
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Efficient Robot Grasp Learning by Demonstration

Author(s) 高, 子焱

Citation

Issue Date 2019-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/15927

Rights

Description
Supervisor:Chong Nak Young, 先端科学技術研究科,

修士（情報科学）

Master’s Thesis Project Report

Efficient Robot Grasp Learning by Demonstration

1610406 GAO ZIYAN

Supervisor Chong NakYoung
Main Examiner Chong NakYoung

Examiners Iida Hiroyuki
Nguyen Minh Le
Okada Shogo

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

February 2019

Abstract

In this paper, a Learning from Demonstration approach was proposed for
robotic grasping with compliant arms. The compliance in the robot arm
for safety often causes a problem in grasping. Recurrent neural network has
been widely applied for modeling the sequential data such as sound, because
recurrent neural network can leverage their internal state to process input
sequences, this allows it to show the temporal dynamic behavior of time
series. In this research, a recurrent neural network was constructed, given
the estimation of the target object position and random initial joint angles
of the robot arm, the recurrent model can produce the whole trajectories for
grasping the target object.

For demonstrating the behavior to robot, there are several interfaces that
can be choose such like demonstrating the behavior by using vision, motion
sensor, teleoperation, and directly guiding the robot to demonstrate the be-
havior by its own. Directly guiding the robot and demonstrating the behavior
by its own has several benefits, the first one is that there is no correspondence
problem met, also human do not need to wear the motion sensor for showing
the behavior. In this research, directly guiding the robot by human is used
for demonstrating the grasp behavior.

In order to generate smooth and stable trajectories and to release the hu-
man labors, a transform model was proposed that can transform the example
trajectory to adapt to the new situations, that is, given the example trajec-
tory, which is formed by a series of discrete point, and the new initial and
final discrete point, this transform model will output a new trajectory which
satisfies two requirements, the first one is that the new trajectory must pass
through the new initial and final discrete point, the second one is that the
new trajectory must have the same tendency and same number of discrete
points compared with the example trajectory. Then human do not need to
record corresponded trajectory of the behavior, only specifying the target
joint configurations and initial joint configurations are needed. Dataset can
be enlarged by adding multiple initial joint configurations, that is, for one
target, there will be multiple trajectories generated. Specifically, the two
arms of the robot are trained respectively, and a support vector machine is
used to decide which arm needs to be used for grasping the target object.

The evaluation results show that our recurrent model not only has a good
prediction for the final joint configurations, but also generates smooth and
stable trajectory. Moreover, the model is robust to the changes in the initial
joint state which means that even though the initial joint configuration is

affected by disturbances, the model can still generate trajectories leading to
the final joint configurations for grasping the object.

Finally, we tested the proposed learning method on the Pepper robot
which can successfully grasp randomly placed object on the workbench. Com-
pared to traditional methods which need to avoid singular configurations as
well as to secure accurate localization, our method turns out to be robust
and efficient and can be applied to cluttered environment.

2

Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Context of the Study . 2
1.3 Objectives and Contributions 2
1.4 Neural Network . 2

1.4.1 Simplest Neural Network 2
1.4.2 Recurrent Neural Network 4
1.4.3 Long Short Term Memory 5
1.4.4 Gated Recurrent Unit 5
1.4.5 Support Vector Machine 6

1.5 Thesis Organization . 7

2 Background 8
2.1 Demonstration Interface . 9

2.1.1 Demonstrating behavior by using vision 10
2.1.2 demonstrating behavior by using motion sensor 11
2.1.3 Demonstrating behavior by teleoperation 12
2.1.4 Demonstrating behavior by directly guiding robot . . . 12

2.2 Policy Derivation . 13

3 Proposed Model 18
3.1 Data Collection . 19
3.2 Data Generation . 20
3.3 Training of recurrent neural network 21
3.4 Training of Support Vector Machine 23

4 Experimentation 24
4.1 Physical Environment . 24
4.2 Data collection . 25
4.3 Recurrent Neural Network . 28
4.4 Support Vector Machine . 29

1

4.5 Data Flow . 30

5 Evaluation 32
5.1 Evaluation of trajectory generator 32
5.2 Evaluation of the hand selection model 36

6 Conclusion and Future work 37
6.1 Conclusion . 37
6.2 Future Work . 38
6.3 Acknowledgement . 38

List of Figures

1.1 Simplest Neural Network . 3
1.2 Recurrent Neural Network . 4
1.3 Gated Recurrent Unit by Kyunghyun et al 6

2.1 Correspondence between demonstrator and imitator. 9
2.2 Record Mapping and Embodiment Mapping by Brenna D. Ar-

gall et al. 10
2.3 Demonstrating behaviors by using vision by Ude et al. 10
2.4 Demonstrating behavior by using motion sensor by Calinon et

al. 11
2.5 Demonstrating behavior by using joystick by Rahmatizadeh

et al. 12
2.6 Demonstrating behaviors by directly guiding robot by Nichola

Abdo et al. 13
2.7 Pick and Place behavior generation by using recurrent neural

network by Giovanni De Magistris et al. 14
2.8 Multi-task Learning by Rahmatizadeh et al. 15
2.9 Dynamic Time Warping . 16
2.10 Variations and similarities between demonstrations by B. Reiner

et al. 17
2.11 Paralleling placing lead to failure of learning by B. Reiner et al. 17

3.1 An overview of this research. 19
3.2 Transform model . 21
3.3 Many to many fashion for training RNN 22
3.4 One to many fashion for training RNN. 22

4.1 Cubic block . 24
4.2 pepper robot . 25
4.3 Actuator range of the robot arm 26
4.4 Sensing range of pepper robot 27
4.5 Human demonstration . 27

3

4.6 Demonstrated trajectory . 28
4.7 Visualization of the transformed trajectory 29
4.8 Data flow of the research . 30

5.1 Error distribution evaluated by Forward Kinematics for left
robot arm. 33

5.2 Error distribution evaluated by Forward Kinematics for right
robot arm. 33

5.3 Grasping the same target with different initial joint configu-
rations . 34

5.4 Comparision between models with different training data . . . 35
5.5 Disturbition to the initial joint configurations. 35
5.6 Visualization of SVM with different hyperparameters. 36

