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Abstract. Given a set P of n elements, and a function d that assigns a
non-negative real number d(p, q) for each pair of elements p, q ∈ P , we
want to find a subset S ⊆ P with |S| = k such that the cost cost(S) =
min{d(p, q) | p, q ∈ S} is maximized. This is the max-min k-dispersion
problem.
In this paper, exact algorithms for the max-min k-dispersion problem are
studied. We first show the max-min k-dispersion problem can be solved
in O(nωk/3 log n) time. Then, we show two special cases in which we can
solve the problem quickly.

Keywords: dispersion problem, algorithm

1 Introduction

The facility location problem and many of its variants have been studied ex-
tensively [8, 9]. Typically, we are given a set of locations on which facilities are
placed and an integer k, we want to place k facilities on some locations in such a
way that a given objective is minimized. In the dispersion problem, we want to
minimize the interference between the placed facilities. As an example scenario,
consider that we are planning to open several chain stores in a city. We wish to
locate the stores mutually far away from each other to avoid self-competition.
Another example is a case where facilities are mutually obnoxious, such as nu-
clear power plants and oil storage tanks. See more applications, including result
diversification, in [21, 23, 16, 6].

More specifically, in the max-min k-dispersion problem, we are given a set P
of n elements which represent possible locations, and a function d that assigns a
non-negative real number d(p, q) for each pair of elements p, q ∈ P . Throughout



this paper, we assume that d is symmetric (i.e., d(p, q) = d(q, p) for all p, q ∈ P ,
and d(p, p) = 0 for all p ∈ P ) , but we do not assume that d satisfies the triangle
inequality. The value d(p, q) represents the distance between p and q. We are
also given an integer k with k ≤ n. Then, we want to find a subset S ⊆ P with
|S| = k such that the cost

cost(S) = min{d(p, q) | p, q ∈ S}

is maximized.
The max-min k-dispersion problem was recognized in the early days of re-

search for location theory. At least, Shier [22] wrote and published a paper about
k-dispersion on trees in 1977, and related the problem with the k-center prob-
lem. The related literature up to the mid 1980’s was reviewed by Kuby [15].
Erkut [10] proved the problem is NP-hard even when the triangle inequality is
satisfied. A geometric version was studied by Wang and Kuo [25], where points
lie in the d-dimensional space, and the distance is Euclidean. Then, they proved
the following: when d = 1, the problem can be solved in O(kn) time by dy-
namic programming after O(n log n)-time sorting; when d = 2, the problem is
NP-hard. The running time for d = 1 was recently improved to O(n log log n)
(after sorting) [2] by sorted matrix search method [13]. (For a good survey for
the sorted matrix search method see [1, Section 3.3].)

Ravi et al. [21] proved that the max-min k-dispersion cannot be approximated
within any factor in polynomial time, and cannot be approximated within the
factor of two in polynomial time when the distance satisfies the triangle inequal-
ity, unless P = NP. They also gave a polynomial-time algorithm with approx-
imation ratio two when the triangle inequality is satisfied. Thus, the factor of
two is tight.

In the max-sum k-dispersion problem, the objective is to maximize the sum
of distances between k facilities. The proof by Erkut [10] can easily be adapted
to show that the max-sum k-dispersion problem is NP-hard. It is not known
whether the problem is still NP-hard on the 2-dimensional Euclidean space.
Ravi et al. [21] gave an O(n log n+kn)-time exact algorithm when the points lie
on a line, a polynomial-time factor-four approximation algorithm when the trian-
gle inequality is satisfied, and a polynomial-time factor-(π/2+ ǫ) approximation
algorithm for the 2-dimensional Euclidean space (note that π/2 ≈ 1.571). The
factor of four was improved to two by Birnbaum and Goldman [4] and Hassin et
al. [14]. Fekete and Meijer [11] studied the case for the d-dimensional space with
the L1 distance, and gave an O(n)-time exact algorithm when k is fixed (after
sorting the points by x-coordinates and y-coordinates), and a polynomial-time
approximation scheme when k is part of the input. Polynomial-time approxima-
tion schemes for the Euclidean distance, or more generally for the negative-type
metric were given by Cevallos et al. [5, 6]. For other variations, see [3, 7].

