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Abstract

A linkage is a collection of fixed-length 1D segments joined at their endpoints
to form a graph. A segment endpoint is also called a vertex. The segments
are often called links or bars, and the shared endpoints are called joints or
vertices. The bars correspond to graph edges and the joints to graph nodes.
The linkage can be distinguished according to their graph structure. The
structure may be a general graph, a tree, a single cycle, or a simple path. A
linkage whose graph is a path is called a chain, an arc, or a robot arm. In
this research, we only consider such a simple linkage whose graph is a path.

The motivation for this research stems from the application of linkage.
It is sometimes useful to view an articulated robotic manipulator as a chain
of links. The study of linkage, and more generally, mechanisms, has long
been important to engineering. The kinematics of mechanisms is often of
central concern in practical applications. Therefore, the simulation problem
by a linkage is considered in this research for a robot arm that modeled by
a linkage P and a general mechanism modeled by a graph G. The mission
is to simulate the target graph G by the given linkage P . Each vertex of the
graph G should be simulated by some vertices of the linkage P , and each
edge of the graph G should be simulated by a subpath of the linkage P . This
problem can be formalized as finding a mapping from the path P to a path
on the graph G. The decision problem asks if there is an Eulerian path of G
spanned by P . To solve this problem, the weighted Eulerian path problem
and its variants are investigated.

At first, we try to solve the weighted Eulerian path problem. This prob-
lem can be seen as the Eulerian path problem with edge weights for a given
path P and a graph G with length function. It asks us to determine if
there is an Eulerian path of G spanned by P with length consistency. This
problem is linear time solvable if the path P and the graph G consist of
unit length edges. However, the first interesting result is that the weighted
Eulerian path problem is strongly NP-hard even if edge lengths are quite re-
stricted. Precisely, the problem is strongly NP-hard even if P and G consist
of edges of lengths only 1 and 2. We reduce the 3-Partition problem to the
weighted Eulerian path problem to show the NP-hardness of this problem.
The 3-Partition problem is a well-known NP-complete problem. Therefore,
the weighted Eulerian path problem is tackled in two different ways, and two
different simulation problems are considered: the elastic linkage problem and
the traverse problem of a tree by a path.



The first problem is the elastic linkage problem, and this is an optimiza-
tion version of the weighted Eulerian path problem. In weighted Eulerian
path problem, the path P can only cover an edge of the graph G once, and
the edge lengths of the path P are all fixed, and they cannot be changed.
However, in this variant, we change the second condition. All edges in P are
allowed to be elastic to simulate the target graph G by the path P , that is,
we can stretch or shrink the edges in the elastic linkage P . This situation
is natural not only in the context of the robot arm simulation but also in
the approximation algorithm. So far, we only consider the elastic linkage
problem for two paths P and G, and we use the elastic linkage P to simulate
the target path G. Firstly, the elastic ratio of edges and mappings in the
simulation process are defined. The elastic ratio of edges is always greater
than or equal to 1, that is, the elastic ratio is the change factor of the edge in
the path P , and the elastic ratio of the mapping is defined by the maximum
elastic ratio of all edges in the path P . The objective of the elastic linkage
problem is to minimize the elastic ratio of the mapping from the path P to
the path G for given P and G. We start from a simple case which the path
G consists of only one edge. In this case, we prove that the minimum elastic
ratio is achieved when all ratios of edges in path P take the same value, after
that, we prove that the elastic linkage problem can be solved in polynomial
time by dynamic programming.

The second problem is the traverse problem of a tree by a path. In
weighted Eulerian path problem, P can only cover an edge of G once, and
the edge lengths of the path P are all fixed. In this variant, we change the
first condition. The path P is allowed to cover an edge of the graph G twice
or more, but we do not allow edges in the path P to be changed. In this
situation, the path P can simulate the graph G even if G does not have an
Eulerian path. In this case, we do not allow the path P to be elastic, or its
ratio is fixed to 1. Firstly, the general simulation problem is proved to be
weakly NP-complete even if G is an edge. It is similar to the ruler folding
problem, which is weakly NP-complete. We can reduce the ruler folding
problem to the general simulation problem by just letting G be an edge of
length L. Thus, we consider more restricted cases. From the viewpoint of
graph theory, it is natural to consider the case that G is a tree. For a given
tree G and a path P with edge lengths, the traverse problem asks if G has
a trail by P such that each edge of G is traversed exactly twice. When G
is a tree, the problem is in a simple form, and P simulates G by traversing
each edge twice in the unique spanning tree of G or G itself. However, this
problem is still strongly NP-complete even in quite restricted cases; (1) G is
a star, and P consists of edges of only two different lengths, and (2) G is a
spider, and all edges in G and P are of length p and q, where p and q are any
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two positive integers that are relatively prime, or p = 1 and q = 2. We also
reduce the 3-Partition problem to the traverse problem of a tree by a path to
show the NP-hardness of these restricted cases. On the other hand, when G
is a star and its edge lengths are of k different values, we prove that the tree
traverse problem can be solved in polynomial time by dynamic programming
when k is constant.
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Chapter 1

Introduction

In this chapter, we will introduce the background of the linkage simulation
problem and the motivation for this research topic. We will also give the
preliminaries to this research problem.

1.1 Background
Linkages are mechanisms composed of stiff, rigid chains, which are jointed
at freely rotating joints. The Figure 1.1 shows a desk-lamp linkage, and the
linkage flexs at the circled joints.

A linkage is a collection of fixed-length 1D segments joined at their end-
points to form a graph. The segments are often called links, and the shared
endpoints are called joints or vertices. The bars correspond to graph edges
and the joints to graph nodes[1].

