
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Complexity of the Maximum k-Path Vertex Cover

Problem

Author(s)
Miyano, Eiji; Saitoh, Toshiki; Uehara, Ryuhei;

Yagita, Tsuyoshi; Zanden, Tom van der

Citation Lecture Notes in Computer Science, 10755: 240-251

Issue Date 2018-01-31

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/15856

Rights

This is the author-created version of Springer,

Eiji Miyano, Toshiki Saitoh, Ryuhei Uehara,

Tsuyoshi Yagita and Tom van der Zanden, Lecture

Notes in Computer Science, 10755, 2018, 240-251.

The original publication is available at

www.springerlink.com,

http://dx.doi.org/10.1007/978-3-319-75172-6_21

Description

WALCOM: Algorithms and Computation, 12th

International Conference, WALCOM 2018, Dhaka,

Bangladesh, March 3-5, 2018, Proceedings



Complexity of the Maximum k-Path
Vertex Cover Problem

Eiji Miyano1, Toshiki Saitoh1, Ryuhei Uehara2, Tsuyoshi Yagita1,
Tom C. van der Zanden3

1 Kyushu Institute of Technology, Japan
{miyano@, toshikis@, yagita@theory.}ces.kyutech.ac.jp
2 Japan Advanced Institute of Science and Technology, Japan

uehara@jaist.ac.jp
3 Utrecht University, The Netherlands

T.C.vanderZanden@uu.nl

Abstract. This paper introduces the maximum version of the k-path
vertex cover problem, called the Maximum k-Path Vertex Cover
problem (MaxPkVC for short): A path consisting of k vertices, i.e., a
path of length k − 1 is called a k-path. If a k-path Pk includes a vertex
v in a vertex set S, then we say that S or v covers Pk. Given a graph
G = (V,E) and an integer s, the goal of MaxPkVC is to find a vertex
subset S ⊆ V of at most s vertices such that the number of k-paths cov-
ered by S is maximized. MaxPkVC is generally NP-hard. In this paper
we consider the tractability/intractability of MaxPkVC on subclasses of
graphs: We prove that MaxP3VC and MaxP4VC remain NP-hard even for
split graphs and for chordal graphs, respectively. Furthermore, if the in-
put graph is restricted to graphs with constant bounded treewidth, then
MaxP3VC can be solved in polynomial time.

1 Introduction

One of the most important and most fundamental computational problems in
graph theory, combinatorial optimization, and theoretical computer science is
the Minimum Vertex Cover problem (MinVC). Indeed, as one of the seminal
results in computational complexity theory, the decision version of MinVC was
listed in Karp’s original 21 NP-complete problems in [10].

Very recently, Brešar, Kardoš, Katrenič, and Semanǐsin introduced a gener-
alized variant of MinVC, called the Minimum k-Path Vertex Cover problem
(MinPkVC), motivated by the need to secure the data integrity of wireless sen-
sor networks from attackers [5]: Let G = (V,E) be a simple undirected graph,
where V and E denote the set of vertices and the set of edges, respectively.
V (G) and E(G) also denote the vertex set and the edge set of G, respectively.
A path consisting of k vertices, i.e., a path of length k − 1 is called a k-path. If
a k-path Pk contains a vertex v in a vertex set S, then we say that the set S or
the vertex v covers Pk. Given a graph G, the goal of MinPkVC is to find a vertex
subset S ⊆ V (G) of minimum cardinality such that S covers all the k-paths in



G. In the same paper, Brešar et al. proved the NP-hardness of MinPkVC and
designed a linear-time algorithm for MinPkVC on trees for k ≥ 3. Furthermore,
the authors proved that MinPkVC can be expressed by Extended Monadic Sec-
ond Order Logic, which implies that MinPkVC can be solved in linear time on
graphs with bounded treewidth by Courcelle’s theorem [8]. Subsequently, due
to its wide applicability to many practical problems, MinPkVC has been studied
intensively. Indeed, for example, a large number of results on approximation [6,
12, 15, 16, 19], fixed-parameter tractability [11, 14] and exact algorithms [17] for
MinP3VC and MinP4VC have been reported.

The classical/original MinVC has several variants; one of the most popular
variants is the Maximum Vertex Cover problem (MaxVC), which is often
called the Partial Vertex Cover problem: Given a graph G and an integer
s, the goal of MaxVC is to find a vertex subset S ⊆ V (G) of s vertices such that
the number of edges covered by S is maximized. It is known that MaxVC also
has many applications in real life (see, e.g., [7]). It is known [1, 7] that MaxVC
is NP-hard even on bipartite graphs, though the minimization version MinVC is
solvable in polynomial time on them.

For the general version MinPkVC, therefore, it would be natural to consider
the maximization problem; this paper introduces the Maximum k-Path Cover
problem (MaxPkVC): Given a graph G and an integer s, the goal of MaxPkVC
is to find a vertex subset S ⊆ V (G) of size at most s such that the number
of k-paths covered by S is maximized. One can see that MaxP2VC is generally
NP-hard since it is identical to MaxVC. Therefore, we focus on the case where
k ≥ 3. For any fixed integer k ≥ 3, MaxPkVC is NP-hard in the general case since
MinPkVC can be considered as a special case of MaxPkVC. In this paper, we are
interested in the tractability and the intractability of MaxPkVC on subclasses of
graphs.

Our main results are summarized as follows:

(i) MaxP3VC remains NP-hard for the class of split graphs.
(ii) MaxP4VC remains NP-hard for the class of chordal graphs.
(iii) MaxP3VC can be solved in polynomial time if the input graph is

restricted to graphs with constant bounded treewidth.