In this paper, exact algorithms for the max-min k-dispersion problem are
studied. The main contributions are twofold.

First, we review an intimate relationship with the max-min k-dispersion
problem to the maximum independent set problem. A reduction to prove the
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NP-hardness of the max-min k-dispersion problem uses the k-independent set
problem [21], and we prove the reverse reduction is possible. Namely, we show
that if the k-independent set problem can be solved in T (n, k) time, then the
max-min k-dispersion problem can be solved in O((T (n, k) + n2) log n) time.
Note that the k-independent set problem can be solved in O(nωk/3) time [20],
where ω < 2.373 is the matrix multiplication exponent (See Le Gall [17] for
the current best bound on ω). Therefore, our result implies that the max-min
k-dispersion problem can be solved in O(nωk/3 log n) time. We will also discuss
some consequences of these reductions.

Then, we turn our attention to two special cases in which we can solve the
problem quickly.

We study the case when a set of n points lie on a line, and obtain anO(n)-time
algorithm after sorting. This is an improvement over the recent O(n log log n)-
time algorithm [2]. In our algorithm, we employ the tree partitioning algorithm
by Frederickson [13]. Next, we consider the case when a set of n points lie on a
circle on the Euclidean plane, and the distance is measure by the shortest arc
length on the circle. Then, we obtain an O(n)-time algorithm after sorting.

The remainder of this paper is organized as follows. In Section 2, we consider
a relationship between the max-min k-dispersion problem and the k-independent
set problem. Section 3 gives an algorithm to solve the dispersion problem when
P is a set of points on a line. Section 4 gives an algorithm to solve the dispersion
problem when P is a set of points on a circle. Finally Section 5 is a conclusion.

2 Relationship with the maximum independent set

problem

2.1 General case

First, we reduce the max-min k-dispersion problem to the k-independent set
problem. Here, we remind the definition of the max-min k-dispersion problem. In
the max-min k-dispersion problem, we are given a set P of n elements, a function
d that assigns a non-negative real number d(p, q) for each pair of elements p, q
of P , and an integer k such that k ≤ n. Then, we want to find a subset S ⊆ P
with |S| = k that maximizes cost(S) = min{d(p, q) | p, q ∈ S}.

In k-independent set problem, we are given an undirected graph G = (V,E),
and we want to determine whether there exists a subset S ⊆ V of k vertices such
that each pair of vertices in S is non-adjacent, and find such a set S if exists.

For our reduction, we consider the following question Q(r) for a given real
number r: does there exist a set of k locations such that the distance of any two
locations is at least r.

Observe that the optimal value for the max-min k-dispersion problem is the
maximum of r such that the answer to Q(r) is yes. We also observe that the
optimal value lies in the set of possible distances {d(p, q) | p, q ∈ P}, and the
answers to Q(r) have the following monotonicity: If the answer to Q(r) is yes, and
r′ < r, then the answer to Q(r′) is also yes. Therefore, if Q(r) can be answered
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correctly for any r, then we can solve the max-min k-dispersion problem by
performing binary search over the all possible O(n2) candidates after sorting the
distances d(p, q). The sorting takes O(n2 log n2) = O(n2 log n) time.

To answer the question Q(r) above, we use the k-independent set problem.
To this end, we construct the following undirected graph G(r) = (V,E). The
vertex set V is identical to P . Two locations p, q ∈ P are joined by an edge in
G(r) if and only if d(p, q) < r. Remind that we have the symmetry assumption
d(p, q) = d(q, p) for all p, q ∈ P , and thus the undirected graph is well-defined.