Chapter 1

Introduction

Recent advances in robotic grasping have shown promising results. However,
to make robots see, perceive, decide, and act in a way a human or a primate
does, many challenges still need to be addressed [1]. In recent years, Learning
from Demonstration (LfD) was successfully used in the field of robotics for
applications such as playing table tennis [2], object manipulation [3], mak-
ing coffee [4], grasping novel objects [5], carrot grating [6], etc. Since robots
must operate in real environments and make decisions based on noisy sensory
information and incomplete models of the environment, deep learning meth-
ods that directly model the relationship between the available sensory input
and the desired output have become more popular [7]. In order to generate
smooth trajectories and to decrease the number of human demonstrations, a
data augmentation method was proposed to increase the training data. For
human-like dual-arm robots, it also needs to make decision for which arm
needs to be used for grasping the object. A support vector machine classifier
was implemented for the arm selection problem.

1.1 Motivations

In the real environment, robot often has the problem of in-accurate sens-
ing, in the current research, many researchers tried to avoid this problem by
carefully design the sensor’s position and orientation as well as the exper-
iment environment in order to get high quality sensing data, for instance,
researchers might mount the camera on the top of the table and perpendic-
ular to it in order to get high quality depth image, but in the case that the
depth camera is mounted on the robot and is not perpendicular to the image
plane, then robot cannot sense well.

In the context of humanoid robot grasping, accurate sensing input is es-

1

sential for successfully grasping the object. On the other hand, RGB camera
offers abundant information but without depth information and many object
detection deep learning models are also based on RGB image input to detect
the object’s location. If the height of table is fixed, that is, we add a constrain
to the environment, the robot could successfully grasp the object given the
pixel location in the RGB image by a handful of human demonstrations.

1.2 Context of the Study

In this research, a social robot named ”pepper robot” is used for testing our
system. The task is to teach pepper robot to grasp a cubic block random
placed on a workbench of fixed height. This task is divided into two sub-goals,
this first one is to reproduce the similar behavior compared with humans. The
second one is to classify which hand is needed to be used for performing this
task. This system consists several modules, in order to generate large dataset,
a transform model was derived, for generating the trajectories, recurrent
Neural Network, specifically, two Gated Recurrent Unit layers and one fully
connected layer are used, Support Vector Machine with None-Linear Kernel
was used for inferring which hand is preferred for performing the task.

1.3 Objectives and Contributions

The objective is to develop a system that can accurately judge which arm
is needed for performing the task and can generating human-like smooth
and accurate grasping behavior. In this study, the main contribution are as
follows: the first one is that a effective data augmentation method was found
to enlarge the dataset for training the neural network, this augmentation
method contributes to the robustness of the system for the initial robot arm
configurations and the better convergence of the RNN. The second one is
that the head movement was took into consideration, that is, this system is
not only based on the pixel location of the object but also consider the robot
neck angles for locating the object.

1.4 Neural Network

1.4.1 Simplest Neural Network

This simplest neural network model only contains one neuron. A neuron
(node) can be treated as a logistic unit with Sigmoid (logistic) Activation

2

Function, which outputs a computation value based on sigmoid activation
function. This neural network can be applied to logistic regression. The Fig
1.1 shown bellow illustrates the structure of this simplest neural network.
Layer 1 is called Input Layer that inputs features, the input layer embedded

Figure 1.1: Simplest Neural Network

with the input features and bias, bias a trainable parameter. last Layer is
called Output Layer that outputs the final value computed by hypothesis
hθ(x). Each arrow attached between the input layer and the neuron repre-
sents a weight. There are two operations inside the neuron, the operations
is shown bellow.

Z = θTX

hθ = σ(Z)

The first operation is inner product of the weights and input features, θ are
trained parameters, the second is non-linear activation operation, here the
activation function could be sigmoid, tanh etc. For the sigmoid function, the
formula is:

f(x) =
1

1 + e−x
(1.1)

sigmoid activation function can map the value to the range from 0 to 1, it
is commonly used in binary classification problem. For the tanh activation
function, the formula is

f(x) =
ex − e−1

ex + e−x
(1.2)

3

tanh activation function can map the value to the range from -1 to 1, also it
is commonly used as the gate activation function in gate mechanism.

1.4.2 Recurrent Neural Network

Recursive Neural Network (RNN) is an artificial neural network with tree-
like hierarchical structure and network nodes recursively input information
according to their connection order. The idea behind RNNs is to make use
of sequential information. In a traditional neural network, all inputs (and
outputs) are independent of each other is assumed. RNNs are called recurrent
because they perform the same task for every element of a sequence, with
the output being depended on the previous computations. Another way to
think about RNNs is that they have a memory which captures information
about what has been calculated so far. In theory RNNs can make use of
information in arbitrarily long sequences, but in practice they are limited to
looking back only a few steps (more on this later). The unrolled structure of
recurrent neural network are illustrated in Fig 1.2.

RNN(t-1) RNN(t) RNN(t+1)

Input

hidden state

Output

Figure 1.2: Recurrent Neural Network

Under this context, a model based on recurrent neural network is devel-
oped, that is, given the environment representation, in this case, the pixel
location of the red mark attached on the cubic block and neck angles of the
robot as well as the initial joint angles of the robot arm, this model can

4

generate a series of joint values which forms several trajectories correspond
to each joint of the robot. In the experiment, we found that the output tra-
jectories overlapped well at the previous time step but diverged at the last
several time steps. The reason is that the error amplified when propagating
to the next time step. In order to solve this problem, a one to many training
fashion was used which will be explained in the Chapter 3.

1.4.3 Long Short Term Memory

Long Short Term Memory was proposed in 1997 by Sepp Hochreiter and
Jrgen Schmidhuber[25]. Long Short Term memory (LSTM) is a variant of
the recurrent neural network (RNN). An RNN composed of LSTM units is
commonly referred to as an LSTM network (or simply LSTM). The public
LSTM unit consists of a cell, an input gate, an output gate, and a forget
gate. The cell remembers the values in any time interval and the three gates
control the flow of information into and out of the unit. Long short term
memory has been widely used in deep learning models and fieds of Natural
Language Processing, Music Generation etc.