The linkages can be distinguished according to their graph structure. The
structure may be a general graph, a tree, a single cycle, or a simple path. A
linkage whose graph is a path is called a chain, an arc, or a robot arm[1].

The table 1.1 shows the classification parameters for 1D linkage problems.

1.2 Motivation
The motivation for this research stems from the application of linkage. It
is sometimes useful to view an articulated robotic manipulator as a chain
of links. The study of linkage, and more generally, mechanisms, has long
been important to engineering. The kinematics of mechanisms is often of
central concern in practical applications. Therefore, the simulation problem
by linkage is considered, and it also has the potential for protein folding
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Figure 1.1: A linkage.The linkage flexes at the circled joints; the two left
most joints are pinned to the plane. The shaded lamp structure is rigid

Focus Parameter Values
Linkage Graph structure General, tree, polygon, chain

Intersection constraints None, obstacles, simple
Dimension 2D, 3D, 4D, kD

Problem Geometric issue Reconfiguration, reachability, locked
Answer desired Decision, path planning

Complexity measure Combinational, computational bounds

Table 1.1: Classification parameters for 1D linkage problems
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problems. A protein is composed of a chain of amino acid and residues joined
by peptide bonds. It can be modeled for many purposes as a polygonal chain
representing the protein’s “backbone”, with three atom vertices per residue
and adjacent atoms connected by bond links. The linkage simulation is
possible to be used to explore the research direction of protein folding on
geometry.

1.3 Preliminaries
Linkages are useful models for robot arms: a robot arm is a type of pro-
grammable mechanical arms, which can be modeled by a linkage. As we
mentioned before, the linkage is a collection of fixed-length 1D segments
joined at their endpoints forming a graph. In this research, we only consider
simple linkages, that is, a linkage is a path P = (v1, v2, . . . , vn) with length
function ℓ : E → R, where vi is an endpoint, ei = {vi, vi+1} is an edge in
E = {{vi, vi+1} | 1 ≤ i ≤ n − 1}, and its length is given by ℓ(ei). Now we
consider the following situation (Figure 1.2). You are given a general target
mechanism which is modeled by a graph G = (V ′, E ′), and a robot arm mod-
eled by a linkage P = (V,E) as above with length function ℓ : E ∪ E ′ → R.
Our mission is to simulate the target graph G by the given linkage P . The
joints in P are programmable, and each joint (or vertex) of G should be
simulated by a joint of P . However, we can also put the joints of P on
some internal points of edges of G because they can be fixed. Therefore, our
problem can be formalized as finding the following mapping ϕ from P to G:

• Each vertex of G should be mapped from some vertices of P ;

• Each edge of G should be mapped from a subpath of P by ϕ;

• Each edge of P should be mapped to an edge of G, which may span
from one internal point to another on the edge.

The decision problem asks if there exists a mapping ϕ from P to G. That
is, it asks if there is an Eulerian path of G spanned by P such that (1) when
P visits a vertex in G, a vertex of P should be put on it, and (2) some
vertices in P can be put on internal points of edges of G. When all edges in
P and G have the same length, it is easy to solve that in linear time since
the problem is the ordinary Eulerian path problem. In the context of formal
languages, there are some variants of the Eulerian path problem with some
constraints (see [2] for a comprehensive survey). However, so far, in the robot
arm simulation problem, our variant of the Eulerian path problem has not
been investigated, while the situation is quite natural.
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Figure 1.2: A simple example. A robot arm modeled by P can simulate a
given mechanism modeled by the graph G as shown in the figure. When P
simulates G, each circled joint is fixed, and two joints of the robot arm on
the same vertex of G move with synchronization.

We only consider a simple undirected graph G = (V,E). A path P =
(v1, v2, . . . , vn) consists of n vertices with n − 1 edges ei joining vi and vi+1

for each i = 1, . . . , n − 1. The vertices v1 and vn of the path are called
endpoints. Let Kn,m denote a complete bipartite graph G = (X,Y,E) such
that |X| = n, |Y | = m, and every pair of a vertex in X and a vertex in
Y is joined by an edge. A graph G = (V,E) is a tree if it is connected and
acyclic. Here a graph G is a star if and only if it is a complete bipartite graph
K1,n−1, and a graph G is a spider if and only if G is a tree that has only one
vertex of degree greater than 2. In a star or a spider, the unique vertex of
degree greater than or equal to 3 is called center. Without loss of generality,
we assume that a star or a spider always has the center. Let G = (V ′, E ′)
and P = (V,E) be a graph and a path (v1, v2, . . . , vn). Let ℓ : E ′ ∪ E → R
be an edge-length function of them. We say the linkage P can simulate the
mechanism G if each edge in G is spanned by at least one subpath of P , and
no subpath of P properly joins two non-adjacent vertices in G. We formalize
the notion of simulation by a mapping ϕ that maps each vertex V in P to
a point in G as follows. For any edge e = {u, v} ∈ E ′, we consider e a line
segment (u, v) of length ℓ(e). Then the intermediate point p at distance tℓ(e)
from u is denoted by p = tv + (1 − t)u, where 0 < t < 1. We note that the
endpoints of an edge e are not considered intermediate points of e. Now we
first define a set of points in G by V ′ and all intermediate points on edges of
E ′. Then we define a mapping ϕ from V to points of G as follows. To make it
clear, we first divide V in P into two subsets Ve and Vi such that each vertex
in Ve is mapped to a vertex in V ′, and each vertex in Vi is mapped to an
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intermediate point of G. In our problems, we assume that ϕ(v0) and ϕ(vn)
should be in Ve. That is, P should start and end at vertices in G. Depending
on the restrictions, we consider some different simulation problems and get
some interesting results.

