
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A Study on Long-Short Term Memory Networks with

Attention Mechanism

Author(s) Su, Hang

Citation

Issue Date 2019-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/15817

Rights

Description
Supervisor: Huynh Nam Van, 先端科学技術研究科, 修

士（知識科学）

 1

A Study on Long-Short Term Memory Networks with

Attention Mechanism

SU HANG

School of Knowledge Science,

Japan Advanced Institute of Science and Technology

March 2019

Keywords: Natural language processing, sentiment analysis, text data, machine learning,

deep learning, Long short term memory, LSTM, Bi-LSTM, attention mechanism

With the rapid development of e-commerce websites, more and more people choose

online shopping, which generates a large number of product review information. Sentiment

analysis of text information not only tap customers' preference for products and provide

shopping suggestions to potential customers, but also can help providers to improve products

and services in a timely manner and improve business value.

Therefore, it is very necessary to classify product reviews by sentiment. There are two

traditional research methods of sentiment classification: (1) the method based on lexicon; (2)

methods based on machine learning. The former requires creating the lexicon manually,

which is laborious. The latter is usually classified by naive bayes (NB), maximum entropy

(ME), support vector machine (SVM), etc. These methods are easy to lose the syntactic and

semantic information of the text and difficult to effectively capture the sentiment in the text.

With the application of deep neural networks in the field of natural language processing,

Bengio et al. used neural networks to train word vectors to represent texts in 2003. The word

vector can not only obtain semantic information effectively, but also avoid the problem of

data sparsity. The word vector is used to represent the text, and by using the deep learning

model, such as multi-layer neural network, convolutional neural network (CNN), recurrent

neural network (RNN), etc., is adopted for sentiment classification, which can achieve better

 2

results than traditional machine learning methods.

Considering that the text data has strongly dependent on the context when classifying

product reviews, and the standard neural network model cannot well solve the problem, so in

this study, I adopted the Bidirectional Long Short term Memory neural network (Bi-LSTM)

for sentiment analysis. In addition, considering the different contributions of different words

to the text, the Attention mechanism is introduced. Based on this, this study proposes a

Bi-LSTM model based on the Attention mechanism to classify product reviews.

In order to verify the validity of the model, this study used the dataset of

SemEval(International Workshop on Semantic Evaluation) 2014 Task 4 which is composed of

reviews in Restaurant and Laptop. to test the model. Finally the experimental results show

that the model is effective.

Copyright Ⓒ 2019 by SU HANG

1

Table of Contents

Chapter 1 ... 8

Introduction .. 8

1.1 Background .. 8

1.2 Research purposes .. 9

Chapter 2 .. 11

Related Work ... 11

2.1 Sentiment analysis ... 11

2.1.1 Major methods of sentiment analysis ... 11

2.1.1.(i) Lexicon-based method .. 12

2.1.1.2(ii) Machine learning-based method.. 13

2.2 Background knowledge in deep learning ... 17

2.2.1 History of Deep learning ... 17

2.2.2 Current status of deep learning .. 19

Chapter 3 ... 21

Approach ... 21

3.1 Deep learning algorithm ... 21

3.1.1 Perceptron algorithm ... 21

3.1.2 Back-propagation algorithm .. 25

3.2 Embedding representation .. 28

3.2.1 Word2vec ... 28

3.3 Model.. 34

3.3.1 Multi-Layer Perceptron ... 34

3.3.2 Convolutional neural networks ... 37

3.3.3 Recurrent neural network .. 39

3.3.4 LSTM .. 41

3.3.4.(i) Bi-LSTM .. 45

3.4 Attention mechanism .. 47

3.4.1 Global Attention and Local Attention ... 47

3.4.2 Attention model in this study .. 49

Chapter 4 ... 51

Experiment .. 51

4.1 Dataset .. 51

4.2 Word Embedding .. 51

4.3 Hyper-parameter Settings ... 52

2

4.4 The LSTM with Attention Model ... 54

4.5 Evaluation standard .. 56

4.6 Experiment results .. 57

Chapter 5 ... 61

Conclusion ... 61

References .. 63

3

List of Figures

Figure 1 the schematic diagram of SVM .. 16

Figure 2 schematic diagram of classification hyperplane 17

Figure 3 An example of gradient descent ... 25

Figure 4 Sigmoid function graph .. 26

Figure 5 the structure of CBOW... 30

Figure 6 the structure of Skip-gram .. 31

Figure 7 shown the semantic relationship through the vector space 33

Figure 8 the network topology of single neural unit .. 34

Figure 9 network structure of MLPs... 36

Figure 10 An example of the application of convolutional neural networks in the

image classification .. 37

Figure 11 the structure of sentiment analysis ... 38

Figure 12 the structure of RNN .. 40

Figure 13 the tanh layer in RNN unit ... 41

Figure 14 the structure of LSTM .. 42

Figure 15 the key of LSTM .. 42

Figure 16 activation operation .. 43

Figure 17 forget gate ... 44

Figure 18 input gate .. 44

Figure 19 updating the state of cell 𝐶𝑡 ... 45

Figure 20 output gate .. 45

Figure 21 the structure of Bi-LSTM ... 46

Figure 22 Global Attention Model and Local Attention Model 48

Figure 23 shown the structure of attention layer .. 49

Figure 24 the sample of datasets .. 51

Figure 25 the structure of Bi-LSTM with Attention Model 55

4

Figure 26 Confusion Matrix ... 56

Figure 27.1 MLP2560 with random Figure 27.2 MLP2560 with word2vec 57

Figure 27.3 Train accuracy and loss of LSTM256 Figure 27.4 CNN1200 57

Figure 27.5 Bi-LSTM256 and attention Figure 27.6 without attention 57

5

List of charts

Chart 1 Structures of all experiments ... 53

Chart 2 Structures of each MLPs .. 53

Chart 3 Structures of each CNN ... 53

Chart 4 Structures of each LSTM ... 54

Chart 5 Structures of each Bi-LSTM .. 54

Chart 6 the results of all models with random representation 59

Chart 7 the results of all models with word2vec representation 60

6

List of formula

Formula 1 The input and output expressions of the perceptron 21

Formula 2 expressions of the perceptron .. 21

Formula 3 .. 22

Formula 4 .. 22

Formula 5 .. 23

Formula 6 .. 23

Formula 7 .. 23

Formula 8 .. 23

Formula 9 .. 24

Formula 10 .. 24

Formula 11 .. 24

Formula 12 .. 25

Formula 13 .. 26

Formula 14 the sigmoid function ... 26

Formula 15 the derivative of sigmoid function .. 27

Formula 16 the derivative of tanh function .. 27

Formula 17 .. 27

Formula 18 .. 27

Formula 19 .. 28

Formula 20 .. 28

Formula 21 objective function of CBOW .. 29

Formula 22 objective function of Skip-gram ... 31

Formula 23 target word probability of word2vec ... 33

Formula 24 .. 35

Formula 25 .. 40

Formula 26 .. 40

7

Formula 27 .. 50

Formula 28 .. 50

Formula 29 .. 57

8

Chapter 1

Introduction

1.1 Background

Existing researches shown as in the earlier study, researchers adopted traditional

machine learning methods to solve many tasks of natural language processing(NLP),

such as classifying news texts with support vector machines(SVM) [1] or processing

spam with naive Bayes[2] etc. But with the rise of social media on the Internet, volume of

text data surges, no matter from the workload or from the final test results, the traditional

classification methods Fare unable to give satisfactory results, and the emergence of deep

learning breaks the deadlock in a certain sense, makes a lot of tasks in the field of natural

language processing got breakthrough bottlenecks.

Deep learning has become a powerful machine learning technology that can learn

multiple representations or features of data and produce state-of-the-art predictive results.

With the success of deep learning in many application fields, deep learning has also been

used in emotional analysis in recent years. The representation capability of the deep

neural network is not the same as that of the superficial log-linear model (including

low-order CRF); many of the architectures that currently achieve the current optimal

level of performance on standard datasets basically are variations of multi-tier,

bidirectional Recurrent Neural Network (RNN). Many tasks, such as language modeling

and machine translation, already have large-scale marked training data or parallel

sentence pairs, and the level of training data available for various tasks in the industry is

beyond imagination. All of these can only be better fitted with structures which have

stronger representation ability. In addition, even for small scale tasks with unlabeled data,

we also can use the word vectors trained from massive corpus obtain information, and

that can get better describe semantic proximity than BoW discrete vectors obtained from

9

classical brown clustering. Even if some words or representations are not seen in the

supervised training corpus, but the representation which learned in the unlabeled corpus

is close to another common word, the classical approach to semi-supervised learning

using massive unlabeled corpus is not so easy.

