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Abstract

Analyses and synthesis of emotional sounds is an exciting research direction.
Moreover, a sophisticated emotional sound synthesis system can significantly
improve experiences of human-computer communication. Although humans
can express subtle emotional changes in their voices, most researches on emo-
tional speech synthesis focus on the categorical approach to emotional states
expressions, such as synthesizing speech to joy, sadness or anger. Besides cat-
egorical approach, some studies tried to control speech emotion continuously
as humans do. As the study of Y. Xue has constructed an emotional speech
conversion system using a rule-based approach and a three-layer model, fol-
lowing the emotional perception and production of human being. However,
the system has rooms to improve in continuous emotion control, especially
on Valence scale.

Whether categorical or continuous emotional speech synthesis, it is nec-
essary to face a common problem, which researchers can only get categorical
emotional voice data in the most case, and it is impossible for asking a human
actor to record emotional voices data in a regular gradient variation, whether
respecting physical acoustic features or emotional perception. Therefore, cat-
egorical data determines that many studies focus on categorical approaches.
Even study as Xue’s emotion conversion system, which focuses on continu-
ous emotional speech synthesis, is trained by categorical data. Consequently,
discontinuous training data had distorted the mapping rules between acous-
tic features and emotional impression to a certain extent. Also, limited and
discontinuous training data makes studies as Xue’s system fail to clarify
the correspondence between some important acoustic features variations and
emotion impression.

For the purpose to obtain emotional voices continuously spanned on the
V-A space, discuss what acoustic features are important to emotional impres-
sions and how those features relate to emotion perception in a more detailed
way, this study has two sub-goals: (i) Obtaining emotional speech samples
continuously spanned on the V-A space by morphing techniques and collect
the impressions of synthesized voices. (ii) Examining how acoustic features
related to perceptions of emotional speech. Therefore, this study interpo-
lates voices from pairs of typical emotions with a morphing method, collects
emotion scores on Arousal-Valence space by a listening test, and analyzes
which acoustic features significantly influence emotion perception and how
those features vary changes emotion impression.



Analyses based on acoustic features and evaluation scores show that
Arousal perception can be stably described by merely using fundamental fre-
quency (FO0). Power related features have a significant influence on Arousal
perception, however, limited on sad-related voices. Comparing to Arousal,
this research found that FO and formants significantly influence Valence per-
ception simultaneously, and how acoustic features correspond to Valence per-
ception vary with different morphing references. Considering the correspon-
dence and significances vary across different acoustic features for different
morphing groups, this study proposed an assumption that how acoustic fea-
tures relate to Valence perception depends on different areas of V-A space,
and it is necessary to manipulate formants-related features in order to obtain
high quality of Valence control in synthesized emotional voices.

Keywords: morphing voices, emotional speeches, acoustic features, relation
analysis.
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Chapter 1

Introduction

This chapter provides an overview of the whole thesis, including research
backgrounds, problems of previous researches, research aims, and the struc-
ture of this thesis.

1.1 Research Background

Analyses and synthesis of speech is an interesting research direction. More-
over, a highly sophisticated emotional sound synthesis system can signifi-
cantly improve experiences of human-computer communication.  Although,
speech synthesis system is currently used in advanced applications such as
text to speech systems, translation systems, or intelligent assistants, most
of these systems are still only focused on text information and designed to
generate natural sounding synthetic speech. However, only linguistic in-
formation, which a set of discrete symbols and their combination, cannot
completely convey the intelligence in speech. Beside linguistic information,
paralinguistic information and nonlinguistic information are also important
to encompass information expressed by human speech [1]. The paralinguistic
information means information can not infer from the written counterpart
but is deliberately added by the speaker to modify or supplement the lin-
guistic information, while the nonlinguistic information means those factors
like the age, gender, idiosyncrasy, or emotional states of the speaker. There-
fore, affective synthesized speech comprehend nonlinguistic information is
increasingly required [2], and emotional speech synthesis can substantially
contribute to the acoustic manifestation of the spoken language.

The most common method for emotional voice conversion is the categori-
cal approach. Previous researches utilize Gaussian Mixture Model (GMM) [3]
or deep Neural Network (DNN) [4] to synthesize emotional speech from an-



other. Comparing to prior studies converting voices to other simply catego-
rized of emotions such as joy, anger, and sadness, studies by Tao et al. at-
tempts to subtly synthesize speech by using ”strong,” "medium,” and ”weak”
degrees [5].

However, emotions conveyed by humans are mild and not interrupted
from one emotion to another, but can be described as a continuum of inces-
sant states [6] [7]. Based on this idea, a rule-based voice conversion system
for emotional speech is proposed by Xue et al. [8], in order to control the
degree of emotion on dimensional space, which adopted to express emotions
as points in dimensional space. Therefore, emotion with degrees can be de-
scribed by changing the position in the emotion dimension continuously.

1.2 Problem

Although the categorical approach of emotional speech synthesis has its
shortcomings, it is still used in lots of researches. Because it is impossible for
asking a human actor to record emotional speech data in a regular gradient
variation, whether respecting physical acoustic features or emotional per-
ception; Unquestionably, researchers can allow the listeners to mark a large
number of emotional voices on continuous axes by listening tests, in order to
obtain an emotional voice database spanning with continuous dimensional
representation; however, the listeners’ perception of emotion may be affected
by the personality of recorders of each voice. Besides, since the variation
of acoustic features caused by personalities and emotional dissimilarities are
difficult to distinguish, it creates obstacles to subsequent analysis. As a re-
sult, most studies can only get the categorical database, which leads to more
researches focusing on categorical approaches.