2 Preliminaries

Let G = (V,E) be a simple undirected graph, where V and E denote the set of
vertices and the set of edges, respectively. V (G) and E(G) also denote the vertex
set and the edge set of G, respectively. We denote an edge with endpoints u and
v by {u, v}. A path of length k−1 from a vertex v1 to a vertex vk is represented
as a sequence of vertices such that Pk = ⟨v1, v2, . . . , vk⟩, which is called a k-path.
For a vertex v, the set of vertices adjacent to v, i.e., the open neighborhood of v
is denoted by N(v). Let deg(v) = |N(v)| be the degree of v. Let G[S] denote the
subgraph of G induced by a vertex subset S ⊆ V (G).

A graph G is chordal if each cycle in G of length at least four has at least
one chord, where the chord of a cycle is an edge between two vertices of the

2



cycle that is not an edge of the cycle. A graph G is split if there is a partition of
V (G) into a clique set V1 and an independent set V2 such that V1 ∩ V2 = ∅ and
V1 ∪ V2 = V (G). A treewidth of a graph is defined in Section 5.

The problem MaxPkVC that we study in this paper is defined as follows for
any fixed integer k:

Maximum k-Path Vertex Cover (MaxPkVC)
Given a graph G and an integer s, the goal of MaxPkVC is to
find a vertex subset S ⊆ V (G) of size at most s such that the
number of k-paths covered by S is maximized.

As mentioned in Section 1, it is known [5] that the minimum variantMinPkVC
of our problem is NP-hard for any fixed integer k ≥ 2. It is important here to
note that MinPkVC can be considered as a special case of MaxPkVC, i.e., the
essentially equivalent goal of MinPkVC is to find a vertex subset S of size at
most s such that S covers all the k-paths in the input graph. Therefore, the
NP-hardness of MaxPkVC is straightforward:

Theorem 1. [5] For any fixed integer k, MaxPkVC is NP-hard.

Moreover, it is known that MinP3VC is a dual problem of the Maximum
Dissociation Set problem, which was introduced in [18]. Yannakakis [18], and
Papadimitriou and Yannakakis [13] proved that the problem is NP-hard even on
bipartite graphs, and on planar graphs, respectively. Similarly to the above, we
can obtain the following theorem:

Theorem 2. [13, 18] MaxP3VC is NP-hard on (i) bipartite graphs and (ii) pla-
nar graphs.

3 NP-hardness of MaxP3VC on split graphs and MaxP4VC
on chordal graphs

In this section, we prove the NP-hardness of MaxP3VC on split graphs and
MaxP4VC on chordal graphs. Let us define a decision version of MaxP3VC, de-
noted by MaxP3VC(t): Given a graph G, and two integers s and t, determine if
the graph G has a vertex subset S ⊆ V (G) of size at most s such that the total
number of 3-paths covered by S is at least t. The first result of this section is:

Theorem 3. MaxP3VC(t) is NP-complete, even on split graphs.

Proof. First, we prove that MaxP3VC(t) is in NP. Every path of three vertices in
the graph G can be enumerated in O(|V |3) time, thus if we nondeterministically
guess a set S of s vertices, we can check whether at least t 3-paths are covered
by those s vertices in polynomial time.

Next, we show that there exists a polynomial-time reduction from the Re-
stricted Exact Cover by Three Sets (RX3C) problem to MaxP3VC(t).
The input is a finite set X = {x1, x2, . . . , x3q} of 3q elements and a collection C

3



of 3q 3-element subsets of X, where each element of X appears in exactly three
subsets of C. RX3C asks if C contains an exact cover forX, that is, a subcollection
C′ ⊆ C such that every element of X occurs in exactly one member of C′. RX3C
is shown to be NP-complete by Gonzalez [9]. We give the reduction such that
the original instance of RX3C is a yes-instance if and only if the MaxP3VC(t)
instance is also a yes-instance. Let n = 3q for a while. As an input of RX3C,
let X = {x1, x2, . . . , xn} be a set of n elements. Also, let C = {C1, C2, . . . , Cn}
be a collection of n 3-element sets. Then, we construct a graph G = (V,E)
corresponding to an instance (X, C) of RX3C as follows: The constructed graph
G consists of the following vertices: (i) n vertices, vC1

through vCn
, called the

set vertices, corresponding to the n sets, C1 through Cn, respectively, (ii) n
vertices, vx1

through vxn
, called the element vertices, corresponding to the n

elements, x1 through xn, respectively, and (iii) corresponding to each set Ci

(i ∈ {1, 2, . . . , n}), n2 vertices, vCi,1 through vCi,n2 , i.e., n3 vertices in total,
called pendant vertices. Let C = {vC1 , vC2 , . . . , vCn}, EL = {vx1 , vx2 , . . . , vxn},
and P = {vC1,1, . . . , vC1,n2 , vC2,1, . . . , vCn,n2}. The edge set E(G) is as follows:
(iv) The subgraph induced by the set C of n vertices forms a clique Kn of size
n, i.e., we add all possible edges between any pair of vertices in C into E(G).
(v) If xi ∈ Cj for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}, then we add an edge
{vxi , vCj} into E(G). Note that each set vertex vCi is adjacent to exactly three
element vertices and furthermore each element vertex vxj is adjacent to exactly
three set vertices. (vi) For each i ∈ {1, 2, . . . , n} and each j ∈ {1, 2, . . . , n2}, the
pendant vertex vCi,j is connected to vCi

by adding an edge {vCi,j , vCi
}. Finally,

we set s = q and t = 81q5/2 + 45q4 + 23q3 + 15q2/2 + 7q. This completes the
reduction, which clearly can be done in polynomial time. One can verify that
the constructed graph G is split since the set vertices form a clique, and the
remaining vertices form an independent set.

