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ABSTRACT The primary goal of this paper is to propose a new factor graph (FG) technique for the direction-
of-arrival (DOA)-based three-dimensional (3D) multi-target geolocation. The proposed FG detector uses
only the mean and the variance of the DOA measurement including both the azimuth and the elevation,
assuming that they are suffering from errors following a Gaussian probability density function (PDF).
Therefore, both the up-link (UL) transmission load and the detection complexity can be significantly reduced.
TheCramer–Rao lower bound (CRLB) of the proposedDOA-based 3D geolocation system ismathematically
derived. According to the root mean square error (RMSE) results obtained by simulations, the proposed
FG algorithm is found to outperform the conventional linear least square (LS) approach, which achieves a
very close performance to the derived CRLB. Moreover, we propose a sensor separation algorithm to solve
the target-DOAs matching problem such that the DOAs, measured by each sensor, can be matched to their
corresponding targets. With this technique, additional target identification is not needed, and the multi-target
geolocation can be decomposed into multiple independent single-target detections.

INDEX TERMS 3D geolocation, direction of arrival (DOA), factor graph (FG), CRLB, anonymous
multi-target geolocation, sensor separation algorithm, target-DOAs matching.

I. INTRODUCTION
As one of the enabling technologies of building a smart
city, wireless geolocation with densely distributed sensors
is expected to play an important role in the future network
functionalities [1]. The applications may include low-power
wide-area networks (LPWAN), unmanned factories, vehicle-
to-everything (V2X) communication systems [2] and etc.
However, due to the explosive growth of service demands,
the wireless up-link (UL) communication in a fully central-
ized network will very likely cause a transmission flooding
problem. Therefore, pre-processing having relatively light
computations at the distributed sensors is believed to alleviate
the UL traffic load and reduce the computational burden at
the fusion center [3], [4]. As one of the solutions, factor
graph (FG) algorithm was first proposed to solve the wireless
geolocation problem in [5], where sensors are capable of
extracting only key parameters of the probability density
function (PDF) of the measured time-of-arrival (TOA). With

The associate editor coordinating the review of this manuscript and
approving it for publication was Shihao Yan.

the Gaussian assumption of the measurement errors, only
the mean and variance of the TOAs are transmitted from
sensors to the fusion center, which significantly saves the
UL transmission load. Moreover, the massages passed in the
FG detector are also Gaussian-approximated, and therefore
the required computational complexity at the fusion center is
very low [6]. The performance gain of the FG detector over
conventional techniques has been found in many literatures,
e.g., [5], [7].

Due to the advantages of FG, many extensions of [5]
have been proposed for the range-based geolocation [8], such
as the modified algorithm with TOA [9], the received sig-
nal strength (RSS) [10], [11], the time difference of arrival
(TDOA) [12] and the direction of arrival (DOA) [13]. Since
the objective of this paper is to detect anonymous targets,
such as the illegal radio emitter, keeping time synchronization
between sensors and targets is generally impossible, which
is needed in the TOA-based technique. For the RSS-based
technique, it is impossible to make correspondence between
the anonymous target RSS and the reference RSS obtained
through the off-line training [7]. Even though TDOA can
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avoid the necessity of synchronization, it is very sensitive to
the measurement error because the radio signal propagates at
the light speed. Moreover, TDOA can not be measured if the
target has a silent period of time, i.e., no signal is emitted.
To avoid such technical limitations, this paper focuses on
the DOA-based geolocation. The primary reason is that no
time synchronization is required for DOAmeasurement at the
sensors. Furthermore, if a mapping rule between the image
coordinate points and the DOAs is established, digital cam-
eras can be used to measure the DOA of silent targets [14],
where the multi-path impact can be completely eliminated.
Considering the 5G development, the future device deploy-
ment will become denser, and the line-of-sight (LOS) links
between targets and the surrounding sensors are supposed to
increase. Moreover, due to the characteristic of millimeter-
wave (mmWave) propagation, the signal attenuation is very
serious, and the multi-path effect will be significantly
reduced [15]. Therefore, we believe that the DOA-based
techniques are more suitable for positioning services in the
future 5G network.

