
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Enumeration of Nonisomorphic Interval Graphs and

Nonisomorphic Permutation Graphs

Author(s)
Yamazaki, Kazuaki; Saitoh, Toshiki; Kiyomi,

Masashi; Uehara, Ryuhei

Citation Lecture Notes in Computer Science, 10755: 8-19

Issue Date 2018-01-31

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/15855

Rights

This is the author-created version of Springer,

Kazuaki Yamazaki, Toshiki Saitoh, Masashi Kiyomi

and Ryuhei Uehara, Lecture Notes in Computer

Science, 10755, 2018, 8-19. The original

publication is available at www.springerlink.com,

http://dx.doi.org/10.1007/978-3-319-75172-6_2

Description

WALCOM: Algorithms and Computation, 12th

International Conference, WALCOM 2018, Dhaka,

Bangladesh, March 3-5, 2018, Proceedings

Enumeration of Nonisomorphic Graphs in Graph
Classes

Kazuaki Yamazaki1, Toshiki Saitoh2, Masashi Kiyomi3, and Ryuhei Uehara1

1 School of Information Science, Japan Advanced Institute of Science and Technology
(JAIST), Japan. {torus711,uehara}@jaist.ac.jp

2 School of Computer Science and Systems Engineering, Kyushu Institute of
Technology, Japan. toshikis@ces.kyutech.ac.jp

3 International College of Arts and Sciences, Yokohama City University, Japan.
masashi@yokohama-cu.ac.jp

Abstract. In this paper, a general framework for enumerating every el-
ement in a graph class is given. The main feature of this framework is
that it is designed to enumerate only non-isomorphic graphs in a graph
class. Each element in the class is output in a polynomial time delay. Ap-
plying this framework to the classes of interval graphs and permutation
graphs, we give efficient enumeration algorithms for these graph classes.
The experimental results are also provided. The catalogs of graphs in
these graph classes are also provided.

1 Introduction

Recently we have to process huge amounts of data in the area of data mining,
bioinformatics, etc. In most cases, we have to use some certain structure to
solve problems efficiently. We need three efficiencies to deal with a complex
structure; it has to be represented efficiently, essentially different instances have
to be enumerated efficiently, and its properties have to be checked efficiently.
From the viewpoint of the “difference,” in graphs, it is natural to consider that
two graphs are different when they are non-isomorphic. However, in general,
the graph isomorphism problem is difficult to solve efficiently even on restricted
graph classes (see [20]). Though, there are rich structures even if we restricted
to the graph classes that allow us to solve graph isomorphism efficiently.

We investigate the enumeration of a graph class from this viewpoint in this
paper. In this context, there are two previous results by some of the authors [18,
17]. In the paper, the authors gave efficient enumeration algorithms for proper in-
terval graphs and bipartite permutation graphs. However, they are quite specific
to some common properties of these graph classes, and it is unlikely to extend to
other graph classes. Therefore, we focus on some graph classes such that graph
isomorphism can be solved efficiently, and we develop a general framework that
gives us to enumerate all non-isomorphic graphs with n vertices for a given in-
teger n, in each of these graph classes. Intuitively, most of the graph classes in
which graph isomorphism can be solved in polynomial time share a common
property: Each graph in the graph class can be characterized by a canonical

tree structure, and graph isomorphism can be checked essentially by solving the
graph isomorphism problem on these labeled trees [13].

There are two well-known graph classes that graph isomorphism can be solved
in polynomial time in this manner; interval graphs [15] and permutation graphs
[4]. We mention that these graph classes have been widely investigated since
they have many applications, and they are very basic graph classes from the
viewpoints of graph theory and algorithms. Therefore many useful properties
have been revealed, and many efficient algorithms have been developed for them
(see, e.g., [3, 8, 19]). From the practical point of view, when an efficient algorithm
for a graph class is developed and implemented, we need many graphs belonging
to the class to check the reliability of the algorithm. Thus, for such popular graph
classes, efficient enumerations are required [10]. However, as far as the authors
know, these concrete catalogs for these graph classes have never been provided.

In this paper, we first propose a general framework of enumeration of a graph
class in which graph isomorphism can be solved in polynomial time. Then we turn
to the details of applications of this framework to interval graphs and permuta-
tion graphs. We finally give the experimental results of the implementations for
these graph classes. That is, we give the first actual catalogs of non-isomorphic
graphs for these graph classes for small n, where n is the number of vertices.
(We note that, for interval graphs, some related results can be found in [9] from
the viewpoint of counting, not enumeration.) Due to space limitation, all proofs
and some figures can be found in Appendix.

2 Preliminaries

We only consider simple graph G = (V,E) with no self-loop and multiple edges.
We assume V = {1, 2, . . . , n} for some n, and |E| = m. For two integers i, j, we
denote by G + {i, j} the graph (V, E ∪ {{i, j}}), and by G − {i, j} the graph
(V, E \ {{i, j}}). Let Kn denote the complete graph of n vertices and Pn denote
the path of n vertices of length n − 1.

A graph (V, E) with V = {1, 2, . . . , n} is an interval graph when there is a
finite set of intervals I = {I1, I2, . . . , In} on the real line such that {i, j} ∈ E if
and only if Ii ∩ Ij 6= ∅ for each i and j with 0 < i, j ≤ n. We call the interval
set I an interval representation of the graph. For each interval I, we denote by
L(I) and R(I) the left and right endpoints of the interval, respectively (hence
we have L(I) ≤ R(I) and I = [L(I), R(I)]).

A graph G = (V,E) with V = {1, 2, . . . , n} is a permutation graph when there
is a permutation π over V such that {i, j} ∈ E if and only if (i−j)(π(i)−π(j)) <
0. Intuitively, each vertex i in a permutation graph corresponds to a line `i joining
two points on two parallel lines L1 and L2 such that two vertices i and j are
adjacent if and only if the corresponding lines `i and `j intersect. We suppose
that the indices 1, 2, . . . , n of the vertices give the ordering of the points on L1,
and the ordering by permutation π over V gives the ordering of the points on
L2. That is, `i joins the ith vertex on L1 and the π(i)th vertex on L2. We call
this intersection model a line representation of the permutation graph. As an

example, a permutation graph and its line representation are shown in Fig. 4 in
Appendix F.

We define a graph isomorphism between two graphs G1 = (V1, E1) and G2 =
(V2, E2) as follows. The graph G1 is isomorphic to G2 when there is a one-to-one
mapping φ : V1 → V2 such that for any pair of vertices u, v ∈ V1, {u, v} ∈ E1 if
and only if {φ(u), φ(v)} ∈ E2. We denote by G1 ∼ G2 for two isomorphic graphs
G1 and G2.