The first interesting result is that this problem is strongly NP-hard even if
edge lengths are quite restricted. Precisely, the problem is strongly NP-hard
even if P and G consist of edges of lengths only 1 and 2 (Theorem 1). We
remind that if they consist of unit length edges, the problem is linear time
solvable. We thus tackle this problem in two different ways.

The first problem is an optimization version of this problem. In this
variant, we consider a linkage is elastic, that is, the length of one line segment
is not fixed and can be changed a little bit. This situation is natural not only
in the context of the robot arm simulation but also in the approximation
algorithm. Formally, we allow the edges in P to be elastic to fit the vertices
of P to ones of G. Our goal is to minimize the stretch/shrink ratio of each
edge of P . We show that when G is a path, this can be solved in polynomial
time by dynamic programming.

In the second way, we allow P to cover an edge of G twice or more. In
this situation, we can simulate G by P even if G does not have an Eulerian
path. In this case, we do not allow P to be elastic, or its ratio is fixed to
1. We first show that the problem is weakly NP-hard even if G is an edge
(Theorem 3). In fact, this problem is similar to the ruler folding problem
(see, e.g., [3, 1]). From the viewpoint of a simulation of G by P , we can
take the following strategy in general. For a given G, first make a spanning
tree T of G, and traverse T in the depth first manner. It is easy to see that
this strategy works for any connected graph G even if G does not have an
Eulerian path and the trail of the traverse of T gives us a way of simulation
of G by P in a sense. In this paper, we focus on the case that the graph
G is a tree. Precisely, we consider the following problem: For a given tree
G and a path P (with edge lengths), the traverse problem asks if G has a
trail by P such that each edge of G is traversed exactly twice. (We note that
trees form a representative class of graphs that have no Eulerian paths.) We
first mention that this problem is quite easy when each edge has unit length.
The answer is yes if and only if G = (V,E) is connected and P contains 2|E|
edges. When G is connected, P can traverse every edge twice in the way of
depth first search. This idea brought us a natural restriction that asks if P
can cover G by traversing edges of G exactly twice. This idea comes from
the depth first search naturally. That is, even if G has no Eulerian path and
hence P cannot simulate G properly, we can find the feasible way to simulate
G by P in this way. First make a spanning tree T of G and traverse T by
P so that each edge of T is spanned twice by two subpaths of P . From the
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practical viewpoint, it seems to be reasonable when we simulate a mechanism
by a robot arm. From the viewpoint of graph theory, it is natural to consider
the case that G is a tree. When G is a tree, the problem is in a simple form;
P simulates G by traversing each edge twice in the unique spanning tree of
G or G itself. However, this problem is still strongly NP-hard even in quite
restricted cases; (1) G is a star, and P consists of edges of only two different
lengths, and (2) G is a spider, and all edges are of two different lengths. On
the other hand, the problem is polynomial time solvable when G is a star
and its edge lengths are of k different values.

In this research problem, we will often use the following problem to show
the hardness of our problems.

3-Partition Problem

Input: An integer B and a multiset A of 3m integers A = {a1, a2, . . . , a3m}
with B/4 < ai < B/2 for each i = 1, 2, . . . , 3m.

Output: Determine if A can be partitioned into m multisets S1, S2, . . . , Sm

such that
∑

aj∈Si
aj = B for every i.

Without loss of generality, we can assume that
∑

ai∈A ai = mB, and |Si| = 3.
It is well known that the 3-Partition problem is strongly NP-complete [1].
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Chapter 2

Weighted Eulerian path
problem

In this chapter, we introduce the weighted Eulerian path problem.

2.1 Description
We consider the mapping ϕ from Ve to V ′ that satisfies some conditions
as follows; (1) for every v′ ∈ V ′, there is at least one vertex v ∈ Ve with
ϕ(v) = v′; (2) for each edge e′ = {v′, u′} ∈ E ′, there is a pair of vertices vi
and vj in Ve such that (2a) ℓ(e′) =

∑j−1
k=i ℓ(ek), and (2b) there is no other

vertex vk is in Ve between vi and vj. Intuitively, each edge e′ in G corresponds
to a subpath in P , and vice versa. In other words, some vertices in P are
mapped to some intermediate points in G, and the corresponding joints of the
robot arm are fixed when the robot arm P simulates the target mechanism
G. We note that by the length condition (2a), we can assume that when
the subpath (vi, . . . , vj) in P simulates an edge e = {ϕ(vi), ϕ(vj)}, it is not
allowed to span it in a zig-zag way. We also add one condition: (3) for each
edge (vk, vk+1) in P , {ϕ(vk), ϕ(vk+1)} should be on an edge e in G. That
is, there is a subpath (vi, . . . , vk, vk+1, . . . , vj) with i ≤ k < k + 1 ≤ j such
that (3a) e = {ϕ(vi), ϕ(vj)} and ϕ(vk) is on an intermediate point on e for
each i < k < j. In other words, all edges in P are used for spanning some
edges in G, and there is no other subpath in P joining two endpoints in G
by the length condition (2a). Then we say that the linkage P can simulate
the mechanism G if there is a mapping ϕ satisfying the conditions (1), (2),
and (3). This problem can be seen as the Eulerian path problem with edge
weights.
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Figure 2.1: Construction of P and G; bold lines are of length 2, and thin
lines are of length 1. Each Pi+1 consists of i edges and each Ci consists of i
edges.

2.2 Computational complexity of weighted Eu-
lerian path problem

We show that the weighted Eulerian path problem is strongly NP-hard even
if edge lengths are quite restricted.

Theorem 1. Let P,G, ℓ be a path, an undirected graph, and a length function,
respectively. Then the weighted Eulerian path problem is strongly NP-hard
even if ℓ(e) is either 1 or 2 for any e in P and G.