Many techniques have been proposed for measuring
DOAs, such as MUSIC, ESPRIT and SAGE [16], [17]. For
example, a linear array is utilized in [18] with the alter-
nate elements orthogonally polarized, such that the estima-
tion of azimuth/elevation angles can be conducted by only
one-dimensional search in the MUSIC algorithm. In [19],
a separable sparse representation (SSR-DOA) algorithm is
proposed, which splits the joint azimuth/elevation observa-
tion matrix into two individual sub-matrices, in order to
reduce the estimation complexity. Current DOA measuring
techniques solve not only the single target, but also the mul-
tiple targets, such as in [20]. In the multi-target case, a pair-
matching approach [21] is applied at each sensor, to associate
the azimuth and the elevation corresponding to the same
target. The techniques described above make the assumptions
of this paper more realistic, where each of the distributed
sensors is capable of measuring the azimuth/elevation in the
multi-target case, with perfect pair-matching. Note that the
objective of this paper is to use DOAs for geolocation, and
therefore discussing specific DOA measuring technique is
beyond the scope of this paper.

Reference [7] provides a solid work of DOA-based geolo-
cation with FG for single-target in a 2-dimensional (2D)
plane. However, it may not be usable in many practi-
cal applications, e.g., drone detection, automation factory
and self-driving automobile, where 3D positioning, track-
ing and multi-target detection are needed. To satisfy such
requirements in future networks, this paper proposes a new
DOA-based FG technique for 3D anonymous multi-target
geolocation. Specifically, both the azimuth and the elevation
measured at each sensor are taken into account in the pro-
posed FG detector, where new factor nodes are introduced
to connect the both angles to the position parameters in
the standard 3D coordinate. To guarantee the distribution
Gaussianity of the messages passed in FG, the first-order
Taylor series (TS) expansion of trigonometric functions is

used. It should be noted that the convergence proof of the
FG-based geolocation techniques is expected to be very dif-
ficult, as pointed out by the pioneer work in [22]. Therefore,
the convergence property in terms of root mean squared
error (RMSE) is only evaluated by the simulations. The
robustness of the proposed technique is also evaluated in
terms of iteration time, snapshot number and standard devia-
tion of the measurement errors.

Besides the range-based single-target detection, many
geolocation techniques have been proposed for the multi-
target case. For example, [23] combines the orthogonal fre-
quency division multiplexing (OFDM) technique with radar
to separate DOAs coming from different targets at the sensor.
In [24], a non-orthogonal transmission of DOA is applied for
a MIMO radar system, where the maximum detectable target
number is also investigated. Multiple sensers are used in [25]
for the TOA-based multi-target detection, and the transmis-
sion schemes between sensors and targets are assumed to be
known, resulting in the fact that the target identification is
equivalent to a wireless multiple access problem. However,
the techniques described above may not be applicable for
the next generation geolocation system due to three reasons:
(1) massively deployed sensors in the future network are
expected to be cheap, where complicated hardwares may not
be equiped; (2) targets may be anonymous, and conventioanl
identification techniques used in wireless communications,
e.g., the target-specific reference signal, may not be available;
(3) although multi-target DOA estimation can be conducted
at every individual sensor, techniques for matching between
the DOAs, measured by each sensor, and their corresponding
targets are not yet known. This problem is referred to as a
target-DOAs matching problem in this paper. Note that [26]
and [27] propose techniques to solve the matching problem
in a dynamic model, where the time-domain correlation is
utilized. Instead, our goal is the stationary target detection,
without requiring any time-domain a priori information.

Motivated by the problems described above, this paper
provides a simple but yet useful solution for anonymous
multi-target detection with distributed sensors. The key idea
is to solve the target-DOAs matching problem beforehand,
such that the multi-target geolocation can be decomposed
into multiple independent single-target detections, each con-
ducting the proposed FG algorithm. This idea is realized by
the proposed sensor separation algorithm, without relying
on conventional identification techniques, such as the target-
specific reference signal. To the best of our knowledge,
no previous work is found related to our proposed technique.
The main contributions of this paper are summarized as
follows.

