
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
IoT Training System Using the Cooja Network

Simulator

Author(s) 王, 季東

Citation

Issue Date 2019-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/15885

Rights

Description
Supervisor: BEURAN, Razvan Florin, 先端科学技術研

究科, 修士（情報科学）

Master’s Thesis

IoT Training System Using the Cooja Network Simulator

1710032 WANG Jidong

Supervisor Associate Professor Razvan Beuran
Main Examiner Associate Professor Razvan Beuran

Examiners Professor Yoichi Shinoda
Professor Yasuo Tan
Associate Professor Ken-ichi Chinen

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

February 2019

Abstract

Opportunities, as well as challenges, always accompany the development
of technology. Without a doubt, the Internet of Things (IoT), which is seen
as another upcoming trend in technology after the Internet, is no exception.
The development of IoT brings up a meaningful discussion about IoT security.

However, there is a variety of IoT devices, from the small sensor to the
home router then to even big factory equipment. In our daily life, many of us
may have several IoT devices but don’t know they are IoT devices, let alone
to manage these devices without being attacked. Therefore, IoT security
education and training are extremely urgent.

This thesis presents IoTrain, which is an IoT training system using the
Cooja network simulator. Users can select a tutorial by using the interface
of IoTrain and complete various training under the guidance of the tutorial.
These training includes viewing simulations and doing hands-on simulations
in the Cooja network simulator.

The Cooja network simulator is an application included with Contiki OS
and used as a tool in IoTrain. The Contiki OS is an operating system for low-
power wireless IoT devices. The training content of IoTrain mainly involves
wireless sensor networks (WSN), Routing Protocol for Low power and Lossy
Networks (RPL), etc.

At the beginning of system development, the IoTrain was designed to meet
the following requirements: open-source, parallel, for different level users,
content-rich, low cost, and easy to manage. These system requirements are
also indicators of the system evaluation.

Before designing the system, training mode, training process, and a struc-
ture of IoT training content were proposed.

The training mode and training process solves the problem of how to train
users. Because the IoTrain will face many types of users if it is released, it
is necessary to investigate and classify users first. In this thesis, users are
roughly divided into three levels.

The first level is beginners. This group of people can be said to have no
knowledge about IoT and IoT security, so their training should start from
scratch.

The second level is intermediate users who have a vague understanding
or a little knowledge of IoT and IoT security, but because of the lack of
systematic training, these understanding and awareness have limited help in
reducing their probability of being attacked in their daily lives.

The third level is advanced users who have considerable knowledge re-
serves, such as having studied relevant courses or have the ability to program.
However, due to various restrictions, such as time or money costs, they did
not get deeper into IoT and IoT security.

Referring to the way that most people usually learn, it is widespread to
find a tutorial or material for self-study. Therefore, for all levels of users,
especially beginners, tutorials will be presented to them as training content.
Users can select the tutorials of interest through the interface and complete
the corresponding training. This is the training process mentioned earlier.

When beginners become intermediate users, and then these intermediate
users also complete the corresponding tutorials, they naturally become ad-
vanced users. At this stage, these advanced users will learn Contiki-based
programming, application development, and even modify the source code of
the Contiki OS to simulate some attacks under the guidance of advanced
tutorials. From the “learning tutorials” to “viewing simulations” to “doing
hands-on simulations”, this series of training is summarized as the “learning-
viewing-doing” training mode.

The training content is the core of the entire system. For a person who
wants to get IoT training, the first thing is to learn some basic knowledge
of the Internet of Things, and then to understand the advanced knowledge
of IoT, such as network or security. Because from the basic to the advanced
is the law of learning any knowledge. Thus, when designing the training
content structure, the training content is first divided into three categories,
namely system introduction, fundamental training, and security training.

IoTrain mainly consists of three parts, namely database, function, and
interface.

The database is used to store the training content. Due to the entire sys-
tem currently has only three training file types and the number of these files
is small, therefore, the database is built without using professional database
management software, and all files are classified and stored in folders and
subfolders of the entire project.

Function includes configuring the system environment, displaying inter-
face and options, as well as open tutorials and partial simulation files accord-
ing to users’ options.

The IoTrain interface is implemented as prompt options in the terminal
window.

In the whole research, the most important contribution is the proposal
of the training content structure. It is the blueprint of the development
of IoTrain. Besides, it not only has a high reference value for the future
development of the IoTrain system but also for the development of other IoT
training systems.

ii

The development of the IoTrain system based on the training content
structure is the second contribution of this research. After proceeding the
various stages, the system has reached the prototype stage, where the sys-
tem’s training content structure, functions, and interfaces have been imple-
mented.

Using simulation in IoT training is indeed a useful attempt. The use of
the Cooja network simulator not only reduces the cost of development but
also increases the training content forms, while also making training more
interesting and effective.

In this thesis, firstly, I will introduce the research background, motivation,
and contribution. Secondly, I will add the background knowledge involved
in the whole process of the research. Thirdly, I will introduce the IoTrain,
including the system requirements, design, and implementation. Lastly, the
system evaluation and conclusion will be presented.

Keywords: IoT, IoT security, IoT education and training, IoT simulation,
Contiki, Cooja, WSN, RPL.

Declaration: I hereby declare that this whole dissertation is my own work
and that it has not been previously included in any other thesis, dissertation
or report.
Student: WANG Jidong

iii

Acknowledgements

I want to express my gratitude to all those who helped me during the
process of writing this thesis and during my study years in Jaist.

First and foremost, I want to extend my heartfelt gratitude to my su-
pervisor, Associate Professor Razvan Beuran, whose guidance, valuable sug-
gestions, and constant encouragement make me complete this thesis. His
conscientious academic spirit and modest, open-minded personality inspire
me both in academic study and daily life. He gives me much help and advice
during the whole process of my writing, which has made my accomplishments
possible.

Also, I would like to express my sincere gratitude to all the professors who
have taught me in this university. Their instructions have helped broaden
my horizon, and their enlightening teaching has provided me with a solid
foundation to accomplish this paper and will always be of great value for my
future career and academic research.

My thanks also go to the authors whose books and articles have inspired
me in the writing of this paper.

Last but not least, my thanks would go to my beloved family for their
thoughtful considerations and high confidence in me all through these years
and their support without a word of complaint. I also owe my sincere grat-
itude to my friends and my classmates who have given me their help and
their time in listening to me and helping me work out my problems during
the challenging course of the thesis.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Contribution . 3

2 Background 4
2.1 Internet of Things (IoT) . 4

2.1.1 Definitions . 4
2.1.2 Architectures . 4
2.1.3 Elements . 5
2.1.4 Common Standards . 5
2.1.5 Applications . 7
2.1.6 Challenges and Future Directions 7

2.2 Wireless Sensor Network (WSN) 8
2.2.1 What is a WSN? . 8
2.2.2 Protocol Stack for WSN 9

2.3 RPL: IPv6 Routing Protocol for Low Power and Lossy Networks 10
2.3.1 Low Power and Lossy Network (LLN) 10
2.3.2 RPL Overview . 10

2.4 Attacks in RPL-based IoT . 13
2.4.1 Attacks on Resources 14
2.4.2 Attacks on Topology 14
2.4.3 Attacks on Traffic . 14

2.5 Tools Introduction . 14
2.5.1 Contiki Operating System 15
2.5.2 The Cooja Network Simulator 16
2.5.3 Instant Contiki . 16

3 IoTrain: IoT Training System 17
3.1 System Requirements . 17
3.2 System Design and Implementation 18

1

3.2.1 Training Mode and Process 18
3.2.2 Training Content Structure Design 20
3.2.3 Training Content Creation 22
3.2.4 System Structure Design & Implementation 27