As an example, if we are given X = {1, 2, 3, 4, 5, 6} and a collection C =
{C1, C2, . . . , C6} = {{1, 3, 5}, {1, 4, 5}, {3, 4, 6}, {2, 4, 6}, {1, 2, 6}, {2, 3, 5}} as an
RX3C instance, the graph constructed above is illustrated in Figure 1. One can
see that C′ = {C1, C4} is a possible solution.

Before showing the correctness of our reduction, we make important obser-

vations: (1) Each set vertex vCi
can cover at least

(
n2

2

)
= Ω(n4) 3-paths, i.e.,

⟨vCi,j , vCi , vCi,k⟩ for 1 ≤ j, k ≤ n2 and j ̸= k. (2) On the other hand, every
element or pendant vertex can cover at most O(n2) 3-paths. Therefore, in order
to cover as many 3-paths as possible, it would be the most effective to select set
vertices into a solution of MaxP3VC(t).

The following lemma shows the correctness of the reduction:

Lemma 1. RX3C is yes if and only if MaxP3VC(t) is yes, i.e., there is a vertex
subset S of size at most q such that S can cover at least 81q5/2+ 45q4 +23q3 +
15q2/2 + 7q 3-paths. (The proof is in Appendix A due to the space limitation.)

This completes the proof of Theorem 3. ⊓⊔

By using a very similar reduction with small modification, we can obtain the
following theorem:

4



... ... ... ... ... ...

36 vertices

Set vertices form

Element vertices
1 2 3 4 5 6

a complete graph

36 edges

Pendant vertices

Fig. 1. Constructed graph G

Theorem 4. MaxP4VC(t) is NP-complete, even on chordal graphs. (The proof
sketch is in Appendix B.)

4 Algorithm for MaxP3VC on trees

In the next section we present a polynomial-time algorithm for MaxP3VC on
graphs with bounded treewidth, but, in order to make our basic ideas clear,
this section provides a simpler algorithm running in polynomial time only for
MaxP3VC on trees. In the following, let T denote the given tree, and especially,
let Tvroot denote the subtree of T whose root is vroot.

Intuitively, our algorithm is based on dynamic-programming, keeping the
minimum number of uncovered 3-paths from the bottom to the top of the tree.
For every vertex, the following two steps are considered in our algorithm: [I] In-
troduce Step and [II] Join Step, and in each step, the table in which the
minimum number of uncovered 3-paths is stored is updated. After computing
the minimum number of uncovered 3-paths of a certain subtree, our algorithm
proceeds to the parent vertex u of the root of the subtree. Then, we say that u
is in Introduce Step (see Figure 2). Also, there may exist some subtrees whose
parent of the root of each subtree is u. In such case, our algorithm merges those
subtrees one by one, by joining the same parent u, and computes the minimum
number of uncovered 3-paths. In this joining step, we say u is in Join Step (see
Figure 3).

Why we can compute the minimum number of uncovered 3-paths in the
subtree is as follows: Assume that now we are looking at the vertex u during the
bottom-up procedure. The number of uncovered 3-paths of the subtree Tu, the
subtree whose root is u, can be easily counted by three information: (i) whether
u is selected in the cover or not, (ii) the size of the solution given as input, which
corresponds to the number of the vertices we are allowed to pick, (iii) the number
of u’s children not selected as the covering vertices. Since the given graph is tree,

5



Fig. 2. Vertex u is in Introduce Step; u is in the cover (Left), or not (Right)

Join Join

Fig. 3. Vertex u is in Join Step

the number of uncovered 3-paths only increases in the following two cases: [I] u
is in Introduce Step. In this case, u has not started its Join Step yet. Thus
u has a child vertex below itself which is a root of certain subtree. If neither u
nor the child of u, say, v are selected in the cover, then the number of uncovered
3-paths increases depending on the number of the children of v which are not
selected in the cover. [II] u is in Join Step. In this case, if u is not selected in
the cover, then new uncovered 3-paths appear between the left subtree and right
subtree of u. The number of those 3-paths increases depending on the number
of the vertices not selected in the cover, existing in both two subtrees.

Now, we are going to show the recursive formulas with precise notation. Let
c[v; b, ℓ, r] denote the number of uncovered 3-paths, where v denotes the vertex
we are currently looking at, b ∈ {1, 0} denotes whether the vertex is selected
in the cover (b = 1) or not (b = 0) as a root, ℓ ∈ {0, 1, 2, . . . , s} denotes the
size of the solution, and r ∈ {0, . . . , n − 1} denotes the number of unselected
children. Note that, when a vertex is in Introduce Step and chosen in the cover,
we do not need to consider the fourth argument r. This is because the 3-paths
including the vertex in Introduce Step and its children are already covered by
the vertex in Introduce Step. We show the tables in Table 1 and Table 2, where
each entry denotes the minimum number of uncovered 3-paths under a set of
some arguments. When a vertex v is in Introduce Step, first we consider two
cases; b = 1 or b = 0, that is, whether we put v in the cover or not. If b = 1,
then we only consider the solution size ℓ, ranging it from 1 to s. For example, in
Table 1, in 1 stands for c[v; 1, 1, ∗], and there is stored the minimum number of
uncovered 3-paths under these conditions. Similarly, if b = 0, then there are s+1
and n options for the solution size and the number of unselected children of the
root. Each of the entry, such as out 00, out 01 and so on, stores the minimum
number of the 3-paths with each argument. Utilizing this table, the algorithm
proceeds from the bottom to the top.

Leaf : If the vertex u is a leaf, then there are no uncovered 3-paths, thus we have
c[u; 0, 0, -] = c[u; 1, 1, -] = 0.