1) A new DOA-based FG algorithm is proposed for
3D geolocation, which exhibits clear robusteness and
performance gain over the conventional linear least
square (LS) approach [28].

2) The Cramer-Rao lower bound (CRLB) is mathemati-
cally derived as the performance reference of the pro-
posed DOA-based 3D geolocation system.
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3) A sensor separation algorithm is proposed for the
multi-target case, which provides matching informa-
tion between the originating target andmeasuredDOAs
at different sensors. Therefore, the multi-target geolo-
cation can be decomposed into multiple independent
single-target detections, such that the computational
complexity is almost linear to the target number. The
conventional identification techniques, such as target-
specific reference signal, are also avoided.

The organization of this paper is as follows. In Section II,
the assumptions used in the geolocation system model is
introduced. The proposed FG algorithm for DOA-based 3D
geolocation is then described in Section III. In Section IV,
the CRLB of the proposed system is mathematically derived.
The accuracy of single-target detection using the proposed
technique is verified in Section V through simulations.
Moreover, the sensor separation algorithm is introduced in
Section VI for target-DOAs matching in the multi-target
case. The simulation results evaluating the performance of
the proposed technique is also included. Finally, this work
is concluded in Section VII with some concluding remarks.

II. SYSTEM MODEL
In the proposed geolocation system, a global 3D sphere
coordinate is used to describe the locations of sensors and
targets. First of all, N anonymous targets are assumed within
the sensing area, locating at gn = [xn, yn, zn]T , where n =
{1, . . . ,N }, and [·]T denotes the transposed matrix or vector
of its argument. Meanwhile, the locations of M distributed
sensors Gm = [Xm,Ym,Zm] are known by the fusion center,
where m = {1, . . . ,M}. Therefore, the relative distance
1dm,n between the m-th sensor and the n-th target can be
calculated by

dm,n =

1xm,n1ym,n
1zm,n

 =
XmYm
Zm

−
xnyn
zn

 . (1)

For each sensor, the received DOA can be decomposed into
two domains, i.e., the azimuth ϕ and the elevation θ , both
following the standard definition of the spherical coordinate
shown in Fig. 1. By ignoring the subscripts of variables for the
seek of simplicity, the connections of such relative distances
can be expressed by

1x = 1y · tan (ϕ) (2)

= 1z · sin (ϕ) · tan (θ) , (3)

1y = 1x · cot (ϕ) (4)

= 1z · cos (ϕ) · tan (θ) , (5)

1z = 1x · sec (ϕ) · cot (θ) (6)

= 1y · csc (ϕ) · cot (θ) . (7)

It is found that the relative distance variables in the
equations (2)-(7) are self-contained, and therefore the itera-
tive message passing algorithm using FG can be applied to
detect them.Moreover, every relative distance variable can be

FIGURE 1. Definition of the azimuth ϕ and the elevation θ in the
3D sphere coordinate.

calculated by two different functions, which indicates their
connections to two factor nodes in the proposed FG struc-
ture, as detailed in the next section. In addition, sensors are
assumed to capture the DOAmeasurements with L snapshots,
influenced by the errors following Gaussian distribution, as

ϕl = ϕ + nϕ,l, l = {1, 2, . . . ,L} , (8)

θl = θ + nθ,l, l = {1, 2, . . . ,L} , (9)

where the noise components nϕ ∼ N
(
0, σ 2

ϕ

)
and nθ ∼

N
(
0, σ 2

θ

)
, respectively. It should be noted that the trans-

mission channels between sensors and the fusion center are
assumed to be error-free, and hence no specific transmission
scheme is considered for the UL. Moreover, the quantization
errors, which may appear when applying digital camera sen-
sors, are included in the noise terms of (8)-(9), because they
are assumed to be sufficiently small in this paper.