1.4.4 Gated Recurrent Unit

Gated recurrent units (GRUs) are a gating mechanism in recurrent neural
networks, introduced in 2014 by Kyunghyun Cho et al[19]. Their perfor-
mance on polyphonic music modeling and speech signal modeling was found
to be similar to that of long short-term memory (LSTM). However, GRUs
have been shown to exhibit better performance on smaller datasets.[2] In this
research, GRU was used as the recurrent layer. Fig 1.3 shown bellow illus-
trates the structure of Gated Recurrent Unit. There are several operations
inside shown below.

zt = σ(Wzxt + Uzht−1 + bz) (1.3)

rt = σ(Wrxt + Urht−1 + br) (1.4)

ht = (1− zt)ht−1 + ztσ(Whxt + Uh(rtht−1) + bh) (1.5)

xtis the input vector, ht is the output vector, zt is the update gate vector, rt is
the reset gate vector,W,U, b are parameter matrices and vector. GRU has less
parameters needed to learn compared with Long Short Term Memory and
faster convergence during the training process under this context which had
been verified in the experiment. In this research, we use 2 Gated Recurrent
Unit and one output layer as our trajectory generator, The input is the initial

5

Figure 1.3: Gated Recurrent Unit by Kyunghyun et al

joint configurations of the experimented robot and the pixel location of the
red mark attached on the cubic block as well as the neck angles, the output
is a sequence of joint configurations for picking up the object. Considering
the neck angles can contribute to get rid of the head orientation constrains,
that is, if the neck angles were not considered, the robot must need to keep
the required head orientation to detect the cubic block, that is not natural
compared with human being.

1.4.5 Support Vector Machine

Support Vector Machine (SVM) is a supervised classification method derived
from statistical learning theory that often yields good classification results
from complex and noisy data. For humanoid robot, it is necessary to find a
solution for making decision on which hand is needed to be used for executing
the task. In this context, a support vector machine which non-linear kernel
was implemented. The input is the pixel location of the red mark attached on
the object and the neck configurations. The kernel is radial based function.
it turns out that the classifier have affordable performance when we tested
on the real robot.

6

1.5 Thesis Organization

This document will consist of five sections.
Chapter 1 - Introduction
This chapter will conclude the motivations and objective as well as all

the concept contained in this thesis.
Chapter 2 - Background
This chapter describes the related work with this thesis.
chapter 3 - Methodology
This chapter provides all of the method used in this thesis for achieve the

objective.
chapter 4 - Experiment
This chapter contains all the experiment details, which includes data

pre-processing and data generation, recurrent neural network training and
evaluation etc. and experiment results.

chapter 5 - Evaluation
This chapter contains the evaluation for the trained model, specifically,

the trajectory generator model and hand selection model.
Chapter 6 - Conclusion and Future Work This chapter will contain the

conclusion to all the work that has been done in this thesis as well as the
future work.

7

Chapter 2

Background

So far, it is generally accepted that learning a task from scratch, that is,
without any prior knowledge, is a difficult task. However, humans seldom try
to learn from scratch. They summarize strategies for dealing with learning
problems from other people’s instructions or demonstrations.

There exists numerous tasks performed by humans in the field of industry
due to the requirement of high dexterity such as force control or precise
position. The goal of Learning from Demonstrations is to transfer the skills
to robot from human which took years to master, also make the robot adapt
to the changes can be done easily. Learn from demonstration is attractive
because it bootstraps learning by starting from a good example to reduce
search space for a good solution unlike reinforcement learning which need to
carefully design the reward function and train from scratch. Learning from
demonstration offers a user friendly approach of teaching.

A major challenge in LfD is to extend these demonstrations to unseen
situations [8]. LfD is not just record and replay the demonstrated behavior
but generalize the behavior to the new scenes which have not encountered
before. The hypotheses is that human is a good example. One obvious way
to mitigate this problem is by acquiring a large number of demonstrations
covering as many situations as possible [9]. Some researchers proposed cloud
based and crowd-sourced data collection techniques [10],[11],[12] or the use
of simulation environments [13]. Another direction is to use smaller number
of demonstrations, and update the learning model for better generalization.
One possible technique is to hand-engineer task-specific features [14],[15].
[16] uses a large amount of synthesized images for training a model for po-
sition detection and transfers to the real physical environment images using
a handful of images collected in the real physical world. Our method, in
contrast to the previous approach, augments the data based on the demon-
strated data. [17] uses a recurrent model to pick and place an object in a

8

virtual environment and deals with the pick and place task both by recurrent
neural network (RNN) and reinforcement learning. [18] uses a deep spatial
auto-encoder to acquire a set of feature points that describe the environment
for the task. In our approach, we estimate the location only by the robot
head orientation and object location in an RGB image.

2.1 Demonstration Interface

Demonstration Interface plays an important role in the way of how the infor-
mation obtained and transmitted(see Fig 2.1). There are several demonstra-
tion interfaces which also affect the choice of policy derivation approaches.

Figure 2.1: Correspondence between demonstrator and imitator.

Correspondence Problem

Correspondence problems involve the identification of mappings between
teachers and learners, allowing information to be passed from one to an-
other[8]. In [8], the author defined the correspondence between the two
maps, record mapping and embodiment mapping which are shown in Figure
2.2 Record mapping refers to whether the exact state/action experienced by
the teacher during the execution of the presentation is recorded in the data

9

set. Embodiment mapping refers to whether the state/action recorded in the
data set happens to be the state/action that the learner will observe/execute.
Correspondence plays an important role in how the raw collected data trans-

Figure 2.2: Record Mapping and Embodiment Mapping by Brenna D. Argall
et al.

mit to the robot and how the robot execute the task.

2.1.1 Demonstrating behavior by using vision

The first one is to record human motions by using vision. This interface
almost applied in the context of solely in kinematics teaching. one may use
any of various motion tracking systems based on vision. Fig. 2.3 shows an
example of whole body motion tracking using visual walking done by [21].
The human body model is first used to extract the motion of the human
body from the background and then map it to the humanoid robot.