6



Table 1. Table when the root is in the cover

Solution size -

0 ∞
1 in 1

2 in 2
...

...

s in s

Table 2. Table when the root is NOT in the cover

Solution size The number of children of the root NOT chosen in cover

0 1 . . . n− 1

0 out 00 out 01 . . . out 0(n-1)

1 out 10 out 11 . . . out 1(n-1)

2 out 20 out 21 out 2(n-1)
...

...
...

. . .
...

s out s0 out s1 out s(n-1)

Introduce Step: If the vertex u is in Introduce Step, assuming v, the child
vertex of u, has d children, we consider two cases: u is in the cover or not.

(i) u is in the cover: As mentioned before, we do not need to consider the
fourth argument, so we have only to take care of the size of the solution
which ranges from 1 to s. If the size of the solution is 1, then we refer to
out d of v, c[v; 0, 0, d]. This is because the root v is in the cover and the
solution size we assume now is 1, v is not in the cover and the size of the
solution for v is 0, and also v has d unselected children. If the solution size
is 2, then it becomes little complicated. We have to take the minimum of
{in 1, out 1d, out 1(d-1)} of v. This is because if the solution size is 2, from
the assumption that we put u into the cover set, then we have to consider
where one more vertex in the cover is in the subtree Tu. There are following
three options in this case: (i) v is also in the cover set, (ii) even the children
of v do not have the selected vertex, in other words, all of the d children of
v are all unselected vertices, and (iii) one of the d children is in the cover
set. Thus we refer three entries, and take the minimum of them. In the same
manner, c[u; 1, ∗, -] is calculated as follows, and also the table for u when the
root is in (see Table 1) is updated with the following values:

c[u; 1, i, -] =


∞ if i = 0

c[v; 0, 0, d] if i = 1

min0≤j≤i−1{c[v; 1, i− 1, ∗], c[v; 0, i− 1, d− j]} if 2 ≤ i ≤ s

(ii) u is not in the cover: Since G is tree, we do not have to consider the case
where the number of unselected children is 2, · · · , n− 1. Thus we can set all

7



the entries of Table 2 whose number of unselected children is 2, · · · , n − 1
with ∞. In other words, we have only to consider the case where the number
of unselected children is 0 or 1. Furthermore, if u has 0 unselected children
(which means v is in the cover) and the solution size is 1, · · · , s, it is clear
that we refer to the root-in table of v, corresponding to the solution size. If u
has 1 uncovered child (which similarly means v is not in the cover), then we
have to take the minimum depending on the solution size. Thus c[u; 0, ∗, ∗]
is calculated as follows:

c[u; 0, i, j] =


∞ if i = 0 and j = 0

c[v; 1, i, -] if 1 ≤ i ≤ s and j = 0

c[v; 0, 0, d] if i = 0 and j = 1

min0≤d′≤i{c[v; 0, i, d− d′] + d− d′} if 1 ≤ i ≤ s and j = 1

Join Step: If the vertex u is in Join Step, then we update the table of u. As
with Introduce Step, we consider two cases: the root is in the cover or not.
Let us assume that u is in Join Step, and let vL and vR be the left and right
child of u, respectively. Also, for clarity, we specially introduce uL and uR such
that u = uL = uR, whose child is vL and vR respectively.

(i) u is in the cover: We do not have to consider the fourth argument, as we
mentioned. We update the table ranging the size of the solution from 0 to
s. If the size of the solution is 0, we set the entry as ∞. If the size of the
solution is 1, then we just add the number of uncovered 3-paths c[uL; ∗, ∗, ∗]
and c[uR; ∗, ∗, ∗]. Note that u is selected in the cover, therefore the solution
S has only u in this case. If the size of the solution is 2, then we have to take
the minimum from two choices: one more solution is in the left subtree or
the right subtree, say TvL or TvR . Thus c[u; 1, ∗, -] is calculated as follows:

c[u; 1, i, -] =

{
∞ if i = 0

min1≤j≤i{c[uL; 1, i− j + 1, -] + c[uR; 1, j, -]} if 1 ≤ i ≤ s

(ii) u is not in the cover: If the vertex which is not selected in the cover is
in Join Step, then uncovered 3-paths whose central vertex is u, in other
words, the uncovered 3-paths going through from the left subtree TuL

to the
right subtree TuR

may exist. Thus we have to take them into consideration
in updating the table of u. There are two tables for subtrees TuL

and TuR
,

so we have to take the the minimum among all the possible combinations
of the size of the solution and the number of unselected children of those
subtrees, considering newly appearing uncovered 3-paths going from TuL

to
TuR

. Note that these newly appearing uncovered 3-paths can be calculated
by multiplying the two numbers of unselected children, the number of the
unselected children in TuL

and TuR
. Let i, iL, and iR be the variables which

respectively denotes the size of the solution in the subtree Tu, TuL
, and TuR

.
Note that iR = i − iL holds. Also, let j, jL, and jR be the variables which
respectively denotes the number of the unselected children in the subtree Tu,

8



TuL
, and TuR

. Note that jR = j − jL also holds. c[u; 0, ∗, ∗] is calculated as
follows:

c[u; 0, i, j] = min
0≤i≤s

min
0≤j≤n−1

{c[uL; 0, iL, jL] + c[uR; 0, iR, jR] + jL · jR}

Note that, since we can assume that for any vertex v, the number of unse-
lected children r is always at least deg(v) − s − 1, the number of cases in the
dynamic programming table is O(s2). The running time for the algorithm is
dominated for that of Join Step, which (using this observation) is O(s4).