Proof. It is easy to see that the problem is in NP. Therefore we show the
hardness. We reduce the 3-Partition problem to the weighted Eulerian path
problem.

Let PB+1 be a path that consists of B consecutive edges of length 2, and P4

be a path that consists of 3 consecutive edges of length 1. Then the path P is
obtained by joining m subpaths PB+1 and m subpaths P4 alternatingly, that
is, P is constructed by joining PB+1, P4, PB+1, P4, . . . , P4, PB+1, and P4. The
graph G is constructed as follows. For each i with 1 ≤ i ≤ 3m, we construct
a cycle Cai of ai edges of length 2. We also construct m cycles C3 of 3 edges of
length 1. Then these 4m cycles share a special vertex c in common. That is,
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G is a cactus that consists of 4m cycles, and all vertices have degree 2 except
the common vertex c that has degree 8m. The construction is illustrated in
Figure 2.1.

It is easy to see that this is a polynomial-time reduction. Thus, we show
that A has a solution if and only if P can simulate G. that is, P can cover
G along an Eulerian path in G with satisfying the condition of the linkage
simulation. We first observe that no edge of length 2 in PB+1 in P can cover
a cycle C3 in G. Therefore, when P covers G, every C3 of G has to be covered
by P4 in P . Thus, each endpoint of P4 should be on c in G, and no edge in
PB+1 can cover edges in C3. Hence, each subpath PB+1 in P covers exactly
B edges in the set of cycles Cai that consists of edges of length 2. Since
B/4 < ai < B/2 for each i, each subpath PB+1 covers exactly three cycles
Cai , Caj and Cak for some i, j, k with ai + aj + ak = B. Clearly, each cover
for a subpath PB+1 gives a subset of A, and the collection of these subsets
gives us a solution to the 3-Partition problem and vice versa.

9



Chapter 3

Elastic linkage problem

In the last chapter, we prove that the weighted Eulerian path problem is
strongly NP-hard even if P and G consist of edges of lengths only 1 and 2,
so we change some conditions and tackle this problem in two different ways.

In this Chapter, we consider the first version of the weighted Eulerian
path problem, this is an optimization version of the weighted Eulerian path
problem: the elastic linkage problem. In this problem, we allow all edges
in P to be elastic to simulate the path G by the path P . The elastic ratio
of an edge e is defined by max {l′/l, l/l′}, where l is the length of the edge
e = {u, v} in P and l′ is the length of the edge {ϕ(u), ϕ(v)} in G. (Intuitively,
the length of edge e is changed from l on P to l′ on G.) For a given graph
G = (V ′, E ′) and a path P = (V,E), it is easy to observe that P can simulate
G (with elastic edges) if and only if G has an Eulerian path and |V ′| ≤ |V |.
When G has an Eulerian path by P with elastic edges, the elastic ratio of
the mapping is defined by the maximum elastic ratio of all edges in P . Then
the elastic linkage problem asks to minimize the elastic ratio of the mapping
from P to G for given G and P .

Elastic linkage problem from path to path

Input: Two paths G = (V ′, E ′) and P = (V,E) with length function ℓ.

Output: a mapping ϕ with minimum elastic (or stretch/shrink) ratio.

3.1 Elastic ratio
In this problem, we allow all edges in P to be elastic to simulate the path
G by the path P . We can stretch or shrink each edge in P , thus, we define
the elastic ratio for edges in P and mappings from path P to path G. The
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Figure 3.1: A path P and a path G, path P is an elastic linkage, edges in P
are allowed to be elastic to fit the vertices of P to ones of G

objective of the elastic linkage problem is to minimize the elastic ratios of
mappings from path P to path G for given G and P .

At first, we define the ratio of each segment in the elastic linkage P . The
ratio of an edge e is defined by l′/l, where l is the length of the edge e = {u, v}
in P and l′ is the length of the edge {ϕ(u), ϕ(v)} in G. That is, the length
of edge e is changed from lon P to l′ on G.

The elastic ratio of an edge e in path P is defined by max {r, 1/r}, where
r is the ratio of the edge e in P , thus the elastic ratio is always greater than
or equal to 1, that is, the elastic ratio is the change factor of an edge in the
path P .

Let G is a path (u1, u2, . . . , um) and P is a path (v1, v2, . . . , vn), see Fig-
ure 3.1.

Without loss of generality, we assume that m ≤ n. Since each vertex in
G should be mapped from only one vertex in P , it should be ϕ(v1) = u1 and
ϕ(vn) = un′ , otherwise the elastic ratio will be infinity.

The elastic ratio of a mapping from P to G is the maximum among elastic
ratios of all edges in P . The elastic ratio of mappings can be minimized in
polynomial time, we show a polynomial-time algorithm for this elastic linkage
problem based on dynamic programming.

3.2 Elastic ratio of a mapping from path to
edge

At first, we consider that the path G consists of only one edge. We show a
technical lemma when G is just an edge. In this case, the optimal value is
achieved when all ratios are even.

11



Lemma 1. Assume that G consists of an edge e = (u1, u2). When P = (V,E)
is a path, the minimum elastic ratio is achieved when the ratio of each e ∈ E
takes the same value.

Proof. Assume that the length of the edge e = (u1, u2) in G is L, E =
{e1, e2, . . . , en−1}, and the length of each ei is li. For a mapping ϕ, let ri be
the ratio of the edge ei for each i = 1, 2, . . . , n−1. Then we have r1l1+r2l2+
· · ·+ rn−1ln−1 = L.