After the application of deep learning in the field of natural language processing, there

are many methods for the sentiment analysis tasks. The earliest research is to use the

MLPs to implement the sentiment classification, this method uses the vectors of words in

a sentence to calculate the average, this method loses the semantic relations in the

sentence, and other researchers tried to use Convolutional neural network (CNN) model,

this method is treating a sentence as a feature map, and to calculate the feature maps,

Though method has shown its effectives, but for now, for the NPL tasks the most

common solution is RNN. The neural network of RNN structure can better preserve the

semantic connections in sentences and has better effect on the sequential data such as

speech and text data. As a variant of RNN, Long-Short term memory (LSTM) has a better

effect on sequential data such as text, while the recently published attention mechanism

with neural network, focuses on the dependence of current words in current input.

1.2 Research purposes

To use the supervised learning models, datasets of review sentences annotated with

ground-truth sentiment have to be supplied as the training data. The data annotation

process involves intense human labor even linguistic expertise, therefore, the availability

of the training data is usually very limited.

In addition to the problem above, the review data is full of comparative and shifting

opinions; therefore, the boundaries separating different opinion classes should be highly

non-linear. And traditional learning models, such as SVM, Naïve Bayes, Logistic

regression, etc., are not strong enough to capture the non-linearity.

10

This study will consider the combination of attention mechanism and LSTM model to

achieve better classification effect in sentiment analysis task.

11

Chapter 2

Related Work

2.1 Sentiment analysis

Sentiment analysis (SA) [3], also known as tendency analysis and opinion mining, is a

process of analyzing, processing, summarizing and reasoning for subjective texts with

emotion. Among them, sentiment analysis can be further divided into sentiment polarity

(tendency) analysis, sentiment degree analysis, subjective and objective analysis, etc. The

purpose of polarity analysis of sentiments to judge the positive, negative and neutral

meanings of the text. In most application scenarios, there are only two categories. For

example, the words "like" and "dislike" belong to different sentiment tendencies.

Sentiment degree analysis is mainly to divide or subdivide the same sentiment polarity to

describe the intensity of the polarity. For example, "like" and "love" are both positive

terms, but "love" is relatively more positive. Subjective and objective analysis is to

distinguish which parts of the text are objective statements without emotional color and

which are emotional description.

2.1.1 Major methods of sentiment analysis

At present, there are two main types of sentiment analysis methods: lexicon-based

method and machine learning-based method.

The lexicon-based method mainly makes use of a series of affective dictionaries and

rules, breaks the text into paragraphs, analyzes the syntax, and calculates the affective

value. Finally, the affective value is taken as the basis of the emotional tendency of the

text. There a lot of sentiment lexicons, such as General Inquirer [4]; LIWC [5]; MPQA

Subjectivity Cues Lexicon [6]; Bing Liu Opinion Lexicons [7]; SentiWordNet [8].

The methods based on machine learning mostly turn this problem into a classification

12

problem. For the judgment of sentiment polarity, target sentiments are classified into two

categories: positive and negative. The training text is marked manually and then the

supervised machine learning process is carried out. For example, machine learning based

on large-scale corpus is quite common, Such as GLOVE, word2vec, etc.

2.1.1.(i) Lexicon-based method

Sentiment minimum granularity analysis object is word, but the most basic unit to

express sentiment is sentence, words can describe the basic information of the emotion,

but a single word without object, context, maybe at different emotion environment, the

same word combinations have opposite emotional tendencies. Therefore, it is

reasonable to use sentences as the most basic granularity of sentiment analysis. The

sentiment of a passage or paragraph can be calculated by the sentiment of sentence.

The general steps of lexicon-based sentiment analysis are as follows:

1. Divide into paragraphs;

2. Divide sentences in each paragraph;

3. Divide words in each sentence;

4. Search for sentiment words and label and count them;

5. Search the degree words before sentiment words, according to the degree, give

different weights;

6. Search for negative words before sentiment words, and assign inversion weight;

7. Calculate the sentiment score of the sentence;

8. Calculate the sentiment score of the paragraph;

9. Calculate the sentiment score of the article;

Considering that the sentence is not a stable distribution, the above steps process

positive and negative emotion words respectively, and the final two score represent the

positive sentiment score and negative sentiment score of the text respectively.

13

Algorithm design (pseudo code):

1:fetch all text

2:for each text:

3: for each parameter in text:

4: for each sentence in parameter:

5: for each word in sentences:

6: if word in sentiment_dicts:

7: if adverb before sentenceword

8: score = adverb*score

9: if inverse before sentenceword

10: score = -1 * score

After the steps above, each sentence of each paragraph from each article will have a

corresponding sentiment score. Then, according to the needs, the score of the sentence

can be statistically calculated, and the score of the paragraph also can be statistically

calculated, so as to obtain the positive sentiment value and negative sentiment value of

the final text.

2.1.1.2(ii) Machine learning-based method

(a)Text structuring

Text structuring is an important step in machine learning. Because of the particularity of

text, computers cannot directly understand the semantics in text. So we need to structure

the text as input to the classifier.

(1)Minimum semantic granularity

In English, the minimum semantic granularity is letters, but a single letter represents too

little semantic information. Generally, most words are used as the most basic morpheme,

because this is also the case in actual communication. However, as the minimum

semantic granularity, there is also a problem that the relationship between words is lost

along with the word segmentation.

14

In fact, this part of information is very important. In order to reduce this implicit

semantic loss, n-gram model has been proposed. The n-gram model is based on the

assumption that the appearance of the n word is only related to the previous n-1 word and

not to any other word. Simply the min-morpheme corresponding to the unigram model is

a single word, and the bigram model is a two-word string. For example, in bigram model

"I love Japan very much" is “I love”, ”love Japan”, ”Japan very”, “very much”. Due to the

fatal defect of n-gram -- the results are too sparse. Assume that there are 1000 words in

the word list of normal word segmentation. If it is bigram, there are 1000000 possible

n-grams; if it is trigram, there are 1000000000 possible n-grams, and the dimension

growth is exponential.

In general, only two or three strings are used as the minimum semantic granularity in use,

and other processing is needed to reduce the dimension and reduce the consumption of

computing resources.

(2)Text vectorization

Text vectorization is the most important step in text structuring. If determining the

minimum semantic granularity is to tell the computer the minimum unit of semantic

information, then vectorization is to tell the computer what structure to use to understand

the text. The mainstream representation methods are: bag-of-words (BoW) and vector

space model. In fact, these two models are relatively similar. Both of them take the

vocabulary (or the smallest morpheme in n-gram) as the minimum particle size of the

segmentation, and split a sentence to obtain "I", "love", "Tokyo" and "city". The weight of

the word is set according to the number of occurrence of each word, and the word is

converted into a vector in the form of [1, 1, 1, 1]. On the basis of the BoW model, the

vector space model integrates multiple text word bag models together to form a

two-dimension matrix of word-document. Words are also called dimensions or features.

In general, lexicon-based affective analysis is based on the former, while the latter is

applied to large-scale corpus. The entry weight is in the word bag or word frequency

15

matrix. If the word appears, it will be marked as 1; if it does not appear, it will be marked

as 0, which is called Boolean weight. People found that some words appeared many times

in the article, they should have a more important position, so the Boolean weight was

upgraded to the word frequency weight, and the frequency of the word appeared in the

article was used as the weight.

Later, it was found that some words had high word frequency in all articles, such as "the".

These words have no value to the article, and need to be eliminated to save performance

costs. Therefore, people eliminate these words with average distribution by inverse

document frequency idf, and the product of word frequency and inverse document

frequency is the commonly used tf-idf weight.

(3)Feature extraction

Feature extraction is the last step of text vectorization, and its importance is more

reflected in the prevention of model overfitting and the reduction of computing costs

without loss of precision. In the face of massive amounts of data, it is no less important

than any previous step. There are two main methods of feature extraction: feature

selection and feature extraction.