Theorem 5. MaxP3VC on trees of n vertices can be solved in O(s4 · n) time,
where s is the prescribed size of the 3-path vertex cover.

5 Algorithm for MaxP3VC on graphs with bounded
treewidth

In this section, we show that MaxP3VC admits a polynomial-time algorithm
for graphs with bounded treewidth. In particular, we show that there exists an
O((s+ 1)

2tw+4 ·4tw ·n)-time algorithm, where tw denotes the treewidth, which is
defined later. Thus, MaxP3VC is in XP with respect to the parameter treewidth
(and FPT with respect to the combined parameter s+ tw).

Our algorithm uses dynamic programming on a nice tree decomposition [2]
of the input graph G. Given a graph G, a tree decomposition of G is a tree T
with for each node vT ∈ V (T ) a subset XvT ⊆ V (G) (called bag) such that

– for every (u, v) ∈ E(G), there is a vT ∈ V (T ) such that {u, v} ⊆ XvT , and
– for every v ∈ V (G), the subset {vT ∈ V (T ) | v ∈ XvT } induces a connected

subtree of T .

The width of a tree decomposition is maxvT∈T |XvT | − 1, and the treewidth
of a graph G is the minimum width taken over all tree decompositions of G. To
avoid confusion, from now on we shall refer to the vertices of T as “nodes”, and
“vertex” shall refer exclusively to vertices of G.

We designate an arbitrary node of T as root of the tree decomposition. Given
a node vT ∈ T , we denote by G[vT ] the subgraph of G induced by XvT and the
vertices in bags of nodes which are descendants of vT in T . We moreover assume
that our (rooted) decomposition is nice, that is, each of the nodes vT ∈ T is one
of the four types:

– Leaf: vT is a leaf of T , and |XvT | = 1.
– Introduce: vT has a single child node uT , and XvT differs from XuT

only by
the inclusion of one additional vertex w. We say that w is introduced in vT .

– Forget: vT has a single child node uT . XvT differs from XuT
only by the

removal of one vertex w. We say that vertex w is forgotten in vT .
– Join: vT has two children uT and u′

T . Moreover, XuT
= Xu′

T
= XvT .

9



We note that a tree decomposition can be converted into a nice tree decom-
position of the same width. Moreover, we can assume that the size of a tree
decomposition (i.e. the number of bags) is linear in |V (G)| [2].

Given a node vT of a tree decomposition of G, a partial solution is a subset
S ⊆ V (G[vT ]) of size at most s. Since the number of 3-paths in G is equal to∑

v∈V

1

2
deg(v)(deg(v)− 1),

we define the cost of a partial solution (relative to a node vT ) S to be∑
v∈V (G[vT ])\(S∪XvT

)

1

2
degvT ,S(v)(degvT ,S(v)− 1),

where degvT ,S(v) is taken to be the degree of v in the subgraph of G induced by
V (G[vT ])\S. This definition, which does not take into account the degrees of the
vertices in XvT , is convenient because the degrees of the vertices in XvT are not
yet fixed, and may change as new vertices are introduced. However, if we assume
the root bag of the tree decomposition is empty (which may be accomplished
by introducing a series of forget bags after the root bag), then a partial solution
with minimum cost corresponds to an optimal solution to theMaxP3VC instance.

As is usual for dynamic programming on tree decompositions, we group par-
tial solution by characteristics. Given a partial solution S for node vT of the nice
tree decomposition (with associated bag XvT and subgraph G[vT ]), its charac-
teristic (ℓ, S′, f) consists of the size of the solution ℓ = |S|, its intersection with
the bag S′ = XvT ∩ S, together with a function f : XvT → {0, 1, . . . , s} such
that f(v) = |{u ∈ S | u ∈ N(v)}|, which, for each vertex v in the bag XvT , tells
us how many of its neighbors are in the partial solution.

For each characteristic, we store the minimum cost of a partial solution with
that characteristic, which we denote by c(ℓ, S′, f). Next, we show how to recur-
sively compute for each type of node in a nice tree decomposition the set of char-
acteristics of a partial solutions, and for each such characteristic, the minimum
number of 3-paths not covered by a partial solution with that characteristic.

Leaf : If vT ∈ V (T ) is a leaf node, then XvT = {v} for some v ∈ V (G). Then
there are exactly two partial solutions for G[vT ]: the empty partial solution,
which has characteristic (0, ∅, f) where f(v) = 0 and the partial solution that
includes v, which has characteristic (1, {v}, f), where f(v) = 0. In both cases,
c(0, ∅, f) = c(1, {v}, f) = 0.

Introduce: Suppose that vT ∈ V (T ) is an introduce node, and v is the vertex
being introduced. Let (ℓ, S′, f) be a characteristic for the child node of vT . In
the partial solutions (for the child node) with this characteristic, we may (if
ℓ < s) choose to either add the vertex v or not. In the case where we add v,
the corresponding partial solutions have characteristic (ℓ+1, S′∪{v}, f ′), where
f ′(v) = |{u ∈ S′ | u ∈ N(v)}|, and, if u ̸= v and u ̸∈ N(v), f ′(u) = f(u), and, if
u ̸= v and u ∈ N(v), f ′(u) = f(u) + 1. In the case where we do not add v, the
corresponding partial solutions will have characteristic (ℓ, S′, f ′), where f ′(v) =

10



|{u ∈ S′ | u ∈ N(v)}|, and, if u ̸= v , f ′(u) = f(u). Since v is not adjacent to
any vertex in G[vT ]\XvT , the cost of these partial solutions remains unchanged.
Note, however, that taking two partial solutions with distinct characteristics may
end up having the same characteristic after vertex v is introduced. In this case,
we should take the cost (for the new characteristic) to be the minimum of the
costs for the original partial solutions.