Assume the maximum among ri for all 1 ≤ i ≤ n − 1 is rk, and the
minimum among ri for all 1 ≤ i ≤ n − 1 is rh. Thus, it is obvious that
rk ≥ L/(l1 + l2 + · · ·+ ln−1), 1/rh ≥ (l1 + l2 + · · ·+ ln−1)/L.

According to the definition, the elastic ratio er of this mapping is the
maximum among ri and its reciprocal for all 1 ≤ i ≤ n − 1. That is, er
equals the larger of rk and 1/rh.

When r1 = r2 = · · · = rn−1, max{rk, 1/rh} takes the minimum. That
means the minimum elastic ratio can be achieved if and only if the ratio of
each e ∈ E takes the same value.

Now we turn to the main theorem.

3.3 Minimal elastic ratio from path to path
Theorem 2. We can solve the elastic linkage problem from path to path in
O(n3) time.

Proof. We assume path P = (v1, v2, . . . , vn), the length of each edge {vi, vi+1}
is li, path G = (u1, u2, . . . , un′), the length of each edge {uj, uj+1} is wj, and
n ≥ n′ ≥ 2.

We define two functions as follows for i > i′ ≥ j:

dist(vi′ , vi) = li′ + li′+1 + · · ·+ li−1, and

Ser(vi′ , vi, wj) = max

{
wj

dist(vi′ , vi)
,
dist(vi′ , vi)

wj

}
.

That is, dist(vi′ , vi) is the length of the path (v′i, . . . , vi), and Ser(vi′ , vi, wj) is
the minimum elastic ratio of all edges in the subpath P ′ = (vi′ , vi′+1, . . . , vi)
of P that covers the edge {uj, uj+1}. We first precompute these functions
as tables which will be referred in our polynomial-time algorithm. The com-
putation of the corresponding table Ser[(vi′ , vi), wj] can be done as follows:
(1) for each (vi′ , vi) with i′ < i, compute dist(vi′ , vi) and fill in the table
dist[vi′ , vi], (2) for each j = 0, 1, . . . , n′, compute Ser(vi′ , vi, wj) and fill in
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Figure 3.2: We consider to use the subpath P ′ = (v1, v2, . . . , vi) of path P to
simulate the subpath G′ = (u1, u2, . . . , uj) of path G, and we have ϕ(v1) = u1,
ϕ(vi) = uj

Figure 3.3: We consider to use the subpath P ′ = (v1, v2, . . . , vi) of path P
to simulate the subpath G′ = (u1, u2, . . . , um−1) of path G, and we have
ϕ(v1) = u1, ϕ(vi) = um−1

the table Ser[(vi′ , vi), wj]. In (1), each dist(vi′ , vi) can be computed in a con-
stant time by using dist(vi′ , vi) = dist(vi′ , vi−1) + ℓ(ei−1) when we compute
the values of this table in the order of (i−i′) = 1, 2, 3, . . . . On the other hand,
in (2), each Ser(vi′ , vi, wj) can be computed in a constant time. Therefore,
the precomputation can be done in O(n3) time in total.

To solve the elastic linkage problem efficiently, we define two more func-
tions ER(vi, uj) and M(vi, uj) as follows. First, ER(vi, uj) is the minimum
elastic ratio of the mappings from the subpath P ′ = (v1, v2, . . . , vi) of P to
the subpath G′ = (u1, u2, . . . , uj) of G, see Figure 3.2, Figure 3.3

13



Then we have the following:

ER(vi, uj)

=

{
Ser(v1, vi, w1) when j = 2
minj−1≤k≤i−1{max{ER(vk, uj−1), Ser(vk, vi, wj−1)}} when j > 2

Our goal is to obtain the mapping from P to G with elastic ratio ER(vn, un′).
Next, M(vi, uj) is a sequence of j vertices of path P that represents the

mapping with minimum elastic ratio from the subpath P ′ to the subpath
G′. The first and last vertices in M(vi, uj) are v1 and vi. Then we have the
following:

M(vi, uj) =

{
(v1, vi) when j = 2
(M(vτ , uj−1), vi) when j > 2,

where τ is determined by the following equation;

ER(vi, uj) = max{ER(vτ , uj−1), Ser(vτ , vi, wj−1)}.

Then our goal is to obtain M(vn, um). The ER(vn, um) and M(vn, um)
can be obtained simultaneously by the dynamic programming technique. In
the tables of ER(vn, um) and M(vn, um), ER(vn, um) and M(vn, um) are
easy to get if the values in the (m − 2)-nd row are available. The ta-
ble ER(vn, um) is filled from j = 2, that is, for each vi = v1, v2, . . . , vn,
ER(vi, u1) = Ser(v1, vi, w1) has already been computed, and accordingly,
the first row of table M(vn, um) is M(vi, u1) = (v1, vi). After filling in the
first row of the tables, it is easy to get the values in the second row, the third
row, up to the (m − 2)-nd row and finally get ER(vn, um) and M(vn, um).
Each element of the table ER(vn, um) can be computed in O(n) time, and
each element of the table M(vn, um) can be computed in constant time.
Therefore, the computation of ER(vn, um) and M(vn, um) can be done in
O(n3) time, and the precompution also can be done in O(n3) time. Thus,
the algorithm runs in O(n3) time, which means the elastic linkage problem
can be solved in polynomial time.
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Chapter 4

Traverse problem of a tree by a
path

In this chapter, we focus on the traverse problem of G by P . This is another
variant of the weighted Eulerian path problem. In this variant, we allow P
to cover an edge of G twice which means we allow the mapping to map two
subpaths of P to an edge of G, however, we do not allow P to be elastic, or
its ratio is fixed to 1. For a given graph G = (V ′, E ′) and a path P = (V,E),
when all edges have a unit length, it is easy to observe that P can simulate
G in this manner if and only if G is connected and 2|E| = |E ′|. We first
perform the depth first search on G, and traverse this search tree. We also
consider its edge-weighted version as the traverse problem for a graph G and
a path P .