Feature selection is to select the feature dimension that contributes more to the target

category in a pile of features, calculate the weight of features, and select a higher part of

feature dimension as the input feature of model training according to the weight

reordering. The weight here is different from the word (feature) weight that we talked

about earlier. Feature weight describes the relationship between features and target

categories, while word weight describes the importance of words in articles, which are

very easy to be confused.

Feature extraction takes all features as input and outputs a batch of new features through

some way or algorithm. The number of dimensions of this feature is much smaller than

the length of the original feature. The loss of information in this process is much less than

the feature selection. Deep learning and neural networks are the main algorithms.

16

(b)Selection of classification algorithm

After the text is structured, it can be trained. Of course, you still need to choose a suitable

classifier. In the major literature, the most recommended text classification algorithm is

neural network. Because of its excellent generalization ability, neural networks are now

favored by the industry and used in many classification occasions. Of course, there are

many classifiers, naive bayes, neural network, K approach, Support Vector Machine

(SVM) have their own advantages. When the neural network was not concerned, the

effect of SVM was very excellent.

SVM is a supervised learning algorithm. The criterion for classification is the maximum

classification boundary, and the vector (feature) on the classification boundary is the

support vector.

Figure 1 the schematic diagram of SVM

So the vector that is directly involved in the sorting operation is actually smaller than the

original input vector. This is also the reason why the performance is better in the

prediction period, although it is more time-consuming in the training. One concept that is

17

unique to SVM is the classification hyperplane.

 Because the data is very complicated in reality, especially text data, the data after

vectorization is not a simple linear relation, so there are some people think to solve the

problem which is high-dimensional linear inseparable, the figure as shown below is an

example, complex relationships in low dimensional space can be mapped to simple linear

relationships in high dimensions, Of course, the data in the real world is not that simple,

so the mapping from low dimension to high dimension is much more complicated than

you think. But there are still some people who have shown mathematically that the

problem of low dimensional separately can be linearly separable in higher dimensions, at

least in one of the higher dimensions.

Figure 2 schematic diagram of classification hyperplane

2.2 Background knowledge in deep learning

2.2.1 History of Deep learning

In 1958, psychologist Rosenblatt put forward the earliest feed-forward hierarchical

network mode [9], which was known as Perceptron. In this model, the input graph is

18

allocated to each node of the next layer through each node. This layer is called the middle

layer. The middle layer can be one layer or multiple layers, and finally the output graph is

obtained through the node of the output layer. In this kind of feed-forward network, there

is no feedback connection, no intra-layer connection and no feedforward connection

between two layers. Each node can only be feedforward connected to all nodes in the next

layer. However, at that time, there was no feasible training method for the multi-layer

perceptron with hidden layer, so the perceptron in the initial study was a one-layer

perceptron.

In 1969, Minskey and Papert conducted a detailed analysis of the simple perceptron

proposed by Rosenblatt. A typical chestnut they cite is the so-called XOR(exclusive -- or)

problem. Minskey and Papert point out that simple perceptron without hidden layer is

powerless in many cases like XOR problem, and prove that simple perceptron can only

solve linear classification problem and first-order predication problem. For nonlinear

classification problems and higher-order predicate problems, the hidden element layer

must be used. The hidden unit can re-encode the input pattern with a certain weight, Thus,

the similar performance of this pattern supports any required input/output mapping in the

new encoding, rather than making the mapping difficult to implement as with a simple

perceptron.

The general Delta rule proposed by Rumelhart, Hinton and Williams, namely the back

propagation algorithm [10], solves this problem well. The learning process of the back

propagation algorithm is an error correction learning algorithm, which is composed of

forward propagation and back propagation. In the process of forward propagation, the

input signal propagates from the input layer to the hidden layer and the output layer, layer

by layer after passing through the action function, and the neuron state of each layer only

affects the neuron state of the next layer. If the desired output is not obtained at the output

layer, it goes into reverse propagation, returning the connection signal along the original

connection path. By modifying the connection weight of neurons in each layer, makes the

minimum output error signal and back propagation neural network connection structure

19

and mapping process is the same as multi-layer Perceptron, only the latter cell activation

function was in as a Sigmoid function. Rumelhart et al. rediscovered in 1985 that the

sample learning algorithm based on the generalized delta rule [11] could be effectively

applied in multi-layer network, which solved the problem of XOR and other learning

problems that could not be solved in Perceptron model in the past.

2.2.2 Current status of deep learning

In recent years, the development of deep learning is gradually mature. In June 2012, the

New York TIMES revealed the Google Brain project, which attracted wide public

attention. The project was led by Andrew Ng, a well-known machine learning professor

at Stanford University, and Jeff Dean, the world's leading expert on large-scale computer

systems. He trained 16,000 CPU Core parallel computing platforms to train deep neural

networks with 1 billion nodes. (Deep Neural Networks, DNN), which enables

self-training to identify 14 million images of 20,000 different objects. There is no need to

manually enter any features such as "face, body, what a cat looks like" into the system

before starting to analyze the data. The system actually invented or understood the

concept of 'cat'.

In March 2014, it was also based on the deep learning method. Facebook's DeepFace

project made the recognition rate of face recognition technology reach 97.25%, which is

only slightly lower than the correct rate of 97.5% of human recognition. The accuracy is

almost comparable. Humanity. The project utilizes a 9-layer neural network to obtain

facial characterization, with neural network processing parameters of up to 120 million.

And in March 2016, the artificial intelligence go game was won by AlphaGo developed

by David Silver, Aijia Huang and Daimis Hazabis of DeepMind, a Google-based

company in London, England. Li Shishi, the world's Go champion and professional

nine-segment player, won with a total score of 4:1. AlphaGo's main working principle is

deep learning, which improves the game of chess through two different neural network

20

"brains": the first brain: the Move Picker and the second brain: the Position Evaluator.

These brains are multi-layered neural networks that are structurally similar to those

recognized by Google's image search engine. They start with a multi-layered heuristic 2D

filter to handle the positioning of the Go board, just like the image classifier network

processes the image. After filtering, the 13 fully connected neural network layers produce

a judgment of what they see. These layers are capable of doing classification and logical

reasoning.

21

Chapter 3

Approach

3.1 Deep learning algorithm

In order to solve the above shortcomings, the deep learning-based algorithm is adopted

for sentiment analysis in this study. In the deep learning model, almost all neuron units

are implemented by perceptron algorithm. to understand the processing of deep learning

model, I should understand perceptron algorithm first.

3.1.1 Perceptron algorithm

First, 𝑛 as inputs, and each input value are weighted. Then, it is determined whether the

input by weighted sum of perceptron reaches a certain threshold value 𝑣 or not. If it does,

it outputs 1 through the sign function; otherwise, it outputs -1.

Formula 1 The input and output expressions of the perceptron

To unify the expression, we set the upper threshold 𝑣 to 𝑤0 and add the variable

x0 = 1 so that we can use 𝑤0𝑥0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+ 𝑤𝑛𝑥𝑛 > 0 instead of 𝑤0𝑥0 +

𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+ 𝑤𝑛𝑥𝑛 > 𝑣. So there are:

Formula 2 expressions of the perceptron

According to the above formula, when the weight vector is determined, the perceptron

can be used for classification. In order to obtain the weight of perceptron, we need to

adopt different methods according to whether the training set is separable:

22

1. When training data is linearly separable we use perceptron training rule

In order to get the acceptable weight, we usually start from the random weight, and

then use the training set to train the weight repeatedly, and finally get the weight vector

that can correctly classify all the samples.

The specific algorithm process is as follows:

A) Initialize the weight vector w = 𝑤0, 𝑤1, 𝑤2 …𝑤𝑛 , assign a random value to each

value of the weight vector.

B) For each training sample, first calculate its predicted output:

Formula 3

C) When the predicted value is not equal to the real value, the weight vector can be

modified by the following formula:

Formula 4

Meaning of each symbol: η > 0 stands the learning rate, t stands the target output of

the sample, and o stands the perceptron output.

D) Repeat B) and C) until the training set has not been misclassified.

2. When the training data is linearly indivisible --> delta rule (also known as

incremental rule, LMS rule, Adaline rule, windrow-hoff rule)

Because in the real situation, there is no guarantee that the training set is linearly

separable. In this case, we use the delta rule, and in this way we can find the best

approximation to the target. The key idea of the delta rule is to use gradient descent to

search the hypothesis space of possible weight vectors to find the weight vector of the

best fitting sample. Specifically, the loss function is used to move in the direction of the

negative gradient of the loss function every time until the loss function obtains the

23

minimum value.