This problem does not only exist in studies related to categorical emotion
speech synthesis but a problem that is widely present in related research using
categorical data. Even study as Xue’s emotion conversion system, which
focuses on continuous emotional synthesis voices, is trained by categorical
data, i.e., Japanese Fujitsu database, which a professional female actress was
asked for acting the uttered sentence with 5 categorical emotions involving
joy, cold anger, hot anger, neutral, and sadness [8]. Figure 1.1 shows the
evaluation scores of voices in Fujitsu database labeled from research of Li
et al. [9], which ’Activation’ is a synonymous term of ’Arousal’. Obviously,
the emotional voices of training data are not continuously distributed on the
V-A space. In studies focus on continuous emotion conversion system, this
discontinuous training data had distorted the mapping rules between acoustic
features and emotional impression to a certain extent. For example, although
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Figure 1.1: V-A evaluation scores of Fujitsu database [9]

the goal of Xue’s system is to synthesize emotional voices anywhere in the
V-A space, there exist some certain areas with any training sample on the
V-A space (i.e., point (0.5,0.5) and its surrounding area as Fig. 1.1 shown).
Moreover, limited training data also restrict researchers to explore the more
corresponding relationship between acoustic features and emotional. This
problem is reflected in the fact that previous studies have found that features
like spectral sequences significantly influence on valence scale, by replacing
the spectral sequences information of neutral voices with others emotional
voices [10] [11] [8], limited and discontinuous training data makes study as
Xue’s system fail to clarify the correspondence between continuously spectral
sequences variations and emotion impression. Therefore the system did not
propose any spectral sequence modification model.

1.3 Research Aims

In the previous section, two problems related to emotion speech synthesis
were pointed out. The first is that the emotional voice samples with contin-
uous distribution cannot be obtained by the traditional recording method,
and the second is that the corresponding relationships between acoustic fea-



tures and emotion impression training by categorical data are insufficient.
Therefore, this study has two goals corresponded with those two problems
as following.

Firstly, this study aims to obtain emotional speech samples by continu-
ously interpolating the acoustic features between categorical reference voices.
Then, this study is going to carry out the listening evaluation tests to ver-
ify whether synthesized morphed voices, which continuously distribute with
acoustic features, are also continuously spanned on the V-A space. By syn-
thesizing morphed voices that are continuously distributed with both acoustic
features and dimensional emotion space, subsequent analyses are able to an-
alyze how the emotional voices with different acoustic features located on
the V-A space, especially those blank areas on the V-A space where no voice
samples. Besides, since each reference voices used in morphing are recorded
by one recorder (the topic of the corpus is put in Chapter 3, Section 3.1),
the morphed voices can avoid the differences of acoustic features caused by
personality for the most part. Therefore, this study can observe which and
how feature variations correspond to alterations of emotion perception

Secondly, this study discusses which acoustic features are important to
emotional impressions and how those features relate to emotion perception by
achieving the first goal. Based on morphed voices and evaluation scores of lis-
tening test, this study extracts multiple acoustic features which are regarded
as possibly related to emotion impress and examines how those acoustic fea-
tures related to perceptions scores form listening test. Therefore, this study
is able to discuss what acoustic features are important to emotional impres-
sions and how those features relate to emotion perception. Those results can
be used to adjust the existing modification rules of previous systems, or help
researches to propose new modification models to construct a more complete
emotional speech conversion system.

1.4 Structure of the Thesis

This thesis is going to be organized with following elements as the structure
shown in Fig. 1.2:

e Chapter 1 gives an overview of emotional voice synthesis, discusses
some challenges of emotional voice synthesis, and state the objectives
of this research.

e Chapter 2 reviews the previous researches related to this topic, includes
the emotional speech conversion system, morphing techniques, and the
dimensional emotion representation.
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Chapter 1 : Introduction
Chapter 2 : Literature Review

!
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Chapter 4 : Acoustic Features Chapter 5 : Listening Tests for Emotion
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!
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Chapter 7 : Conclusion

Figure 1.2: Structure of this Thesis

Chapter 3 gives some details about how this research interpolates voices
from reference emotional voices.

Chapter 4 gives the acoustic features used in this study and how to
extract those features.

Chapter 5 introduces the listening test for collecting the emotion eval-
uation scores of morphed voices.

Chapter 6 illustrates the investigation results of how different acoustic
features influence emotional perception in different morphed voices and
presents the discussion about those obtained results.

Chapter 7 summaries the conclusions, contributions, and our remaining
works of this study.



Chapter 2

Literature Review

This chapter provides a literature review about some important previous
researches related to Emotional speech synthesis system. First, section 2.1
talk about some successful approaches in emotional voices synthesis area.
Then, section 2.2 introduce what speech morphing techniques are and how
to synthesize morphing voices using morphing toolbox. Finally, section 2.3
discuss what dimensional emotion representation is and how this study uses
Valence-Arousal dimensional space to express emotion continuously. The
above three sections are going to introduce the current status of emotional
speech synthesis researches, then discuss the importance and necessity to use
morphing techniques and dimensional emotion representation in this study.