4.1 General cover problem
Before the traverse problem, we consider the more general case that allows
P to cover an edge of G twice or more. This general simulation problem is
similar to the following ruler folding problem:

Ruler Folding: Given a polygonal chain with links of integer length ℓ1, . . . , ℓn−1

and an integer L, can the chain be folded flat(reconfigured so that each
joint angle is either 0 or π), so that its total folded length is L?

The details of this problem and related results can be found in [3]. In our
context, we have the following theorem:

Theorem 3. The general simulation problem of G by P is NP-complete even
if G is an edge.
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Proof. We can reduce the ruler folding problem to our problem by just letting
G be an edge of length L.

We note that the ruler folding problem is weakly NP-complete, and we
have a simple pseudo-polynomial-time algorithm that runs in O(nL) time as
follows;

Input: Set of integers S = {ℓ1, . . . , ℓn−1} and an integer L
Output: Determine if there is I ⊆ {1, . . . , n− 1} with

∑
i∈I ℓi == L

begin
Initialize array a[0], . . . , a[L] by 0;
Set a[0] = 1;
foreach i = 1, . . . , n− 1 do

foreach j = 0, . . . , L do
if a[j] == 1 and j + ℓi ≤ L then a[j + ℓi] = 1;

end
end
if a[L] == 1 then output “Yes”;
else output “No”;

end

4.2 Tree traversal problem
4.2.1 NP-completeness results
Now we turn to the traverse problem. Even if a connected graph G has no
Eulerian path, when we allow to visit each edge in G twice, we can visit
all vertices of G by a path in the depth first search manner. Therefore, we
consider the following traversal problem as a kind of the robot arm simulation
problem:

Input: A path P = (V,E) that forms a path (v1, v2, . . . , vn), and a graph
G = (V ′, E ′) with length function ℓ : E ∪ E ′ → R.

Output: A mapping ϕ from P to G such that each edge in G is mapped
from exactly two subpaths of P , or “No” if it does not exist.

We first observe that it is linear time solvable when each edge has the unit
length just by depth first search. Therefore, it is an interesting question
that asks the computational complexity when ℓ maps to few distinct values,
especially, ℓ maps to two distinct values.

We give three hardness results about the traversal problem even if the
graph G is a simple tree T and the edge lengths are quite restricted.
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Figure 4.1: Reduction to K1,4m+1 and a path P .

Theorem 4. The traversal problem of a tree T by a path P is strongly NP-
complete in each of the following cases: (1) T is a star K1,n−1, and P consists
of edges of two different lengths. (2) T is a spider, and all edges in G and P
are of length p and q, where (2a) p and q are any two positive integers that
are relatively prime, or (2b) p = 1 and q = 2.

Proof. Since it is clear that each of the problems is in NP, we show their
hardness. We will give polynomial-time reductions from the 3-Partition to
our problems.
(1) T is a star K1,4m+1. Among 4m+1 edges, the length of m+1 edges is B,
and the other 3m edges have length ai for each i = 1, 2, . . . , 3m (Figure 4.1).
The construction of P is as follows. Let P ′ be a path that consists of 2B
edges of length 1, and P ′′ be a path that consists of 2 edges of length B. Then
the path P is obtained by joining m+1 subpaths P ′′ and m subpaths P ′ al-
ternatingly, that is, P is constructed by joining P ′′, P ′, P ′′, P ′, P ′′, . . . , P ′, P ′′

as shown in Figure 4.1.
The construction is done in polynomial time. Thus, we show that the 3-

Partition problem has a solution if and only if the constructed cover problem
has a solution. We first observe that P ′′ cannot cover any short edge of length
ai in T . Therefore, each P ′′ should cover each edge of length B in T twice.
Hence all of the endpoints of P ′′s (and hence P ′) are on the central vertex of
T . Therefore, if P can cover T properly, it is easy to see that each P ′ should
cover three edges of length ai, aj, and ak with ai+aj +ak = B exactly twice.
This concludes the proof of (1).
(2a) This reduction is similar to (1). Let P ′ be a path that consists of 2B
edges of length p, and P ′′ be a path that consists of 2 edges of length q. Then
the path P is obtained by joining m + 1 subpaths P ′′ and m subpaths P ′

alternatingly. On the other hand, the spider T is obtained by sharing the
central vertex of 4m + 1 subpaths (Figure 4.2). Among 4m + 1 subpaths,
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Figure 4.2: Reduction to spider of two different lengths.

m + 1 paths are just edges of length q. The other 3m subpaths are of ai
edges for each 1 ≤ i ≤ 3m, and each edge has length p. Since p and q are
relatively prime, P ′′ cannot cover each of the edges of length p. Therefore,
their endpoints (and the endpoints of P ′) share the central vertex of T . Thus,
each P ′ gives us the solution of the 3-Partition as in (1), which completes
the proof of (2a).
(2b) The reduction itself is the same as (2a) except p = 1 and q = 2. In
this case, we observe that no edge of length 1 can be covered by any edge
of length 2 in P ′′. Therefore, each edge of P ′′ of length 2 should cover the
edges of T of length 2. Thus, each P ′ gives us the solution of the 3-Partition
as in (2a), which completes the proof of (2b).

4.2.2 polynomial time solvable case
In Theorem 4, we show that the traversal problem of a tree by a path is NP-
hard even if we strictly restrict ourselves. Now we turn to show a polynomial-
time algorithm for the case that we furthermore restrict. The Figure 4.3
shows the constructions of path P and tree T in this case, T is a star and its
edge lengths are of k different values.