4 System Evaluation 33
4.1 Feature Evaluation . 33
4.2 Performance Evaluation . 36
4.3 Requirement Evaluation . 37

5 Conclusion 39

List of Figures

2.1 IoT architecture: (a) Three-layer. (b) Four-layer. (c) Five-layer. 5
2.2 IoT elements . 6
2.3 IoT elements and technology samples 6
2.4 IoT common standards . 7
2.5 Top 10 IoT segments in 2018 [17] 8
2.6 Protocol stack for WSN . 9
2.7 Directed acyclic graph (DAG) 12
2.8 Destination oriented directed acyclic graph (DODAG) 12
2.9 An RPL instance . 13
2.10 Taxonomy of attacks against RPL networks 13
2.11 Research tools . 15
2.12 Instant Contiki . 16

3.1 Overview of IoTrain . 17
3.2 User levels . 19
3.3 Training process . 20
3.4 Training content . 21
3.5 Fundamental training content 21
3.6 Security training content . 22
3.7 Content creation map . 23
3.8 Tutorials creation . 23
3.9 Tutorial example . 23
3.10 Fundamental training simulation implementation 24
3.11 Collect-view . 25
3.12 Reference attack of flooding attack 26
3.13 Attack simulation of flooding attack 27
3.14 Folder tree . 29
3.15 Interface . 30
3.16 Class diagram . 31

4.1 IoT experimental box . 34
4.2 IoT application kits . 34

List of Tables

4.1 Feature comparison . 35
4.2 Environment characteristics evaluation 36
4.3 Performance evaluation . 36
4.4 Requirement evaluation comparison 37

Chapter 1

Introduction

In this chapter, I will first introduce the relevant background of IoT se-
curity, which leads to the research motivation. Then I will present the con-
tribution of this thesis and some necessary introductions about the Contiki
operating system and the Cooja network simulator.

1.1 Background

Since the advent of the Internet, the number and variety of devices con-
nected to the Internet have been increasing. After the emergence of the
concept of the Internet of Things, the number and type of the “Things” is
like a blowout, exponential growth.

One application of the IoT is to embed sensors into a variety of things
which integrated into the Internet. With this kind of use, people can re-
motely acquire and exchange data, achieve interaction with other people or
equipment, and thus promote the relationship between human and the envi-
ronment. According to [1], by the end of 2020, it is said that there would be
around 30 billion connected devices and then may be nearly triple against 80
billion five years later. Furthermore, the total digital data created globally
will increase from 4.4 zettabytes in 2013 to 44 zettabytes in 2020, and by
2025 it is likely to reach 180 zettabytes.

Users are data, and data is the value. In the face of the immense amount
of value, many hackers are already in action to abuse their talents every way
they can. The most recent and famous IoT attack is Mirai which infected a
large number of IoT devices, resulting in the inaccessibility of several high-
profile websites such as GitHub, Twitter, Reddit, Netflix, Airbnb, and many
others [2]. Therefore, in the era of the IoT, where there are a massive number
of devices and large amounts of data, the security issue is one of the most

1

critical issues.
However, explosive devices, insecure IoT communication, and users who

lack security knowledge and awareness are constantly giving hackers chances.
A report of HP reveals that 70% of IoT devices are vulnerable to attacks,
and 90% of devices collected at least one piece of personal information via
the device, the cloud, or its mobile application [3]. In IoT-type system, the
lack of secured links exposes data to attacks and theft. Secure communica-
tion still needs the multi-level configuration and application-level proprietary
algorithms, which discourages users from implementing protection [4]. And
the study [5] suggests that half of the Internet-connected users based in the
US have not heard of the concept of “Internet of Things,” which means that
the situation in other countries may be worse.

For the issues of explosive device growth, Edith Ramirez shared three key
steps [6] that companies should take to enhance the protection of consumers’
security and privacy to build consumers’ trust in devices:

1. Adopting “security by design”

2. Engaging in data minimization

3. Increasing transparency and providing consumers with notice and choice
for unexpected data use

For the issues of insecure IoT communication, though there is still a long
way to go, key technologies shown by Xu in [7] such as certification and access
control, data encryption, middleware, and cloud computing, are considered
technologies that promise to improve the security status.

1.2 Motivation

Professionals keep working hard to create the IoT society as safe as pos-
sible. However, not everyone is a professional. Users often lack security
awareness and necessary knowledge, and most of the attacks are formed be-
cause hackers discovered the users’ negligence. In my point of view, providing
users with IoT training is the most effective way to reduce attacks.

The current available IoT training systems are handful, and most of them
are lack of content and using cyber training’s “Question–Answer–Test” mode,
which is unattractive. This situation gave me the motivation to develop a
free, attractive and content-rich IoT training system, which was later named
as IoTrain.

2

1.3 Contribution

The following points of this thesis can be considered as contributions:

1. On the basis of considering the types of IoT devices, training objects
and training methods, a new training content structure is proposed.

2. Based on the Cooja network simulator, an IoT training system was
developed, which consists of the following components:

• Database

• Functions

• Interface

3. According to the training content structure, tutorials and simulations
were made and added into IoTrain’s database as the training content.
The tutorial guides the user training, and the simulation increases the
fun of training.

3

Chapter 2

Background

To better understand and conduct this research, a knowledge framework
consisting of the following five sections, which are IoT, wireless sensor net-
work, RPL, Tools, has been built. This chapter will introduce these five
sections.

2.1 Internet of Things (IoT)

2.1.1 Definitions

What is the Internet of Things? How is it defined? Many professionals
and organizations have given their explanations. For example, in Wikipedia,
the Internet of Things is defined as “the network of devices such as vehi-
cles, and home appliances that contain electronics, software, actuators, and
connectivity which allows these things to connect, interact and exchange
data” [11], while in [12], it is more professionally defined as “a global in-
frastructure for the information society, enabling advanced services by in-
terconnecting (physical and virtual) things based on existing and evolving
interoperable information and communication technologies”. The definition
in [13], “a system of interrelated computing devices, mechanical and digital
machines, objects, animals or people that are provided with unique identi-
fiers (UIDs) and the ability to transfer data over a network without requiring
human-to-human or human-to-computer interaction”, is closer to my under-
standing of IoT.

2.1.2 Architectures

Due to the different understanding and definition of IoT, correspondingly,
the IoT architecture has been proposed in many different types (shown in

4

Figure 2.1). One famous mode is three-layer architecture [14], including Ap-
plication, Network and Perception layers. In [12], a four-layer reference mode
was proposed, consisting of Application layer, Service support and Applica-
tion support layer, Network layer and Device layer. Another architecture I
want to mentioned here is composed of five layers [15]: a Business layer, an
Application layer, a Processing layer, a Transport layer, and a Perception
layer.

Application
Layer

Application
Layer

Business
Layer

Processing
Layer

Application
Layer

Transport
Layer

Perception
Layer

Device
Layer

Service support
and Application

support layer

Network
Layer

Network
Layer

Perception
Layer

(a) (b) (c)

Figure 2.1: IoT architecture: (a) Three-layer. (b) Four-layer. (c) Five-layer.

2.1.3 Elements

Identification, sensing, communication, computation, services, and se-
mantics [16] proposed by Al-Fuqaha as the six main elements that can rep-
resent the functionality of IoT. Figure 2.2 below shows these elements that
help to understand, and Figure 2.3 shows the technology samples in each
element block.