We define the training error function as:

𝐸(�⃗⃗�) =
1

2
∑(𝑡𝑑 − 𝑜𝑑)

2

𝑑𝜖𝐷

Formula 5

Where D stands training data, 𝑡𝑑 is the target output, and 𝑜𝑑 is the perceptron output.

The process of stochastic gradient descent algorithm is as follows:

1) initialize the weight vector w, and take a random value for each value of the weight

vector.

2) for each training sample, perform the following operations:

 A) get the sample output o through the perceptron.

B) modify the weight vector w according to the perceptron output.

𝑤𝑖 ← 𝑤𝑖 + ∆ 𝑤𝑖

Formula 6

∆𝑤𝑖 = 𝜂(𝑡 − 0)𝑥𝑖

𝑖𝑛 𝑑𝑒𝑙𝑡𝑎 𝑟𝑢𝑙𝑒: 𝑜(𝑥) = �⃗⃗� ∙ 𝑥

Formula 7

3) repeat 2) When the error rate of the training sample is less than the set threshold, the

algorithm terminates.

3. Derivation of gradient descent rule

The core of the gradient descent algorithm is to move in the direction of the steepest

drop of the loss function each time, and the steepest direction is usually the opposite

direction of the vector obtained by taking the partial derivative of the loss function with

respect to the weight vector.

Formula 8

24

In order to calculate the above vectors, we calculate each component one by one:

Formula 9

Each weight update is:

Formula 10

The weight updating method using this method is called gradient descent, which

calculates a sum of all training centralization values and then updates the weight. This

method needs to train all the training sets once to update the sequential weights, so it is

slow and inefficient.

To improve this slow updating speed, the stochastic gradient descent algorithm is

adopted, and the weight vector updating formula is:

Formula 11

The above algorithm is generally applied to each neuron in all types of neural network

models. After understanding the role of each neuron, it is necessary to mention the key

algorithm that makes the neural network play a role, the back-propagation algorithm.

25

Figure 3 An example of gradient descent

3.1.2 Back-propagation algorithm

Neural network is to take a single perceptron as a neural network node, and then use

such nodes to form a hierarchical network structure; we call this network as artificial

neural network. When the number of layers of a network is greater than or equal to 3, we

call it a multilayer neural network or Multi-Layer Perceptron (MLPs).

In the previous section, we introduced the perceptron algorithm, but there are the

following problems in direct use:

1) Output of perceptron training rules:

Formula 12

Since the sign function is non-continuous, which makes it non-differentiable, the

gradient descent algorithm above cannot be used to minimize the loss function.

 2) The output of delta rule:

𝑜(𝑥) = �⃗⃗� ∙ 𝑥

26

Formula 13

Each output is a linear combination of inputs, so that when multiple linear units are

connected together, only linear combinations of inputs can be obtained eventually, which

is not very different from having only one perceptron unit node.

In order to solve the above problems, on the one hand, we cannot directly use the linear

combination of direct output, need to add a processing function when the output; On the

other hand, the added handler must be differentiable so that we can use the gradient

descent algorithm. There are many functions that satisfy the above conditions, but the

most classic one is sigmoid function, also known as Logistic function, which can

compress any number within to between (0,1), so this function is also known as the

extrusion function. In order to normalize the input of this function, we add a threshold

value to the linear combination of the input, making the linear combination of the input 0

as the cut-off point.

Formula 14 the sigmoid function

Figure 4 Sigmoid function graph

27

This function has an important property which is its derivative:

Formula 15 the derivative of sigmoid function

And it makes it a lot easier to calculate the gradient descent.

In addition, the tanh function can also be used to replace the sigmoid function. The curves

of the two functions are similar.

Formula 16 the derivative of tanh function

The processing of Back-propagation algorithm which in feed forward network with

two-layer sigmoid unit:

1) Randomly initialize the ownership value in the network.

2) For each training sample, perform the following operations:

A) Calculate from front to back according to the input of the instance to obtain the

output of each unit of the output layer.

The error term of each unit in each layer is then calculated in reverse from the output

layer.

B) For each unit k in the output layer, calculate its error term:

Formula 17

C) For each hidden unit h in the network, calculate its error term:

Formula 18

D) Update each weight until the model converges:

28

Formula 19

Formula 20

In this processing, X𝑗𝑖is input of node i to node j, and w𝑗𝑖 stands the corresponding

weight. Outputs mean the represents a collection of output layer nodes. In this

experiment, all the models I used will adopt similar neurons and gradient optimization

methods.

3.2 Embedding representation

3.2.1 Word2vec

Before word2vec, there was no simple way to represent a text in NLP. From one-hot

encoding represents a word to using BoW to represent a piece of text, the author used

k-shingles to divide text into text segments, and The author using various sequence

annotation methods to segment text semantically, in tf-idf, the author using the frequency

of words to represent the importance of words, to in the text-rank [12] reference

page-rank method to represent the weights of words, the author based on SVD

decomposition of matrix which is LSA [13], In pLSA[14], the process of document

formation is represented by means of probability and the solution result of word

document matrix is endowed with probability meaning. In LDA, two conjugate

distributions are introduced to perfectly introduce the prior.

However, the understanding of deep semantics is not satisfactory. It's often assumed

that methods like word2vec give each word a vector representation, but no one seems to

29

have thought before about why this works. In theory, the main starting point of these

methods, including NNLM [15], is to represent a word as a word vector and represent its

semantics through context. In fact, there is a theoretical basis behind it. Harris proposed

the distributional hypothesis in 1954. It holds that words with similar contexts also have

similar semantics. The semantics of words are determined by their context (a word is

characterized by the company it keeps), and 30 years later, Hinton, the grandfather of

deep learning, tried the distributed representation of words in 1986. The contribution of

word2vec is not only to give each word a distributed representation, but also to bring a

new NLP modeling method. Prior to this, most NLP tasks spent a lot of time on how to

explore more semantic features of text, and even this part of the work accounted for the

majority of the workload of the whole task.

Word2vec for the former optimization, mainly two aspects of work: model

simplification and training skills optimization. For the simplification of the model, there

are some classical models known as the CBOW and Skip gram [15].

Formula 21 objective function of CBOW

CBOW didn’t have any hide layer, essentially only two layer structure, the input layer’s

function is to calculate the vectors of every word in target word’s context C for simple

summation (or average), and then dot product with the target word’s vector directly. the

objective function is to get the max value of dot product, and at the same time, to get the

min value which is the dot product between context C and other non-target word.

It can be seen that the first characteristic of CBOW is that it cancels the hidden layer in

30

NNLM and directly connects the input layer with the output layer; The second is that the

word order in context is discarded when the context vector is calculated; Third, the final

objective function is still the objective function of the language model, so each word in

the corpus needs to be traversed sequentially. With these characteristics, for this simple

but effective model, Mikolov named this simple model the CBOW.

Figure 5 the structure of CBOW

It is important to note here every word vector corresponding to the two words, are

reflected in the above formula, 𝑒(𝑤
𝑡
) is a input vector of word, and 𝑒′(𝑤

𝑡
) is a output

vector of word, or more accurately, the former is CBOW input layer and connected all the

word 𝑤𝑡 are located in the edge of the weight, vector instead of in the output layer are

connected to the location in which the word 𝑤𝑡 variegated weight vector Similarly,

corresponding to the CBOW, Skip gram's basic idea of the model is very similar to the

CBOW, only in a different direction: the CBOW is the vector x that makes the output

vector 𝑒′(𝑤
𝑡
) of the target word fit the context; Skip-gram is to make the output vector of

31

each word in the context try to fit the vector 𝑒(𝑤
𝑡
) of the current input word, which is

opposite to the direction of CBOW, so its objective function is as follows:

Formula 22 objective function of Skip-gram

It can be seen that there are two summation symbols in the target function, and the

meaning of the summation symbol in the innermost part is to make the current input word

as close as possible to each word in the corresponding context of the word, so as to show

that the word is as close as possible to its context.