Theorem 5. Let T be a star K1,n′ and the number of distinct lengths of its
edges is k. Let P be any path of length n. Without loss of generality, we
suppose 2n′ ≤ n. Then the traversal problem of T by P can be solved in
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Figure 4.3: Reduction to star T with k different edge lengths and a path P

O(nk+1) time and O(nk) space. That is, it is polynomial time solvable when
k is a constant.

Proof. We suppose that each edge of T has a length in L = {ℓ1, ℓ2, . . . , ℓk},
and T contains Li edges of length ℓi for each i. For a vertex vi in P and
length ℓj in L, we define a function pre(vi, ℓj) as follows;

pre(vi, ℓj)

=

{
vk there is a vertex vk with k < i on P s. t. ℓ(ek) + · · ·+ ℓ(ei) = ℓj,
ϕ otherwise.

We first precompute this function as a table which will be referred to in
our polynomial-time algorithm. To distinguish the function pre(vi, ℓj), we
refer to this table as pre[vi, ℓj] which uses O(nk) space. The computation of
pre[] can be done as follows; (0) initialize pre[] by ϕ in O(nk) time, (1) sort
L in O(k log k) time, and (2) for each i = 1, 2, . . . , n and j = 1, 2, . . . , k −
1, the vertex vi fills the table pre[vi′ , ℓj] = vi. In (2), the vertex vi can
fill pre[vi′ , ℓj] = vi in O(n + k) time. Therefore, the precomputing takes
O(n(n+ k) + k log k) time in O(nk) space.

Now we turn to the computation for the traversal problem. To do that, we
define a predicate F (d1, d2, . . . , dk, vi) which is defined as follows: When there
is a cover of a subtree T ′ of T that consists of d1 edges of length ℓ1, d2 edges
of length ℓ2, . . ., and dk edges of length ℓk by the subpath P ′ = (v1, v2, . . . , vi)
when v1 and vi are put on the center of T , F (d1, d2, . . . , dk, vi) is true, and false
otherwise. (For notational convenience, we define that F (d1, d2, . . . , dk, ϕ) is
always false.) Thus, our goal is to determine if F (L1, L2, . . . , Lk, vn) is true
or false. The predicate F (d1, d2, . . . , dk, vi) is determined by the following
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Figure 4.4: For each edge in T , find a subpath of P which covers this edge
exactly twice

recursion;

F (d1, d2, . . . , dk, vi)

=
∨

1≤j≤k

((pre(vi, ℓj) ̸= ϕ) ∧ F (d1, . . . , dj − 2, . . . , dk, pre(pre(vi, ℓj), ℓj))).

That is, for the vertex vi, we have to have two vertices vi′ = pre(vi, ℓj)
and vi′′ = pre(pre(vi, ℓj), ℓj) such that ℓ(ei′) + ℓ(ei′+1) + · · · + ℓ(ei) = ℓj and
ℓ(ei′′)+ℓ(ei′′+1)+ · · ·+ℓ(ei′) = ℓj for some j with 1 ≤ j ≤ k. The correctness
of this recursion is trivial. This idea is shown in Figure 4.4.

The predicate F (L1, L2, . . . , Lk, vn) is computed by a dynamic program-
ming technique. That is, the table F [d1, d2, . . . , dk, vi], corresponding to the
predicate F (L1, L2, . . . , Lk, vn), is filled from d1 = 0, d2 = 0, . . . , dk = 0 for
the center vertex c, which is true. Then, we increment in the bottom up man-
ner; that is, we increment as (d1, d2, . . . , dk) = (0, 0, . . . , 0, 1), (0, 0, . . . , 1, 0),
. . ., (0, 1, . . . , 0, 0), (1, 0, . . . , 0, 0), (0, 0, . . . , 0, 2), (0, 0, . . . , 1, 1), . . ., (0, 1, . . . , 0, 1),
(1, 0, . . . , 0, 1), and so on. The number of combinations of (d1, d2, . . . , dk) is
L1 · L2 · · · · · Lk ≤ n′k = O(nk), and the computation of F [d1, d2, . . . , dk, vi]
for the (d1, d2, . . . , dk) can be done in linear time. Therefore, the algorithm
runs in O(nk+1) time and O(nk) space.
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Chapter 5

Conclusion

In this research of the linkage simulation problem, we first consider the fol-
lowing situation: a general target mechanism which is modeled by a graph
G = (V ′, E ′), and a robot arm modeled by a linkage P = (V,E) with length
function ℓ : E∪E ′ → R. The mission is to simulate the target graph G by the
given linkage P . That is, we should find the mapping ϕ from P to G which
satisfies the following conditions: each vertex of G should be mapped from
some vertices of P and each edge of G should be mapped from a subpath of
P by ϕ.

The decision problem of linkage simulation problem asks if there is an
Eulerian path of G spanned by P . This problem is a generalization of the
Eulerian path problem, which we call the weighted Eulerian path problem.
In this problem, when we use the linkage P to simulate the target mechanism
G, P can only cover an edge of G once and each edge length is fixed. This
problem is linear time solvable if P and G consist of unit lengths edges.
However, we first prove that this problem is strongly NP-hard even if edge
lengths are quite restricted. Actually, this problem is strongly NP-hard even
if P and G consist of edges of lengths only 1 and 2. We reduce the 3-Partition
problem to the weighted Eulerian path problem to show the NP-hardness of
this problem, where the 3-Partition problem is well-known NP-complete. We
show the constructions of path P and graph G, the path P consists of two
different kinds of subpath with edges of lengths 1 and 2, and the graph G
is a cactus that consists of 4m cycles, m cycles consist of edges of length 1,
3m cycles consist of edges of length 2, we show that the multiset A of the
3-Partition problem has a solution if and only if P can simulate G, which
means path P can cover the target graph G along an Eulerian path in G
with satisfying the condition of the linkage simulation.