Forget: Suppose that vT ∈ V (T ) is a forget node, and v is the vertex being
forgotten. Let (ℓ, S′, f) be a characteristic for the child node of vT . If S is a
partial solution with this characteristic, then, viewed as a partial solution with
respect to node vT , it will have characteristic (ℓ, S′ \ {v}, f ′), where f ′ is the
restriction of f to the domain S′ \ {v}. If v /∈ S′ and f(v) < deg(v), then the
cost of this partial solution increases by 1

2 (deg(v) − f(v))(deg(v) − f(v) − 1),
otherwise it remains unchanged. As before, since multiple characteristics for the
child node may end up having the same characteristic in vT , and we should take
the new cost of the characteristic to be the minimum of the updated costs.

Join: Suppose that vT ∈ V (T ) is a join node, and v1T and v2T are its children. Let
(ℓ1, S

′
1, f1) (resp., (ℓ2, S

′
2, f2)) be a characteristic for v1T (resp., v2T ). Assume that

S′
1 = S′

2, which we henceforth denote simply by S′, and that ℓ1 + ℓ2 − |S| ≤ s.
If we take the union of partial solutions, S1 relative to v1T with characteristic
(ℓ1, S

′, f1) and S2 relative to v2T with characteristic (ℓ2, S
′, f2), then we obtain

a new partial solution (relative to vT ) with characteristic (ℓ1 + ℓ2 − |S′|, S′, f ′),
where f ′(v) = f1(v)+f2(v)−|{u ∈ S′ | u ∈ N(v)}|. Since V (G[v1T ])∩V (G[v2T ]) =
XvT , inG[vT ], the degree of a vertex v ∈ V (G[vT ])\(XvT ∪S) is equal to its degree
in (the subgraph of G induced by) G[v1T ]\S (resp., G[v2T ]\S) if v ∈ V (G[v1T ])\S
(resp., v ∈ V (G[v2T ]) \ S). Therefore, the cost of this new partial solution is
equal to the sum of the costs of the partial solutions S1 and S2. Since once
again, multiple (combinations of) characteristics for the child nodes may give
rise to the same characteristic for vT , we can find the minimum cost of a partial
solution for a given characteristic by taking the minimum over all (combinations
of) characteristics for the child nodes.

For any node, there are at most (s+1)tw+22tw+1 characteristics. The running
time is dominated by the time taken for a join node, which is O((s + 1)2tw+4 ·
4tw+1). Since we can assume that our tree decomposition has at most O(n)
nodes, we obtain a O((s + 1)2tw+4 · 4tw · n)-time algorithm. This assumes a
tree decomposition is given as part of the input. A tree decomposition can be
computed in 2O(tw3)n time [3], or a 5-approximate tree decomposition can be
computed in time O(1)twn [4].

Theorem 6. MaxP3VC on n-vertex graphs of treewidth tw can be solved in
O((s + 1)2tw+4 · 4tw · n) time, where s is the prescribe size of the 3-path ver-
tex cover.

References

1. Nicola Apollonio and Bruno Simeone. The maximum vertex coverage problem on
bipartite graphs. Discrete Applied Mathematics, Vol. 165, pp. 37–48, 2014.

11



2. Nadja Betzler, Rolf Niedermeier, and Johannes Uhlmann. Tree decompositions of
graphs: saving memory in dynamic programming. Discrete Optimization, Vol. 3,
pp. 220–229, 2006.

3. Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on computing, Vol. 25 (6), pp. 1305–1317, 1996.

4. Hans L Bodlaender, P̊al Grǿn̊as Drange, Markus S Dregi, Fedor V Fomin, Daniel
Lokshtanov, and Micha l Pilipczuk. A O(ckn) 5-approximation algorithm for
treewidth. SIAM Journal on Computing, Vol. 45 (2), pp. 317–378, 2016.

5. Boštjan Brešar, Frantǐsek Kardoš, Ján Katrenič, and Gabriel Semanǐsin. Minimum
k-path vertex cover. Discrete Applied Mathematics, Vol. 159 (12), pp. 1189–1195,
2011.

6. Eglantine Camby. Connecting hitting sets and hitting paths in graphs. PhD thesis,
Doctoral Thesis, 2015.

7. Bugra Caskurlu, Vahan Mkrtchyan, Ojas Parekh, and K Subramani. On partial
vertex cover and budgeted maximum coverage problems in bipartite graphs. In
IFIP Inte. Conf. on Theoretical Computer Science, pp. 13–26. Springer, 2014.

8. Bruno Courcelle. Graph rewriting: an algebraic and logic approach. In Handbook
of Theoretical Computer Science, Vol. B, pp. 193–242, 1990.

9. Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, Vol. 38, pp. 293–306, 1985.

10. Richard Karp. Reducibility among combinatorial problems. Compleixty of Com-
puter Computations, pp. 85–103, 1972.

11. Ján Katrenič. A faster FPT algorithm for 3-path vertex cover. Information Pro-
cessing Letters, Vol. 116 (4), pp. 273–278, 2016.

12. Xiaosong Li, Zhao Zhang, and Xiaohui Huang. Approximation algorithms for
minimum (weight) connected k-path vertex cover. Discrete Applied Mathematics,
Vol. 205, pp. 101–108, 2016.

13. Christos H Papadimitriou and Mihalis Yannakakis. The complexity of restricted
spanning tree problems. Journal of the ACM, Vol. 29, No. 2, pp. 285–309, 1982.

14. Jianhua Tu and Zemin Jin. An FPT algorithm for the vertex cover P4 problem.
Discrete Applied Mathematics, Vol. 200, pp. 186–190, 2016.