Figure 2.3: Demonstrating behaviors by using vision by Ude et al.

These external devices that track human motion return accurate mea-
surements of the angular displacement of the joint. They have been used for
a variety of Learn from Demonstration for body movements. The advantage
of this method is that they allow humans to move freely, but it needs a good
solution to the correspondence problem. Usually, this is done through a clear
mapping between human and robotic joints, but it can be very difficult if the
robot (for example, a hexapod robot) is very different from humans.

10

2.1.2 demonstrating behavior by using motion sensor

The second demonstration interface is the motion sensors [22],see Fig 2.4 Ba-
sically the human wear the motion sensors and then demonstrate the desired
behavior, at the same time all the joint values changes are recorded. One of
the benefit is that there is no correspondence problem exist, the problem is
that haptic information cannot be record, Fig 2.4 illustrates an example of
this demonstration interface.

Figure 2.4: Demonstrating behavior by using motion sensor by Calinon et
al.

11

2.1.3 Demonstrating behavior by teleoperation

For demonstrating the behavior, many researches make use of teleoperation
technique the perform the task by robot itself. In the period of teleopera-
tion, the robot is controlled by the robotic teacher when recording from robot
own sensors. In [9] the author use a Playstation Move controller to control a
non-expensive robot perform multitask, see Fig 2.5. Teleoperation provides
the most straightforward way to demonstrate the transfer of information in
learning. However, remote operation requires the operating robot to be man-
ageable, so not all systems are suitable for this technology. For example, on
systems with complex motor control for high degree of freedom manipulator.

Figure 2.5: Demonstrating behavior by using joystick by Rahmatizadeh et
al.

2.1.4 Demonstrating behavior by directly guiding robot

There is another straightforward way to demonstrate the behavior which
is directly guiding robot manually to perform the task. Under this circum-
stances, this method avoids the correspondence problem and it do not require
the demonstrator to wear the motion sensors or to use teleoperator to control
the robot. Fig 2.6 shows an example of demonstrating behaviors by directly

12

guiding robot arm, the robotic teacher demonstrate manipulation action to
the PR2 robot, he shows the action by directly guiding PR2 robots own end
effector to perform the task.

Figure 2.6: Demonstrating behaviors by directly guiding robot by Nichola
Abdo et al.

2.2 Policy Derivation

[17] used a recurrent neural network to perform the pick and place task in
the simulated environment. in simulation, the exact position and the target
is known. a picking and placing behavior generator is trained separately,
see Fig 2.7. Given the position of the target in cartesian space as well as
the initial joint value of the robot. the recurrent neural network predicts
several following states. For connecting two neighboring states, the author
used a interpolator to do interpolation between two state. This research
aims at automatically perform tasks in the field of industry. Given a Finite
State Machine, the robot learns the relationship between the joint angles and
object position to perform the task. The problem is that this model has not
pay attention to the trajectory generated.

[9] used Variational Autoencoder-Generative Adversarial Network to per-
form multi-task learning. in this research, the author tested the model on

13

Figure 2.7: Pick and Place behavior generation by using recurrent neural
network by Giovanni De Magistris et al.

an in-expensive robot to perform multiple task. Multiple task learning is
achieved by a task selector, which is a one-hot vector to encode the cate-
gory of the task. Firstly, they used a convolutional neural network to encode
the instant image to a latent vector, they used the encoded latent vector to
reconstruct the image by the Generative Adversarial Network, Generative
Adversarial Network has two part: Generator and Discriminator. Discrim-
inator is a binary classifier which classify whether the input image is the
image generated by generator or not, instead the generator networks tries
to ’cheat’ the discriminator. The controller network, however, will pay more
attention to some relative features from the image such like the pose of the
gripper and relative objects. This pattern lead to encode regularized and
useful visual feature extractor. The output of the controller network is the
joint configuration which is directly sent to the hardware controller to con-
trol the joint angle, see Fig 2.8. They had shown that reconstruction based
regularization can significantly improve generalization and robustness, while

14

training multiple tasks can increase the success rate of all tasks.

Figure 2.8: Multi-task Learning by Rahmatizadeh et al.

Dynamic Time Warping (DTW)[20] is a method to measure the similarity
between two time series. It is mainly used in the field of speech recognition
to identify whether two speeches represent the same word. In the time series,
the lengths of the two time series that need to compare similarities may not
be equal. In the field of speech recognition, the speech speeds of different
people are different. And the pronunciation of different phonemes in the same
word is different. In these complex cases, the distance (or similarity) between
two time series that cannot be effectively solved using traditional Euclidean
distances. DTW has been applied in LfD because human cannot demonstrate
a set of completely trajectories aligned due to the time, velocity, acceleration
variance along with the time. DTW calculates the similarity between two
time series by extending and shortening the time series, see Fig 2.9.

[24] proposed a simple but effective approach for solving policy deviation
problem. The idea behind this approach is to the variations and similari-
ties between demonstrations to extract what is important to imitate. For
instance, the robot performs the same task which grasp a target object in
random place and the initial joint configuration is random, under this cir-
cumstances, the demonstrated trajectories will different from each other dra-
matically but for the approached joint configuration, the position of the joint
arm should be similar when grasping the object. They call the part of tra-
jectories with low variance a constraint because of the similarity between
repeated demonstrations.(see Fig 2.10)

For the same position of the target, multiple trajectories are demonstrated

15

Figure 2.9: Dynamic Time Warping

and recorded in terms of trajectory level, then dynamic time warping is
used to align multiple trajectories, then the trajectories is transformed to
the space of the target object and the mean and deviation of the multiple
trajectories are computed. In the end, the relative object trajectories is joined
for satisfying all constraints by multiplication. The limitation, however, is
that if paralleling placing the objects during the phase of demonstration, the
resulting trajectory cannot perform the task successfully see Fig 2.11. The
other demerit is that for improving the performance of the model, human
teacher must very carefully demonstrate the behavior or increase the number
of demonstrations, instead, in this research, a transform model is proposed
to increase the dataset and can contribute to the release of human labor.