3 General framework

For a graph class C, we suppose that the graph isomorphism can be solved in
polynomial time for C. We denote by Iso(n) the time complexity for solving the
graph isomorphism problem for two graphs G1 and G2 of n vertices in the class
C. Here we define the notion of the canonical graph for any given graph G in C
with respect to the graph isomorphism. We first suppose that we can define a
transitive ordering < over isomorphic graphs in C. That is, (1) either G1 < G2

or G2 < G1 holds for any given two graphs G1 = (V, E1) and G2 = (V, E2) such
that G1 ∼ G2 and E1 6= E2, and (2) when G1 < G2 and G2 < G3 for three
isomorphic graphs G1, G2, G3, we have G1 < G3. Then there exists a unique
minimal graph G for any set of all isomorphic graphs in C. We call this graph G
the canonical graph. Our goal is to enumerate all canonical graphs in the class
C. To this goal, we will use the following properties of the class C:
Canonical property: For any graph G in C, we can compute its canonical
graph in polynomial time. That is, the canonical property guarantees that any
graph G can be dealt with its canonical form (in polynomial time).

We use reverse search technique to enumerate all graphs (see [1] for the details
about reverse search). In reverse search, we define a family tree T over the graphs
in the target graph class C by introducing a parent-child relationship between
two graphs G and G′ in C. More precisely, in the class C, we first fix a root node4

GR ∈ C. In this paper, we will use Kn as the root node GR, since Kn belongs
to interval graphs and permutation graphs. For each graph G ∈ C \ {GR}, we
assume that its parent G′ of G is uniquely defined and computed in polynomial
time. We will define the parent-child relationship so that it is acyclic, it forms a
tree on the graphs rooted at GR in C. Thus we call the resulting tree spanning
the class C family tree, and denoted by T .

For the current graph G, we will modify G by some basic operation to find
its parent or children in T of the class C. In this paper, we will use “add an
edge” as a basic operation to find its parent. The key requirement is that the
parent should be uniquely determined for each graph except the root node in T .
In an interval graph (or in a permutation graph) G which is not Kn, there is at
least one edge e such that G + e is an interval graph (or a permutation graph,
4 We use two terms “node” and “vertex” to indicate an element in a graph. When

we use “vertex,” it indicates a vertex in the original graph G in the class C. On the
other hand, when we use “node,” it indicates meta-structure of graphs. That is, a
“node” in T indicates a graph in the class C.

respectively). When there are two or more such edges e, we have to determine
the unique parent efficiently. To determine the unique parent for any given graph
G ∈ C \ {GR}, we need the following operational property :

Operational property: Let G be any graph in C \ {GR}, where GR is the
root node of T of C. Then, there exists at least one graph G′ ∈ C such that
G′ is obtained from G by applying one basic operation. Moreover, we can find
minimal G′, which is determined uniquely, among them in polynomial time.

The operational property guarantees that we can find a unique parent of G
for a given graph G in C\{GR} in polynomial time. However, in reverse search, a
graph G produces the set of potential children S(G). Precisely, the algorithm first
produces a set of graphs S′(G) that consists of the graphs obtained by applying
the reverse of basic operation. In our context, S′(G) is the set of graph G − e
for each edge e. It is guaranteed that all children in the family tree are in S′(G),
but there may be redundant graphs. There are three considerable cases. The first
case is easy; when G − e is not in C, just discard it. The second case is that G
produces two or more isomorphic graphs by the reverse of basic operation. For
example, when G is a complete graph and the basic operation is “add an edge,”
G produces all graphs G − {i, j} for all 1 ≤ i, j ≤ n as potential children of G.
In this case, the algorithm discards all isomorphic graphs except one. Let S(G)
be the set of the nonisomorphic graphs in C obtained from G by the reverse of
basic operation. The last considerable case is that the graph G′ ∈ S(G) has a
different parent. This case occurs when G′ has two (or more) edges e1 and e2

such that G′+e1 ∈ C and G′+e2 ∈ C. In this case, G′ appears both of S(G′+e1)
and S(G′ + e2). To avoid redundancy, G′ will check which is the unique parent.

Now we are ready to show the outline of the enumeration algorithm:

Algorithm 1: Outline of Enumeration Algorithm based on Reverse Search
Input : An integer n
Output: All nonisomorphic graphs of n vertices in a graph class C
A set S is initialized by the root node of the family tree of C;
while S is not empty do

Pick up one node that represents a graph G = (V, E) in the class C;
Output G as an element in the class C;
Compute the set S(G) of nonisomorphic graphs in C obtained by the
reverse of basic operation;
// G may produce two or more isomorphic graphs, which

should be avoided here.
foreach G′ ∈ S(G) do

// Check if G is the unique parent of G′.

Compute the unique parent Ĝ′ of G′;
If Ĝ′ is isomorphic to G, push G′ into S;

The algorithm enumerates all elements in breadth first search (BFS) manner
when S is realized by a queue, and in depth first search (DFS) manner when S

is realized by a stack. Hereafter, we suppose that it runs in BFS, which makes
proof of correctness simpler.

Let C be the graph class satisfying the properties above. Then we have the
main theorem for the framework:

Theorem 1. We can enumerate all nonisomorphic graphs of n vertices in C
with polynomial time delay. That is, the running time of the algorithm is |Cn|p(n)
for some polynomial function p, where Cn denotes the subset of C that contains
all graphs of n vertices in C.

By Theorem 1, we can establish that there are several graph classes that
admit to enumerate all elements in the class in polynomial time delay. How-
ever, the efficiency of the enumeration is strongly depending on the detailed
implementation for each class. We show two efficient implementations for two
representative graph classes; interval graphs and permutation graphs. We also
show experimental results, that is, we give catalogs for these graph classes. In
both of interval graphs and permutation graphs, we let Kn be the root node of
the family tree, and basic operation is “add an edge” to obtain the parent.

4 Enumeration of nonisomorphic interval graphs

We first focus on the enumeration of interval graphs of n vertices. Let C be the
set of interval graphs of n vertices in this section. We first show the operational
property for C \{GR}, where GR ∼ Kn. (We note that Kn is not only an interval
graph, but also a permutation graph, and we use it as a common root node of
the family trees for both graph classes.)

Lemma 1 ([12]). Let G = (V,E) be any interval graph which is not Kn. Then
G has at least one edge e such that G + e is also an interval graph.

4.1 Canonical representation

We turn to the canonical representation of an interval graph. We first show the
canonical tree structure, and then we give how to obtain a canonical represen-
tation for the graph.

