, 0 >,< r3, 6 >,< r4, 6 >,< r5, 9 >,< r6, 13 >}.

State Transition

MR2-Maude predefines two actions for a robot to move to its neighbors: -> and <-,
which stand for moving forward and moving backward based on its current view of a
configuration. We do not need to consider how to deal with pending moves or how to
move in a multiplicity because they are internally handled by MR2-Maude in a transparent
way. For example, the action taken by r1 in Fig. 6.8(b) is specified as the following rule:
For ring-interval:

rl {1, 0, 5, 0, 1, 3} => {1, 0, (5)->, 0, 1, 3} .
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For ring-fix:

rl {1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0} =>

{1, (1)->, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0} .

For ring-location:

rl {< r1, 0 >, < r2, 1 >, < r3, 7 >, < r4, 8 >, < r5, 10 >, < r6, 14 >} =>

{< r1, 0 >, (< r2, 1 >)->, < r3, 7 >, < r4, 8 >, < r5, 10 >, < r6, 14 >} .

Let us emphasize the point that the action can be specified by one rule, while we need
to use multiple rules when it is specified in original Maude and even in Maude RSE in
which the two ring attributes are available.

6.3.2 Model Checking Facilities

MR2-Maude predefines some useful LTL formulas as well as atomic propositions to con-
duct model checking experiments for the two main problems on rings: exploration and
gathering problems. All what users need to do is just use the predefined formulas and/or
propositions. For example, to model check the gathering property that states that once
an algorithm terminates, all robots are gathered in one location, all you need to do is to
conduct the following command:

(red modelCheck(initial, gathering) .)

where gathering is the predefined formula that defines gathering property (at the end
of the algorithm all robot are gathered at one node) and initial is the term expressing
an initial configuration of the system. Likewise, we can use the exploration formula to
analyze the exploration property.

Although users need to learn some about LTL to understand it, the predefined formulas
and propositions specific to mobile ring robot algorithms could reduce time and efforts
taken and made by users.

6.4 Evaluation

Maude RSE provides a ring specification environment that allows us to declare ring data
structures and MR2-Maude, built on top of Maude RSE, allows us to specify mobile ring
robot algorithms such that their specifications are closer to their mathematical descrip-
tions and predefines some useful LTL formulas as well as atomic propositions specific to
such algorithms. To demonstrate the advantages of Maude RSE, we first compare the
sizes of mobile ring robot algorithm specifications in plain Maude [28, 29] and in Maude
RSE and report on the overheads (which is almost nothing) introduced by Maude RSE
for model checking. We then show how MR2-Maude allows us to specify mobile ring robot
algorithms.
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Figure 6.9: (a) A configuration with a multiplicity obtained from a symmetric configura-
tion and (b) The configuration with a multiplicities obtained from (a).

6.4.1 Specifications with “Ring” Attributes in Maude RSE

We consider two algorithms solving two main problems on ring: the perpetual exploration
algorithm, which was defined in [10] while we follow the specification in [28], and the
gathering algorithm, designed in [21] and specified in [29].

A Perpetual Exploration Algorithm

In [10], its authors use the classical encoding as the sequence of occupied/free nodes in
the ring. For example the configuration of Fig. 6.6(a) depicting 3 robots on a 10-node
ring is encoded as (R2, F2, R1, F5) because there are 2 adjacent robots followed by 2 free
nodes, followed by 1 robot, followed finally by 5 free nodes. In [28], the ring is represented
as the set of all non-empty nodes.

The ring features, namely rotation and reversibility, are dealt with by using associa-
tive and commutative sets of elements. However, the commutative attribute makes it
impossible to keep the order of elements in the ring. Namely, the commutative attribute
forces specifiers to use complex constraints to specify the algorithms because the order
of elements might change. For this reason, several functions are defined to handle these
constrains.

By using Maude RSE, we do not need to handle ring characteristics. The updated
specification in Maude RSE, therefore, gets rid of all these extra functions. In total, we
reduce over 50% of the code.

A Gathering Algorithm

We discuss now the gathering algorithm as presented in [29], where a configuration is
described as a ring-interval as described in the previous section. In [29], the authors use
44 rules to specify the behavior of the system and 53 equations to handle some constraints
about configurations. Many of these rules and equations are defined to handle rings. In
Maude RSE, the specification requires 17 rules and 18 equations, that is, we obtain a code
reduction of more than 60%.
Performance analysis. We also conducted model checking experiments to compare the
performance. 8 different systems in terms of the number of robots and the size of the ring
are taken. Experiments were conducted on a 4GHz Intel Core i7 processor with 32GB of
RAM. The results are shown in Table 6.1. Based on these experiments, we can conclude
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Table 6.1: Performance comparison between ordinary Maude and Maude RSE.