III. PROPOSED FG ALGORITHM
In this section, detailed discussions of the DOA-based 3D
geolocation is provided, with the proposed FGdetector shown
in Fig. 2. For the sake of simplicity, the subscripts of variables
indicating the sensor index are omitted in the following con-
tents. First of all, the means and variances of the measured
azimuth/elevation are calculated by the measurement factor
nodes (Dϕ , Dθ ) at each sensor, i.e., (mϕ , σ 2

ϕ ) and (mθ , σ 2
θ ).

They are then sent from the angle variable nodes (Nϕ , Nθ )
to the trigonometric factor node (FA, FB, FC ) at the fusion
center, which initiates the iterative detection.

It should be noted that FA takes only the azimuth angle ϕ,
and connects the variable nodes 1x and 1y according to (2)
and (4). The utilization of FA is sufficient for detecting the
target’s position in X-Y plane, as shown in the 2D geolocation
in [7]. However, in the 3D geolocation, the elevation angle is
also included to further connect 1x and 1y to 1z. In this
paper, two new factor nodes are introduced, where FB con-
nects 1x and 1z according to (3) and (6), and FC connects
1y and 1z according to (5) and (7), respectively. Therefore,
every variable node of the relative distance is connected to
two different trigonometric factor nodes, as mentioned in the
previous section.
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FIGURE 2. Proposed FG detector for the DOA-based 3D geolocation.

According to (2)-(7), multiplications of two independent
variables are involved in FA, and multiplications of three
independent variables are involved in FB and FC . Due to
the Gaussian assumption of the messages, only the mean
and the variance need to be updated in the factor nodes. For
example, for two independent variables a ∼ N (ma, σ 2

a ) and
b ∼ N (mb, σ 2

b ), the mean and the variance of their product
a · b can be calculated by

ma·b = ma · mb, (10)

σ 2
a·b = m2

a · σ
2
b + m

2
b · σ

2
a + σ

2
a · σ

2
b . (11)

Similarly, by introducing a third variable c ∼ N (mc, σ 2
c ),

the product of three independent variables a · b · c will have

ma·b·c = ma · mb · mc, (12)

σ 2
a·b·c = m2

a · m
2
c · σ

2
b + m

2
b · m

2
c · σ

2
a + m

2
a · m

2
b · σ

2
c

+m2
a · σ

2
b · σ

2
c + m

2
b · σ

2
a · σ

2
c + m

2
c · σ

2
a · σ

2
b

+ σ 2
a · σ

2
b · σ

2
c . (13)

However, it has to be noted that since the trigonometric
functions in (2)-(7) are not linear, the Gaussian assumption
does not hold for their calculations. To deal with this problem,
the first-order TS expansion is used as a linear approximation
of the trigonometric functions given by

f (α) ≈ f (mα)+ f ′ (mα) (α − mα) . (14)

In (14), f (α) denotes the original function of the variable α,
which is linearly approximated at α = mα , where f (mα),
f ′ (mα) and mα are all constants. Therefore, the mean and the
variance of the approximated function can be given by

mf (α) ≈ f (mα), (15)

σ 2
f (α) ≈

[
f ′(mα)

]2
· σ 2
α . (16)

By following (15) and (16), the means and the variances of
the trigonometric functions in (2)-(7) can be approximated as
shown in Table 1.

TABLE 1. Approximated means and variances of related trigonometric
functions.

With the mathematical preparations described above,
the proposed iterative FG algorithm is detailed as follows.
First of all, the message flowwill start from the trigonometric
factor nodes to the relative distance variable nodes. Accord-
ing to the proposed FG structure shown in Fig. 2, there are
two trigonometric factor nodes having independent message
flows to the same relative distance variable node, and each
coming message is assumed to be independently Gaussian
distributed. With such assumption, the PDF of the resulted
message is a product of two independent Gaussian PDFs,
which is also Gaussian, i.e.,

N
(
ma, σ 2

a

)
×N

(
mb, σ 2

b

)
=N

maσ 2
b +mbσ

2
a

σ 2
a + σ

2
b

,
1

1
σ 2a
+

1
σ 2b

.
(17)