2.1 Emotional Speech Synthesis System

This section provides a brief review about successful approaches in synthe-
sizing emotional voices with some significant researches.

e Unit selection approaches: Unit selection approaches choice the
units of variable size from recording database and then concatenate
those unites in order to generate desired target utterance [12] [13].
This synthesis method often gives very natural results. However, the
appropriate units of target utterance need to exist in the database; oth-
erwise, the synthesized voices can be very bad [11]. Therefore, a highly
sophisticated unit-selection synthesis system needs a vast database to
cover all required prosodic, phonetic, and stylistic variations [14].

e Statistical approaches: Statistical approaches are widely studied

in emotional voices synthesizing area, using statistical methods such
as Hidden Markov Model (HMM) [12] [15], GMM [3], or DNN [4]



to model the important features from database. Those systems nor-
mally use the jointly model for some important parameter such as
spectrum, FO, duration, etc. Figure 2.1 shows a typical structure of
HMM-based voices synthesis system [15]. Comparing to the unit selec-
tion approaches, statistical approaches are more complex but general
solutions, because statistical parametric synthesis systems do not re-
quire a complete database of any phonetic or prosodic contexts [14].

Rule-based approaches: The rule-based method modifies the acous-
tic features of concatenating synthetic speeches or neutral speeches with
rule-based simulation, and output others emotional speeches [16] [17].
Like Montero et al. successfully synthesize Spanish with three basic
emotions (hot anger, happy, and sad), using the acoustic profile of
global prosodic and voice quality parameter [18]. Compared with the
previous two methods, although the rule-based method needs stand
speeches as references, it can generate good emotional synthetic voices
with smaller training data.

However, those previous researches modified the related acoustic fea-
tures separately, and there are only a few rule applications with basic
emotions. The problems are modifying one acoustic feature influence
other related features, and there is any suitable order for modifica-
tion, and several basic categorical emotions are not enough for the so-
phisticated emotion impression as mentioned in section 1.1. For those
reasons, Xue et al. proposed a rule-based emotional voice conversion
system with degrees in dimensional emotion space shown in Fig. 2.2 [§].
This system adopted the Fujisaki model [1], STRAIGHT system [19],
target prediction model [20] [21] ete. to modify related acoustic features
with a more integrated way. Besides, Xue introduced a three-layered
model for a dimensional approach, which a method help the system can
generate more dynamic emotional speeches with different intensity.
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2.2 Speech Morphing Techniques

As the problem mentioned in section 1.2, whether on the emotion or physics
dimension, it’s hard for human actors to record voice samples with a con-
tinuous gradient deliberately. Therefore, this research considers synthesizing
morphing voices with gradual expression changes rather than human records.
Based on TANDEM-STRAIGHT [22] [23], which a high preference speech
analysis and modification framework, and morphing techniques [24], this re-
search be able to synthesize morphing voices from pairs of typical emotion
references. The morphing algorithm [25] based on TANDEM-STRAIGHT
is implemented as a five-stage procedure. The first step is to extract pa-
rameters, include fundamental frequency (F0), aperiodicity spectrogram and
interference-free spectrographic representation (STRAIGHT spectrogram)
[22], of each reference utterance. The second step is to align parameters re-
specting to the time and frequency coordinates of two reference utterances.
The third step is to interpolate or extrapolate parameters represented on
the aligned time-frequency coordinates based on the given morphing rate(s).
The fourth step is to deform the time-frequency coordinates with the given
morphing rate(s). The final step is to resynthesize sound using the morphed
parameters on the morphed time-frequency coordinate [26]. Listening exper-
iments of previous researches show that naturalness of morphed voices was
comparable to natural speech samples [27], which indicated that TANDEM-



STRAIGHT and morphing procedure enables stimulus continuum between
different emotional expressions as a powerful tool for investigating the corre-
sponding relationship between acoustic features and different emotions [28].

2.3 Valence - Activation Domain

In this research, a method for representing emotion with continuous degree is
important. As mentioned in section 1.1, a small number of certain emotions
may not provide humans with a sufficient level of discrimination. Besides,
categorical emotion representation lacks the information about intensity de-
gree [6] [7].

Except for the categorical approach, Another emotion representation is
mapping emotions as points to n-dimensional space. Figure 2.3 [29] shows
a common dimensional emotion representation which the three dimensions
space which includes Arousal (excited-calm), Valence (positive-negative), and
Dominance (powerful-weak) axes.The names of those three dimensions vary
in different literature (e.g., valence, energy, and dominance; evaluation, ac-
tivity, and potency; and evaluation, activation, and power). Dimensional
approach was long investigated by Russel [30] [31], and it was suggested that
the valence and arousal are two fundamental dimensions of emotional repre-
sentation. Considering that Dominance domain is used to distinguish Fear
and Anger which two kinds of emotions related to power, and this research
morphs voices between Neutral, Happy, Sad and Angry, therefore, this study
decided to use the Valence-Arousal space to represent emotion as shown in
Fig. 2.4. On the V-A space, neutral is close to the origin; the 1st, 2nd, and
3rd quadrants of V-A space are corresponding to the happy, angry and sad
emotions.
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Chapter 3

Synthesis of Morphing Voices

This chapter describes the corpus of reference voices for the morphing process
and the procedure to make morphing voices.