2.1.4 Common Standards

To simplify the development and accelerate the popularity of IoT, many
organizations have developed various standards. Engineers can collaborate

5

IoT Identifi
cation

Sensin
g

Comm
unicati
on

Compu
tation

Seman
tic

Service

Figure 2.2: IoT elements

IoT Elements Samples

Identification Naming EPC, uCode

Addressing IPv4, IPv6

Sensing Smart Sensors, Wearable sensing devices,
Embedded sensors, Actuators, RFID tag

Communication RFID, NFC, UWB, Bluetooth, BLE, IEEE 802.15.4,
Z-Wave, WiFi, WiFiDirect, LTE-A

Computation Hardware SmartThings, Arduino, Phidgets, Intel Galileo,
Raspberry Pi, Gadgeteer, Z1, Tmote Sky

Software OS(Contiki, TinyOS, LiteOS, Riot OS, FreeRTOS,
Android);
Cloud(Nimbits, Hadoop, etc.)

Service Identity-related (shipping), InformationAggregation
(smart grid), Collaborative-Aware (smart home),
Ubiquitous (smart city)

Semantic RDF, OWL, EXI

Figure 2.3: IoT elements and technology samples

6

and develop universal products according to the same standards, even if they
belong to different groups or departments. Some common standards [16] are
shown in figure 2.4.

Application
Protocol D

D
S

C
oA
P

A
M
Q
P

M
Q
TT

M
Q
TT
-

SN

X
M
PP

H
TT
P

R
ES
T

Service Discovery mDNS DNS-SD

In
fr
as
tr
uc
tu
re

Pr
ot
oc
ol
s

Routing Protocol RPL

Network Layer 6LoWPAN IPv4/IPv6

Link Layer IEEE 802.15.4

Physical/Device
layer LTE-A EPCglo

bal
IEEE
802.15.4

Z-Wave

Influential
Protocols

IEEE 1888.3,
IPSec IEEE 1905.1

Figure 2.4: IoT common standards

2.1.5 Applications

The Internet of Things has many application domains, and due to its
rapid development, the number of domains is increasing. Figure 2.5 [17]
shows the top 10 IoT segments in 2018.

2.1.6 Challenges and Future Directions

In [18], Yogita Pundir, M., Sharma, M. N., and Singh, Y. proposed some
challenges facing the development of IoT, as follows:

1. Standards and interoperability

2. Security

3. Trust and privacy

4. Complexity, confusion and integration issues

5. Evolving architectures, protocol wars and competing standards

6. Concrete use cases and compelling value propositions

7

Figure 2.5: Top 10 IoT segments in 2018 [17]

It can be seen that the security issues raised at the beginning of this thesis
are also included.

2.2 Wireless Sensor Network (WSN)

2.2.1 What is a WSN?

A wireless sensor network (WSN) consists of many wireless sensor nodes
or motes. These nodes/motes are usually low-powered, storage capacity and
processing constraint and working in small distances. Every node/mote is
mainly composed of the following six parts:

• Embedded processor: low-powered, processing small tasks, and pro-
viding the nodes/motes with management functions.

• Sensors: sensing physical phenomena such as light, heat, pressure,
etc. Due to bandwidth and power constraints, nodes/motes primarily
support low data units with limited computational power and a limited
sensing rate.

• Memory: storing programs (instructions executed by the processor)
and data (raw and processed sensor measurements).

8

• Transceiver: transmitting and receiving data wirelessly, at a low fre-
quency and over a short range.

• Power source: rechargeable batteries are usually used.

• Operating Systems: Contiki OS, Tiny OS, FreeRTOS are the exam-
ples of operating systems that are used for WSNs.

As a method of information collection, wireless sensor networks build
information and communication systems which significantly improve the re-
liability and efficiency of IoT. Compared to wired solutions, devices of WSNs
are more flexible and more comfortable to develop. With the rapid develop-
ment of sensor technology, WSN now has been the key technology of IoT.

2.2.2 Protocol Stack for WSN

Figure 2.6 shows the WSN protocol stack used by the sink and all sensor
nodes/motes [19].

Figure 2.6: Protocol stack for WSN

As shown, the protocol stack consists of six layers and is divided into
three management planes.

Physical Layer is designed for dealing with the frequency selection,
frequency generation, modulation, signal detection, and encryption.

Data Link Layer is designed for managing the error control and the
Medium Access. This layer ensures reliable end-to-end connections in a com-
munication network.

9

Network Layer is in charge with routing the data provided by the trans-
port layer.

Transport Layer is responsible for maintaining the flow of data to keep
WSN operable when needed.

Application layer provides the communication interface.
Power Management Plane manages how sensor nodes use their power

and it also determines the power consumption rates of the sensing, comput-
ing, and communicating.

Mobility Management Plane detects the movement of the sensor
nodes/motes. It also records the mobility of the sensor nodes. Therefore,
the route back to the user is always maintained, and nodes/motes can man-
age their power to complete tasks by considering this situation.

Task Management Plane organizes the specific area’s sensing and de-
tecting events, which means in the same area, not all sensor nodes/motes are
performing the sensing tasks simultaneously.

2.3 RPL: IPv6 Routing Protocol for Low Power

and Lossy Networks

2.3.1 Low Power and Lossy Network (LLN)

Low Power and Lossy Network(LLN) is a kind of network that composed
of many embedded devices with limited power, memory, and processing re-
sources. These devices are interconnected by a variety of links, such as IEEE
802.15.4 or low-power Wi-Fi.

LLN has a broad scope of application areas including monitoring, building
automation, connected home, health care, environmental monitoring, urban
sensor networks, energy management, assets tracking, and refrigeration. The
WSN reviewed earlier is a particular type of LLN.

2.3.2 RPL Overview

RPL is a distance vector and source routing protocol for LLNs using IPv6
addressing.

Distance Vector

The term distance vector refers to the fact that the protocol manipulates
vectors of distances to other nodes in the network. This protocol is based on
calculating the direction and distance to any link in a network. “Direction”

10

means the next hop address and the exit interface, and “distance” means a
measure of the cost to reach a particular node.

The protocol stipulates that the least cost route (best path) between
any two nodes is the route with minimum distance. The cost of reaching a
destination is calculated using various route metrics. Therefore, to efficiently
find the lowest cost route, each node maintains a vector (table) of minimum
distance to every node.

Source Routing

The source routing in [20] is defined as allow a sender of a packet to
partially or wholly specify the route the packet takes through the network.

IPv6 Control Messages

The RPL specification defines four types of IPv6 control messages for
topology maintenance and information exchange (Figure 2.9). These control
messages are:

• DODAG Information Object (DIO): The primary source of rout-
ing control information. Storing information like the current rank of a
node, the current RPL Instance, the IPv6 address of the root, etc.

• Destination Advertisement Object (DAO): Used to advertise in-
formation required to support downward traffic towards leaf nodes.

• DODAG Information Solicitation (DIS): Used by nodes to request
graph related information from the neighboring nodes.

• Destination Advertisement Object Acknowledgement (DAO-
ACK): Sent by a DAO recipient in response to a DAO message.

RPL Construction Process

RPL organizes the topology of an LLN’s nodes into a Directed Acyclic
Graph (DAG) (Figure 2.7) where the default routes among the LLN’s nodes
are kept. A DAG is a finite directed graph with no directed cycles. Each
node in the DAG is assigned a rank, which is calculated by a function called
the Objective Function (OF). The rank monotonically decreases from the
bottom (the DAG root has the lowest rank) and defines the node’s position
relative to other nodes concerning DAG root (shown in figure 2.9).

11

Figure 2.7: Directed acyclic graph (DAG)

The DAG can be partitioned into one Destination Oriented Directed
Acyclic Graph (DODAG) (Figure 2.8) or more. That is, a DODAG con-
sists of a root node inside the DAG, also called DAG root, which performs
the function of a data sink or a gateway. One or more DODAGs can form an
RPL instance. The DODAGs in one RPL instance share a unique ID called
RPLInstanceID (Figure 2.9).