15. Jianhua Tu and Wenli Zhou. A factor 2 approximation algorithm for the vertex
cover P3 problem. Information Processing Letters, Vol. 111 (14), pp. 683–686,
2011.

16. Jianhua Tu and Wenli Zhou. A primal–dual approximation algorithm for the vertex
cover P3 problem. Theoretical Computer Science, Vol. 412 (50), pp. 7044–7048,
2011.

17. Mingyu Xiao and Shaowei Kou. Exact algorithms for the maximum dissociation
set and minimum 3-path vertex cover problems. Theoretical Computer Science,
Vol. 657, pp. 86–97, 2017.

18. Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal
of Computing, Vol. 10, pp. 310–327, 1981.

19. Zhao Zhang, Xiaoting Li, Yishuo Shi, Hongmei Nie, and Yuqing Zhu. PTAS for
minimum k-path vertex cover in ball graph. Information Processing Letters, Vol.
119, pp. 9–13, 2017.

12



Table 3. Type of 3-paths and the number of covered 3-paths

Type of 3-paths Number of Covered 3-paths

Set-Set-Set (3q · (3q − 1) · (3q − 2) − 2q · (2q − 1) · (2q − 2))/2

Pendant-Set-Pendant q · (9q2) · (9q2 − 1)/2

Pendant-Set-Set 9q2 · 3q · (3q − 1) − 9q2 · 2q · (2q − 1)

Pendant-Set-Element 3 · q · (9q2)

Set-Set-Element 3q · (3q − 1) · 3 − 2q · (2q − 1) · 3

Element-Set-Element 3q

Set-Element-Set 6q

APPENDIX

This appendix provides the proofs of the results that have been omit-
ted due to space reasons. They may be read to the discretion of the
program committee.

A Proof of Lemma 1

Lemma 1. RX3C is yes if and only if MaxP3VC(t) is yes, i.e., there is a vertex
subset S of size at most q such that S can cover at least 81q5/2+ 45q4 +23q3 +
15q2/2 + 7q 3-paths.

Proof. Note that if the RX3C instance is a yes-instance, then the number of sets
selected in C′ is exactly q (= n/3).
(⇒) Suppose that C′ ⊆ C is an exact cover and let C′ = {C1, C2, . . . , Cq} of q
sets. We select q vertices vC1 through vCq into a solution set S (i.e., S ⊆ C)
corresponding to q sets C1 through Cq in C′, respectively. To count the number
of 3-paths covered by those q vertices, we divide the 3-paths into seven different
types according to the types of three vertices contained in them. See Table 3. In
the first column, Set, Element, and Pendant stand for the set, element, and
pendant vertices, respectively. The second column shows the number of each
type of 3-paths covered by S.

Here is the detailed estimation:

– Set-Set-Set: Recall that the graph induced by the set vertices is a clique
of 3q vertices and q vertices are selected into the solution S. Note that the
number of 3-paths in the clique is 3q · (3q − 1) · (3q − 2)/2. Then, we can

i



show that the number of “uncovered” 3-paths is 2q · (2q − 1) · (2q − 2)/2 as
follows: Now we choose q vertices in S, and thus G[C \ S] forms a clique of
2q vertices, which means there are 2q ·(2q−1) ·(2q−2)/2 uncovered 3-paths.
Hence, (3q · (3q− 1) · (3q− 2)− 2q · (2q− 1) · (2q− 2))/2 3-paths are covered
for this type.

– Pendant-Set-Pendant: We may pick any of the q covered set vertices,
and form a 3-path by picking any two of its 9q2 incident pendant vertices.
Thus q · (9q2) · (9q2 − 1)/2 3-paths of this type are covered.

– Pendant-Set-Set: There are 9q2 ·3q ·(3q−1) 3-paths of this type, of which
9q2 · 2q · (2q − 1) are not covered. Thus 9q2 · 3q · (3q − 1)− 9q2 · 2q · (2q − 1)
3-paths of this type are covered.

– Pendant-Set-Element: We may pick any of the q covered set vertices,
and form a 3-path by picking one of its 9q2 adjacent pendant vertices and
one of its 3 adjacent set vertices. Thus 3 · q · (9q2) 3-paths of this type are
covered.

– Set-Set-Element: There are 3q · (3q− 1) · 3 3-paths of this type, of which
2q · (2q− 1) · 3 are not covered. Thus 3q · (3q− 1) · 3− 2q · (2q− 1) · 3 3-paths
of this type are covered.

– Element-Set-Element: We may pick any of the q covered set vertices,
and form a 3-path by picking two out of the three adjacent element vertices.
There are thus 3q 3-paths of this type that are covered.

– Set-Element-Set: Consider any of the 3q element vertices. It is adjacent
to 3 set vertices, and since the set vertices in the vertex cover correspond to
an exact cover, exactly one of the three adjacent set vertices is in the vertex
cover. Therefore, for a given element vertex, one of the paths of this type is
not covered (namely the path that uses the two set vertices not in the cover),
while the remaining two are. Thus 6q 3-paths of this type are covered.

Summing up the numbers in Table 3, we obtain that the total number of
3-paths covered by S is 81q5/2 + 45q4 + 23q3 + 15q2/2 + 7q.

(⇐) Conversely, suppose that there is a vertex subset S ⊆ V of size at most
s = q which covers at least 81q5/2 + 45q4 + 23q3 + 15q2/2 + 7q 3-paths.

Note that if we select a pendant vertex, then the number of 3-paths covered by
it is at most 9q2− 1 Pendant-Set-Pendant 3-paths, 3q− 1 Pendant-Set-Set
3-paths, and 3 Pendant-Set-Element 3-paths. If we select an element vertex,
then the number of 3-paths covered by it is at most 6 Element-Set-Element 3-
paths, 9q Element-Set-Set 3-paths, and 18q2 Element-Set-Pendant 3-paths.