Therefore, the weighted Eulerian path problem is tackled in two different
ways, two different simulation problems are considered: the elastic linkage
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problem and the traverse problem of a tree by a path.
The first problem is the elastic linkage problem, this is an optimization

version of the weighted Eulerian path problem. In weighted Eulerian path
problem, the edge lengths of P are all fixed, they cannot be changed, but in
this variant, all edges in P are allowed to be elastic to simulate the target
graph G by the path P , that is, we can stretch or shrink the edges in the
elastic linkage P . This situation is natural not only in the context of the robot
arm simulation but also in the approximation algorithm, so far, we consider
the elastic linkage problem for two paths P and G, we use the elastic linkage
P to simulate the path G. Firstly, the elastic ratio of edges and mappings in
the simulation process are defined, the elastic ratio of an edge e is defined by
max {l′/l, l/l′}, where l is the original length of the edge in P and l′ is the
length of the edge in G. Intuitively, the length of the edge is changed from
l on P to l′ on G. Thus the elastic ratio is always greater than or equal to
1, that is, the elastic ratio is the change factor of the edge in the path P .
When P simulates G with elastic edges, the elastic ratio of the mapping is
defined by the maximum elastic ratio of all edges in P . The objective of the
elastic linkage problem is to minimize the elastic ratio of the mapping from
a path P to a path G for given P and G. We start from a simple case which
the path G consists of only one edge, and in this case, we proved that the
minimum elastic ratio is achieved when all ratios of edges in path P take the
same value. Then we proved that the elastic linkage problem can be solved
in polynomial time by dynamic programming.

The second problem is the traverse problem of a tree by a path. In
weighted Eulerian path problem, P can only cover an edge of G once, in this
variant, P is allowed to cover an edge of G twice or more. In this situation,
P can simulate G even if G does not have an Eulerian path. In this case,
we do not allow P to be elastic, or its ratio is fixed to 1. Firstly, the general
simulation problem is proved to be weakly NP-hard, even if G is an edge. It
is similar to the ruler folding problem, which is weakly NP-complete. Thus,
we consider more restricted cases. From the viewpoint of graph theory, it is
natural to consider the case that G is a tree. For a given tree G and a path P
with edge lengths, the traverse problem asks if G has a trail by P such that
each edge of G is traversed exactly twice. When G is a tree, the problem is
in a simple form, P simulates G by traversing each edge twice in the unique
spanning tree of G, or G itself. However, this problem is still strongly NP-
hard even in quite restricted cases; (1) G is a star, and P consists of edges
of only two different lengths, and (2) G is a spider, and all edges are of two
different lengths. We also reduce the 3-Partition problem to the traverse
problem of a tree by a path to show the NP-hardness of these restricted
cases, and we also give the constructions of path P and tree T . On the other
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Problem Conditions Results
Weighted Eulerian
Path Problem

fixed edge-length,cover once Strongly NP-hard in
quite restricted case

Elastic Linkage Prob-
lem

non-fixed edge length, cover
once

Polynomial-time solv-
able

Covering problem of a
tree by a path:
General cover problem fixed edge-length, cover

twice or more
NP-complete

Tree traversal problem fixed edge-length, cover ex-
actly twice

NP-completeness
results;Polynomial-
time algorithm

Table 5.1: Current results for the linkage simulation problems

hand, the problem is polynomial time solvable when G is a star and its edge
lengths are of k different values.

The current results that we obtained for linkage simulation problems are
as shown in Table 5.1. When we use path P to simulate target graph G, we
just allow P to cover an edge in G once and all edge-lengths are fixed. We
show that this problem is strongly NP-hard even if edge lengths are quite
restricted. We thus consider two variants of the weighted Eulerian path
problem. The first variant is the elastic linkage problem. In this variant,
P can only cover an edge of G once, but each edge length is not fixed, we
allow edges in P to be elastic to fit vertices in G, the goal is to minimize the
elastic ratio. This is an optimization problem, we show that it can be solved
in polynomial time by dynamic programming when G is a path. The other
variant is covering problem of a tree by a path. In this variant, each edge
length is fixed but we allow P to cover an edge of G twice or more. We first
show that the general cover problem of G by P is NP-complete even if G is
an edge, we thus consider more restricted cases, we assume P cover each edge
in tree T exactly twice, and each edge length is fixed. We show this problem
is still strongly NP-hard in two restricted cases and we also show another
case that can be solved in polynomial time by dynamic programming.

In fact, there are more variants of weighted Eulerian path problem to be
solved, for example, advanced elastic linkage problem. In this problem, when
we use path P to simulate target graph G, we not only allow P to cover an
edge of G twice or more but also allow the edges in P to be elastic. The goal
is to minimize the elastic ratio of P , but so far there is no good way to solve
this problem.
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However, the research results that we got provide some help or progress
for other research in this field. In this research, our focus is on one-dimensional
(1D) linkage problems, as we mentioned before, the linkages are useful mod-
els for robot arms and they also have the potential for protein folding prob-
lems. A protein is composed of a chain of amino acid and residues joined
by peptide bonds. It can be modeled for many purposes as a polygonal
chain representing the protein’s “backbone”, with three atom vertices per
residue and adjacent atoms connected by bond links. The linkage simulation
is possible to be used to explore the research direction of protein folding on
geometry. We will continue our research on linkage and try to investigate
more applications for it.
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