Figure 2.8: Destination oriented directed acyclic graph (DODAG)

To identify and maintain the topology, RPL utilizes four central values at-
tached within RPL control messages (Figure 2.9). Rank and RPLInstanceID
are two of them. The other two are DODAGID and DODAGVersionNum-
ber. DODAGID is to identify a DODAG. The combination of a DODAGID
and an RPLInstanceId can uniquely represent a DODAG. The DODAGVer-
sion is a specific iteration of a DODAG with a given DODAGID, and the
DODAGVersionNumber is a sequential counter that is incremented by the
root to form a new version.

12

DODAG 2

rank=1

rank=2

rank=3

-

+

DODAG 1

RPL Instance1

DIO DIO

DIO DIO
DIS

DIS

D
IO

D
AO

D
AO
AC
K

Figure 2.9: An RPL instance

2.4 Attacks in RPL-based IoT

RPL overcomes the routing problems in LLN. It implements a way for
energy consumption saving, such as controlling the dynamic sending rate
of messages, and resolving the issue of topological inconsistency only when
data packets have to be sent. By using IPv6, it not only supports upward
transmission but also flows from a gateway node to all other nodes.

However, RPL is also exposed to a variety of attacks. The severe con-
sequences are particularly evident regarding network performance and re-
sources. In [21], taxonomy has been proposed that divides all RPL-against
attacks into three categories. The figure 2.10 shows the taxonomy.

Figure 2.10: Taxonomy of attacks against RPL networks

13

2.4.1 Attacks on Resources

Attacks on resources involve the exhaustion of network resources, which
means that the purpose of malicious nodes is to overload energy, memory
or/and power consumption. This kind of attack can be achieved by forcing
legitimate nodes to perform unnecessary operations to increase the use of
their resources and may affect the availability of the network by blocking the
available links or disabling the nodes, and may, therefore, change the lifetime
of the network.

This category can be further subdivided into two sub-categories: direct
attacks, in which malicious nodes directly generate overloads by interfering
with the network; indirect attacks, in which malicious nodes interfere with
other nodes to be overloaded.

2.4.2 Attacks on Topology

Attacks on Topology include attacks against RPL network topology. These
attacks aim to disrupt the normal operation of the network. These may lead
to the isolation of one or more nodes. This category can also be divided into
two sub-categories: sub-optimization, which means that the network will
converge to the non-optimal form, resulting in poor performance; isolation
means isolating nodes or subsets of nodes, cutting them off from the rest of
the network, thereby cutting off the root node.

2.4.3 Attacks on Traffic

Attacks on Traffic include attacks on network traffic. These attacks aim
at introducing malicious nodes into the network rather than interfering with
its work. This can lead to information leakage by eavesdropping the traffic
or impersonating legitimate nodes. This category is further divided into two
subcategories: eavesdropping (passively) information forwarded through the
network; misappropriating a node or a group of nodes, that is, tampering
with legitimately exchanged information.

2.5 Tools Introduction

This section mainly introduces the tools used for building the research
environment. The whole research environment is shown below (Figure 2.11).

14

IoT OS

Desktop OS

Virtual Machine Software

macOS

VMware

Cooja

Contiki OS

Ubuntu OS

Instant Contiki

macOS

Simulator

Figure 2.11: Research tools

2.5.1 Contiki Operating System

Contiki is an open source operating system for the Internet of Things,
which connects tiny, low-cost, low-power microcontrollers to the Internet.
Contiki is a powerful toolbox for building complex wireless systems and sup-
ports fully standard IPv6 and IPv4, along with the recent low-power wireless
standards: 6lowpan, RPL, CoAP [8].

Contiki is an event-driven system in which processes are implemented as
run-to-complete event handlers. The Contiki system consists of two parts:
the system core and the loaded program. The core includes the Contiki
kernel, the program loader, the language runtime, and the communication
stack with communication hardware device drivers. The program loader
loads the program into memory, which can be obtained from the host using
a communication stack or from an additional storage device.

Contiki applications are written in standard C. With the Cooja network
simulator, Contiki networks can be emulated before burned into hardware.
As there are plenty of examples in the Contiki source code tree to help users
get started with their code, and most have a corresponding Cooja simulation
available, Contiki OS & the Cooja network simulator are very suitable as
tools for IoT training system.

15

2.5.2 The Cooja Network Simulator

The Cooja network simulator is an extensible Java-based simulator ca-
pable of emulating Tmote Sky, Z1 or other nodes. It provides a simulation
environment that allows developers to both see their applications run in
large-scale networks or extreme detail on fully emulated hardware devices.

In Cooja’s simulation environment, the code to be executed by the node
is the same firmware that will be uploaded to the physical node, and all
the interactions with the simulated nodes are performed via plugins like
Simulation Visualizer, Timeline, Collect-view, and Radio logger.

The Cooja network simulator can store the simulation in an XML file with
extension “CSC”, which means “Cooja Simulation Configuration”. This file
contains information about the simulation environment, plugin, the nodes,
and its positions, random seed and radio medium, etc.

2.5.3 Instant Contiki

Instant Contiki (Figure 2.12) is an entire Contiki development environ-
ment. It is an Ubuntu Linux virtual machine that runs in VMWare player and
has Contiki and all the development tools, compilers, and simulators used in
Contiki development installed [9]. Considering that it uses virtual machines,
it is ideal for fast, large-scale configuration of training environments.

Figure 2.12: Instant Contiki

16

Chapter 3

IoTrain: IoT Training System

This chapter is the core of the entire research. Firstly, I will introduce
the requirements for the system at the beginning of the study. Secondly,
I will present the design and implementation of the training content struc-
ture. Thirdly, I will introduce the design and implementation of the system
structure. The figure below shows an overview of the IoTrain.

Developer Database UserInterface

Create
Training
Content

Get
Training
ContentFunctions

IoTrain

Figure 3.1: Overview of IoTrain

3.1 System Requirements

At the beginning of system development, the IoTrain was designed to
meet the following requirements:

• Open-source
As Pham Duy Cuong suggested in [10], having the IoT training sys-
tem as an open-source product is also the best way to do a large-scale
program that reaches different levels of users ranging from top organi-
zations, companies to young people in universities, colleges, and even
high schools.

• Parallel
The system should be designed to serve multiple users simultaneously.

17

• For different level users
As different users have different levels of knowledge about IoT, the
system should be designed for different level users, from beginner to
advanced.

• Content-rich
Compared with the Internet, the IoT involves more hardware, so the
content and mode of IoT training should be more abundant than Cyber
Training. Therefore, the system should be designed to allow users to
access as much hardware as possible by multiple training modes.

• Low cost
For users, the low cost means that the installation and use of the system
should be easy, the content acquisition should be free, and the training
should be efficient. And for developers, due to the IoT training requires
physical hardware, most of which are expensive, so the low cost here
means that the cost of equipment should be minimized, especially for
individual developers and small team developers.

• Easy to manage
Management objects refer to the system structure and the training
content. They should be reasonably designed from the outset, which
not only improves the efficiency of development and use but also reduces
the cost.

If the system requirements can be completed and widely used, it will not
only help to improve people’s security awareness and knowledge of IoT but
also reduce the occurrence of IoT attacks.

3.2 System Design and Implementation

This section can be further divided into three subsections. The first sub-
section introduces the training mode and process. The second subsection
introduces the training content structure design that includes the fundamen-
tal training and security training. The third subsection introduces the model
of the system structure design, including the database design and the inter-
face design.

3.2.1 Training Mode and Process

“How to train users” is an important issue after the system requirements
have been proposed. This issue can be subdivided into issues about training

18

mode and training processes.

User Level Classification

Because the IoTrain will face many types of users if it is released, it is
necessary to research and classify users first. In this thesis, they are roughly
divided into three levels (Shown in Figure 3.2).

