
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title センサIoTデバイスにおけるエミュレーション抽象化

Author(s) 広瀬, 太志

Citation

Issue Date 2019-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/15909

Rights

Description
Supervisor:篠田　陽一, 先端科学技術研究科, 修士

（情報科学）



Abstraction of Emulation for Sensor IoT Devices

1710171 Futoshi Hirose

IoT (Internet of Things) makes it easy to measure and collect a wide range
of environmental information. IoT devices equipped with various sensors
are assumed to use in urban areas, farms, and the like. However, if the
devices distribute widely, it is difficult to repair with the relocation after
installation. Such a device has low power and uses a wireless communication
module of a very narrow band. Therefore, updating with OTA (On-The-
Air) is difficult. Although verification before installation is important, it
is inefficient to prepare the necessary number of devices and perform the
verification work on site. Therefore, this research considers verifying the
IoT device system by emulation using a computer. Emulation of the sensor
IoT device needs to execute a large number of device emulators at once. It
requires many computing resources.

Therefore, in this research I propose to abstract a part of the functions
of the emulator, depending on the type of applications and sensors to be
verified. The emulator abstraction has a kind of trade-off relationship. In
general, it is possible to reduce emulation calculation request resources by
emulator abstraction. Conversely, it causes a decrease in fidelity as compared
with the actual machine. Due to changes in fidelity, functions necessary for
testing may not be faithful. In this case, the abstracted emulation cannot
satisfy the test requirement. Also, if you do not implement an appropriate
abstracted emulator, you will develop an emulator that uses more compu-
tation resources than necessary. Moreover, as the computation time of the
emulator increases, the real-time performance of the execution gets worse.
Therefore, this research clarified the trade-off relationship between fidelity
and test requirements when abstracting the emulator and evaluated the ef-
fectiveness of the emulator abstraction.

I defined a four-layer model to clarify the trade-off relationship between
emulator abstraction types. This base on the fact that emulation execution
significantly changes the abstraction type at four points. The four points are
layers of the application, library, system call, and hardware. For each layer,
this research showed the abstraction target, the interface for abstraction,
and organized the verifiable items. It also shows the advantages and disad-
vantages of emulation of these layers. For example, in the emulation of the
application layer, it is possible to confirm the algorithm and protocol used
by the software under test. However, since many layers including the library
layer are abstracted, there are very few items that can verify. In another
example, the hardware layer emulation imitates hardware exceptionally ac-
curately, so many items can verify as much as an actual device. In exchange

1



for this, it requires extensive calculation resources. If using emulation with
these emulation layer models must carefully consider the characteristics of
the software under test and the IoT system.

Experiments were conducted to confirm the effectiveness of emulation
abstraction based on the defined four-layer model. As a verification envi-
ronment, a processor emulator using ARM architecture which is assumed
to apply in embedded devices prepare. Sensor IoT device to be tested has
a processor and some sensors and communicates between them with SPI
(Serial Peripheral Interface). Software for sensor IoT device cannot verify
without installing such I/O interface in the emulator. However, although
an interface is necessary, it is not required to implement a protocol or the
like faithfully. Therefore, abstract SPI communication function. There is
no problem in verifying the operation of the application of the IoT device.
In this research, I designed two kinds of emulators. The first is “SPI reg-
ister model” which performs more faithful SPI communication processing.
The SPI module has dedicated registers. By setting or getting data in this
register, it communicates with the sensor connected to the wire. We de-
fined the SPI hardware register, developed it by software, and implemented
the emulator. The second is “Exodus model” which does not execute SPI
communication processing faithfully. The Exodus model that realizes library
level abstraction does not have SPI hardware module. To do SPI commu-
nication without using a module, I implemented a unique instruction word
“exd” in the processor emulator. Besides, I rewrote the SPI library to use
this exd. When processing related to the SPI communication in the library
call, the mnemonic of exd interprets, and the host OS processes the commu-
nication processing instead. As a result, changing from the processing of the
emulator with the significant overhead to the Linux native read/write system
call.

In the evaluation, I conducted three experiments. First, Quantitatively
confirm the change of computation request resource by abstraction of emu-
lator by measuring emulator execution time. Compared to the SPI register
model with high fidelity, the Exodus model emulator evaluated that the
calculation resource requirement reduces because the 9.95% execution time
was short. Second, by measuring the time only for SPI communication pro-
cessing, the influence of abstraction on SPI communication processing was
confirmed in detail. By the abstraction of SPI communication, the execution
time of the emulator with the fidelity lowered at the SPI library level tended
to shorten. Finally, I examined the amount of requested memory at emula-
tion execution. In IoT device emulation, it is necessary to execute a large
number of devices simultaneously. The results show that in the emulator
used in the experiment, the memory usage is sufficiently small in the modern

2



computer. Although the required memory size is a problem that there may
be a problem depending on the mounting method of the emulator. These
results showed that it is possible to shorten the calculation time using the
abstracted emulator and to reduce the requested resources of emulation.

IoT device emulation discussed the role to do in IoT system develop-
ment. In the IoT system development process, I examined at what stage the
verification by emulation should be designed and executed.

In this research, I showed the trade-off between emulation abstraction and
confirmed that the abstraction of the emulator contributes to the reduction
of request calculation resources in IoT device emulation.

3