Let S ⊆ V be an independent set of size k in G(r). Then, by definition, every
pair of two vertices p, q ∈ S satisfies d(p, q) ≥ r. This implies that cost(S) ≥ r,
and the answer to Q(r) is yes. On the other hand, if the answer to Q(r) is yes,
then there exists a set S of k locations such that d(p, q) ≥ r for all p, q ∈ S. This
means that S is an independent set in G(r). Therefore, it follows that G(r) has
an independent set of size k if and only if the answer to Q(r) is yes.

Now we analyze the running time. We assume that the k-independent set
problem can be solved in T (n, k) time on n-vertex undirected graphs. Sorting
the distances takes O(n2 log n) time as discussed above. Then, we perform bi-
nary search to find the maximum r such that the answer to Q(r) is yes among
the O(n2) candidates. The number of iterations is O(log n2) = O(log n). For
each iteration, we construct the graph G(r), which takes O(n2) time, and solve
the k-independent set problem, which takes T (n, k) time. Therefore, the overall
running time is O(n2 log n+ (n2 + T (n, k)) log n) = O((T (n, k) + n2) log n).

The current best bound for T (n, k) is O(nωk/3) [20], where ω is the matrix
multiplication exponent. Since ω ≥ 2, we obtain the following theorem.

Theorem 1. The max-min k-dispersion problem can be solved in O(nωk/3 log n)
time.

On the other hand, the k-independent set problem can be reduced to the
max-min k-dispersion problem as follows [21]. Let G = (V,E) be an undirected
graph given as an instance of the k-independent set problem. Then, we construct
the following instance of the max-min k-dispersion problem. The set of locations
is V . The distance d(p, q) between p, q ∈ V is defined as follows: d(p, q) = 1 if p
and q are adjacent in G, and d(p, q) = 2 otherwise. Then, G has an independent
set S of size k if and only if there exists a set S of locations with |S| = k such
that cost(S) = 2.

This reduction does not only prove the NP-hardness of the max-min k-
dispersion problem, but also proves the W[1]-hardness of the problem, when
k is a parameter, as the k-independent set problem is W[1]-hard when k is a pa-
rameter. W[1]-hardness is a concept in parameterized complexity theory. Refer
to [12].

In summary, up to a logarithmic-factor overhead in the running time, the
max-min k-dispersion problem is equivalent to the k-independent set problem.
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2.2 On the Euclidean plane

The discussion above also applies to some special cases. We now look at the case
when P is a set of points on the Euclidean plane.

We look at the construction of the graph G(r) more carefully. Remind that
in G(r), two vertices p, q ∈ P are joined by an edge if and only if d(p, q) < r.
This matches the definition of a unit disk graph. Here, we remind the definition
of a unit disk graph. A unit disk graph is an undirected graph defined for a set
of unit disks. The vertex set is the set of unit disks, and two disks are joined
by an edge if and only if the disks intersect. Usually, disks are considered to be
closed, but the results below also hold for open disks.

To view G(r) as a unit disk graph, we consider an open disk of radius r/2
that has a center at each point p ∈ P . Then, two such disks centered at p, q ∈ P
intersect if and only if d(p, q) < r. If we scale the whole picture by the factor of
2/r, then we obtain G(r) as a unit disk graph.

It is known that the k-independent set problem on unit disk graphs can be

solved in nO(
√
k) time [18]. Therefore, from the discussion above, we obtain the

following theorem.

Theorem 2. The max-min k-dispersion problem can be solved in nO(
√
k) time

when P lies on the Euclidean plane.

On the other hand, if the optimal value for the max-min k-dispersion problem
is r, then there exists a set of k pairwise disjoint open disks of radius r/2 that
have their centers in P . This means that if the max-min k-dispersion problem can
be solved in T (n, k) time when P is a set of points on the Euclidean plane, then
the k-independent set problem on unit disk graphs can be solved in T (n, k) time,
too. Since the k-independent set problem on unit disk graphs cannot be solved

in no(
√
k) time under the exponential time hypothesis [19], we can also conclude

that the max-min k-dispersion problem on the Euclidean plane cannot be solved

in no(
√
k) time under the exponential time hypothesis. Thus, the running time

in Theorem 2 is essentially optimal.