The first level is beginners. This group of people can be said to have no
knowledge about IoT and IoT security, so their training should start from
scratch.

The second level is intermediate users who have already had a vague
understanding or a little knowledge of IoT and IoT security, but because
of the lack of systematic training, these understanding and awareness have
limited help in reducing their probability of being attacked in their daily
lives.

The third level is advanced users who have considerable knowledge re-
serves, such as having studied relevant courses or have the ability to program.
However, due to various restrictions, such as time or money costs, they did
not learn more about IoT and IoT security.

IntermediateBeginner Advanced

Figure 3.2: User levels

Training Mode and Process

After classifying users, the next step is to adopt different training methods
for different levels of users. Referring to the way most people usually learn,
it is widespread to find a tutorial or material for self-study. Therefore, for
all levels of users, especially beginners, tutorials will be presented to them
as training content. Users can select the tutorials of interest through the
interface and complete the corresponding training.

Users will learn to use the Cooja simulator under the guidance of the
tutorial and then view the simulation to deepen their understanding of the
tutorial content. Viewing the simulations is for most intermediate users, so
they can also skip some tutorials learning and start directly from this step.

19

When beginners become intermediate users, and then these intermediate
users also complete the corresponding tutorials, they naturally become ad-
vanced users. At this stage, these advanced users will learn Contiki-based
programming, application development, and even modify the source code of
the Contiki OS to simulate some attacks under the guidance of advanced
tutorials.

From the “learning tutorials” to “viewing simulations” to “doing hands-
on simulations”, this series of training is the “learning-viewing-doing” train-
ing mode proposed in this thesis. Following this mode, the training process
was designed and shown in Figure 3.3.

Instruction Tutorial

Start
Configure the training
environment
Make choice in menus
View Instruction
Tutorials(PDF slide
files)

View Prepared Simulations

Open prepared
simulation files
according to
Instruction
Tutorials(.csc files)

Hands-on simulations

Complete the exercise
in Instruction Tutorials
Modify the source
code and create new
simulation according to
Instruction Tutorials

Figure 3.3: Training process

3.2.2 Training Content Structure Design

The training content structure is the core of the entire system. For a
person who wants to get IoT training, the first thing is to learn some basic
knowledge of the Internet of Things, and then to understand the advanced
knowledge of IoT, such as network or security. Because from the basic to
the advanced is the law of learning any knowledge. Thus, when designing
the training content structure, the training content is first divided into three
categories, namely system introduction, fundamental training, and security
training, as shown in the following figure (Figure 3.4). It is worth mentioning
that all current training content has been created at the time of writing this
thesis, and the creation process will be explained in the next section. The
training content structure may be adjusted in subsequent developments.

20

IoTrain

System
Introduction

Fundamental
Training

Security
Training

Figure 3.4: Training content

The system introduction is the beginning training content of the whole
system, which is aimed at all levels of users. Its content covers the background
of IoT and IoT security and how to use the system.

The fundamental training is further subdivided into two sub-categories:
training with single node and training with networks. In the first sub-
category, the basic of Contiki OS and the Cooja network simulator, as well as
some Contiki-based IoT devices, such as actuators, controllers, and sensors,
will be introduced. The second sub-category will focus on some communi-
cation methods in the network. The content structure of this part is shown
below (Figure 3.5).

Fundamental
Training

Training with
Single Node

Basic of
Contiki OS &

Cooja

Actuator and
Controller Sensor

Training with
Network

Communi-
cation

Figure 3.5: Fundamental training content

The security training content structure is mainly designed according to [21],
but at present only some of the attack simulations are implemented, so only

21

the corresponding tutorials have been made for the implemented attacks.
The content structure of this part is shown below (Figure 3.6).

Security Training

Training with
Resource Attack

Direct Attack Indirect Attack

Training with
Topology Attack

Isolation

Training with
Traffic Attack

Misappropriation

Figure 3.6: Security training content

3.2.3 Training Content Creation

Overview

The training content Creation refers to adding specific executable files to
the bottom classification blocks after the design of training content structure,
which can be directly invoked by users through the system interface.

There are three types of these files. The first is the Portable Document
Format (PDF) file, which is used as training tutorials. The second is the
Cooja Simulation Configuration (CSC) file, which can be imported into the
Cooja network simulator and then become the object of the “viewing” men-
tioned in the section 3.2.1. The third is the C file, which is the application
source code developed by the advanced users under the guidance of the tu-
torials or the source code files of the Contiki that needs to be modified to
implement the attacks.

The following figure shows a content creation map of the entire system
(Figure 3.7). In fact, except for the system introduction part, which only
contains PDF files, the rest of the training content contains the three file
types mentioned above.

22

Io
Tr

ai
n

System
Introduction

Introduction
Tutorials

Fundamental
Training

Training with
Single Node

Basic of Contiki OS
& Cooja

Hello-world
Exercise

Actuator and
Controller

LED, Button, and
Timer

Sensor Temperature,
Humidity, and Light Intensity

Training with
Networks Communication Broadcast, Unicast, and

Multicast

Security Training

Training with
Resource Attack

Direct Attack Flooding Attack

Indirect Attack RPL DODAG
Version Attack

Training with
Topology Attack Isolation Blackhole Attack

Training with
Traffic Attack Misappropriation Decreased Rank

Attack

PDF Files

PDF, CSC and C
Files

Figure 3.7: Content creation map

Tutorials Creation

To create tutorials, developers first need to collect and learn a variety of
materials, and then use the Microsoft Powerpoint software to make slides and
export them as PDF files, and finally store these pdf files in the database.
The creation procedure and a completed tutorial example are shown below
(Figure 3.8 and Figure 3.9).

Create

Figure 3.8: Tutorials creation Figure 3.9: Tutorial example

Simulation Implementation

The simulation implementation is divided into two categories according
to the content, one is the implementation of fundamental training, and the
other is the implementation of security training.

23

To implement a fundamental training simulation, firstly, according to
the programming rules of Contiki OS, write a Contiki application using C
language and save it in a C file. Then import the application into the Cooja
network simulator, and select an appropriate hardware platform to compile
and generate the simulation. Finally, save the simulation in the database
as a CSC file, so that the user can open the view through the interface. It
should be noted that in a simulation, each source file can only generate one
kind of mote, but the number is not limited. The implementation procedure
is shown below (Figure 3.10).

Figure 3.10: Fundamental training simulation implementation

As for the implementation of the security training simulation, there will
be more steps. Before introducing these steps, an application called collect-
view (Figure 3.11) will be introduced, which is used for all security training
simulations.

Collect-view is a Java-based application in Contiki OS for sensor visu-
alization, usually used in the Cooja network simulator. It involves a mote
acting as a sink and other motes acting as sources. In the simulation, when
sources send important parameters to sink, collect-view will be used to visu-
alize these parameters in a graphical user interface. In the attack simulation,
it will be used to observe the impact of malicious nodes on the network.

As shown in Figure 3.7, four attacks have been implemented. Each kind
of attack has two simulations, one is a reference simulation, which means
a normal sensor network simulation without malicious motes. The other is
attack simulation. The attack simulation is to replace a source mote in the
reference simulation with a malicious node, which will perform some kind
of attack. Therefore, to create an attack simulation, a reference simulation
should be created first.

The C files that implement the security training simulations are all us-
ing the sample files already in Contiki OS. The sink mote’s path is “con-
tiki/examples/ipv6/rpl-collect/sink.c”, and source mote’s path is “contiki/
examples/ipv6/rpl-collect/udp-sender.c”. In the Cooja network simulator,
import and compile the sink.c file to generate a sink mote, then import and

24

Figure 3.11: Collect-view

compile the udp-sender.c file to generate multiple source motes. All these
motes make up a reference simulation of a wireless sensor network. Essen-
tially, the steps to create a reference simulation are the same as the steps
to create a fundamental training simulation. The differences are in creating
attack simulations.