Figure 6 the structure of Skip-gram

32

Similar to the CBOW, Skip-gram essentially has only two layers: input layer and output

layer. The input layer is responsible for mapping the input word into a word vector, and

the output layer is responsible for calculating the probability of each word through linear

mapping. In fact, both the CBOW and skip-gram are essentially two fully connected

layers connected without any other layers in between. As a result, the number of the

parameters of the two models are 2 ∗ | e | ∗ | V |, which | e | and | V | respectively is

the size of the word vector dimension and dictionaries.

 Mikolov mentioned the Hierachical Softmax in the article at first, thinking as an

optimization method of full Softmax, and the Hierachical Softmax basic idea is: Firstly,

every word from the corpus, in accordance with the word size to construct a Huffman tree,

guarantee the words with high frequency in a relatively shallow layer, low frequency

words are relatively deep Huffman tree leaf nodes, Each word is on a leaf node on this

Huffman tree.

Secondly, the original | V | classification problem was changed into the binary

classification problem of log | V | . When they originally calculated P(w𝑡|c𝑡), since they

used ordinary softmax, they had to ask the probability of each word in the dictionary. In

order to reduce the calculation, the Hierachical Softmax was be used, the corresponding

is a binary classification problem, It is essentially a linear regression classifier, and the

construction process of Huffman tree guarantees that the depth of the tree is log | V | , so

it only needs to do log | V | binary classification to get the size of P(w𝑡|c𝑡), which is

greatly reduced compared to the original calculation of | V |.

Then Mikolov proposed the idea of negative samples, and this idea is also inspired by

the C&W model structure of negative sample method, and the reference Noise

Contrastive Estimation (an NCE) thought, with CBOW simply is, the framework of

negative sample each traversal to a target word, in order to make the target word

probability P(w𝑡|c𝑡) is the most, according to the probability formula of softmax

function, also is to make the molecules of the biggest, and other non-target word

minimum in the denominator.

33

The calculation of ordinary softmax is too heavy because it takes all other non-target

words in the dictionary as negative examples, and the idea of negative sampling is very

simple, that is, every time random sampling some words according to a certain

probability as negative examples, so you only need to calculate the negative examples of

these negative samples, then the probability formula will be:

Formula 23 target word probability of word2vec

Careful comparison with ordinary softmax shows that the original |V| classification

problem is changed into a K classification problem, which turns the effect of dictionary

size on time complexity into a constant term, and the change is very small, which is

subtle.In addition; Mikolov also mentioned some other techniques. For example, for

words with ultra-high frequency, especially stop words can be processed using

Subsampling method. However, this is not the main content of word2vec.

Since then, through the double optimization of model and training skills, the training on

large-scale corpus has finally become a reality. More importantly, the obtained word

vectors can have a very good semantic performance and can represent the semantic

relationship through the vector space.

Figure 7 shown the semantic relationship through the vector space

34

Word2vec, greatly promoted the development of NLP, especially to promote the

application of deep learning in NLP, pre trained word vector is used to initialize the first

layer of the network structure has almost become the standard, especially in the case of

only a small amount of training data.

3.3 Model

3.3.1 Multi-Layer Perceptron

MLPs is derived from the Perceptron Learning Algorithm (PLA). The most important

feature of MLPs is that there are multiple layers of neurons, so it is also called DNN

(Deep Neural Networks).And as shown in the figure:

Figure 8 the network topology of single neural unit

Assume that the input space is 𝑋 ⊆ 𝑅𝑛, of which the characteristic vector 𝑥 ∈ 𝑋;

The output space is 𝑌 = *+1, 1+, and the output is 𝑌.

Then the perceptron model can be expressed as:

35

Formula 24

𝑋𝑖 is the input value, 𝑊𝑖 stands the weight corresponding to each input 𝑋𝑖, 𝑏 is the

bias, and 𝑠𝑖𝑔𝑛 is the activation function.

Geometric interpretation of the perceptron model: the linear equation 𝑤 ∙ 𝑥 + 𝑏 = 0

corresponds to a hyperplane 𝑺 in the eigenspace 𝑅𝑛, where w is the normal vector for the

plane and b is the intercept for the hyperplane. The hyperplane divides the space into two

parts, instances in different parts belong to different categories, and instances in the same

part belong to the same category.

Suppose there is a hyperplane, which can perfectly separate the instances in the data set

so that different types of instances belong to both sides of the hyperplane, then the data set

is said to be linearly separable. For linearly separable datasets, the perceptron model

looks for a hyperplane that perfectly separates the dataset. The hyperplane is determined

by the parameters w and b.

To find the appropriate parameters, you need to specify a policy that defines and

minimizes the empirical loss function. Loss function can naturally select the total number

of instances separated by loss, but it is not recommended because it is not conducive to

optimization. So it's the distance from the instance to the hyperplane. The perceptron

learning problem is to find an appropriate model in the hypothesis space. The problem

then becomes an optimization problem that minimizes the empirical risk.

It can be seen from the above content that PLA is a linear binary classifier, but it cannot

effectively classify non-linear data. Therefore, with the deepening of network layer, an

important feature of multi-layer perceptron is multi-layer. We call the first layer as input

layer, the last layer as output layer, and the middle layer as hidden layer.

36

MLPS do not specify the number of hidden layers, so you can choose the appropriate

number of hidden layers according to your needs.

There is no limit to the number of neurons in the output layer. In theory, a multilayer

network including at least one hidden layer can simulate any complex function.

From the perspective of neural network, MLP is also called multi-layer neural network,

and its network structure is as follows:

Figure 9 network structure of MLPs

In the feed-forward neural network, the information only moves one item, that is, it

moves forward from the input layer, then through the hidden layer, and then to the output

layer. There is no loop in the network.

As we know, the core of neural network algorithm is to define and minimize the loss

function.

In order to minimize the loss function, we will train our multilayer perceptron, and

training method is the back propagation algorithm, we have been in the last section, the

back propagation algorithm is one of several ways of training the neural network, this is a

method of supervised learning is learning by labeled training data.

37

3.3.2 Convolutional neural networks

Convolutional neural networks (CNN) belong to the category of neural networks, and

such network structure and variant structure are now widely used in the field of image

processing. Many researchers have made breakthroughs in this direction, and such fields

as image recognition and classification have proved their efficient ability. Now,

convolutional neural networks can successfully recognize faces, objects and traffic

signals to provide vision for robots and self-driving cars.

Figure 10 An example of the application of convolutional neural networks in the image classification

LeNet is one of the earliest convolutional neural networks to promote the development

of deep learning. After several successful iterations, by 1988, Yann LeCun named the

pioneering work LeNet5 [16]. At that time, LeNet architecture was mainly used for

character recognition tasks, such as reading zip codes, Numbers and so on.

It seems that the most suitable job for CNN is classification task, such as emotion

analysis, spam identification or subject classification. But Convolutions and Pooling

operation will ignore the local information of word order, this makes in the task of

sequence annotation like part-of-speech tagging or named entity recognition, is too

difficult to use just CNN architecture.

Early CNN is used for image processing tasks, but judging from recent studies, some

38

researchers have proved that CNN can have very good effect on text classification task,

in [17], they used various categories of corpus (mostly sentiment analysis and subject

classification task), to verify a CNN model, and CNN model in all the corpus shows great

effect, and in several corpus, CNN model get the highest accuracy.

Surprisingly, the network used in the paper is quite simple, which is what makes it

powerful. I think the advantage is good at dealing with deep learning "intensive",

"relevant" data, no matter image data or text data, there are strong dependencies, but there

is also a strong redundancy, if we just dropout a small piece of word in a text, to our

understanding of the image and text is not much affected. So we can extract the features

of compressed images through CNN.

Many researchers have also done related studies. For example, [18] instead of

pretraining word vectors like word2vec or GloVe, a CNN was trained from 0. He applied

the one-hot vector directly to the convolution layer. the author also puts forward an

expression similar to BOW as the input of data to reduce the number of parameters that

need to be learned in the network and improve the utilization rate of space.

[19] attempted to use CNNs for relationship extraction task and relationship

classification task. In addition to using the word vector. The model assumes that the

position of the entity word is given, and that each sample input contains a relationship.

Figure 11 the structure of sentiment analysis

As shown in the figure above the structure of the CNN model is as follows:

Input layer is combine with Word2vec word vector sequence of a sentence, by using

39

word2vec, we can transform word into vector, and put the words in order, finally we can

get the sequence of a sentence.