Canonical tree representation As the tree structure for an interval graph,
we use the MPQ-tree model. The notion was developed by Korte and Möhring
[14] as a kind of labeled PQ-tree introduced by Booth and Lueker [2]. We here
give a brief idea, and the details can be found in Appendix B.

A PQ-tree is a rooted tree T ∗ with two types of internal nodes: P and Q,
which will be represented by circles and rectangles, respectively. The leaves of T ∗

are labeled 1-1 with the maximal cliques of the interval graph G. The frontier of
a PQ-tree T ∗ is the permutation of the maximal cliques obtained by the ordering
of the leaves of T ∗ from left to right. Two PQ-trees T ∗ and T ′∗ are equivalent, if
one can be obtained from the other by applying the following rules;(1) arbitrarily

permute the child nodes of a P-node, or (2) reverse the order of the child nodes
of a Q-node. A graph G is an interval graph if and only if there is a PQ-tree
T ∗ whose frontier represents a consecutive arrangement of the maximal cliques
of G. The MPQ-tree T assigns sets of vertices (possibly empty) to the nodes
of a PQ-tree T ∗ representing an interval graph. A P-node is assigned only one
set, while a Q-node has a set for each of its children (ordered from left to right
according to the ordering of the children).

For a P-node P , this set consists of those vertices of G contained in all
maximal cliques represented by the subtree of P in T , but in no other cliques.

For a Q-node Q, the definition is more involved. Let Q1, · · · , Qm be the set
of the children (in consecutive order) of Q, and let Ti be the subtree of T with
root Qi. We then assign a set Si, called section, to each Qi. Section Si contains
all vertices that are contained in all maximal cliques of Ti and some other Tj ,
but not in any clique belonging to some other subtree of T that is not below Q.
The key property of MPQ-trees is summarized as follows:

Theorem 2 ([14, Theorem 2.1]). Let T be the MPQ-tree for an interval
graph G = (V, E). Then we have the following: (a) T can be computed in linear
time and space. (b) Each maximal clique of G corresponds to a path in T from
the root to a leaf, where each vertex v ∈ V is as close as possible to the root.
(c) In T , each vertex v appears in either one leaf, one P-node, or consecutive
sections Si, Si+1, · · · , Si+j for some Q-node with j > 0.

For two interval graphs G1 and G2, let T1 and T2 be the corresponding MPQ-
trees. Then G1 ∼ G2 if and only if T1 ∼ T2 (as labeled trees).

1L

2

3L
4

5

6,7

12

8

9 10 11

φ

3R

1R

8
4 1

3
6
7

29 10
5 1211

9

10

1

2

5

7

8
4

3 12

6

11(A) (Β)

(C)

Fig. 1. An interval graph, its interval representation, and its corresponding MPQ-tree.

A simple example is given in Fig. 1. For a given interval graph G in Fig. 1(A),
its interval representation is given in Fig. 1(B), and the corresponding MPQ-
tree is given in Fig. 1(C).

Canonical string representation The MPQ-tree T for an interval graph
G = (V,E) is the canonical form in the sense that for any two isomorphic interval
graphs G1 ∼ G2, the resulting MPQ trees T1 and T2 are also isomorphic and

they can be used to solve the graph isomorphism problem for G1 and G2 in
linear time since it can be solved in linear time on such labeled trees. We further
introduce a canonical string representation for a given interval graph to decide
the parent of an interval graph uniquely. Intuitively, we will introduce a string
representation for an interval graph so that if two interval graphs are isomorphic,
their corresponding strings are exactly the same. We here define two basic cases:
a complete graph Kn is represented by 1234 . . . (n − 1)nn(n − 1) . . . 4321 and
a path Pn is represented by 1213243 . . . i(i − 1)(i + 1)i . . . n(n − 1)n. To define
general canonical string representations, we need more details. The translation
from a given MPQ-tree to the canonical string consists of three phases.

2L

7

3L
4

8

5,6

10

1

11 129

φ

3R

2R

1L2L5L6L8L8R9L9R10L10R6R5R3L7L7R2R11L11R12L12R3R4L4R1R

1L2L5L6L6R5R3L7L7R2R3R4L4R1R

1L2L3L2R3R4L4R1R

1L1R(D) (E)

Fig. 2. The MPQ-tree in left-to-right ordering with relabeling, and its canonical string.

First, we draw the MPQ-tree as an ordered tree which is a rooted tree with
left-to-right ordering specified by the children of each node. The children for a
node are arranged in the ordering from “left-heavy” to “right-light.” That is, we
introduce a total ordering over all MPQ-trees that is a transitive relationship.
This idea can be found in [11], and the details of the ordering for an MPQ-tree
can be found in Appendix C. The key property of the ordering is that Ind(T1)
and Ind(T2) for two MPQ-trees are equal if and only if they are isomorphic.
Once we draw the MPQ-tree in the way of the ordered tree defined by the
ordering, two drawings of T1 and T2 are the same (except vertex labelings) if
and only if they are isomorphic.

In the second phase, we relabel the vertices V = {1, 2, 3, . . . , n} according
to the ordering in the breadth first search manner on the drawing of the tree.
(We suppose that a left node is visited before a right node.) By this traverse of
vertices of V in the nodes in a MPQ-tree with the basic rule that the canonical
representation of Kn is 1234 . . . (n − 1)nn(n − 1) . . . 4321, we can observe that
two MPQ-trees T1 and T2 are isomorphic if and only if the resulting drawings
are completely the same including the labels of vertices in V . In this sense, we
call the relabeled MPQ-tree T for an interval graph G the canonical MPQ-tree
of G. For example, when we apply this process to the MPQ-tree in Fig. 1(C),
we obtain the canonicalized MPQ-tree in Fig. 2(D).

In the last phase, we again traverse this canonical MPQ-tree T in breadth
first search manner and generate the canonical string of T as follows: for a P-
node, the algorithm first outputs all left endpoints of the vertices in the node,
make recursive calls for each of its children, and output all right endpoints of the
vertices in the node following the basic rule of Kn. For a Q-node, the algorithm
processes each section by section in the Q-node. The details can be found in
Appendix D. Let StrI(G) be resulting string representation for a given interval
graph G. From the canonicalized MPQ-tree in Fig. 2(D), we obtain the canon-
ical string “1 2 5 6 8 8 9 9 10 10 6 5 3 7 7 2 11 11 12 12 3 4 4 1.” In Fig. 2(E),
we add L and R that indicate left and right endpoints, respectively. We also give
each corresponding string for each subtree rooted at the original root up to level
0, 1, 2, and 3. Combining the results in [14], definitions above, and definitions
in Appendix D, we obtain the following theorem.