The attack simulation can be done by the following steps:

1. Duplicate the Contiki OS folder to create a new Contiki OS instance.

2. Modify the correspondent files according to the attack. For example,
to implement a flooding attack, the file rpl private.h and the file rpl -
timers.c need be modified.

3. Create a new mote (malicious) in Cooja by compiling the udp-sender.c
file within the new Contiki instance.

4. Add the mote to the reference simulation.

The simulation files will also be saved in the database as CSC files. Inter-
mediate users will view these simulations to gain insight into these attacks,

25

while advanced users will modify Contiki’s source code to implement these
attacks themselves under the guidance of tutorials.

The reference simulation (Figure 3.12) and attack simulation (Figure 3.13)
of the implemented flooding attack will be given below. The other three types
of attacks are similar and are not described here.

Figure 3.12: Reference attack of flooding attack

In the collect-view of the reference simulation:

• Node 1 in color green is a sink node which acts as a border router

• Other nodes in color yellow are sender node which act as sensors

• Node 2,4 and 5 are in the range of node 12

• All sender nodes have nearly the same power consumption in a very
low level

In the collect-view of the attack simulation:

• Node 1 in color green is a sink node which acts as a border router

• Nodes in color yellow are sender node which act as sensors

• Node 12 is replaced with a malicious node

26

Figure 3.13: Attack simulation of flooding attack

• Node 2,4 and 5 are in the range of node 12

• Compared with other sender nodes, node 2, 4, 5 and 12 have signif-
icantly high power consumption, and other sender nodes’ power con-
sumption are also higher than before

• Among the power consumption of node 12, the Radio transmit con-
sumes a large proportion of the power consumption, because it contin-
uously send messages to the node 2, 4, and 5

• Among the power consumption of node 2, 4, and 5, the Radio listen
consumes a large proportion of the power consumption because they
continuously receive messages from the node 12

Through this kind of comparative simulation, users can easily understand
various types of attacks, which is very helpful to enhance their security aware-
ness.

3.2.4 System Structure Design & Implementation

As shown in figure 3.1, the system structure of IoTrain consists of a
database, an interface, some function modules. The training content de-

27

scribed above is the data stored in the database. The following content will
be divided into two parts, the IoTrain database will be introduced in the
first part, and the interface and function modules will be introduced in the
second part.

Database

Due to the entire system currently has only three file types and the num-
ber of files is small. Besides, the C files involved are all located inside the
Contiki OS, only the PDF format tutorial files and CSC format simulation
files are stored in the database. Therefore, the database is built without
using professional database management software, and all files are classified
and stored in folders and subfolders of the entire project.

Figure 3.14 shows the folder tree of IoTrain. All blue blocks represent fold-
ers, and all purple blocks represent files. All the blocks named “Instruction”,
namely the folder named “Instruction”, store the PDF tutorials. Similarly,
all blocks named “Simulation” (namely the folder named “Simulation”) store
the CSC simulation files. Therefore, the purple block is omitted in the figure.

Since the entire project has been uploaded to the Github, the README.md
file shown in the figure is the project introduction file in the Github.

The “rpl-collect folder” is a folder inside Contiki OS, and this folder is
used and stored in the IoTrain project. The “rpl-collect” folder in the IoTrain
project stores some modified files and some files for making security training
simulations.

The “Command” folder shown in the figure stores the Python files that
implement the interface and functions. These will be explained in the fol-
lowing section.

Interface and Functions

The Python files in the “Command” folder that implement the interface
and functions will be explained in this section.

The IoTrain interface is implemented as prompt options in the terminal
window (Shown in Figure 3.15). The tutorial in Figure 3.9 is the tutorial
that was automatically opened after selecting option 1 in this figure.

Functions include configuring the system environment, displaying inter-
face and options, as well as open tutorials and partial simulation files accord-
ing to users’ options. The following class diagram (Figure 3.16) shows all the
classes in the Command folder.

The class IniManFolder has only four string type attributes:

• iotrain path: The path of the rpl-collect folder in the IoTrain project.

28

Io
Tr

ai
n

System-
Introduction SI.pdf

Fundamental-
Training

Single-Node

Basic-of-ContikiOS-
and-Cooja

Instruction BCOC.pdf

Simulation
hello-world.c

hello-world.csc

Actuator-and-
Controller

Button
Instruction

Simulation

LEDs
Instruction

Simulation

Timer
Instruction

Simulation

Sensor
Instruction

Simulation

Network

Broadcast
Instruction

Simulation

Unicast
Instruction

Simulation

Security-
Training

flood-attack
Instruction

Simulation

dodag-version-
number-attack

Instruction

Simulation

decreased-rank-
attack

Instruction

Simulation

blackhole attack
Instruction

Simulation
rpl-collect

Command Python Files

README.md

Figure 3.14: Folder tree

29

Figure 3.15: Interface

• iotrain backup path: The backup path of the rpl-collect folder in the
IoTrain project.

• contiki path: The path of the rpl-collect folder in Contiki project.

• contiki backup path: The backup path of the rpl-collect folder in Con-
tiki project.

The class ManageFolder has five attributes and three methods. The at-
tribute IniManFolder is the instance of the class IniManFolder. Other four
attributes respectively store the values of the four attributes in class Ini-
ManFolder. Method backup folder() is to back up the rpl-collect folder, and
method move folder() is to move the rpl-collect folder in IoTrain project to
Contiki project and overwrite the rpl-collect folder with the same name in
the Contiki project. Method recovery() is to restore the changes caused by
the previous two methods. This method is used when exiting the system.

The class Content has only one dictionary type attribute that maps out
the training content structure and stores the file names of all training content
files.

The class OpenCooja has only one method that is used to open the Cooja
network simulator.

The class ShowMenus is the core class of the system, whose attributes con-
tains instances of the class Contents, the class ManageFolder, and the class
OpenCooja. As shown in the Class Diagram, it has the following method:

30

ShowMenus
+_show_menus: Contents()
+_file_path: None
+_manage_folder: ManageFolder()
+_opencj: OpenCooja()

+find_file(str, str)
+file_extension(str)
+execute_csc(str)
+is_digit(str)
+if_not_dict(str)
+is_in_menu_range(int, list)
+show_menus(dict)

Contents
+contents: dict

IniManFolder
+_iotrain_path: str
+_iotrain_backup_path: str
+_contiki_path: str
+_contiki_backup_path: str

OpenCooja

+open_cooja()

ManageFolder
+_IniManFolder: IniManFolder()
+_iotrain_path: _IniManFolder._iotrain_path
+_iotrain_backup_path: _IniManFolder._iotrain_backup_path
+_contiki_path: _IniManFolder._contiki_path
+_contiki_backup_path: _IniManFolder._contiki_backup_path

+backup_folder()
+move_folder()
+recovery()

Run
+_showmenu: ShowMenus()

Figure 3.16: Class diagram

31

• find file(str, str): Find the file and return the path according to the file
name parameter.

• file extension(str): Identify the file name passed in and return the ex-
tension of the file name.

• execute csc(str): Open the files with the “csc” extension.

• is digit(str): Judge whether the string content entered by the user is a
number, and if so, converts the string type to an integer type.

• if not dict(str): Judge if the numeric option entered by the user corre-
sponds to a dictionary type content.

• is in menu range(int, list): Judge if the user’s input is legal.

• show menus(dict): Use the recursive algorithm to hierarchically output
the training content, which is stored in a Python dictionary.