16

Figure 2.10: Variations and similarities between demonstrations by B. Reiner
et al.

Figure 2.11: Paralleling placing lead to failure of learning by B. Reiner et al.

17

Chapter 3

Proposed Model

Summary

In this study, at first, in order to avoid the correspondence problem, the
interface, which is directly guiding the robot arm to perform the task, is
choose. For obtaining a behavior pattern about grasping, we demonstrated
the behavior of grasping a cubic block multiple times for the same target by
guiding robot hand to perform this task, simultaneously we recorded the arm
joint changes in the frequency of 50 HZ, the discrete sampling joint values
form a trajectory for each joint of the robot. After obtaining the trajectories
of each joint angles changes along with time, An averaged trajectory is ob-
tained by averaging the values at the same time step for each joint of robot.
After that, only the target joint configurations for approaching to cubic block
placed in different place are demonstrated and the pixel location of the red
mark attached on the cubic block as well as the neck angles. In order to
transform the example trajectories to the new situation, a transform model,
which can transform the example trajectory to the new situation, was derived
the input of this transform model is the new initial joint configuration and
target joint configuration as well as the example trajectory, the output is a
new trajectory which satisfies two requirement, the first one is that the new
trajectory must pass through the new initial and target values, the second
one is that the new trajectory must have the same tendency compared with
the example trajectory. In order to augmenting the dataset, we randomly
set multiple initial joint configurations, that is, for one target joint config-
urations, there will be many trajectories generated. After that, we trained
a 3 layer neural network which consists of two Gated Recurrent Unit layers
and one output layer for outputting the trajectories for picking up the cubic
block, the input is the current joint angles and the pixel location as well as

18

the current neck angles. Finally a support vector machine with non-linear
kernel is used for classifying which hand is preferred for executing the task.
Fig 3.1 shows an overview of this research.

Figure 3.1: An overview of this research.

3.1 Data Collection

In the phase of data collection, there are two stages. In the first stage, demon-
strating the behavior to the robot is needed. In order to remove bias and
noise, the grasp behaviors were demonstrated multiple times given the same
target object and record all the joint values changes along with time, after
obtaining the trajectories of each joint angles changes along with time, An av-
eraged trajectory is obtained by averaging the values at the same time step for
each joint changes of robot. In the second stage a set of {Cx, Cy, Hp, Hy, JT}
are recorded, Cx, Cy refers to the pixel location of the red mark attached
on the target object, the location of the red mark is extracted by masking
the irrelevant region of the image and compute the center of the red mass.
Hp, Hy refers to the head orientations represented by two intersected joint
values, this can be differ from different robot configurations. JT refers to the
target joint configurations. a single JT have multiple {Cx, Cy, Hp, Hy} to cor-
respond. These data will be used as the labeled training data and test data
for training or evaluating the recurrent neural network and support vector
machine.

19

3.2 Data Generation

In order to release the human labor for demonstrating the behavior, a trans-
form model was proposed for transforming the approximated trajectory to
other situation. The objective of the transform model is to transform a
known trajectory to other situations given two constrains: initial and final
values of the new trajectory. the input of this transform model are a known
trajectory, which consists of a series of sampling points, and the new initial
and final values of the new trajectory, the output is a new trajectory which
satisfies the following conditions: similar shape compared with the original
trajectory; pass through the given initial and final points.There are three sit-
uations: The new trajectory shares the same initial point but different final
point; The new trajectory shares the same final point but different initial
point. Both the new initial and final points are different.we use (ji, i ∈ t) to
represent a single joint value at a certain time step. The transform equation
is shown bellow.

For the first situation, because the initial value must keep invariant after
transformation, so the formula can be derived as:

jnewi = α(ji − j1) + j1 (3.1)

we can see that if ji is j1, j
new
1 equals j1, which satisfies the conditions above.

Because the final value derived must be equal to the final value given, so the
scale α can be derived as:

α(jt − j1) + j1 = jnewt (3.2)

α =
jnewt − j1
jt − j1

(3.3)

Similarly, the second situation can be written as:

jnewi = α(ji − jt) + jt (3.4)

α =
jnew1 − jt
j1 − jt

(3.5)

jnewi is the new joint value, ji represent the approximated joint value, jt
represents the last joint value of the approximated sequence. Based on the
transform equation above, we can transform the behavior to the new situa-
tion. For training the Recurrent Neural Network, large data is required to be
generated, under this context, the initial joint configuration was change in a
certain range in order to enlarge the data set, for instance, if there were one
hundred initial joint configurations, for a single target joint configuration,
there will be one hundred trajectories generated, this idea was be applied for
data augmentation. The figure show bellow illustrates the structure of this
transform model, see Fig 3.2.

20

Figure 3.2: Transform model

3.3 Training of recurrent neural network

In this research, 2 Gated Recurrent Unit layers and one output layer was
developed as our trajectory generator, The input is the initial joint config-
urations of the experimented robot and the pixel location of the red mark
attached on the cubic block as well as the neck angles, the output is a se-
quence of joint configurations for approaching to the object. Considering the
neck angles can contribute to get rid of the head orientation constrains, that
is, if not considering the neck angles, the robot must need to keep the required
head orientation to detect the cubic block, that is not natural compared with
human being. In the experiment, we found that the output trajectories keep
same with the training label at the previous several time step but diverged at
the last time steps. The reason is that the error amplified when propagating
to the next time step. It is widely accepted that different training fashion
lead to different performance even for the same structure of the model. For
training the recurrent neural network. Under this context, there are two
ways to train the model. The first one is trained by a sequence to sequence
fashion, see Fig 3.3. The input are a series sampled value except the last one,
the output are a series sampled value except the first one. In other words, the
output shifts backward by one time step compared to the input. The second
one is trained in a one to many fashion, see Fig 3.4. The input is the first
trajectory point, the output are remained sampling points. Once fitting the
first trajectory point into the model, then the model needs to generate the
whole trajectory. During the training phase, the first one converged faster
than the second one , but in the test phase, the model trained in the first

21

fashion tends to result in non-suitable trajectories, while the model trained
in the second fashion can generate smooth as well as accurate trajectories
even though it is difficult to converge during training.