3.1 Corpus

The corpus for morphing voices was chosen from the Fujitsu database, which
recorded by one professional female voice actress from Fujitsu Laboratory.
The Fujitsu database contains 20 different Japanese sentences repeated in
5 different emotion categories: Neutral, Happy, Sad, Cold Anger, and Hot
Anger. Those emotional voices are saved with sampling frequency 22050Hz
and quantization of 16 bit. Considering the time cost and the number of
participation of listening tests, also this study is aiming to synthesize mor-
phed voices that are widely distributed in the V-A space as possible; This
study chosen 10 sentences as the reference voices, including Neutral, Happy,
Hot Angry, and Sad emotional voices which correspond to the origin, ( Very
Positive, Very Excited),( Very Negative, Very Excited), and ( Very Negative,
Very Clam) location on V-A space as Fig. 2.3 and 2.4 shown. In the fol-
lowing, this thesis refers to "Hot Angry ” by ”Angry”. Table 3.1 lists the
Japanese utterances and the English translations of reference voices.

3.2 Morphing Processing

This section illustrates how this study interpolates reference voices to get
morphing voices in details. Before applying morphing techniques, it is nec-
essary to decompose each reference voice into three terms, which funda-
mental frequency (F0), aperiodicity spectrogram, and interference-free spec-
trographic representation (STRAIGHT spectrogram) based on TANDEM-

12



Table 3.1: Lists of sentences of reference voices from Fujitsu database, and
translated version in English

Japanese Sentence English Translation
1 | Atarashi meru ga todoite imasu. You have got a new mail.
I heard that we would

2 | Machiawase wa Aoyama rashin desu. .
meet in Aoyama.
3 | Atarashi kuruma o kaimashita. I bought a new car.
4 | Sonna no furui meishindesu yo. Thats an old superstition.
. M 1 t
5 | Minna kara eru ga okuraretan desu. any people sert e
cheers.
hi ki i i : .
6 Watas i no tokoro ni wa todoite I have received it.
imasu.
7 | Arigato wa iimasen. I will not say thanks.
Hanabi o miru noni goza ga Do we need a straw mat
8 | ..
irimasu ka. to watch fireworks.
e I[h 1
9 | Mo shinai to itta janaidesu ka. E.Ld to d you don not
do it again.
Jikandori ni konai wake o Tell me the reason why you
10 . . ) .
oshiete kudasai. don * t come on time, please.

STRAIGHT system [22], [26], e.g., Fig. 3.1 shows important acoustic in-
formation be decomposed of two reference voices, which a Neutral reference
and a Happy reference, calculated every 5 ms. After STRAIGHT system
extracted necessary acoustic information, the temporal anchoring points of
phonetic segments were manually located on the extracted STRAIGHT spec-
trograms as Fig. 3.2 shows. Based on those information and system setting,
the morphing system is able to interpolate acoustic parameters respecting to
the deformed time and frequency axes, with the given morphing rate(s), then
resynthesize sounds using the morphed parameters on the reconstructed time-
frequency coordinate. In this research, each morphing rate is set between 0
and 1, indicating that the morphed voices are getting closer and closer from
one reference to another. Figures 3.3 and 3.4 illustrates the waveforms of a
set of morphed voices, in those morphed audio waves gradually approach the
happy reference from the Neutral reference. This thesis is going to discuss
the acoustic features of morphed voices in details at section 4.2.

13
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Chapter 4

Acoustic Features Extraction

In this chapter discusses two topics related to acoustic features. At first, sev-
eral acoustic features are determined in section 4.1, which features may have
relationships with emotion perception based on related researches. Then, il-
lustrating how this study extracts those features in the same section. Based
on extracted features, this study discusses the characteristics of the morphed
voices in acoustic features, verify whether morphing processes, mentioned in
section 3.2, successfully generated morphed voices with equidistantly chang-
ing acoustic features.

4.1 Acoustic Feature Extraction

It had been proved that the emotional speech perception varies respecting
the acoustic features [2]. Accordance with the previous works [10], [8], FO,
power, spectrum, and duration related features significantly impact on emo-
tion perception. Also, considering that Japanese is generally regarded as a
notion pitch-accent system and importance of accent components for emo-
tion perception are emphasized by previous reports [10], [8], [1], this study
separates each voice according to the criteria of accentual phrases and ob-
verse features in detail. The accentual structure of each sentence is listed in
table 4.1, which # represents the accentual boundary. Figure 4.1 shows an
FO contour and split accentual phrases of a voice sample with the sentence
"Atarashi# meru ga# todoite imasu.’. The followings are acoustic features
used in this study. Except the time of accentual phrases are marked by
manual segmentation; others acoustic features are obtained by multiple esti-
mation methods [32] [33] [34] [35]. It is worth noting that, except the length
of accentual phrase and the total length of voice (the end of the last accen-
tual phrases minus the beginning of the first accentual phrases), this study

18



calculates FO, power, formants, and voice activity time related features if
and only if the speech frame with a voice activity probability [36] greater or
equal to 99%.

e FO features: FO contour, Mean value of FO (AP), highest FO (HP),
lowest FO (LP), rising slope to maximum FO (RSP), and range of FO
(RP).

e Power features: Mean value of intensity (Al), range of intensity
(RI), minimum value of Mel log power (LMP), and range of Mel log
power(RMP).

e Formants features: The first three formants contours (F1, F2, F3),
Mean value of the first three formants (AF1, AF2, AF3), maximum
value of the first three formants (HF1, HF2, HF3), and minimum value
of the first three formants (LF1, LF2, LF3).

e Duration features: Total length (TL), voice activation length (VAL).