The class Run is the entry to the system, and its attribute “ showmenus”
is an instance of class ShowMenus. Class Run is written in a Python file
called run.py. There is also an instance of the class Run in this file. When
run.py is executed, the class Run is instantiated first, and then the instance
of class Run calls the backup folder() method and move folder() method to
initialize the system. Then it calls show menus() method, which will print
out the system interface in the terminal window. The show menus() method
also calls various other methods to implement various functions of the system
based on user input.

32

Chapter 4

System Evaluation

This chapter will focus on the evaluation of the system. The evalua-
tion will start with three aspects: feature, performance, and achievement on
system requirements.

4.1 Feature Evaluation

The method of feature evaluation is to compare IoTrain with other ex-
isting IoT training systems. I have found two complete and representa-
tive systems from all IoT training systems I have investigated to compare
with IoTrain. These two systems are IBM Watson IoT Online Academy
(IWIOA) [22] provided by IBM, and the IoT Training System (ITS) pro-
vided by 3 Rocks Technology [23].

IBM is an American multinational information technology company that
produces and sells computer hardware, middleware, and software. IBM also
provides hosting and consulting services in areas ranging from mainframe
computers to nanotechnology. IWIOA stands for online learning systems.
The training content or courses of such IoT training systems developed by
commercial companies are usually tailored to their related products. Users
are often potential customers who will continue to use relevant paid services
for development after training. IWIOA aims to train users to develop the
IoT based on the IBM Watson IoT Platform. The IBM Watson IoT Platform
is a platform that helps users to get their IoT projects started.

3 Rocks Technology is an engineering training system provider. Its prod-
uct lines include Electronic, Pneumatic, Hydraulic, Mechatronics, Communi-
cation Circuits training systems. ITS is a series of IoT training experimental
boxes (shown in Figure 4.1 and 4.2) that integrated with a lot of hardware,
such as CPU Board, Gateway (Raspberry Pi), sensors, and actuators. ITS

33

stands for hardware-based physical training system. Such products or sys-
tems are usually group-oriented, such as schools or training institutions, and
are therefore often expensive and unaffordable for individual users.

Figure 4.1: IoT experimental box Figure 4.2: IoT application kits

The Table 4.1 shows the comparison between the three IoT training sys-
tems.

The column on the left side of the table is the comparison items, where:

• Obtain refers to how users get the system.

• Register refers to whether the user needs to register or log in.

• Internet Requirement refers to whether users need to access the Internet
when using the system.

• Capital cost refers to whether the user needs to pay for the use of the
system.

• Knowledge threshold is the level of knowledge a user needs to use the
system.

• Content form refers to the form in which training content is presented
to the user.

• Device form means the form of the device used in the system, including
virtual devices and real devices.

• Device type refers to the type of device supported in the system.

• Operating system represents the operating system used in the system.

• Security training refers to whether the system training content includes
security training.

34

• Large-scale WSNs refers to the difficulty of using this system to build
large-scale wireless sensor networks.

Table 4.1: Feature comparison

Feature
System

IoTrain IWIOA ITS

How to obtain Free download Online learning Purchase equip-
ment

Need to regis-
ter

7 X 7

Internet re-
quirement

Offline Online LAN

Cost Free Free High cost
Target Anyone Employee or

business partner
Employee or stu-
dent

Pre acquisi-
tion knowl-
edge

Low Medium Secondary or
higher education

Available con-
tent

Tutorial and
simulation

Video, sim-
ulation and
document

Smartphone ap-
plication exam-
ples

Device form Virtual devices Virtual devices Real devices
Device type 3 kinds of sensor,

1 kinds of actua-
tor(currently)

All devices sup-
ported by the
IBM Cloud Plat-
form

8 kinds of sensor,
7 kinds of Actu-
ator

Operating sys-
tem

Contiki OS All systems sup-
ported by the
IBM Cloud Plat-
form

Debian
GNULinux,
Arch Linux
ARM, RISC OS

Security train-
ing

X X X

Large-scale
WSNs

Easy General Difficult

As can be seen from the table, the advantages of IoTrain are low cost,
low threshold, and support for large-scale WSNs. However, because IoTrain
is a newly developed system and the developer level is limited, it has a
disadvantage regarding content richness and device richness compared to the
other two systems.

35

4.2 Performance Evaluation

The performance evaluation will focus on the time it takes to start Instant
Contiki and IoTrain, open tutorials, and simulations. The test is done by
turning on a timer at the start of the evaluation and stopping the timer at
the end of the evaluation. Since the start timer and the stop timer are both
manual, there is an artificial delay in response. To increase the accuracy,
each test value is the average of three test values. Even so, the test results
are still approximate values.

Table 4.2: Environment characteristics evaluation
Item Detail
Computer MacBook Air (13-inch, 2017)
Processor 2.2 GHz Intel Core i7
Memory 8 GB 1600 MHz DDR3
Graphics Intel HD Graphics 6000 1536 MB
OS Version macOS Mojave 10.14.2 (18C54)
VMware Fusion Professional Version 10.1.3 (9472307)
Instant Contiki Instant Contiki 3.0
Ubuntu 14.04 LTS
Python Python 2.7.6
Contiki Contiki 3.0

The table 4.2 lists the hardware and software parameters below. All
development is done on the MacBook Air. Because the latest version of
Instant Contiki uses Ubuntu 14.04 images, the IoTrain system is also based
on Ubuntu 14.04.

Table 4.3: Performance evaluation
Operation Time
Start Instant Contiki 26.3s
Start IoTrain 0.5s
Open a tutorial 0.7s
Open a simulation 3.3s
Complete a simulation 8s ... 20min
Quit IoTrain 0.3s
Shutdown Instant Contiki 4.9s

The table 4.3 shows evaluation results.

36

Start/Shutdown Instant Contiki is actually launching Ubuntu 14.04 image
in VMware. The time required depends on the computer hardware and has
nothing to do with the IoTrain system.

Complete a simulation is essentially a call to the Cooja simulator, and the
time required is highly dependent on the content of the simulation. The more
motes that are added to the simulation, the longer it takes to complete the
simulation, especially for attack simulation. Attack simulations can consume
a lot of computer resources and can therefore be very slow.

4.3 Requirement Evaluation

The evaluation in this section is based on the system requirements in 3.1.
First of all, I will give a comparison evaluation table (Table 4.4) of the three
systems. Then I will just list explanations for every evaluation result of the
IoTrain system.

Table 4.4: Requirement evaluation comparison

Requirement
System

IoTrain IWIOA ITS

Open-source X X
Parallel X
For different level
users

X

Content-rich X X
Low cost X
Easy to manage X X

• Open-source

After the system is completed, the source code will be uploaded to the
Github repository for everyone to use and develop.

• Parallel

This requirement has not been met. Currently, the system only sup-
ports single user downloads and then runs independently on the virtual
machine software of the PC. But if multiple such images can be quickly
generated on one or more servers, numerous users can simultaneously
access independently, and thereby the IoTrain can meet the parallel
requirements.

37

• For different level users

This requirement have been basically met. However, because the cur-
rent training content is still too small, the users covered is still very
limited.

• Content-rich

Content is at the heart of all IoT training systems. Because the devel-
oper level is limited and the system development time is limited, the
current system content has not reached a rich level. But the system’s
database is simple and easy to manage, so if the developer and time
are sufficient, the lack of system content will soon be improved.

• Low cost

Thanks to open source development tools and the use of simulators to
simulate hardware, there is only a time cost for development.

• Easy to manage

The current database design is very simple, and the content is not much.
The management of the training content is essentially a modification
of the Python dictionary content, so it is still easy to manage. But
as the training content increases, management will become difficult. It
will become necessary to use the database software by then.