On the other hand, if we select a set vertex, then the number of 3-paths
covered by it is at least (9q2 − q + 1) · (9q2 − q) ≥ 62q4 ≥ 33q2 Pendant-Set-
Pendant 3-paths. Since this is (for q ≥ 1) strictly more than the number of
3-paths covered by a pendant vertex or an element one, we can assume that the
solution consists of exactly q set vertices.

The number of Set-Set-Set, Pendant-Set-Pendant, Pendant-Set-Set,
Pendant-Set-Element, Set-Set-Element andElement-Set-Element 3-paths
that is covered, depends only on the number of set vertices selected and is (if we

ii



(a) (b) (c) (d)

Fig. 4. 4 ways of choosing set vertices vh, vi, vj

select q set vertices) equal to 81q5/2 + 45q4 + 23q3 + 15q2/2 + q. Thus, at least
6q Set-Element-Set 3-paths must be covered.

Figure 4 shows a situation from the viewpoint of an element vertex; there are
four situations on the selection of the three neighbors of each element vertex:
(a) None of the set vertices adjacent to it is chosen, and (b) one, (c) two, and
(d) all three set vertices are chosen. Set-Element-Set 3-paths involving this
vertex are covered, in the second situation (b) two out of the three possible
3-paths are covered, and in the situations (c) and (d) all of the three possible
3-paths are covered.

Since every set vertex is adjacent to exactly three element vertices, there
are exactly 3q edges from a set vertex in S to an element vertex. Situation (a)
covers 0 3-paths at the cost of 0 such edges, situation (b) covers 2 3-paths at
the cost of 1 edge, and situations (c) and (d) cover 3 3-paths at the expense of
2 or 3 such edges. Since, on average, one such edge should cover 2 3-paths, and
there is no situation in which one edge covers more than 2 3-paths, we know that
situations (c) and (d) do not occur (or else we would not be able to cover at least
6q Set-Element-Set 3-paths, since this would cause the average to drop below
2 3-paths covered per vertex-in-cover-to-element edge). Since the cover includes
3q vertex-in-cover-to-element edges, each element vertex must be in situation
(b) (or else, we would have less than 3q such edges in total). This shows that
the sets corresponding to the selected set vertices form an exact cover. ⊓⊔

B Proof Sketch of Theorem 4

Theorem 4. MaxP4VC(t) is NP-complete, even on chordal graphs.

Proof. (Sketch) We only give the proof sketch of the NP-hardness of MaxP4VC
on chordal graphs. Our basic idea is very similar to that of MaxP3VC on split
graphs; we also reduce from RX3C. We only show how to construct the graphs
in the reduction, and explain the correctness of the reduction intuitively. The
detailed proof will appear in the full version of this paper.

As with MaxP3VC, the input of RX3C is a finite set X = {x1, x2, . . . , x3q} of
3q elements and a collection C of 3q 3-element subsets of X, where each element

iii



of X appears in exactly three subsets of C. See Figure 5. Roughly speaking, we
replace every element vertex with one triangle, called a element triangle, i.e.,
we prepare one triangle of 3 vertices for each element xi, instead of one vertex
in the case of MaxP3VC. Then, we connect the set vertex to the three vertices
of the element triangle if the above corresponding set contains the element.
Furthermore, we replace 9q2 pendant edges with 9q2 pendant vertices in the case
of MaxP3VC. The constructed graph is clearly a chordal graph.

Let us take a look at an example shown in Figure 6. Similarly to the exam-
ple in Section 3, assume that X = {1, 2, 3, 4, 5, 6} and C = {C1, C2, . . . , C6} =
{{1, 3, 5}, {1, 4, 5}, {3, 4, 6}, {2, 4, 6}, {1, 2, 6}, {2, 3, 5}} as an RX3C instance. Fig-
ure 6 illustrates the constructed graph, but, for simplicity, some edges and tri-
angles for elements are omitted.

Now we make observations to (sketchily) prove the correctness of this re-
duction in the following: (i) The set vertices can “effectively” cover many 4-
paths since there are Ω(q4) paths, say, Pendant-Pendant-Set-Pendant or
Pendant-Set-Pendant-Pendant paths. This enforces the optimal solution of
MaxP4VC to consist of all the set vertices. (ii) In MaxP3VC, there is the differ-
ence between the numbers of covered 3-paths in the case whether the selected
vertices cover the same element or not. If the selected vertices cover the same
element, there is at least one doubly covered 3-path, denoted as Set-Element-
Set path in Section 3. Similarly in this MaxP4VC reduction shown in Figure 6,
for example, if we select two vertices which correspond to two sets C4 and C5

as the solution of MaxP4VC, then two 4-paths ⟨C4, e
2
6, e

1
6, C5⟩ and ⟨C4, e

1
6, e

3
6, C5⟩

are covered twice. Therefore, the number of covered 4-paths does not increase
much. However, such paths do not appear if we select two vertices C1 and C4 as
the solution of MaxP4VC, which corresponds to the optimal solution of RX3C.
As a result, the number of covered 4-paths should be maximized. Details are
omitted here. ⊓⊔

iv



... ...

pendant edges

...

Set vertices

Triangle for 
each element  

Fig. 5. (Bottom) Each element vertex is replaced with one element triangle of 3 vertices,
and (top) each pendant vertex is replaced with one pendant edge

... ... ... ... ... ...

36 paths

Set vertices

Triangle for 
each element  

Fig. 6. Example of the constructed graph G

v