Convolution layer, Convolutional neural networks in each layer convolution is

composed of several convolution unit, parameters of each unit are obtained by back

propagation algorithm. The purpose of convolution operation is to extract different

features of input. The first convolutional layer may only extract some low-level features.

The multi-layer network can iteratively extract more complex features from low-level

features.

Pooling layer obtains the features with large dimensions after the convolution layer.

Cut the features into several areas and take the maximum or average value to obtain the

new features with low dimensions.

Fully Connected layer, which combines all local features into a global feature, is used

to calculate the score of each category.

3.3.3 Recurrent neural network

Whether it is a convolutional neural network or an artificial neural network, their

premise is that the elements are independent of each other and the input and output are

also independent, such as cats and dogs. But in the real world, many elements are

interconnected, such as the change of stocks over time. One person said:” I like traveling,

and my favorite place is Kyoto. I will go to ___ if I have chance”. Because we are

inferring from the context, but the opportunity to do this step is quite difficult.

So, with the recurrent neural network (RNN) [20] that we have today, it's essentially: the

ability to remember like a person. Therefore, its output depends on the current input and

memory.

Recurrent neural network is on the basis of ordinary multi-layer BP neural network,

increase the horizontal linkages between the hidden layer units, with a weight matrix, can

be on a time series of neural unit value passed to the nerve cell, so that the neural network

40

has the memory function, for processing a context of NLP, or time series machine

learning problem, has a good applicability.

In this study, RNN structure is not adopted, but LSTM is a variant of RNN. Before

understanding the algorithm flow of LSTM, we need to first understand the algorithm

flow of RNN. The figure below is the algorithm flow of RNN:

Figure 12 the structure of RNN

As shown in the figure above, we define 𝑋𝑡 as the input at time t, 𝑜𝑡 as the output at

time t, 𝑆𝑡 as the memory at time t, there are:

𝑜𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉 ∗ 𝑆𝑡)

Formula 25

Formula 25 is the calculation formula of the output layer. The output layer is a full

connection layer, which is each node of it is connected to each node of the hidden layer. V

is the weight matrix of the output layer, and softmax is the activation function.

𝑆𝑡 = 𝑓(𝑈 ∗ X𝑡 + 𝑊 ∗ S𝑡−1)

Formula 26

Formula 26 is the calculation formula of hidden layer, which is the recurrent layer. U is

the weight matrix for the input x, W is the last value as the weight matrix for the input this

time t, and f is the activation function.

41

This is a basic RNN model. The reason why the RNN model can reflect the

characteristics of sequential data is that each 𝑆𝑡 retains part of the 𝑆𝑡−1 information, and

this structure ensures that part of the information in the text will be retained, thus

reflecting the characteristics of timing.

RNN has the advantage of being able to memorize the model, but it also has the defect

which cannot memorize the contents of the former or the latter, because of gradient

explosion or gradient disappearance.

LSTM and bidirectional LSTM, which will be introduced in the next section, can not

only preserve the temporal features in sentences, but also avoid the loss of semantic

relations in long sentences.

3.3.4 LSTM

Long short term memory [21], also known as LSTM, is specially designed to solve

long-distance dependency problems. All RNN have a chain form of repeating neural

network modules. In standard RNN, this repeating structure module has only a very

simple structure, such as a tanh layer.

Figure 13 the tanh layer in RNN unit

The LSTM has the same structure, but repeated modules have a different structure.

Instead of a single neural network layer, there are four, interacting in a very specific way.

42

Figure 14 the structure of LSTM

In the illustration above, each black line transmits an entire vector from the output of one

node to the input of another node. The pink circles represent pointwise operations, such as

vector sums, while the yellow matrix is the layer of learned neural networks. The

combined lines represent concatenation of vectors, and the separate lines indicate that the

content is copied and distributed to different locations.

The core idea

The whole green diagram is a cell, and the key to LSTM is the state of the cell, and the

horizontal line across the cell.

Figure 15 the key of LSTM

43

The cell state is like a conveyor belt. It runs directly through the chain, with only a

few linear interactions. It would be easy for information to circulate and stay the same.

Figure 16 activation operation

We cannot add or remove information with only the horizontal line above. So it's done

through a structure called gates. Gates allow information to pass selectively, primarily

through a neural layer, in fig.15, σ stands activation function operation and the pink circle

stands an element wise multiplication operation.

Each element of the sigmoid layer output (which is a vector) is a real number between 0

and 1, representing the weight (or proportion) through which the corresponding

information passes. For example, 0 means "don't let any information pass" and 1 means

"let all information pass".

The LSTM implements the protection and control of information through three such

structures. The three gates are the input gate, the forgetting gate and the output gate.

Forget gate

The first step in our LSTM is to determine what information we discard from the cell

state. This decision is made through a layer called the forget gate. The gate will get 𝑡−1 ,

𝑥𝑡 and outputs a value between 0 and 1 to each number in the cell state 𝐶𝑡−1. 1 means

"completely retained" and 0 means "completely discarded".

44

Figure 17 forget gate

Input gate

The next step is to decide how much new information to add to the cell state.

There are two steps to implementing this: first, an input gate layer called sigmoid

determines which information needs to be updated;

A tanh layer to generate a vector, which is optional used to update the content of �̃�𝑡.

Figure 18 input gate

In the next step, combine the two parts to make an update to the status of the cell. 𝐶𝑡−1

was updated to 𝐶𝑡. We multiply the old states by 𝑓𝑡 and discard the information that we

want to dropout, then add 𝑖𝑡 ∗ �̃�𝑡. These are the new candidate values, varying according

to the degree to which we decide to update each state.

45

Figure 19 updating the state of cell 𝐶𝑡

Output gate

Finally, we need to determine what the output is. This output will be based on our cell

state, but it is also a filtered version. First, we run a sigmoid layer to determine which

parts of the cell state will be exported. Next, we process the cell state through tanh (to get

a value between -1 and 1) and multiply it by the output of the sigmoid gate, and in the end

we will only output what we have identified as the output.

Figure 20 output gate

LSTMs are explicitly designed to avoid the long-term dependency problem.

Remembering information for long periods of time is practically their default behavior.

LSTM networks have the form of a chain of repeating modules of neural network.

3.3.4.(i) Bi-LSTM

The ability to access future context as well as past context information is beneficial for

many sequence annotation tasks. For example, in the most special character sorting, it

46

would be very helpful to know what letter is coming, just as it was before the letter.

The basic idea of Bi-LSTM is to propose that each training sequence is two LSTM

forward and backward respectively, and both of them are connected with an output layer.

This structure provides the output layer with complete past and future context

information for each point in the input sequence. The figure below shows a bidirectional

LSTM that unfolds over time.

Figure 21 the structure of Bi-LSTM

Six unique weights are repeatedly utilized in each time step, corresponding to six

weights respectively: input to forward and backward hidden layer (w1, w3), hidden layer

to hidden layer itself (w2, w5), forward and backward hidden layer to output layer (w4,

w6). And there is no information flow between the forward and backward hidden layers,

which ensures that the expansion diagram is non-cyclic.

47

3.4 Attention mechanism

The mechanism of Attention was first proposed in the field of Visual images in the

1990s. It is believed that the core idea has been proposed, but it is the “Recurrent Models

of Visual attention [22]” published by the Google mind team that has a rising popularity.

Subsequently, Bahdanau et al. in their paper "Neural Machine Translation by

understanding Learning to Align and Translate" [23] used a mechanism similar to

attention to simultaneously Translate and Align in Machine Translation tasks, and their

work is the first one to propose the application of the attention mechanism to the NLP

field. Then a similar RNN model extension based on the attention mechanism was

applied to various NLP tasks. Recently, how to use the attention mechanism in CNN has

become a research hotspot. The chart below shows the broad trends in research progress

in attention.

3.4.1 Global Attention and Local Attention

Luong et al. [24] proposed Global Attention and Local Attention. Global Attention is

essentially similar to Bahdanau et al. [13].

The Global method, as its name implies, looks at all the words in the sequence of source

sentences, specifically taking into account all the hidden states of the encoder when

calculating the semantic vector.

However, in Local Attention, the computation of semantic vector only pays Attention to

a part of the hidden state of the encoder of each target word.