Further, this study normalizes features of each voice by the neutral ref-
erence which has the same content as follows:

Foriginal - FNeutral (4 1)

FNormalized = F
Neutral

FXeutral sForiginal, and FNormalizea Mean the feature values of neutral reference
voices, the feature values of normalizing targets, and the normalized feature
values. By normalization, acoustic features of emotional voices are repre-
sented as relative degrees to the Neutral reference.
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Table 4.1: Accentual structure of each sentence

Accentual structure of each sentence
Atarashi# meru ga# todoite imasu.
Machiawase wa# Aoyama# rashin desu.
Atarashi# kuruma o# kaimashita.

Sonna no# furui# meishindesu yo.

Minna kara# eru ga# okuraretan desu.
Watashi no tokoro ni wa# todoite imasu.
Arigato wa# iimasen.

Hanabi o# miru noni# goza ga# irimasu ka.
Mo shinai to# itta janaidesu ka.

0 | Jikandori ni# konai wake o# oshiete kudasai.

= © 00 ~J O UL i W N =

4.2 Acoustic Features of Morphed Voices

This section discusses how acoustic features of STRAIGHT-based morphed
voices vary based on those extracted features mentioned in section 4.1.
Figure 4.2 illustrates a set of FO contours variations of Neutral-Happy
morphed voices, which sentence is ’Arigato wa iimasen.’. In those FO con-
tours, The neutral reference voice has the lowest FO contour, while The happy
reference voice has the highest FO contour FO counters of morphed voices in-
crease to a higher level as the voices get closer to happy emotion. Also, as
morphed voices are gradually transformed from neutral to happy, the dura-
tion of voices is gradually shortened. Furthermore, table 4.2 and 4.3 list some
other features of a group of morphed voices, which stimuli include sentence
"Atarashi meru ga todoite imasu.’. The name A001, B001, G001, and HOO1
are corresponding to Neutral, Happy, Sad, and Angry reference voices. In
contrast, names like ABOO1-number represent the morphed voices, and the
number increasing as morphed voices are gradually transformed from neutral
to happy. These data listed in table 4.2 and 4.3 indicate that not only FO,
but other features are also varying between morphed voices almost equidis-
tantly. Through the results show that acoustic features of morphed voices
do equidistantly vary between pairs of reference voices, the next step is to
verify how these synthesized voices are distributed across the V-A space.
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Table 4.2: Acoustic Features of Morphed Voices (1)

Mean FO Mean Intensity Mean F1 Mean F2 Mean F3
(Hz)  (dB) (Hz)  (Hz)  (Hy)

A001 252.68 69.22 720.6 2005.25  3046.76
AB001-001 | 251.77 80.03 710.19 2003.97  3048.1

AB001-002 | 261.52 76.73 725.63 2001.84  3050.11
AB001-003 | 274.37 80.44 738 1993.76  3029.66
AB001-004 | 287.38 76.43 742.75 2007.92  3057.54
ABO001-005 | 264.42 75.85 746.97 2012.86  3082.91
AB001-006 | 279.1 75.67 749.51 2012.29  3048.61
AB001-007 | 283.53 74.75 761.35 1973.5 3032.47
AB001-008 | 284.36 T4.77 760.02 1984.49  3008.08
ABO001-009 | 294.44 73.99 764.61 1976.07  2999.75
AB001-010 | 302.39 74 793.14 199291  3030.81
ABO001-011 | 310.31 73.99 810.83 1962.47  2987.46
B001 312.2 71.18 817.5 1951.18  3011.59
G001 195.55 64.92 775.49 2060.48  3179.85
GB001-001 | 195.05 75 762.78 2051.14  3189.15
GB001-002 | 213.89 75.6 752.3 2062.38  3161.85
GB001-003 | 232.98 75.96 761.23 2065.94  3185.45
GB001-004 | 252.97 75.42 758.42 2057.98  3154.42
GB001-005 | 272.51 74.54 762 2069.77  3132.03
GB001-006 | 292.05 73.58 763.83 2072.39  3119.71
GB001-007 | 311.86 73.59 771.85 2037.45  3114.97
GB001-008 | 331.71 73.3 768.83 1994.11  3048.31
GB001-009 | 351.78 73.24 779.19 2022.31  3043.54
GB001-010 | 374.13 74.13 804.31 1967.32  3021.66
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Table 4.3: Acoustic Features of Morphed Voices (2)

Mean FO Mean Intensity Mean F1 Mean F2 Mean F3
(Hz)  (dB) (Hz)  (Hz) (M)