3 Max-min dispersion on a line

In this section we show one can solve the k-dispersion problem in O(n) time if
P is a set of points on a line and the order of P on the line is given. The idea
of our algorithm is a reduction to the path partitioning problem [13], which can
be solved in O(n) time.

Let T be a tree in which each vertex has a non-negative weight w, and k
be an integer. The tree k-partitioning problem is to delete k − 1 edges in the
tree so as to maximize the lightest weight of the remaining subtree. The tree
k-partitioning problem can be solved in O(n) time [13], where n is the number
of vertices in the tree. If the input tree is a path then it is the path k-partitioning
problem.
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Fig. 1. (a) A 4-dispersion problem on a line, and (b) the corresponding 3 path-
partitioning problem on a line.

Given an instance (P, k) of the max-min k-dispersion problem such that P is
a set of points on a line and k ≥ 3, we can transform it to an instance (P ′, k−1)
of the path (k − 1)-partitioning problem as follows. First, we construct a path
P ′ = (V ′, E′). Assume P = {p1, p2, . . . , pn} and the points appear in this order
on the line from left to right. Define V ′ = {p′0, p

′
1, . . . , p

′
n}, E

′ = {ei = (p′i−1, p
′
i) |

pi ∈ V }, w(p′i) = d(pi, pi+1) for each i = 1, 2, . . . , n− 1, and w(p′0) = w(p′n) = 0.
See an example in Fig. 1. A solution of the max-min 4-dispersion problem in Fig.
1(a) is {p1, p4, p8, p11} and its cost is 17. A solution of the path 3-partitioning
problem in Fig. 1(b) is {e4, e8} and its cost is 17. One can observe that a solution
of the max-min k-dispersion problem contains {p1, pn}, and if a solution of the
max-min k-dispersion problem is {p1, pn} ∪ {pi1 , pi2 , . . . pik−2

}, then a solution
of the path k − 1-partitioning problem is {ei1 , ei2 , · · · , eik−2

}.

Since one can solve the path k-partitioning problem in O(n) time [13], one
can solve the max-min k-dispersion problem in O(n) time.

Theorem 3. The max-min k-dispersion problem can be solved in O(n) time
when P is a set of n points on a line and the order of P on the line is given.

4 Max-min k-dispersion on a circle

In this section, we show one can solve the k-dispersion problem in O(n) time
if P is a set of points on a circle and the order of P on the circle is given.
The distance is measured by the arc length of the circle. We assume (1) the
length of the circumference, and (2) the length of the clockwise arc from some
designated point to each point are given. So, one can compute the central angle
corresponding to a given arc in constant time.

First, we design a simple algorithm to solve the max-min 3-dispersion prob-
lem which runs O(n) time if P is a set of points on a circle. The outline of the
algorithm is as follows. For each point pi ∈ P , we compute the best three points
including pi, and then output the best three points among them.
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Algorithm Find-3-dispersion-on-a-circle(P ,k)

cost = 0
Ans = ∅
for i = 1 to n do

find a set S of three points including pi with maximum cost(S)
if cost(S) > cost then

cost = cost(S)
Ans = S

end if

end for

Output Ans

Now we introduce some definitions. Given pi ∈ P , let pℓi and pri be the points
on the circle such that pi, p

ℓ
i , p

r
i are the three corners of the equilateral triangle.

Let Aℓ = (pi, p
ℓ
i) be the arc of the circle between pi and pℓi with central angle

120◦, Ar = (pi, p
r
i ) be the arc of the circle between pi and pri with central angle

120◦, and At = (pℓi , p
r
i ) be the (open) arc of the circle between pℓi and pri with

central angle 120◦.
A set S = {pi, pℓ, pr} is of type-LR with respect to pi if pℓ ∈ Aℓ and pr ∈ Ar.