Theorem 3. Let G = (V,E) be any interval graph with |V | = n and |E| = m.
(1) The canonical MPQ-tree of G and StrI(G) can be computed in O(n + m)
time. (2) |StrI(G)| = 2n. (3) Two interval graphs G1 and G2 are isomorphic if
and only if StrI(G1) = StrI(G2).

4.2 Parent-child relationship

As shown in Lemma 1, for any given interval graph G = (V,E) with G 6∼ Kn,
there is at least one edge e = {u, v} with e 6∈ E such that G+e is also an interval
graph. For the graph G, let T be the canonical MPQ-tree of G. Without loss
of generality, we assume that T is consistent to G from the viewpoint of labels.
That is, when we make T from G, the relabeling process does not change any
label of a vertex in V . By Theorem 3, these G and T can be obtained in linear
time. Now we let Ê = {e = {u, v} | G + e is an interval graph}. Among Ê, we
can pick up a unique edge ê that is the lexicographically smallest element in Ê.
We define the parent of G by G + ê. Clearly, the parent is uniquely determined.

Theorem 4. Let G = (V,E) be any interval graph with |V | = n and |E| = m.
Then its parent can be computed in O(n2(n + m)) time.

4.3 Algorithm analysis

We here analyze the algorithm and show that each graph is enumerated in poly-
nomial time, which guarantees that this algorithm achieves the polynomial time
delay for each graph. The root node can be enumerated in polynomial time since
it contains Kn. For each graph G in C, we evaluate its running cost consists of
its output, the computation of S(G), and the process for each G′ ∈ S(G). The
output of G takes O(n+m) time. In this framework with the basic operation, the
set S(G) contains at most m children, each of which is obtained from G by re-
moving an edge. It takes O(m(n+m)) time (by maintaining the set of canonical
string representations in a reasonable data structure, e.g., trie (or prefix tree), we
can reduce isomorphic graphs in this process). Then we obtain the set of O(m)

graphs, and each G′ of them has n vertices and m− 1 edges. Now the algorithm
checks if the unique parent of each G′ is G or not. It takes O(n2(n + m)) time
by Theorem 4 for each. Thus, this process takes O(n2m(n + m)) time in total.
Therefore, each graph consumes O(n2m(n+m)) time in total when it is output.
Since m = O(n2) in general, our enumeration algorithm runs in O(n6) time per
graph.

Our main theorem in this section is summarized as follows:

Theorem 5. We can enumerate every nonisomorphic interval graph of n ver-
tices. Each interval graph is enumerated in O(n6) time delay.

4.4 Three variants of enumeration

Corollary 1. The algorithm in Theorem 5 can be modified to enumerate (1)
connected graphs, and/or (2) at most n vertices. In any variant, the delay is not
changed from O(n′6), where n′ is the number of vertices of the output graph.

5 Enumeration of nonisomorphic permutation graphs

We next focus on the enumeration of permutation graphs of n vertices. Let C
be the set of permutation graphs of n vertices in this section. We first show the
operational property for C \ {GR}, where GR ∼ Kn.

Lemma 2. Let G = (V,E) be any permutation graph which is not Kn. Then G
has at least one edge e such that G + e is also a permutation graph.

5.1 Canonical representation

Now we turn to the canonical representation of permutation graphs. First, we
introduce the notion of modular decomposition tree.

Canonical tree representation For a graph G = (V,E), a vertex set X ⊆ V
is a module if and only if every vertex x not in X, either every member of X
is adjacent to x or no member of X is adjacent to x. (See [16] for the details.)
Trivial modules are ∅, V , and all the singletons {v} for v ∈ V . A graph (or a
module) is prime if and only if all its modules are trivial. For any permutation
graph G, G has a unique line representation (up to reversal) if and only if it is
prime [7].

In [7], Gallai defined the modular decomposition recursively on a graph with
vertex set V . (The modules of a permutation graph in Fig. 4 in Appendix F are
given in Fig. 5 in Appendix F.) Intuitively, maximal modules give a unique parti-
tion of V recursively, and we have a tree structure with respect to the partition,
which is called the modular decomposition tree. In a modular decomposition tree
T , if all children are joined by edges in the original graph, the parent of them is

called series node, and if all children are independent, the parent is called par-
allel node. (A modular decomposition tree of a permutation graph in Fig. 4 in
Appendix F is given in Fig. 6 in Appendix F.) It is well known that the modular
decomposition tree for a permutation graph (1) is canonical up to isomorphism
[4], and (2) can be computed in linear time and space (see, e.g., [6]).

In out context, this fact can be summarized as follows. For two given permu-
tation graphs G1 and G2, let T1 and T2 be their modular decomposition trees.
Then G1 ∼ G2 if and only if (1) T1 and T2 satisfy T1 ∼ T2 (as labeled trees),
and (2) corresponding prime modules are isomorphic.

Canonical string representation The modular decomposition tree T for a
permutation graph G = (V, E) is the canonical form. As considered for interval
graphs, we again introduce a canonical string representation for a given permu-
tation graph as follows.

We first consider the case that G = (V, E) is a prime module. In this case, as
mentioned, G has a unique line representation up to reversal, and hence G has
two representations given by two permutations π and π′ with π = π′−1. Each
permutation can be represented by a string of length n such that every integer
i ∈ {1, . . . , n} appears exactly once. (E.g., P3 is represented by either 231 or
312.) Therefore, we can choose lexicographically smaller one of π and π′ as the
canonical string representation of G. (E.g., the canonical string representation
of P3 is 231.)

Now we turn to the general case. This case is similar to the case of interval
graphs. We first fix the drawing of the modular decomposition tree according
to the total ordering defined in Appendix E. Then, we can fix the ordering of
modules, and then the corresponding line representation is uniquely determined.
We then relabel all vertices in V such that they appear as 1, 2, . . . , n on L1. From
this line representation, we can obtain the unique permutation π on L2. We
regard this π as the canonical string representation of G. (The canonical string
of a permutation graph in Fig. 4 in Appendix F is given in Fig. 8 in Appendix
F.)

Now the following theorem is straightforward from the results in [7, 4, 6] and
definitions above.

Theorem 6. Let G = (V, E) be any permutation graph with |V | = n and
|E| = m. (1) the canonical modular decomposition tree and the canonical string
representation of G can be computed in O(n + m) time. (2) Two permutation
graphs G1 and G2 are isomorphic if and only if π1 = π2, where πi is the canonical
string representation of Gi.

5.2 Parent-child relationship

As shown in Lemma 2, for any given permutation graph G = (V, E) with
G 6∼ Kn, there is at least one edge e = {u, v} with e 6∈ E such that G + e
is also a permutation graph. Therefore, we can use the same idea used in inter-
val graphs. For a given permutation graph G, let T be the canonical modular

decomposition tree of G. We assume that we relabel G according to its canon-
ical string representation, and T is the corresponding tree. It can be obtained
from the original permutation graph in linear time by Theorem 6. Now we let
Ê = {e = {u, v} | G + e is a permutation graph}. Let ê be the lexicographically
smallest element in Ê. We define the unique parent of G by G + ê.