GHO001-001 | 196.2 75.03 759.3 2056.85  3188.2
GHO001-002 | 208.11 81.34 781.76 2087.63  3202.43
GHO001-003 | 220.95 75.87 743.04 2047.12  3179.35
GHO001-004 | 234.05 74.52 768.25 2063.6 3195.46
GHO001-005 | 247.14 72.55 749.01 2047.51  3191.93
GHO001-006 | 260.24 72.19 734.45 2038.23  3183.38
GHO001-007 | 274.1 72.07 769.81 2030.73  3167.5
GHO001-008 | 287.07 72.49 762.42 2030.74  3160.91
GHO001-009 | 303.09 75.7 771.04 2022.25  3163.26
GHO001-010 | 310.57 73.44 782.63 2015.82  3162.93
HO001 317.82 72.01 790.94 2022.49  3174.32
HAO001-001 | 315.79 74.19 T777.51 2019.25  3155.05
HAO001-002 | 312.41 73.59 774.04 2025.88  3161.55
HA001-003 | 304.26 73.99 763.81 2033.66  3158.51
HAO001-004 | 291.38 74.17 706.2 2022.87  3134.05
HA001-005 | 290.89 74.34 747.03 2013.01  3127.32
HAO001-006 | 283.16 74.69 740.78 2027.61  3119.81
HAO001-007 | 277.5 75.01 748.16 2034.64  3108.14
HA001-008 | 270.5 75.19 733.43 2029.44  3101.35
HAO001-009 | 264.15 75.84 726.18 2031.6 3095.06
HA001-010 | 258.48 76.51 729.7 2044.55  3077.02
HAO001-011 | 249.2 76.7 710.05 2008.57  3053.32
HB001-001 | 314.59 74.18 776.55 2013.24  3151.44
HB001-002 | 323.34 73.87 783.29 2023.75  3146.54
HB001-003 | 327.59 74.42 790.74 2014.43  3124.31
HB001-004 | 331.72 74.91 787.29 2012.44  3111.53
HB001-005 | 336.1 75.48 785.93 1997.6 3121.53
HB001-006 | 343.02 75.17 785.82 1997.32  3093.22
HB001-007 | 347.16 75.43 780.44 1992.33  3072.26
HBO001-008 | 354.44 75.74 770.45 1963.63  3050.56
HB001-009 | 360.44 75.05 775.21 1976.43 3053
HB001-010 | 367.1 74.02 782.9 1973.72  3014.34
HBO001-011 | 373.17 74.01 794.99 1965.45  2982.81
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Chapter 5

Listening Tests for Emotion
Evaluation Scores

This chapter firstly discusses the listening tests carried out for collecting
emotion perception of morphed voices in section 5.1. Then, section 5.2 are
going to summarize the results of listening tests and discuss how morphed
voices respect to acoustic features distribute on V-A space.

5.1 Listening Evaluation Tests

By finishing those morphing process mentioned in section 3.2, this research
successfully collected morphed voices using interpolated acoustic features.
However, it is necessary to verify whether the Valence and Arousal scores
of morphed voices can be perceived in a continuous way. Therefore, this
research carries a listening test out to collect evaluation results of the mor-
phed voices with Valence and Arousal. Ten Japanese listeners with normal-
hearing, aged from 22 to 27, participated in the listening test of Valence and
Arousal separately for 570 stimuli, including 40 references and 530 morphed
voices. The listeners were asked to evaluate Valence (very negative to very
positive) and Arousal (very calm to very excite) of the stimuli by a graphic
user interface (GUI), as Fig. 5.1 show, in a soundproof chamber. The audio
equipment used in the experiment was calibrated to play a white noise file
with the sound pressure of 64 dB. Each test plays stimuli in a random order.
Although in our calculation, the neutral, very positive (very excited), and
very negative (very clam) on the slider bar are corresponding to values 0, 2,
and -2, listeners won’t get any numerical tips, considering that listeners may
unconsciously cluster and classify stimuli based on numerical information.
In contrast, listeners can only evaluate the stimuli by the relative position of
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Figure 5.1: Arousal and Valence evaluation GUI

the slider on the bar and their subjective feelings.

5.2 Evaluation Results

The mean values of all listeners’ evaluated V-A scores are shown in Fig. 5.2a,
while Fig. 5.2b illustrates scores of a set of morphed voices with the same
sentence’ Atarashi meru ga todoite imasu.’. Those two figures suggest that
the morphing techniques successfully synthesize voices between neutral to
other emotional categories with continuous distribution. However, the mor-
phed voices between Angry and Happy (green symbols and lines) did not vary
smoothly and suddenly changed from the second quadrant to the first quad-
rant. Also, some morphed voices between Sad and Angry (purple symbols
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and lines) are evaluated close to neutral. It is worth noting that although the
acoustic features are nearly equidistantly varying between morphed voices as
mentioned in section 4.2, the evaluated V-A scores do not change as equidis-
tant as the acoustic features. Overall, evaluation scores generally maintain
a monotonous change between reference voices as Fig. 5.2b shown, but it is
noteworthy that the evaluation scores of morphed voices are gathered around
the reference voices, and sparsely distributed in areas between the references
voices. This pattern is crucial for determining the corresponding relation-
ships between acoustic features and evaluation scores and is going to be
discussed in details at chapter 6. Those results of listening tests presented
in this section show that the synthesized morphed voices do monotonously
and continuously vary between the positions of reference voices on the V-A
space, although the direction and magnitude of the emotional variations are
not as uniform as the acoustic features variations as discussed in section 4.2.
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Chapter 6

Analyses of Relations between
Acoustic Features and Emotion
Impression

Based on the extracted acoustic features and the collected emotional evalu-
ation scores, which were discussed in chapters 4 and 5, this study discusses
the analysis results of how acoustic features relate to those emotion eval-
uations in this chapter. Those analyses are aiming to examine what and
how acoustic features influence on perceptions of emotional speech. Firstly,
section 6.1 is going to discuss what acoustic features significantly influence
Arousal perception, then section 6.2 changes the topic to Valence percep-
tion. Finally, section 6.3 summarize all those analysis results and discuss
how acoustic features influence emotion perceptions based on those results.