Figure 3.3: Many to many fashion for training RNN

Figure 3.4: One to many fashion for training RNN.

22

3.4 Training of Support Vector Machine

a Support Vector Machine classifier for hand selection is implemented in this
research. The input features are selected as {Cx, Cy, Hp, Hy}, and the output
is a binary signal which inferred to use the left or right arm. Radial Basis
Function kernel SVM was used given by

K
(
x(i), x(j)

)
= φ(x(i))Tφ(x(j)) = exp(−γ‖x(i) − x(j)‖2) (3.6)

where γ defines how far the influence of a single training example reaches.

23

Chapter 4

Experimentation

4.1 Physical Environment

In order to simplify the task for object localization, a black colored workbench
was made whose height is 83 centimeters from the floor. A 3.5 centimeter
cubic block (see Fig. 4.1) was used and attached a red mark on top of the
surface of the block to be the target. For convenience, 24 positions were
marked on the workbench with the same intervals of 5 centimeters.

Figure 4.1: Cubic block

In the experiment, the pepper robot (see Fig. 4.2) was used to collect the
data as well as to test the proposed recurrent model. Both the left and right
arm of pepper robot have five degree of freedom(DOF): two intersect joints
at shoulder and elbow and a single joint at the wrist joint. Also there is a
intersect joint at robot neck.

24

Figure 4.2: pepper robot

The figure (see Fig. 4.3) describes the actuator range for each of the joint,
the right arm have the symmetrical property with the left arm. There are
two cameras mounted on the robot head, one is mounted on the forehead of
the robot, the other one is mounted on the mouth, see Fig 4.4. The RGB
camera mounted on the mouth of the Pepper robot is used for recording the
instant picture.

The instant joint angles of the robot’s left or right arm are also recorded.
During the phase of collecting data, the block was placed on the workbench,
and then the robot grabs pictures with different head orientations. After
finishing taking picture and recording the head orientation, the robot’s arm
was guided by human to the desired position and recorded the joint angles
of robot’s right or left arm.(see Fig. 4.5) In this context, the joints changing
bellow the robot torso were not considered , during the phase of data collec-
tion, we keep the waist and hip joint fixed. the sampling frequency is set to
be 50 HZ, the trajectories were downsampled to the length of 25 in order to
reduce the noise and we found that downsampling the trajectory can help to
make the recurrent neural network more easier to be trained.

4.2 Data collection

Firstly, the robot and target fixed were kept fixed and demonstrated the
grasp behavior multiple times to get multiple trajectories, the trajectories
were averaged to obtain a general pattern of this behavior, the reason for
repeating the behavior multiple times is that a single trial always contains

25

Figure 4.3: Actuator range of the robot arm

bias, averaging process can remove the bias to get a more general pattern.
Finally, the transform model derived in Chapter3 was used to generalize this
pattern to other cases. The assumption is that grasp behaviors shares same
motion pattern, in order to verify this assumption, two different trajectories
were collected and repeated the behavior multiple times and averaged it for
each of them. The figures bellow illustrates the trajectory(see Fig 4.6), after
that, one of them was transformed by using the transform model and put the
original trajectory and the transformed trajectory together.(see Fig 4.7) We
can see that the transformed trajectory has the similar tendency compared
with the other trajectories.

26

Figure 4.4: Sensing range of pepper robot

Figure 4.5: Human demonstration

In this phase, 12 target joint configurations for grasping the object were
demonstrated, at the same time, instant neck angle values and the pixel
location of the red mark were also recorded. There were 49 instant picture
taken and the corresponded instant neck values. In order to enlarge the
dataset, the initial joint value was randomly set in a certain range and use

27

Figure 4.6: Demonstrated trajectory

the transform model to generate the trajectories. Finally, 150528 trajectory
sets were collected for each of the robot arm, each trajectory set contains
5 trajectories which represent the joint of the robot arm. For training the
trajectory generator, there was ninety percent of the dataset used for training,
ten percent of the dataset used for testing. For training the hand selection
model, ten-fold cross validation is used.

4.3 Recurrent Neural Network

Based on [17], initially 3 LSTM layers and 1 output layer were used as the
model of trajectory generator, each hidden layer has 40 neurons,the size of
input is 9, the size of the output is 5. Due to the range of actuator, there

28

Figure 4.7: Visualization of the transformed trajectory

are no activation function in the output layer, but the problem is that this
model needs long time to train, then the LSTM layers were replaced by
GRU layer and found that the model converged faster and have the very
same performance compared with the original model, to make the model
more efficient, wonly two Gate Recurrent Unit layers and one fully connected
layer were used. this model achieve the similar performance on the test
set. The robot controller takes {Cx, Cy, Hp, Hy, J0} as input and outputs
the whole trajectories leading to the final joint angle. During the training
phase, the first one converged faster than the second one and the loss function
also decreased to less than 10−6. But in the test phase, the model trained
in the first fashion tends to result in non-suitable trajectories, while the
model trained in the second fashion can generate smooth as well as accurate
trajectories even though it spent more time to converge. The Adam optimizer
was used for optimizing the model and learning rate was set to be 0.001, the
training process was stopped at 200 iterations.

4.4 Support Vector Machine

A Support Vector Machine was developed for hand decision problem. There
are two hyper-parameters needed to be set: C and γ, The C parameter tells
the SVM optimization how much you want to avoid misclassifying each train-
ing example. For large values of C, the optimization will choose a smaller-
margin hyperplane if that hyperplane does a better job of getting all the
training points classified correctly. Conversely, a very small value of C will
cause the optimizer to look for a larger-margin separating hyperplane, even

29

if that hyperplane mis-classifies more points. γ can be seen as the inverse
of the radius of the influence of samples selected by the model as support
vectors.

4.5 Data Flow

The flow chart shown bellow illustrate the processing for grasping the target,
see Fig 4.8.