Theorem 7. Let G = (V, E) be any permutation graph with |V | = n and |E| =
m except Kn. Then its parent can be computed in O(n2(n + m)) time.

5.3 Algorithm Analysis

We here turn to analyze the algorithm. Replacing Theorem 4 by Theorem 7, the
analysis is as the same as the case on interval graphs. Therefore, we obtain the
following theorem and corollary.

Theorem 8. We can enumerate every nonisomorphic permutation graph of n
vertices. Each permutation graph is enumerated in O(n6) time delay.

Corollary 2. The algorithm in Theorem 8 can be modified to enumerate (1)
connected graphs, and/or (2) at most n vertices. In any variant, the delay is not
changed from O(n′6), where n′ is the number of vertices of the output graph.

6 Experimental results

We implemented the proposed algorithms. The number of vertices and the num-
ber of non-isomorphic graphs are summarized as follows:
of vertices 1 2 3 4 5 6 7 8 9 10 11
of interval graphs 1 2 4 10 27 92 369 1807 10344 67659 491347
of connected interval graphs 1 1 2 5 15 56 250 1328 8069 54962 410330
of permutation graphs 1 2 4 11 33 138 - - - - -
of connected permutation graphs 1 1 2 6 20 101 - - - - -

All these graphs are available at http://www.jaist.ac.jp/∼uehara/
graphs. We are now planning to run these programs on a supercomputer in
our university to proceed to larger n. The updated data will be available on the
web page.

7 Concluding remarks

We propose a general framework that enumerates all nonisomorphic elements in
a graph class in which graph isomorphism can be solved in polynomial time. As
applications, we give two implementations of the framework for interval graphs
and permutation graphs. The first open problem is efficiency. We showed that
the implementations for the graph classes ran in O(n6) time, and the real im-
plementation ran up to some certain n, and we succeeded to give real catalogs
for these classes. If we can improve running time, we can list up to larger n. The
other future work is to extend this framework to more general classes. Even if
graph isomorphism cannot be solved in polynomial time, we may enumerate all
nonisomorphic graphs up to some certain n for some simple graph classes.

References

1. D. Avis and K. Fukuda. Reverse Search for Enumeration. Discrete Applied Math-
ematics, 65:21–46, 1996.

2. K.S. Booth and G.S. Lueker. Testing for the Consecutive Ones Property, Interval
Graphs, and Graph Planarity Using PQ-Tree Algorithms. Journal of Computer
and System Sciences, 13:335–379, 1976.

3. A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM, 1999.

4. C.J. Colbourn. On Testing Isomorphism of Permutation Graphs. Networks, 11:13–
21, 1981.

5. C.J. Colbourn and K.S. Booth. Linear Time Automorphism Algorithms for Trees,
Interval Graphs, and Planar Graphs. SIAM Journal on Computing, 10(1):203–225,
1981.

6. C. Crespelle and C. Paul. Fully Dynamic Algorithm for Recognition and Modular
Decomposition of Permutation Graphs. Algorithmica, 58(2):405–432, 2009.

7. T. Gallai. Transitiv orientierbare Graphen. Acta Mathematica Academae Scien-
tiarum Hungaricae, 18:25–66, 1967.

8. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete
Mathematics 57. Elsevier, 2nd edition, 2004.

9. P. Hanlon. Counting Interval Graphs. Transactions of the American Mathematical
Society, 272(2):383–426, 1982.

10. P. Heggernes. Personal communication. 2013.

11. S.-i. Nakano and T. Uno. Constant Time Generation of Trees with Specified Di-
ameter. In International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2004), pages 33–45. LNCS Vol. 3353, Springer-Verlag, 2004.

12. M. Kiyomi, S. Kijima, and T. Uno. Listing Chordal Graphs and Interval Graphs. In
International Workshop on Graph-Theoretic Concepts in Computer Science (WG
2006), pages 68–77. LNCS Vol. 4271, Springer-Verlag, 2006.

13. J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem: Its Struc-
tural Complexity. Birkhäuser, 1993.

14. N. Korte and R.H. Möhring. An Incremental Linear-Time Algorithm for Recog-
nizing Interval Graphs. SIAM Journal on Computing, 18(1):68–81, 1989.

15. G.S. Lueker and K.S. Booth. A Linear Time Algorithm for Deciding Interval Graph
Isomorphism. Journal of the ACM, 26(2):183–195, 1979.

16. R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive orien-
tation. Discrete Mathematics, 201:189–241, 1999.

17. T. Saitoh, Y. Otachi, K. Yamanaka, and R. Uehara. Random Generation and
Enumeration of Bipartite Permutation Graphs. Journal of Discrete Algorithms,
10:84–97, 2012.

18. T. Saitoh, K. Yamanaka, M. Kiyomi, and R. Uehara. Random Generation and
Enumeration of Proper Interval Graphs. IEICE Transactions on Information and
Systems, E93-D(7):1816–1823, 2010.

19. J.P. Spinrad. Efficient Graph Representations. American Mathematical Society,
2003.

20. R. Uehara, S. Toda, and T. Nagoya. Graph Isomorphism Completeness for Chordal
Bipartite Graphs and Strongly Chordal Graphs. Discrete Applied Mathematics,
145(3):479–482, 2004.

A Omitted Proofs

In this section, we show omitted proofs.

Proof. (of Theorem 1). Without loss of generality, we suppose that the root
node is a complete graph Kn, and the basic operation is “add an edge” for
easy to read. We first confirm that the family tree is well-defined if the parent-
child relationship is defined properly. Since Kn is the root node, each graph
in Cn \ {Kn} has its unique parent, and the parent-child relationship is acyclic
by definition, we can observe that the directed graph (Cn, A) forms a directed
spanning tree T rooted at Kn, where A is the set of arcs (u, v) such that v is a
child of u. This T is the family tree of Cn.