Systems The number
of Processes

The number
of channels

The number
of tokens

Time taken
by the
ordinary
Maude
(Second)

Time taken
by Maude
RSE (Sec-
ond)

Sys 1 3 5 1 0.171 0.163

Sys 2 3 11 3 0.270 0.240

Sys 3 5 8 2 0.546 0.723

Sys 4 5 12 2 0.927 1.247

Sys 5 8 19 1 1.999 2.181

Sys 6 8 39 2 4.116 3.929

Sys 7 9 16 2 4.823 4.912

Sys 8 9 21 1 7.130 6.812

that Maude RSE preserves the performance of the ordinary Maude environment; no extra
time consuming (Fig. 6.10).

6.4.2 Specifying Mobile Ring Robot Algorithms in MR2-Maude

We present in this section how mobile ring robot algorithms are specified in MR2-Maude.
We specify and model check the perpetual exploration algorithm [10]. By the ordinary
Maude, to express a configuration, we need to store more information to control “pending
move”. In the other side, with MR2-Maude, a configuration could be described as a ring of
intervals. It, therefore, is suitable to use the ring-interval syntax to specify a configuration.
We do not need to define any more notations to describe the system because they are
already predefined. Let us consider two ways to specify the first rule RL1 as the following
mathematical rule by using Maude original syntax and using MR2-Maude syntax.

Rule RL1: (R2, F2, R1, Fz)→ (R1, F1, R1, F2, R1, Fz).

By Maude original syntax, we need to handle “pending moves.” We, thus, add more
information to an interval in order to control pending moves as follows:

rl[RL1]: {< 0, nil, PSX > < 2, PY, PSY > < Z, PZ, PSZ >} =>

{< 0, [0, Z, 1], PSX > < 2, PY, PSY > < Z, PZ, add([0, Z, 1], PSZ) >} .

Moreover, the following rules need to be added for perform these moves.

crl[Pending]: {C < I1, P1, PS1 > < I2, P2, P1 ; PS2 > C’} =>

{C < I1 + 1, nil, PS1 > < I2 - 1, P2, PS2) > C’}

if (move(P1) == 1) .
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Figure 6.10: Maude RSE preserves the performance of the ordinary Maude environment.

crl[Pending]: {C < I1, P1, PS1 > < I2, P2, P1 ; PS2 > C’} =>

{C < I1 - 1, nil, PS1 > < I2 + 1, P2, PS2 > C’}

if (move(P1) == -1) .

This specification needs users to understand the Maude language to encode it. However,
following the purely Mathematical definition the rule is specified in MR2-Maude as:

rl [RL1] : {0, 2, Z} => {(0)<-, 2, Z} .

where <- means that the robot located at a node whose next node is occupied by one
robot (denoted 0 as the interval), followed by two consecutive empty nodes (denoted 2 as
the interval) and one node occupied by one robot or multiple robots (denoted Z as the
interval), will move to the other next node (denoted (0)<-). All tasks to handle a pending
move are done by MR2-Maude, which is transparent to users.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion and Main Findings

This thesis has given an effort to demonstrate that rewriting logic and its meta-programming
facility is strong enough to formalize distributed systems. We have tackled two important
families of distributed systems, namely CAs and mobile robot algorithms, with rewriting
logic meta-programming facilities

We have proposed (1) a technique that specifies a distributed control algorithm as a
meta-program that takes a specification of an underlying distributed system and auto-
matically generates the specification of the underlying distributed system on which the
control algorithm is superimposed (UDS-CA). We have also proposed (2) a technique
that makes it possible to model check if the UDS-CA generated as just mentioned enjoys
desired properties that may involve not only the UDS-CA but also the underlying dis-
tributed system at the meta level. Moreover, we have proposed (3) a technique that takes
the number of each kind of entities used, generate all possible initial states for the given
number of each kind of entities, and conduct model checking experiments for all the initial
states. Even fixing the number of each kind of entities used by an underlying distributed
system, there may be more than one initial state because of, for example, the topology
of the network used by the underlying distributed system. Technique (3) makes it more
likely to detect a subtle flaw lurking in a control algorithm. The Chandy-Lamport Dis-
tributed Snapshot algorithm and the Cao-Singhal Mobile Checkpointing algorithm have
been used to demonstrate the usefulness of technique (1). One desired property Chandy-
Lamport Distributed Snapshot algorithm should enjoy is what is called the distributed
snapshot reachability property that involves both an underlying distributed system and
the underlying distributed system on which the algorithm is superimposed, which has
been used to demonstrate the usefulness of technique (2). For one desired property the
Cao-Singhal Mobile Checkpointing algorithm should enjoy, a counterexample is found for
some initial states but not for the others even by fixing the numbers of mobile hosts and
mobile support stations, which has been used to demonstrate the usefulness of technique
(3). Liu, et al. [47] propose a technique similar to (3) but their technique does not take
into account network topologies, while (3) takes into account different network topologies.
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How to formalize and model check a new software system is always challenging. We show
in this thesis how to formalize and model check a new form of distributed systems. We have
described how to specify and model check mobile robot algorithms in Maude. In detail, we
have conducted a case study in which we specify a mobile robot exploration algorithm on
ring in which there are three robots and model check that the system enjoys some desired
properties. Furthermore, we have proposed a formal model for mobile robot algorithms
on anonymous ring shaped network under multiplicity and asynchrony assumptions -
our model is general enough and could be applied to other problems. We then use an
LTL model checker to model check an algorithm for robot gathering problem on ring
enjoys some desired properties. We refute by model checking that the algorithm enjoys
the desired properties. We detect the sources of some unforeseen design errors. We
have demonstrated the usefulness of model checking techniques to formally verify mobile
robot algorithms. The model checker found counterexamples showing that these analyzed
algorithms are not correct. Although informal proofs have been given in [10] and [21]
to guarantee the correctness of these algorithms, there remain some mistakes that are
subtle and not easy to find by carefully checking the algorithm, even by experts. We
want to emphasize that our goal is not to blame the authors or reviewers of the paper.
When reading the paper, we also missed most of these errors. But it means that it is
indeed difficult and therefore we should really consider using formal methods to check
such algorithms.