Figure 4.8: Data flow of the research

Firstly, the location of red mark attached on the cubic block was ex-
tracted. The location of the red mark can be represented as [Cx, Cy] respec-
tive to the left top corner of the image. The resolution of the image captured
by the camera mounted on the mouth of the pepper robot is 340x420, then
[Cx, Cy] were scaled to the range of (0, 1).

ALMemory is a centralized memory used to store all key information re-
lated to the hardware configuration of the robot. More specifically, ALMem-
ory provides information about the current state of the actuators and the
sensors. The current neck angles which consist of head pitch and head yaw
angles are extracted by using ALMemory API. After that, a binary classifier,
more specifically, a support vector machine with a non-linear kernel called
radial based function is used to infer the relative position of the robot torso
and the target object, 0 refers to the left arm and 1 refers to the right arm
respectively.

30

After determining which arm need to be used for grasping the target ob-
ject, a trajectory generator, a recurrent neural network is used for generating
a series of joint values which form five trajectories corresponding to each joint
of the robot arm. The input of this model is the location of the red mark
and the current neck angles as well as the left/right arm current joint values.
the output is a matrix with the shape of 25× 5, 25 means there are 25 time
steps, for each time step, this model output a 5 dimensional vector referring
to the joint value of the robot.

The ALMotion module provides methods which facilitate making the
robot move. It contains four major groups of methods for controlling the
joint stiffness or joint position. Under this context, ALMotion module is
used for controlling in the joint space. In ALMotion, every time you call a
public method to request a motion, a motion task is created to handle the
job. During the phase of demonstrating the target joint configurations, we
set the stiffnesses of the joints of robot to be zero in order to move the arm
of the robot freely.

31

Chapter 5

Evaluation

5.1 Evaluation of trajectory generator

For the evaluation of the recurrent model for trajectroy generation, the test
set for testing trajectory generator which is the recurrent neural network
is used. first the input of the test set was fed into trajectory generator, a
sequence of joint angles are obtained, Then the forward kinematics was used
to obtain the position of end effector at the last time step output relative
to the robot torso. The Pepper robot has 5 degrees of freedom for each
arm, and the position of cubic block with respect to the robot torso was
calculated by multiplying five transformation matrix. the test labels are
also a sequence of joint values corresponding to each robot arm joint, the
target joint configuration is the last time step value of the five trajectories
corresponding to each joint, the position of end effector given the target joint
configuration can also be obtained by calculating forward kinematics. once
both of the end effector positions are calculated, one is obtained by recurrent
neural network, one is obtained by test label, the mean squared error is
computed, the result are shown in Fig 5.1 and Fig 5.2 The model is non-
sensitive to the initial joint configurations, that is because the transformed
model is used to augment the training dataset by randomly set multiple initial
joint configurations for a single target joint configurations, also large dataset
can effectively avoid the problem of overfitting. Fig 5.3 shown that even
though the initial joint configurations are different for the same target, the
trajectories of same color converged in the end. the models were compared
which are trained by different training sets: one is the augmented by the
proposed method, the other one is the origin dataset. We also use forward
kinematics to compute the hand position relative to the robot torso and then
use mean squared error to calculate the error between the taught position

32

Figure 5.1: Error distribution evaluated by Forward Kinematics for left robot
arm.

Figure 5.2: Error distribution evaluated by Forward Kinematics for right
robot arm.

and the calculated position. The result is shown in Fig. 5.4. It shows that

33

Figure 5.3: Grasping the same target with different initial joint configurations

the model trained by augmented data outperforms the model trained by
the original demonstrated data. During the data augmentation section, we
augmented the data by randomly changing the initial state within a small
range, which is 0.2 radians for each of the joint. After finishing training the
model, we random selected a test data from the test set, and generated 1,000
initial states by adding a small perturbation to each of the joint values. Then
we input these initial states to our model and pick up the final states. We
used forward kinematics to calculate the hand position relative to robot torso
and compared with the demonstrated position. We use mean squared error
to calculate the distance between them. We found that the perturbed initial
joint angles can be tolerated up to a maximum of 0.2 radians, and clearly do
not lead to the prediction error. Fig. 5.5 shows the error distribution due to
initial perturbations.

34

Figure 5.4: Comparision between models with different training data

Figure 5.5: Disturbition to the initial joint configurations.

35

5.2 Evaluation of the hand selection model

We use {Cx, Hp} as the feature for visualization. Fig. 5.6 shows that when
C equals to 100 and γ equals to 0.1, the SVM exhibit the best classification
performance on the test set. For visualizing the result, [Cx, Hp] is selected as
the features.

Figure 5.6: Visualization of SVM with different hyperparameters.

36

Chapter 6

Conclusion and Future work

6.1 Conclusion

a new grasp learning by demonstration algorithm was proposed for a dual
arm humanoid robot with joint compliance. the recurrent model can gen-
erate stable and smooth trajectories for grasping the object and this model
is robust to the changes in the initial state of robot arm joints. the neck
angle changes were also considered which make the robot behavior more
natural and enlarge the sensing range for the camera. the proposed data
augmentation method was very successful in improving the convergence of
the recurrent neural network and the smoothness of the trajectory, also the
augmentation method make the recurrent neural network avoid overfitting
which is caused by bad data or small dataset. The support vector machine
classifier with non-linear kernel was capable of deciding which arm needs to
be used for grasping based on the head orientation and object location in
RGB image features.

The proposed model has some limitations: first of all, it cannot accu-
rately generate trajectories when the object is placed on a different height
workbench. Inspired by humans, the camera was used twice to see the object
with different head orientations, that is, the input is two locations of the red
mark subject to the neck changes and the initial joint configuration as well as
the current neck angles, and then used it to train the same model with differ-
ent input sizes. The result was encouraging, but still needs to be improved.
The depth camera mounted on the robot’s right eye was also considered to
measure the distance between robot and target object, however, due to the
measurable range limitations, it cannot sometimes detect the object.

Compared with [24] which needs to demonstrate the task multiple tasks
manually, our proposed data augmentation method can reduce the human

37

labor dramatically and enlarge the dataset for training.