We define a level of a graph G in this family tree T as follows; Kn is of level
0, and for each i = 1, 2, . . . , G has level i if it is a child of the graph of level
i − 1. In the current basic operation, we can observe that G has level i if and
only if it has

(
n
2

)
− i edges. Moreover, since the algorithm runs in BFS manner,

the algorithm enumerates all graphs in level by level.
We first show that every nonisomorphic graph is enumerated exactly once by

induction for the level i. When i = 0, the algorithm enumerates the complete
graph Kn at the root node. The inductive hypothesis is that the claim holds up
to level i− 1. We assume i > 0. Let G′ be any graph in the level i. Then, by the
operational property, G′ has at least one edge that can be added. Therefore, there
is a set of graphs belonging to the level i−1. Among them, there is the parent Ĝ′

of G′ in the level i− 1. By inductive hypothesis, Ĝ′ was enumerated at the level
i− 1. When Ĝ′ is enumerated, the algorithm constructs S(Ĝ′) which contains a
canonical graph G′′ with G′′ ∼ G′. By the canonical property, G′′ is put into S
since Ĝ′ is the parent of G′′ and hence G′. Therefore, an isomorphic graph of G′

is enumerated at least once. Now we show that G′ is not enumerated twice or
more. To derive contradictions, we suppose that G′ and G′′ are enumerated by
the algorithm and G′ ∼ G′′. By the canonical property, G′ and G′′ share their
common parent Ĝ. Therefore, G′ and G′′ are enumerated because they are put
into S by when the algorithm deals with Ĝ. However, this contradicts that S(Ĝ)
is the set of nonisomorphic graphs. Therefore, each graph is enumerated exactly
once with respect to isomorphism.

Now we show the time complexity of the algorithm. We show that each node
G in T uses polynomial time. It is easy to see that the claim holds when G
is in level 0, or G is Kn. Thus we assume that G 6∼ Kn. When G = (V, E) is
picked up from S, it is output at first. Then the algorithm constructs S(G). The
key property is that S(G) can be constructed in polynomial time. In the basic
operation, the number of elements in S(G) can be bounded above by |E|. Thus
the algorithm first makes all graphs G′ obtained from G by applying the reverse
of basic operation. Then it checks and reduces the redundant graphs if S(G)
contains two graphs G1 and G2 with G1 ∼ G2. This can be done in O(

(|E|
2

)
Iso(n))

time, which is polynomial by assumption. For each G′ ∈ S(G), we compute its
unique parent Ĝ′ again. Since G′ contains |E|−1 edges, the number of candidates
of the parent is

(
n
2

)
−|E|+1. Among them, we can determine the unique parent

Ĝ′ in polynomial time by assumption. Next, the graph isomorphism problem
that asks if Ĝ′ ∼ G or not is solved in Iso(n) time. In total, we can observe
that the algorithm runs in polynomial for each element in the class Cn, which
completes the proof. ut

Proof. (of Lemma 1). We here give a brief sketch, and readers can find the
details in [12]. For any interval representation IG of G, when G is not Kn, we
can take a “closest” pair of vertices u, v such that R(Iu) < L(Iv) and there are
no other endpoints between them. Then by swapping R(Iu) and L(Iv) so that
L(Iv) < R(Iu), we have another interval graph G + e for e = {u, v}. ut

Proof. (of Theorem 4). We first check if each element {u, v} 6∈ E is in Ê or not.
This is simply done by using the recognition algorithm for an interval graph,
e.g., in [14], which runs in O(n + m) time for each element. Thus, in total, this
step runs in O((

(
n
2

)
−m)(n + m)) time, or O(n2(n + m)) time. Then we pick up

the lexicographically smallest element in Ê. This can be done in linear time, or
O(

(
n
2

)
−m) time. (We note that, from the practical viewpoint, the second phase

is not required when we start searching in lexicographical ordering. Then the
first element in Ê is the desired pair.) ut

Proof. (of Corollary 1). By the definition of the MPQ-tree, it is easy to observe
that an interval graph G = (V, E) is not connected if and only if its corresponding
MPQ-tree T has a P-node R as a root, and R corresponding to an empty set
of vertices in V . Therefore, when the algorithm considers for each G′ ∈ S(G),
it is sufficient to discard G′ if G′ has the empty P-node as the root node of the
corresponding MPQ-tree of G′. This check can be done in linear time, and it
has no effect on the delay of other graphs. (Precisely, in the worst case, Θ(n)
children may be discarded in O(n2) time, which has no effect on O(n6) time for
the next delay.) It is easy to extend to “at most n vertices” by just repeating
the algorithm for each of 1, 2, . . . , n. ut

Proof. (of Lemma 2). Let LG be any line representation of G that represents
a permutation π. We remind that 1, 2, . . . , n gives the ordering of endpoints on
L1, and π(i) is the π(i)th endpoint on L2. Then, since G is not Kn, it has at
least two vertices u, v with {u, v} 6∈ E. Without loss of generality, we assume
that u < v. Then π(u) < π(v) since {u, v} 6∈ E. We take “closest” pair {u, v}
among them as follows. Let u, v be any pair that satisfies u < v and π(u) < π(v).
We first consider the case that v − u ≤ π(v) − π(u). When v − u > 1, there is
w with u < w < v. Then we have three cases: (1) π(u) < π(w) < π(v), (2)
π(w) < π(u) < π(v), and (3) π(u) < π(v) < π(w). In (1) or (2), we replace u by
w and consider w, v is closer pair than u, v. In (3), we replace v by w and v, w is
closer pair than u, v. We next consider the case that v−u > π(v)−π(u). In this
case, we perform the same thing above on L2 instead of L1. In any case, after
this replacement, we can observe that min{|v − u|, |π(v) − π(u)|} decreases at
least one. Therefore, repeating this process, we finally obtain a closest pair u, v
such that v−u = 1 or π(v)−π(u) = 1. Then we define a new permutation π′ as
follows; π(w) = π′(w) for each w ∈ V \ {u, v}, π(u) = π′(v), and π(v) = π′(u).

Intuitively, we cross the endpoints of two line segments uπ(u) and vπ(v). Now
it is easy to see that G + {u, v} is also a permutation graph characterized by π′.
Thus we have the lemma. ut

Proof. (of Theorem 7). Using the recognition algorithm for permutation graphs
instead of interval graphs, the proof itself is the same as Theorem 4. ut

Proof. (of Corollary 2). By the definition of the modular decomposition tree, it
is easy to observe that a permutation graph G = (V, E) is not connected if and
only if its corresponding modular decomposition tree has a parallel node as a
root. Therefore, when the algorithm considers for each G′ ∈ S(G), it is sufficient
to discard G′ if G′ has a parallel node as the root node of the corresponding
modular decomposition tree of G′. Thus we have the same conclusion of the case
of interval graphs. It is easy to extend to “at most n vertices” by just repeating
the algorithm for each of 1, 2, . . . , n. ut

B Definition of MPQ-trees

We introduce two notions of PQ-trees and MPQ-trees. The PQ-tree was intro-
duced by Booth and Lueker [2], and that can be used to recognize interval graphs
as follows. A PQ-tree is a rooted tree T ∗ with two types of internal nodes: P and
Q, which will be represented by circles and rectangles, respectively. The leaves
of T ∗ are labeled 1-1 with the maximal cliques of the interval graph G. The
frontier of a PQ-tree T ∗ is the permutation of the maximal cliques obtained
by the ordering of the leaves of T ∗ from left to right. PQ-trees T ∗ and T ′∗ are
equivalent, if one can be obtained from the other by applying the following rules
a finite number of times;

1. arbitrarily permute the successor nodes of a P-node, or
2. reverse the order of the successor nodes of a Q-node.