Similarly, S is of type-LL with respect to pi if pℓ ∈ Aℓ and pr ∈ Aℓ, is of type-RR
with respect to pi if pℓ ∈ Ar and pr ∈ Ar, and is of type-LT with respect to pi
if pℓ ∈ Aℓ and pr ∈ At, is of type-TT with respect to pi if pℓ ∈ At and pr ∈ At,
etc.

We have the following lemma.

Lemma 1. When P is a set of points on a circle, an optimal solution S of the
max-min 3-dispersion problem is of type-LR or type-TT with respect to some
pi ∈ S.

Proof. By case analysis. Assume S = {pi, pℓ, pr} and pi, pℓ and pr appear in the
clockwise order on the circle. If S is of type-LL with respect pi, then then S is
of type-LR with respect pℓ. If S is of type-RR with respect pi, then then S is of
type-LR with respect pr. If S is of type-LT with respect pi, then either (1) the
arc of the circle between pℓ and pr has the central angle less than 120◦ and S
is of type-LR with respect to pℓ, or (2) the arc of the circle between pℓ and pr
has the central angle at least 120◦ and S is of type-TT with respect to pr. If S
is type-TR with respect pi, then we can prove either (1) S is of type-LR with
respect to pr, or (2) S is of type-TT with respect to pℓ. Q.E.D.

Lemma 2. (a) If a solution S = {pi, pℓ, pr} is of type-TT with respect to pi,
then pℓ is the first point in P on the circle after pℓi in the clockwise order,
and pr is the first point in P on the circle after pri in the counterclockwise
order.

(b) If a solution S = {pi, pℓ, pr} is of type-LR with respect to pi, then pℓ is the
first point in P on the circle after pℓi in the counterclockwise order, and pr
is the first point in P on the circle after pri in the clockwise order.
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Proof. (a) Since S is of type-TT , min{d(pi, pℓ), d(pℓ, pr), d(pr, pi)} = d(pℓ, pr)
holds. Thus, choosing S so as to maximize d(pℓ, pr) results in the S with the
maximum cost.

(b) Since S is of type-LR, min{d(pi, pℓ), d(pℓ, pr), d(pr, pi)} 6= d(pℓ, pr) holds.
Thus, choosing S so as to maximize d(pi, pℓ) and d(pi, pr) results in S with the
maximum cost. Q.E.D.

We need to compute for each pi the first point in P on the circle after pℓi in
the clockwise order, and we need O(n) time in total. Similarly we can compute
for each pi the first point in P on the circle after pri in the counterclockwise
order, and we need O(n) time in total. We perform this as preprocessing.

Then, for each pi we need O(1) time to find (1) the set S of three points of
type-LR with respect to pi with maximum cost(S), and (2) the set S of three
points of type-TT with respect to pi with maximum cost(S), and then choose
the larger one. This is the set S of three points including pi with maximum
cost(S).

Thus, we have the following theorem.

Theorem 4. The max-min 3-dispersion problem in O(n) time when P is a set
of points on a circle and the order of points on the circle is given.

Let P be a set of points on a circle and each point has a non-negative weight,
and k be an integer. The circle partitioning problem deletes k edges on the circle
so as to maximize the lightest weight of the remaining subpath. So, this is the
circle version of the path k-partition problem, explained in Section 3. One can
solve the circle partition problem in O(n) time [24].

Theorem 5. One can solve the max-min k-dispersion problem in O(n) time
when P is a set of points on a circle and the order of the points on the circle is
given.

The algorithm is rather complicated. However, our algorithm for k = 3 is
simple to implement.

5 Conclusion

In this paper we have presented some algorithms to solve the dispersion prob-
lems.

If P is a set of points on a line and the ordering of the points on the line is
given one can solve the dispersion problem in O(n) time.

If P is a set of points on a circle and the ordering of the points on the circle
is given one can solve the k-dispersion problem in O(n) time.

One can solve the max-min 3-dispersion problem in O(nω log n) time, and

the max-min k-dispersion problem in nO(
√
k) time.

Can we solve the problem efficiently if P is a set of the corner vertices on a
convex polygon?
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