6.2 Future Work

In the future, the parallel camera will be considered which could infer the
depth information to sense the position of the object. the waist joint and
mobility of the robot will be took into consideration for enlarging grasping
range and capability. More complex features such as the shape of the object
or category of the object will be considered.

6.3 Acknowledgement

I would like to thank my advisor Prof. Nak Young Chong, for his kindly
guidance during the whole period of master study in JAIST. This thesis
could not be done without his insightful thinking.

I would like to thank my parents, they always support behind me and
encourage me to do my best.

I would like to thank my girl friend Lu Hanzi, she always comforts me
when I was depressed.

I also want to thank Mr. Tuyen for his kindly help during the master
study.

38

Bibliography

[1] Task-Informed Grasping (TIG) for rigid and deformable object manip-
ulation. https://www.birmingham.ac.uk/research/activity/metallurgy-
materials/robotics/workshops/task-informed-grasping-objects-
manipulation.aspx.

[2] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell and A. G. Billard.:
Learning and Reproduction of Gestures by Imitation. IEEE Robotics
and Automation Magazine, vol. 17, no. 2, pp. 44-54, June 2010.

[3] P. Pastor, H. Hoffmann, T. Asfour and S. Schaal.: Learning and gen-
eralization of motor skills by learning from demonstration. 2009 IEEE
International Conference on Robotics and Automation, Kobe, 2009, pp.
763-768. doi: 10.1109/ROBOT.2009.5152385

[4] J.Sung, S.H.Jin, and A.Saxena.: Robobarista: Object part-based trans-
fer of manipulation trajectories from crowd-sourcing in 3d point-clouds.
International Symposium on Robotics Research (ISRR),2015.

[5] M.Kopicki, R.Detry, M.Adjigble, R.Stolkin, A.Leonardis, and
J.L.Wyatt.: One-shot learning and generation of dexterous grasps for
novel objects.The International Journal of Robotics Research.vol.35,
no.8,pp.959976,2016.

[6] A. L. P. Ureche, K. Umezawa, Y. Nakamura and A. Billard.: Task
Parameterization Using Continuous Constraints Extracted From Human
Demonstrations. IEEE Transactions on Robotics, vol. 31, no. 6, pp.
1458-1471, Dec. 2015.doi: 10.1109/TRO.2015.2495003.

[7] Rok Pahic.: Deep learning in robotics.

[8] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Brown-
ing.: A survey of robot learning from demonstration. Robot. Auton.
Syst. 57, 5 (May 2009), 469-483. DOI=10.1016/j.robot.2008.10.024.
http://dx.doi.org/10.1016/j.robot.2008.10.024.

39

[9] Rahmatizadeh, Rouhollah and Abolghasemi, Pooya and Blni, Ladislau
and Levine, Sergey. (2017). Vision-Based Multi-Task Manipulation for
Inexpensive Robots Using End-To-End Learning from Demonstration.

[10] B Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg,
Cloud-based robot grasping with the Google object recognition en- gine,
in IEEE International Conference on Robotics and Automation (ICRA)
, pp. 42634270, 2013.

[11] M. Forbes, M. J.-Y. Chung, M. Cakmak, and R. P. Rao, Robot pro-
gramming by demonstration with crowdsourced action fixes, in Second
AAAI Conference on Human Computation and Crowdsourcing , 2014.

[12] C. Crick, S. Osentoski, G. Jay, and O. C. Jenkins, Human and robot
perception in large-scale learning from demonstration, in Interna- tional
conference on Human-robot interaction , pp. 339346, ACM, 2011.

[13] Z. Fang, G. Bartels, and M. Beetz, Learning models for constraint- based
motion parameterization from interactive physics-based simula- tion, in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) , pp. 40054012, 2016.

[14] S. Calinon, F. Guenter, and A. Billard, On learning, representing, and
generalizing a task in a humanoid robot, IEEE Transactions on Systems,
Man, and Cybernetics , vol. 37, no. 2, pp. 286–298, 2007.

[15] S. Calinon, F. Dhalluin, D. G. Caldwell, and A. Billard, Handling of
multiple constraints and motion alternatives in a robot programming
by demonstration framework., in IEEE International Conference on Hu-
manoid Robots (Humanoids) , pp. 582–588, Citeseer, 2009.

[16] Tadanobu Inoue , Subhajit Chaudhury , Giovanni De Magistris and
Sakyasingha Dasgupta.: Transfer learning from synthetic to real images
using variational autoencoders for robotic applications.(2017)

[17] Giovanni De Magistris, Asim Munawar, Phongtharin Vinayavekhin.:
Teaching a Robot Pick and Place Task using Recurrent Neural Network.
ViEW2016, Dec 2016, Yokohama, Japan. < hal − 01426846 >

[18] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine,
Pieter Abbeel.: Deep Spatial Autoencoders for Visuomotor Learning.
arXiv:1509.06113 (2015)

40

[19] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio.:
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling. arXiv:1412.3555(2014)

[20] Silva, D. F., Batista, G. E. A. P. A. (2015). Speeding Up All-Pairwise
Dynamic Time Warping Matrix Calculation.

[21] Ale Ude, Christopher G. Atkeson, Marcia Riley, Programming full-
body movements for humanoid robots by observation,Robotics and Au-
tonomous Systems,Volume 47, Issues 23,2004,Pages 93-108.

[22] Calinon, Sylvain, Billard, Aude. (2008). A framework integrating statis-
tical and social cues to teach a humanoid robot new skills.

[23] Nichola Abdo, Luciano Spinello, Wolfram Burgard, and Cyrill Stachniss
Inferring What to Imitate in Manipulation Actions by Using a Recom-
mender System IEEE International Conference on Robotics and Au-
tomation (ICRA), Hong Kong, China, 2014.

[24] B. Reiner, W. Ertel, H. Posenauer and M. Schneider, ”LAT: A simple
Learning from Demonstration method,” 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Chicago, IL, 2014, pp.
4436–4441.

[25] Hochreiter Sepp, Schmidhuber Jrgen. (1997). Long Short-term Memory.
Neural computation. 9. 1735-80. 10.1162/neco.1997.9.8.1735.

41