In [2], Booth and Lueker showed that a graph G is an interval graph if and only
if there is a PQ-tree T ∗ whose frontier represents a consecutive arrangement
of the maximal cliques of G. They also developed a linear time algorithm that
either constructs a PQ-tree for G, or states that G is not an interval graph. The
algorithm by Booth and Lueker contains an update procedure that constructs,
from a given PQ-tree T ∗ for a system M , a PQ-tree T ′∗ representing M plus
one additional constraint set. This is done in a bottom-up way along the tree
T ∗ by comparing parts of the tree with a fixed number of patterns that induce
certain local replacements in T ∗. If G is an interval graph, then all consecutive
arrangements of the maximal cliques of G are obtained by taking equivalent
PQ-trees. The PQ-tree with appropriate label defined by the maximal cliques
is canonical ; that is, given interval graphs G1 and G2 are isomorphic if and
only if corresponding labeled PQ-trees T ∗

1 and T ∗
2 are isomorphic. Since we can

determine if two labeled PQ-trees T ∗
1 and T ∗

2 are isomorphic, the isomorphism of
interval graphs can be determined in linear time (see [2, 15, 5] for further details).

The MPQ-tree model, which stands for modified PQ-tree, was developed
by Korte and Möhring to simplify the PQ-tree [14]. The MPQ-tree T assigns
sets of vertices (possibly empty) to the nodes of a PQ-tree T ∗ representing an
interval graph G = (V, E). A P-node is assigned only one set, while a Q-node
has a set for each of its children (ordered from left to right according to the
ordering of the children).

For a P-node P , this set consists of those vertices of G contained in all
maximal cliques represented by the subtree of P in T , but in no other cliques.

For a Q-node Q, the definition is more involved. Let Q1, . . . , Qm be the set
of the children (in consecutive order) of Q, and let Ti be the subtree of T with
root Qi. (We note that m ≥ 3 since it reduces to a P-node when m < 3.) We
then assign a set Si, called section, to Q for each Qi. Section Si contains all
vertices that are contained in all maximal cliques of Ti and some other Tj , but
not in any clique belonging to some other subtree of T that is not below Q. The
key properties of MPQ-trees are summarized as follows:

Theorem 9 ([14, Theorem 2.1]). Let T ∗ be a PQ-tree for an interval graph
G = (V,E) and let T be the associated MPQ-tree. Then we have the following:

(a) T and T ∗ can be computed in O(|V | + |E|) time and space.
(b) Each maximal clique of G corresponds to a path in T from the root to a leaf,

where each vertex v ∈ V is as close as possible to the root.
(c) In T , each vertex v appears in either one leaf, one P-node, or consecutive

sections Si, Si+1, · · · , Si+j for some Q-node with j > 0.

Property (b) is the essential property of MPQ-trees. For example, the root of
T contains all vertices belonging to all maximal cliques, and the leaves contain
the simplicial vertices of G. In [14], they did not state Theorem 9(c) explicitly.
Theorem 9(c) is immediately obtained from the fact that the maximal cliques
containing a fixed vertex occur consecutively in T .

In order to solve the graph isomorphism problem, a PQ-tree requires addi-
tional information which is called characteristic node in [15, 5]. This is the unique
node which roots the subtree whose leaves are exactly the cliques to which the
vertex belongs. As noted in [5, p.212], the term characteristic node to mean the
leaf, P-node, or portion of a Q-node which contains those cliques. It is easy to
see that each vertex v in MPQ-tree directly corresponds to the characteristic
node in the PQ-tree.

C Definition of ordering of an MPQ-tree

In this section, we define a total ordering over all MPQ-trees. For an MPQ-tree
T , we denote the index of the tree by Ind(T). Then it should be (1) for any two
MPQ-trees T1 and T2, Ind(T1) = Ind(T2) if and only if T1 ∼ T2, (2) for any
three MPQ-trees T1, T2, and T3, Ind(T1) < Ind(T2) and Ind(T2) < Ind(T3) imply
Ind(T1) < Ind(T3), and (3) for any two MPQ-trees T1 and T2 with T1 6∼ T2, we
have either Ind(T1) < Ind(T2) or Ind(T1) > Ind(T2). In our purpose, we just need

to compare two trees, and determine which is “smaller.” Therefore, hereafter,
we do not give their indices explicitly, and give the rule that determines which
is smaller.

We define the ordering step by step. We consider two MPQ-trees T1 =
(V1, E1) with n1 vertices and m1 edges, and T2 = (V2, E2) with n2 vertices and
m2 edges. First, if the number of vertices are different, we define the ordering
according to them. That is, Ind(T1) < Ind(T2) if n1 < n2, and Ind(T1) > Ind(T2)
if n1 > n2. Therefore, hereafter, we assume that n1 = n2. We here define two
orderings; (1) a P-node is smaller than Q-node, and (2) a node with fewer vertices
is smaller than the other. The rule (1) precedes the rule (2). We then compare
the root nodes of T1 and T2 according to this rule. If one of them is smaller, we
are done. Therefore, we assume that they are the same nodes that consist of the
same number of vertices. We have two cases.

Case (a): They are P-nodes. We arrange all children of these P-nodes ac-
cording to their indices. Assume that the P-node of T1 has k1 children and the
P-node of T2 has k2 children. If k1 6= k2, the tree with fewer children is smaller.
Therefore we assume that k1 = k2. In this case, we arrange these children from
left to right according to their indices recursively. We compare these lists of chil-
dren in the lexicographical manner. That is, we first take the first two children
from k1 children and k2 children respectively, and compare them. If they are
different, their ordering gives the ordering of the original MPQ-trees. If they
are the same (or isomorphic), we next take the second children from these two
MPQ-trees, and so on. If all children are in a tie, we can conclude T1 ∼ T2.

1L

2L
3L

4L

1R

2R
3R

4R

5L 5R

S1 S2 S3 S4 S5

Fig. 3. An example of a Q-node.