Since the Global method must calculate all the hidden states of the source sentence

sequence, long sentences can be expensive to calculate and make translation impractical,

such as when translating paragraphs and documents.

48

Figure 22 Global Attention Model and Local Attention Model

49

3.4.2 Attention model in this study

Figure 23 shown the structure of attention layer

In this figure, 𝑡
𝑠 stand the Sth hidden state on time t , and the 𝑎𝑡 stands the global

weight, and the 𝐶𝑡 is the context vectors, and for 𝑡
𝑠. The 𝑎𝑡 is an alignment vector of

variable length, which is equal to the length of the input part time series.

𝑎𝑡(𝑠) is obtained by comparing the current hidden layer state 𝑡
𝑠 with the state 𝑡

𝑚 of

each hidden layer:

𝑎𝑡(𝑠) = 𝑎𝑙𝑖𝑔𝑛(𝑡
𝑚, 𝑡

𝑠)

50

=
exp (𝑠𝑐𝑜𝑟𝑒(𝑡

𝑚 , 𝑡
𝑠))

∑ exp (𝑠𝑐𝑜𝑟𝑒(𝑡
𝑚, 𝑡

𝑠′
))𝑠′

Formula 27

Score is a content-based function, which can be implemented by the method below:

𝑠𝑐𝑜𝑟𝑒(𝑡
𝑚, 𝑡

𝑠) = 𝑡
𝑚⊺𝑊𝑎𝑡

𝑠

Formula 28

By integrating all the 𝑎𝑡(𝑠) into a weight matrix, 𝑊𝑎 is obtained, which can be

calculated as:

𝑎𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑎𝑡)

Formula 29

By doing a weighted average operation on 𝑎𝑡, then we can get context vector 𝐶𝑡. 𝐶𝑡

and 𝑡
𝑚 were spliced and input into the classifier. Finally, the weight of 𝑎𝑡 was

adjusted by the back-propagation algorithm.

51

Chapter 4

Experiment

4.1 Dataset

In this study, I used dataset from SemEval-2014 Task4, there is two domain-specific

datasets for laptops and restaurants, consisting of over 6K sentences with fine-grained

aspect-level human annotations have been provided for training.

Figure 24 the sample of datasets

Restaurant reviews dataset consists of over 3K English sentences from the restaurant

reviews of Ganu et al. [25]. The original dataset of Ganu et al. included annotations for

coarse aspect categories and overall sentence polarities; I modified the dataset to just

include polarities of the reviews. I also corrected some errors (e.g., sentence splitting

errors) of the original dataset. Experienced human annotators identified the aspect terms

of the sentences and their polarities. Additional restaurant reviews, not in the original

dataset of Ganu et al. [25], are being annotated in the same manner, and they will be used

as test data. And the laptop reviews dataset consists of over 3K English sentences

extracted from customer reviews of laptops. Experienced human annotators tagged the

aspect terms of the sentences and their polarities.

4.2 Word Embedding

This study used the keras participle tool to splice the comment text and remove stops and

52

punctuation from the participle list.

The maximum length of the text after processing is 70.

In order to construct the feature vector, the word vector has a dimension of 300, and the

word vector is initialized in two ways:

(1) Random initialization: all words are randomly initialized and word vectors are

dynamically updated in the training process.

(2) Using the word2vec: use the open source tool word2vec proposed by Google in

2013 to train the word vector. At the same time, randomly initialize the words that do

not appear, and dynamically update the word vector in the training process.

4.3 Hyper-parameter Settings

 For all the models the epoch is 20, and the batch size is 64, and the setting of model

parameters is very important. The main parameters in the model are set as follows:

Model name Initialization

method

Attention

MLPs Random

MLPs Word2vec

CNN Random

CNN Word2vec

LSTM Random Without

With attention

LSTM Word2vec Without

With attention

Bi-LSTM Random Without

53

With attention

Bi-LSTM Word2vec Without

With attention

Chart 1 Structures of all experiments

For the MLPs, the hyper-parameter setting is as follow:

name Hidden layer Unit

MLPs640 2 320+320

MLPs1280 3 320+640+320

MLPs2560 4 320+1280+640+320

Chart 2 Structures of each MLPs

For each hidden layers, I set dropout parameter in 0.2

For the CNN, the hyper-parameter setting is as follow:

name convolution layer Unit

CNN600 2 300+300

CNN900 3 300+300+300

CNN1200 4 300+300+300+300

Chart 3 Structures of each CNN

For each model of CNN, there is a pooling layer behind convolution layer, and the

pooling method is max pooling, and the final layer is a full connection layer and the

dropout is 0.2.

For the LSTM, the hyper-parameter setting is as follow:

name Unit

54

LSTM64 64

LSTM128 128

LSTM256 256

Chart 4 Structures of each LSTM

The final layer is a full connection layer and the dropout is 0.2.

For the Bi-LSTM, the hyper-parameter setting is as follow:

name Unit

Bi-LSTM64 64

Bi-LSTM128 128

Bi-LSTM256 256

Chart 5 Structures of each Bi-LSTM

The final layer also is a full connection layer and the dropout is 0.2.

4.4 The LSTM with Attention Model

In this study, the model for sentiment analysis is shown below:

55

Figure 25 the structure of Bi-LSTM with Attention Model

As shown in fig.23, 𝑊𝑡
1,𝑊𝑡

2,𝑊𝑡
𝑚stand the vectors of each word in sentence, and the

𝑡
1, 𝑡

2, 𝑡
𝑚stand the state of each vector in the processing of Bi-LSTM, after feed forward

of Bi-LSTM, by using the BP algorithm, we can get the weight in attention layer and the

weight of Bi-LSTM unit. Finally Until converges, we get the trained model.

56

4.5 Evaluation standard

Figure 26 Confusion Matrix

The traditional accuracy calculation formula is Accuracy in the figure. Considering the

overall classification effect of the classifier for the two categories, Accuracy and recall

rate are proposed due to its poor effect in unbalanced samples. Accuracy: reflects the

proportion of samples with true positive examples determined by the classifier. Recall

Rate: also known as True Postive Rate, reflecting the proportion of positive cases

correctly determined to total positive cases.

There is almost no classifier with 100% of these two indexes, and the experiment

shows that these two indexes are mutually exclusive in the same scene. When the

precision is high, the recall rate is low.

For example, in the emotional analysis described in this paper, we pay more attention

to the second category of 10%, hoping to determine the accuracy of the second category

as high as possible. Then the recall rate of the second category will be relatively low, but

the accuracy will be relatively high. If we think that we want more articles in the second

category, we should pay more attention to those with higher recall rate when selecting

classifiers.

In the multi-classification, the evaluation criteria are generally macro f1 score and

micro f1 score. MacroF1 (m_F_1) [26] was selected as the evaluation index for

classification. The number of samples divided into other classes in C_m is c. Precision

57

and recall, used to evaluate the classification performance of C_m, where F_1 is the

weighted combination of precision and recall, defined as:

𝐹1(𝑟, 𝑝) =
2𝑝𝑟

𝑝 + 𝑟

Formula 30

Therefore, m_F_1 is calculated by averaging F_1 for all categories, since m_F_1 has

equal weight for all categories, which is mainly affected by the performance of rare

categories.

4.6 Experiment results

The experiment results as shown in figures below:

Figure 27.1 Figure 27.2

Fig.27.1 has shown the accuracy of MLP2560 with Random, and the Fig.27.2 has shown

the accuracy of MLP2560 with Word2vec.as the result we can see, because of different

word representation methods, there is more smooth by using Word2vec,that means the

model with Word2vec can be fitted quicker, and has Robustness is higher.

58

Fig.27.3 1Fig.27.4

Fig.27.3 has shown the train accuracy and loss of LSTM256, and the Fig.27.4 has shown

the train accuracy and loss of CNN1200. The figure shows the changing of loss and train

accuracy for batch size. The results show that for text data, LSTM model can

convergence faster than CNN model.

Fig.27.5 Fig.27.6

The Fig.27.5 is Bi-LSTM256 with Word2vec and attention, and Fig.27.6 is without

attention. As results shown, for the model with attention, both F1 score and the valuation

accuracy are higher than another. That means the attention method is effect.