38

Chapter 5

Conclusion

The idea of this research came from reading some papers about cyber-
security training. Besides, I was very interested in the IoT at that time,
so I started to survey the IoT security training. However, I found that the
IoT security status is not optimistic, because there are few studies on the
IoT security training. This situation gave me the motivation to start this
research.

The research process was not smooth, and there were some failed attempts
in the early stage. But under the guidance of my supervisor, the research
was soon on the right track.

In the whole research, the most important contribution is the proposal of
the training content structure. It is the blueprint of IoTrain’s development.
Besides, it not only has a high reference value for the future development
of the IoTrain system but also for the development of other IoT training
systems.

The development of the IoTrain system based on the training content
structure is the second contribution of this research. After proceeding the
various stages, the system has reached the prototype stage, where the sys-
tem’s training content structure, functions, and interfaces have been imple-
mented.

Using simulation in IoT training is indeed a useful attempt. The use
of simulators not only reduces the cost of development, but also increases
the training content forms, while also making training more interesting and
effective.

As can be seen from the various previous evaluations, there are many
advantages of the IoTrain system.

From the perspective of feature evaluation, the most distinct advantage is
low cost and easy to use. It can be freely obtained and easily used by anyone.
If this system can be promoted and widely used, then the popularity of IoT

39

security knowledge will be of great benefit.
In terms of performance evaluation, IoTrain is a very lightweight system,

and the entire system is currently only about 80 megabytes. The IoTrain
system runs on a Linux system known for stability. Whether it is started or
performs various functions, tasks can be done in few seconds.

As for the requirement evaluation, the best of the three systems to meet
the system requirements is the IoTrain system. Among the six requirements,
IoTrain met four of them, with the highest completion rate of 66%, and the
two unmet are not impossible to achieve.

However, IoTrain is not perfect either. To make IoTrain a qualified train-
ing system for IoT, there is still much work to be done in the future.

The first is that there is too little training content. On the one hand,
because the developer’s level is too limited to fully utilize the development
tools, the development is still in an early stage. On the other hand, the
development tools are limited to the RPL based IoT, so the IoTrain can only
be considered as a branch training system of IoT.

The second is parallel mentioned in system requirements. Because the
Contiki OS, the Cooja network simulator and the IoTrain system are all
stored in an Ubuntu virtual machine image, if multiple such images can be
quickly generated on one or more servers, numerous users can simultane-
ously access independently, and thereby the IoTrain can meet the parallel
requirements.

The third is automation, including automation of system content gen-
eration and automation of system management. The former means that
the automatically generate corresponding training content according to the
keyword input by the user, without the developer making and storing it in
advance. The latter refers to automatically managing the training content
of each user.

Combined with the advantages and disadvantages of the IoTrain system,
it can be concluded that the development of the IoTrain is a useful attempt
to develop the IoT training system. The development and implementation
process of the system have high reference value, and the system also has a
considerable application value. With further development in the future, I
believe that IoTrain will become a more comprehensive and powerful IoT
training system.

40

Bibliography

[1] Kanellos, M., (2016). 152,000 Smart Devices Every Minute In 2025:
IDC Outlines The Future of Smart Things. Retrieved on January 6,2019
from https://www.forbes.com/sites/michaelkanellos/2016/03/

03/152000-smart-devices-every-minute-in-2025-idc-outline

s-the-future-of-smart-things/\#66501aac4b63.

[2] Williams, C., (2016). Today the web was broken by countless hacked
devices. Retrieved on January 6, 2019 from https://www.theregiste

r.co.uk/2016/10/21/dyn_dns_ddos_explained/.

[3] Internet of Things Research Study. (2014). Retrieved on January
7, 2019 from http://d-russia.ru/wp-content/uploads/2015/10/4A

A5-4759ENW.pdf.

[4] Pathak, P., Vyas, N., Joshi, S., (2017). Security Challenges for Commu-
nications on IOT & Big Data., in International Journal 8, 431–436.

[5] Security Awareness in the Age of Internet of Things. (2016). Retrieved
on January 7, 2019 from https://download.bitdefender.com/resou

rces/files/News/CaseStudies/study/136/Bitdefender-Whitepape

r-IoTSecurity-A4-en-EN-web.pdf.

[6] Ramirez, E., (2015). Privacy and the IoT: Navigating Policy Issues.
Retrieved on January 7, 2019 from https://www.ftc.gov/system/fil

es/documents/public_statements/617191/150106cesspeech.pdf.

[7] Xu, X., (2013). Study on security problems and key technologies of the
internet of things, in Proceedings - 2013 International Conference on
Computational and Information Sciences, ICCIS 2013 (pp. 407–410).

[8] Contiki: The Open Source OS for the Internet of Things. Retrieved on
January 19, 2019 from http://www.contiki-os.org/.

[9] Get Started with Contiki. Retrieved on January 19, 2019 from http:

//www.contiki-os.org/start.html.

41

[10] Cuong, P. D., (2017). On Automatic Cyber Range Instantia-
tion for Facilitating Security Training. Retrieved on January 10,
2019 from https://dspace.jaist.ac.jp/dspace/bitstream/10119/

14161/3/paper.pdf.

[11] Internet of things. Retrieved on January 11, 2019 from https://en.w

ikipedia.org/wiki/Internet_of_things#cite_note-4.

[12] ITU-T Recommendation Y.2060 (2012). Overview of the Internet of
things.

[13] Rosencrance L., Shea S., and Wigmore, I., (2018). internet of things
(IoT). Retrieved on January 11, 2019 from https://internetofthin

gsagenda.techtarget.com/definition/Internet-of-Things-IoT.

[14] K. Zhao and L. Ge. A survey on the internet of things security, in Com-
putational Intelligence and Security (CIS), 2013 9th International Con-
ference, on pp. 663–667, IEEE, 2013.

[15] M. Wu, T. J. Lu, F. Y. Ling, J. Sun, and H. Y. Du. Research on the
architecture of Internet of Things, in Proc. 3rd ICACTE, 2010, pp. V5-
484–V5-487.

[16] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash,
M. (2015). Internet of Things: A Survey on Enabling Technologies, Pro-
tocols, and Applications. IEEE Communications Surveys and Tutorials,
17(4), 2347–2376.

[17] Scully P., (2018). The Top 10 IoT Segments in 2018 – based on 1,600
real IoT projects. Retrieved on January 13, 2019 from https://iot-a

nalytics.com/top-10-iot-segments-2018-real-iot-projects/.

[18] Yogita Pundir, M., Sharma, M. N., & Singh, Y., (2016). Internet of
Things (IoT): Challenges and Future Directions. International Journal
of Advanced Research in Computer and Communication Engineering,
5(3), 960–964.

[19] I.F. Akyildiz and W. Su and Y. Sankarasubramaniam & E. Cayirci,
(2002). Wireless sensor networks: a survey. Computer Networks, 38(4),
393 - 422.

[20] Carl A. Sunshine. Source routing in computer networks, p. 29.

42

[21] Mayzaud A., Badonnel R., Chrisment I. A Taxonomy of Attacks in RPL-
based Internet of Things. International Journal of Network Security,
IJNS, 2016, 18 (3), pp.459 - 473.

[22] Welcome to the IBM Watson IoT Online Academy. Retrieved on January
27, 2019 from https://www.iot-academy.info/index.php/en-us/.

[23] Homepage of 3 Rocks Technology. Retrieved on January 27, 2019 from
https://www.3rockstech.com/.

[24] R. Beuran, C. Pham, D. Tang, K. Chinen, Y. Tan, Y. Shinoda,
CyTrONE: An Integrated Cybersecurity Training Framework. Inter-
national Conference on Infor- mation Systems Security and Privacy
(ICISSP 2017), Porto, Portugal, February 19-21, 2017.

43