Case (b): They are Q-nodes. We first define the ordering between two Q-
nodes Q1 and Q2 whose drawing are fixed, that is, they cannot be flipped. Let
S1, S2, . . . , Sk be the sections of Q1 in this ordering and S′

1, S
′
2, . . . , S

′
k′ be the

sections of Q2 in this ordering. When k 6= k′, the Q-node with fewer sections
is smaller. Therefore we assume that k = k′. For each section Si, we define
a vector (x1, x2, . . . , xi−1, y) as follows. For each j = 1, 2, . . . , i − 1, xj is the
number of intervals that have their right endpoints in this section Si and their
left endpoints are in Sj . The last variable y is the number of intervals that have
their left endpoints in this section Si. For example, we observe a Q-node in
Fig. 3. The vector for S1 is (2) since it contains two left endpoints. The vector
for S2 is (0, 2) since it contains no right endpoints. Then the vector for S3 is
(1, 1, 0) since it contains the right endpoint of the vertex 1 and 3, and their left
endpoints are in S1 and S2, respectively. The vectors of S4 and S5 are (0, 1, 0, 1)

and (1, 0, 0, 1, 0), respectively. Then we compare these vectors from S1 and S′
1

to Sk and S′
k in the lexicographical manner. That is, if j is the smallest index

such that the vectors corresponding to Si and S′
i are the same up to j − 1, and

they are different at j, we decide the ordering according to Sj and S′
j . When all

of them are the same, we next compare the children of Si and Si′ in the same
manner recursively. When Sj and S′

j have the nonisomorphic children, we can
determine the ordering according to them.

Now we turn to the original problem that asks to determine the ordering of
two Q-nodes that are allowed to flip them. First, we take one Q-node Q. Then
we have two ways to draw it as sections S1, S2, . . . , Sk and Sk, . . . , S2, S1 from
left to right. We then compare these two drawings and take the smaller one as
the description of Q. Similarly, we take another Q-node Q′, and fix its direction
with respect to its ordering. Finally, we compare these two fixed Q-nodes.

By induction for the depth of a MPQ-tree, it is straightforward that the
ordering defined above is a total ordering over all MPQ-trees. We again note
that we can compare two MPQ-trees directly in the above manner, and we do
not need to compute their indices explicitly.

D Generation of canonical string of an MPQ-tree

In Appendix C, we define a total ordering of MPQ-trees. For any MPQ-tree, we
can draw it in a left-heavy manner according to the comparison operation defined
in Appendix C. In this way, for any given MPQ-tree T , its drawing can be fixed
uniquely. Thus, for this MPQ-tree T in uniquely fixed drawing, we can visit all
P-nodes and Q-nodes, and visit all left endpoints and right endpoints of all
intervals represented in this MPQ-tree. Basically, when we traverse the MPQ-
tree T , we output left endpoints in pre-order manner, and output right endpoints
in post-order manner, it is easy to see that we can construct the corresponding
unique interval representation of the original interval graph. For the sake of
uniqueness, we define the ordering of left endpoints when L(I) = L(J); when
R(I) < R(J), we output L(I), L(J) in this order. Especially, when L(I) = L(J)
and R(I) = R(J), we output L(I), L(J), R(J), R(I). Moreover, we relabel the
vertices to satisfy L(I1) ≤ L(I2) ≤ L(I3) ≤ · · · . It is not difficult to see that this
representation becomes the canonical representation of an interval graph.

E Definition of ordering of a modular decomposition tree

In this section, we define a total ordering over all modular decomposition trees.
Basically, we use the same strategy as one used for MPQ-trees. We consider two
modular decomposition trees T1 = (V1, E1) with n1 vertices and m1 edges, and
T2 = (V2, E2) with n2 vertices and m2 edges. First, if the number of vertices are
different, we define the ordering according to them. That is, Ind(T1) < Ind(T2)
if n1 < n2, and Ind(T1) > Ind(T2) if n1 > n2. We assume that n1 = n2. Then
we define two orderings; (1) a leaf is smaller than a prime node, a prime node is
smaller than a serial node, and a serial node is smaller than a parallel node, and

(2) a node with fewer vertices is smaller than the other. The rule (1) precedes
the rule (2). We then compare the root nodes of T1 and T2 according to this rule.
If one of them is smaller, we are done. Therefore, we assume that they are the
same nodes that consist of the same number of vertices. This time, we have a
similar case of the P-nodes in an MPQ-tree if the current nodes are not prime
nodes. The children of each node is arranged from left to right according to their
total ordering defined recursively. The last case we have to design is the case
that when we deal with a prime node. As shown in [7], if we have a prime node,
the corresponding permutation graph G has a unique line representation up to
reversal. For this prime nodes, we have two permutations as discussed in Section
5.1. That is, this situation is the same as the case of Q-node in an MPQ-tree:
we compare two possible arrangements, and take lexicographically smaller one
as its canonical representation. An example is given in Appendix F.

F An example of permutation graph and its canonical
representations

1

(A)

2

3

4

5

6

7
11

12

10

8

9
24 531 6 78 9 10 11 12 L1

L2

(B)

Fig. 4. A permutation graph and its line representation.

In this section, we give a simple example of a permutation graph and show
how we will obtain its canonical string presentation. The graph in Fig. 4(A) is
a permutation graph since it has a line presentation as shown in Fig. 4(B).

For this graph, its modulars are recursively determined as shown in Fig. 5,
and hence we obtain the modular decomposition tree as shown in Fig. 6.

The modular decomposition tree is drawn in the left-to-right manner defined
in Appendix E. Then we obtain the tree as shown in Fig. 7.

From the modular decomposition tree in Fig. 7, we can obtain the line repre-
sentation as in Fig. 8. Then we relabel the vertices as 1, 2, . . . , n on L1. Now the
permutation π = (9, 10, 2, 1, 4, 3, 5, 12, 8, 7, 6, 11) appearing on L2 is the canoni-
cal string of the permutation graph in Fig. 4(A).

(C)

1 2

3

4

5

6

7
11

12

10

8

9

Fig. 5. Modulars in the permutation graph.

(D)
Prime

Series Parallel Parallel

Series Series

1 2

3 4 5 6 7

11 12

10

8 9

1, 2,..., 12

3, 4, 5 6, 7 8, 9, 10, 11, 12

8, 9 11, 12

Fig. 6. Modular decomposition tree.

(E) Prime

SeriesParallelParallel

Series Series

2 1

3 4 56 7

11 12

10

8 9

1, 2,..., 12

3, 4, 56, 78, 9, 10, 11, 12

8, 9 11, 12

Fig. 7. Redrawn modular decomposition tree in the left-to-right manner.

24 53 16 78 9 1011 12 L1

L2

(F)

2 4 531 6 7 8 9 10 11 12 L1

L2

(G)

2 4 531 6789 10 1112

Fig. 8. Canonical string representation.