Finally there is an all the result of this experiment:

59

 Random

MLPs MLP640 MLP1280 MLP2560

Run time(s) 3.67 5.01 11.0

Test acc 72.08 72.18 72.29

F1 score 0.6 0.61 0.61

CNN CNN600 CNN900 CNN1200

Run time(s) 3.64 4.01 5.01

Test acc 72.29 72.49 73.84

F1 score 0.63 0.63 0.63

LSTM LSTM64 LSTM128 LSTM256

Run time(s) 13.3 14.3 15.4

Test acc 73.21 73.73 73.74

F1 score 0.65 0.66 0.66

Bi-LSTM Bi-LSTM64 Bi-LSTM128 Bi-LSTM256

Run time(s) 23.6 23.6 28.7

Test acc 72.8 73.8 74.25

F1 score 0.66 0.65 0.65

Att-Bi-LSTM Att-Bi-LSTM64 Att-Bi-LSTM128 Att-Bi-LSTM256

Run time(s) 25.6 25.6 28.7

Test acc 73.22 73.73 73.42

F1 score 0.659 0.663 0.656
Chart 6 the results of all models with random representation

 Word2vec

MLPs MLP640 MLP1280 MLP2560

60

Run time(s) 3.60 5.01 12.3

Test acc 72.6 71.35 70.6

F1 score 0.64 0.627 0.63

CNN CNN600 CNN900 CNN1200

Run time(s) 3.67 4.01 6.01

Test acc 72.28 72.59 72.07

F1 score 0.63 0.636 0.6299

LSTM LSTM64 LSTM128 LSTM256

Run time(s) 13.3 14.4 15.5

Test acc 73.94 73.11 74.14

F1 score 0.659 0.658 0.6605

Bi-LSTM Bi-LSTM64 Bi-LSTM128 Bi-LSTM256

Run time(s) 26.7 28.7 28.7

Test acc 74.45 74.87 73.73

F1 score 0.650 0.660 0.634

Att-Bi-LSTM Att-Bi-LSTM64 Att-Bi-LSTM 128 Att-Bi-LSTM 256

Run time(s) 25.6 25.6 37.2

Test acc 73.27 74.97 74.70

F1 score 0.663 0.664 0.665
Chart 7 the results of all models with word2vec representation

61

Chapter 5

Conclusion

Since the sentence length is not fixed, it is common to use bag-of-word-vectors to

simply add the Word Vectors, Using MLP model, this method is simple, the training

speed is fast, and the result is not very bad. It just doesn't take advantage of the context

information.

The CNN seems to be not very common for processing such sequence input, so it is

generally used to carry out one-dimensional convolution of the word vectors of all words

in a sentence with different size Windows, and then obtain the most important impact

factor and fixed-length output with max pooling. The CNN method is also relatively

simple to train, and the effect of the final experiment at this stage is also better than MLP.

However, there are some empirical problems with window size selection, and the

problem with long term text dependence is not very easy to solve, because window size is

generally not very large.

LSTM takes sentences or text as sequence input, which is more natural. It can make use

of historical information and take the order of words into consideration. The most basic

LSTM is to output the hidden layer of the last word to softmax classifier, but the later

words become more important. In principle, Bi-LSTM is used to obtain more context

information, and it turns out that the final result is better than LSTM. However, although

the final result is better than MLP and CNN, but the training speed is much slower.

The Bi-LSTM based on the attention mechanism achieves the best results, which

proves that the method of adding attention weight to each intermediate state can

effectively improve the final accuracy, but the corresponding time is also the longest time

due to the increase in the amount of calculation.

In this study, a Bi-LSTM model based on the Attention mechanism is proposed to

classify the sentiments of reviews. The word vector of product reviews was expressed to

62

obtain the context relationship of the text through Bi-LSTM. Meanwhile, the Attention

mechanism was introduced to represent the importance of different features, and the

model was further optimized.

Finally, the model is used to finish the task of sentiment analysis, and as the results, the

Att-Bi-LSTM 128 has the 74.97% accuracy of testing and the Att-Bi-LSTM 256 has the

0.665 F1-Score, and the experimental results verify the feasibility and effectiveness of the

model.

Since the evaluation of multiple attributes is included in the product review, the next

step will be to find a better deep learning model and conduct an emotional orientation

research on different attributes in the product review.

63

References

[1] Dilrukshi, Inoshika, Kasun De Zoysa, and Amitha Caldera. "Twitter news

classification using SVM." Computer Science & Education (ICCSE), 2013 8th

International Conference on. IEEE, 2013.

[2] McCallum, Andrew, and Kamal Nigam. "A comparison of event models for naive

bayes text classification." AAAI-98 workshop on learning for text categorization. Vol.

752. No. 1. 1998.

[3] Pang B, Lee L. Opinion mining and sentiment analysis[J]. Foundations and Trends®

in Information Retrieval, 2008, 2(1–2): 1-135.

[4] Philip J, Dunphy D C, Smith M S, et al. The general inquirer: a computer approach to

content analysis[J]. 1966.

[5] Pennebaker J W, Booth R J, Francis M E. Linguistic inquiry and word count: LIWC

[Computer software][J]. Austin, TX: liwc. net, 2007.

[6] Riloff E, Wiebe J. Learning extraction patterns for subjective

expressions[C]//Proceedings of the 2003 conference on Empirical methods in natural

language processing. Association for Computational Linguistics, 2003: 105-112.

[7] Hu M, Liu B. Mining and summarizing customer reviews[C]//Proceedings of the

tenth ACM SIGKDD international conference on Knowledge discovery and data mining.

ACM, 2004: 168-177.

[8] Baccianella S, Esuli A, Sebastiani F. Sentiwordnet 3.0: an enhanced lexical resource

for sentiment analysis and opinion mining[C]//Lrec. 2010, 10(2010): 2200-2204.

[9] Rosenblatt F. The perceptron: a probabilistic model for information storage and

organization in the brain[J]. Psychological review, 1958, 65(6): 386.

[10] Rumelhart D E, Hinton G E, Williams R J. Learning representations by

back-propagating errors[J]. nature, 1986, 323(6088): 533.

[11] Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by error

64

propagation[R]. California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[12] Mihalcea R, Tarau P. Textrank: Bringing order into text[C]//Proceedings of the 2004

conference on empirical methods in natural language processing. 2004.

[13] Deerwester S, Dumais S T, Furnas G W, et al. Indexing by latent semantic analysis[J].

Journal of the American society for information science, 1990, 41(6): 391-407.

[14] Hofmann T. Probabilistic latent semantic analysis[C]//Proceedings of the Fifteenth

conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.,

1999: 289-296.

[15] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in

vector space[J]. arXiv preprint arXiv:1301.3781, 2013.

[16] LeCun Y, Touresky D, Hinton G, et al. A theoretical framework for

back-propagation[C]//Proceedings of the 1988 connectionist models summer school.

CMU, Pittsburgh, Pa: Morgan Kaufmann, 1988, 1: 21-28.

[17] Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification.

Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP 2014), 1746–1751.

[18] Johnson, R., & Zhang, T. (2015). Effective Use of Word Order for Text

Categorization with Convolutional Neural Networks. To Appear: NAACL-2015, (2011).

[19] Nguyen, T. H., & Grishman, R. (2015). Relation Extraction: Perspective from

Convolutional Neural Networks. Workshop on Vector Modeling for NLP, 39–48.

[20] Mikolov T, Karafiát M, Burget L, et al. Recurrent neural network based language

model[C]//Eleventh Annual Conference of the International Speech Communication

Association. 2010.

[21] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation,

1997, 9(8): 1735-1780.

[22] Mnih V, Heess N, Graves A. Recurrent models of visual attention[C]//Advances in

Neural Information Processing Systems. 2014: 2204-2212.

[23] Bahdanau, D., Cho, K. & Bengio, Y. Neural Machine Translation by Jointly

65

Learning to Align and Translate. Iclr 2015 1–15 (2014).

[24] Effective approaches to attention-based neural machine translation. Minh-Thang

Luong, Hieu Pham, and Christopher D Manning. EMNLP, 2015.

[25] Ganu G, Elhadad N, Marian A. Beyond the stars: improving rating predictions using

review text content[C]//WebDB. 2009, 9: 1-6.

[26] Liu C, Wang W, Wang M, et al. An efficient instance selection algorithm to

reconstruct training set for support vector machine[J]. Knowledge-Based Systems, 2017,

116: 58-73.