6.1 Arousal

This research found that the fundamental frequency (FO0) related features
are most significantly influence Arousal perception and can fit Arousal eval-
uation scores well, regardless of morphing references. Figure 6.1 shows that
Arousal scores stalely increase (excited direction) as the mean value of FO
(AP) increases, which the most significant feature for Arousal. The fitting
curve in Fig. 6.1 is a 3-degree polynomial. In most instances, this research
fits features and evaluation scores with the 3-degree polynomial. The reason
for using 3-degree polynomial is because the emotional scores remain stable
near the stationary points of the cubic fitting function, where reference voices
located, and changes rapidly between the stationary points as mentioned in
section 5.2, comparing that acoustic features are changing equidistantly as
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mentioned in section 4.2. Those corresponding relationships are identical
to the shape characteristics of cubic functions and can get a relatively low
root-mean-square deviation (RMSD) for regression. Not only AP, the max
value of FO (HP), as Fig. 6.2 shows, the max value of F0 in the first accen-
tual phrase (HP_FAP), or the FO range can also fit arousal scores very well.
Further analyses show that the range of Mel log-power (RMP) and the range
of intensity features are significant for sad-related morphed voices. Figure
6.3 illustrate that the span of RMP in Sad-Happy and Sad-Angry morphing
groups are relatively larger, and Arousal scores of those two groups increase
with increasing RMP. However, the Arousal scores did not significantly corre-
spond to power related features in other morphing groups. This phenomenon
shows that on the power-related features, sad is significantly lower than other
categories, but there is no obvious difference in others stimuli other than sad.
Since the Angry-Happy voices have almost the same scores on Arousal axis,
which those green symbols and lines in Fig. 5.2a and 5.2b, so this group
cannot be well fitted.

6.2 Valence

However, relations between acoustic features and Valence perception are
much more complicated, which corresponding relationships vary in differ-
ent morphing groups. Figure 6.4 shows how AP feature relates to Valence
perception. For Neutral-Happy and Sad-Happy voices (Fig. 6.4a and Fig
6.4c), increasing FO makes stimuli sound positive. In contrast, increasing F0
gives stimuli sound negative for Neutral-Angry (Fig. 6.4b). A remarkable
phenomenon is for Sad-Angry voices (Fig. 6.4d), a certain level of FO gives
stimuli a neutral feeling, but FO above or below this level makes stimuli sound
negative, this result explains why some morphed sounds between Sad-Happy
are evaluated as neutral, which the pattern had been mentioned in section
5.2.

Besides F0, more analyses illustrate that Valence perception is at least
affected by F0O and formants features simultaneously, and not a single formant
component can stably describe Valence perception. Figure 6.5 indicates that
the mean value of the first formant (AF1) can fit Valence scores well for
Neural-Happy group and Neutral-Angry group (Fig. 6.5a and 6.5b), but,
feature AF1 has a weaker interpretation of Sad-Happy group(Fig. 6.5¢). In
contrast, the interpretation ability of the mean value of the third formant
(AF3) are weaker than AF1 for Neutral-Happy group and Neutral-Angry
group (Fig. 6.6a and 6.6b), but stronger for Sad-Happy group (Fig. 6.6¢).
Section 5.2 mentioned that the morphed voices between Angry and Happy
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(those green symbols and lines in Fig 5.2a and 5.2b) did not vary smoothly
but suddenly changed from the second quadrant to the first quadrant. For
this phenomenon, Figure 6.7a illustrates that both positive (plus Valence
score) and negative (minus Valence score) evaluated stimuli in Angry-Happy
group has a relatively high level of F0O (1.2 times or more of Neutral reference).
However, formant related features, especially feature AF3 can significantly
fit Valence scores for Angry-Happy voices, as Fig 6.7b shows.

6.3 Discussion

As this thesis mentioned in section 1.3, the second goal of this study is going
to discusses which acoustic features are important to emotional impressions
and how those features relate to emotion perception. Based on the analysis
results discussed in section 6.1, this study ascertains that Arousal perception
can be stably described by merely using FO related features. Power related
features have a significant influence on Arousal perception while limited on
sad-related voices. Also, on Arousal axis, acoustic features and Arousal scores
present a common, monotonous corresponding relationship.

Comparing to Arousal, analysis results discussed in section 6.2 indicates
that the corresponding relationships between acoustic features and Valence
perception are more complicated. On Valence axis, acoustic features and
Valence scores show a non-uniform corresponding relationship. Although
FO still has significant effects on Valence perception, the Valence perception
should be simultaneously influenced by F0 and different formant components;
Also, which formant components are important and how the acoustic features
correspond to emotion perception are dependent on the different areas of V-A
space (the different morphing references).

In section 4.1, it has been mentioned that this research extracted the
acoustic features in specific accentual phrases. Table 6.1 and 6.2 list the
RMSD values of global and accentual AP, AF1,and AF3 features. The vari-
able names of the suffix 'FAP ’ represent the features of the first accentual
phrases while the variable names of the suffix '"EAP ’ represent the features
of the last accentual phrases. As can be seen from the table, global features
and accentual features have the same or slightly higher level of error for fit-
ting Valence and Arousal scores. Also, fitting results of global or accentual
features are similar as Fig. 6.8 shows.