Because mobile robot systems are a new form of distributed systems, the existing
specification methods (and tools) do not support these systems well. In this case, a new
language or an extension of an existing language is needed. This paper introduces two
extensions of Maude as a specification language specific to mobile ring robot algorithms:
Maude RSE and MR2-Maude. Maude RSE makes it possible to specify ring structures,
which need to be used to specify mobile ring robot algorithms and MR2-Maude makes
mobile ring robot algorithm specifications closer to their mathematical descriptions. The
reason why we provide Maude RSE as well as MR2-Maude is that the former permits
Maude experts to come up with their way to formalize configurations and actions of
mobile ring robot algorithms, while the latter allows even non-Maude experts to specify
such algorithms in a closer way used in papers in which such algorithms are proposed.

This thesis will benefit researchers in both formal methods community and distributed
computing community:

• To distributed computing community:

– A new approach to specifying and model checking control algorithms, and

– The tools that allow users to concisely and naturally specify mobile robot
algorithms on ring shaped networks.

• To formal methods community:

– A demonstration that meta-programs can be used as formal specifications of
distributed algorithms, and
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– How to build a new environment and a domain-specific language on top of an
existing system (namely Maude) by using meta-programming facilities.

7.2 Future Work

Although technique (3) is useful as demonstrated, it causes another challenge because a
huge number of initial states may be generated even though we use some constraints, for
example, on the network topology. There are at least two possible remedies for this chal-
lenge. Initial states may be classified into a small number of groups. One representative
initial state can be taken from each group, and then we can conduct model checking for
each representative initial state but not for all initial states. The other possible remedy
is to use a parallel (or distributed) computing environment. Model checking experiments
for multiple initial states are totally independent from each other. Therefore, multiple
model checking experiments can be conducted simultaneously. It is our future work to
investigate the two possible remedies for a huge number of initial states. Moreover, spec-
ifying an algorithm as a meta-program is not straightforward. It requires professional
skills on meta-programming. We, therefore, want to build a tool that supports specifiers
to write the specification at the object level and then the specification is transformed to
the meta-program at the meta level.

As future work, we consider extending Maude RSE and MR2-Maude in the following
directions: (1) to support other features on ring, such that robots located in a mul-
tiplicity may have different calculated moves or rings are dynamic and (2) to support
other topologies, such as grid. For (1), the algorithm performed by robots should be
randomized. Moreover, we consider to apply similar techniques to verify other algorithms
that have been proposed in the literature. It would be interesting to specify and model
check algorithms designed for other topologies (e.g. grid, torus, or arbitrary graphs) or
working under other assumptions (such as (semi-)synchronous scheduler, or different no-
tion of fairness). Finally, one of the biggest challenge would be to investigate continuous
topologies.

Although our model checking approach successfully detects counterexamples, it cannot
guarantee that distributed algorithms surely enjoy desired properties because all possible
cases may not be covered. This is also challenging for existing current model checking
techniques. Some equational abstraction techniques have been introduced to deal with
this challenge. We would want to consider how to tackle control algorithms and mobile
robot algorithms with those techniques. However, the specifications of control algorithms
(or mobile robot algorithms) contain huge and very complex sets of equations, it is not
straightforward to achieve the set of equations E ′ such that an equational abstraction
satisfies many requirements, such as finite, terminating and coherent. Furthermore, the
current equational abstraction techniques require human being sense to add these equa-
tions. We therefore would like to apply meta-programming techniques to automatically
generate the abstraction of an input a rewrite theory describing a distributed system and
specified as a module in Maude.
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