Based on the results listed above, the second sub-goal of this study had
been achieved. This study observed the correspondence between acoustic
features and emotion perception in more detail comparing to the previous
study. In particular, formants related features, which features that have
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not been modified by the previous system, have the complex and significant
influences on Valence perception.
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Table 6.1: Fitting Error of Global and Accentual Features (Arousal)

Neutral- Neutral- Sad- Sad-  Angry-
Happy  Angry  Happy Angry Happy

AP 0.142 0.227 0.264  0.36 0.307
AP FAP |0.2 0.361 0.375  0.477 0.32

AP_EAP | 0.165 0.267 0.268  0.401 0.32

AF1 0.261 0.352 0.854 1.03 0.271
AF1.FAP | 0.3 0.34 0834 0.859 0.275
AF1_EAP | 0.278 0.507 0.844 1.094 0.292
AF3 0.283 0.495 0.539 1.110 0.241

AF3_FAP | 0.315 0.505 0.666  1.128 0.278
AF3_EAP | 0.248 0.504 0.48  1.078 0.24

Table 6.2: Fitting Error of Global and Accentual Features (Valneve)

Neutral- Neutral- Sad- Sad-  Angry-
Happy  Angry  Happy Angry Happy
AP 0.178 0.473 0.195 0.219 1.015
AP_FAP | 0.248 0.547 0.318 0.295 1.048
AP_EAP | 0.235 0.332 0.244  0.294  1.047

AF1 0.34 0.434 0.692  0.349 0.904
AF1.FAP | 0.375 0.41 0.677  0.31 0.923
AF1_EAP | 0.367 0.539 0.672  0.377  0.973
AF3 0.374 0.487 0.455 0.392 0.729

AF3_FAP | 0.395 0.507 0.556  0.407  0.86
AF3_EAP | 0.336 0.504 0.407  0.385 0.707
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Figure 6.4: Fitting Valence using AP feature
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Figure 6.6: Fitting Valence using AF3
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Chapter 7

Conclusion

7.1 Summary

As mentioned in section 1.3, this research has two goals. Firstly, this study
is going to obtain emotional speech samples with continuous distribution
on the V-A space using morphing techniques; Secondly, this study discusses
what acoustic features are important to emotional impressions and how those
features relate to emotion perception by achieving the first goal. Section 4.2
analyzed the acoustic features of morphed voices, supports that this research
had successfully synthesized morphed voices between pairs of reference voices
by interpolating acoustic features equidistantly. Next, evaluation scores from
listening tests mentioned in section 5.2 verified that synthesized morphed
voices are continuously distributed on the V-A space. According to those
results, this study confirms that the first sub-goal had been achieved.

Based on acoustic features extracted and emotional evaluation scores col-
lected, this research investigates how acoustic features relate to emotion per-
ception and discusses those results in chapter 6. Base on analyses results,
this research ascertains that Arousal perception can be stably described by
merely using FO related features; Power related features significantly influ-
ence the Arousal perception, however, limited in sad-related morphed voices.
In contrast, Valence perception is at least simultaneously affected by FO and
formants features with significant. Notably, this research discussed how FO0
and formant related features influence Valence perception based on Angry-
Happy voices mentioned in section 6.2. Those analyses can explain why
angry voices synthesized by Xue et al.’s system, without formats features
modification, are evaluated as happy emotion.

Also, considering the significances and corresponding relationship of dif-
ferent acoustic features varying in different morphing groups as mentioned
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in section 6.3, this study has hypothesized that acoustic features, like FO
or different formant components, impact Valence perception together in a
non-uniform way on different areas of V-A space. Those analysis results in-
dicate that in order to get an emotional sound synthesis system with better
Valence control, it is necessary to propose modification rules for different
formant components separately depends on different areas of V-A space. Ac-
cording to the analyses mentioned above, the second sub-goal of this study
had been achieved.

7.2 Contribution

A sophisticated rule-based emotional voices conversion system with contin-
uous emotion representation should be able to convert standard input voice
to any location on the emotion space through modification rules. In order to
achieve this goal, it is necessary to analyze the emotional voices continuously
distributed on the emotion space to obtain the relationships between acoustic
features and emotional perceptions, and propose corresponding modification
rules.

Under the ultimate goal mentioned above, this study has two contribu-
tions. Firstly, this study has successfully synthesized morphed voices that
continuously changed in physical acoustic features and emotional impression,
which voices samples could not be obtained through the traditional recording
process. All synthesized morphed voices, the extracted acoustic features, and
the emotional evaluation scores obtained from the listening tests are not only
meaningful material for this study but also can be used as research materials
in subsequent researches.

Secondly, based on synthetic morphed voices, this study analyzes the
relationship between various acoustic features and emotion evaluation scores.
Those fitting rules obtained in this study can not only be used to adjust
the modification rules of the existing system, but also help the subsequent
researches to propose a new modification model, focusing on those features
that have a significant impact on the emotional perceptions but have not
been adjusted by the existing systems, such as formants modification model
for Xue’s system.

7.3 Remained Works

The modification rules for adjusting acoustic features of stand input voices to
emotional voices are essential for emotional voices conversion as mentioned
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in section 2.1 and 7.2. Since the results indicate that formant components
have the significant influence on valence impression and an emotional speech
conversion system without formants control has a defect on Valence adjust-
ing, it is necessary to propose a suitable method to modify the formants
information for Valence control. Besides, considering that multiple acoustic
features impact Valence perception together in a non-uniform way on differ-
ent areas of V-A space, a highly sophisticated system may require different
modification rules for different target synthetic voices at different locations
in the V-A space.
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