Therefore, the means and variances of the messages pass-
ing from the relative distance variable nodes to the relative
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distance factor nodes can be calculated according to (17),
which are given by,

m1x→RA =
mFA→1x · σ

2
FB→1x+mFB→1x · σ

2
FA→1x

σ 2
FA→1x + σ

2
FB→1x

, (18)

m1y→RB =
mFA→1y · σ

2
FC→1y+mFC→1y · σ

2
FA→1y

σ 2
FA→1y + σ

2
FC→1y

, (19)

m1z→RC =
mFB→1z · σ

2
FC→1z+mFC→1z · σ

2
FB→1z

σ 2
FB→1z + σ

2
FC→1z

, (20)

and

σ 2
1x→RA =

1
1

σ 2FA→1x
+

1
σ 2FB→1x

, (21)

σ 2
1y→RB =

1
1

σ 2FA→1y
+

1
σ 2FC→1y

, (22)

σ 2
1z→RC =

1
1

σ 2FB→1z
+

1
σ 2FC→1z

. (23)

The means of the separated message passing from the
trigonometric factor node to the relative distance variable
node can be easily derived by

mFA→1x = m1y→FA · tan
(
mϕ
)
, (24)

mFB→1x = m1z→FB · sin
(
mϕ
)
· tan (mθ ) , (25)

mFA→1y = m1x→FA · cot
(
mϕ
)
, (26)

mFC→1y = m1z→FC · cos
(
mϕ
)
· tan (mθ ) , (27)

mFB→1z = m1x→FB · sec
(
mϕ
)
· cot (mθ ) , (28)

mFC→1z = m1y→FC · csc
(
mϕ
)
· cot (mθ ) . (29)

Moreover, the variance to be forwarded from the FA node to
the 1x node can be given by

σ 2
FA→1x = m2

1y→FA · sec
4 (mϕ) · σ 2

ϕ

+ tan2
(
mϕ
)
· σ 2
1y→FA

+ σ 2
1y→FA · sec

4 (mϕ) · σ 2
ϕ , (30)

and the variance to be forwarded from the FB node to the
1x node is

σ 2
FB→1x = m2

1z→FB · tan
2 (mθ ) · cos2

(
mϕ
)
· σ 2
ϕ

+ sin2
(
mϕ
)
· tan2 (mθ ) · σ 2

1z→FB

+m2
1z→FB · sin

2 (mϕ) · sec4 (mθ ) · σ 2
θ

+m2
1z→FB · cos

2 (mϕ) · σ 2
ϕ · sec

4 (mθ ) · σ 2
θ

+ sin2
(
mϕ
)
· σ 2
1z→FB · sec

4 (mθ ) · σ 2
θ

+ tan2 (mθ ) · σ 2
1z→FB · cos

2 (mϕ) · σ 2
ϕ

+ σ 2
1z→FB · cos

2 (mϕ) · σ 2
ϕ · sec

4 (mθ ) · σ 2
θ .

(31)

Due to the space limitation, the rest of the variance calcu-
lations are omitted. However, they can be derived in similar
ways to (30) and (31). Obviously, many terms included in the

mean and the variance calculations above are re-usable for
the complexity reducing, which is not detailed in this paper.
At the relative distance factor node, the messages passing to
different directions can be expressed according to (1), by(

mRA→x , σ
2
RA→x

)
=

(
X − m1x→RA , σ

2
1x→RA

)
, (32)(

mRB→y, σ
2
RB→y

)
=

(
Y − m1y→RB , σ

2
1y→RB

)
, (33)(

mRC→z, σ
2
RC→z

)
=

(
Z − m1z→RC , σ

2
1z→RC

)
, (34)

and(
mRA→1x , σ

2
RA→1x

)
=

(
X − mx→RA , σ

2
x→RA

)
, (35)(

mRB→1y, σ
2
RB→1y

)
=

(
Y − my→RB , σ

2
y→RB

)
, (36)(

mRC→1z, σ
2
RC→1z

)
=

(
Z − mz→RC , σ

2
z→RC

)
. (37)

Note that the calculations shown above are performed in
parallel for different sensors, and therefore the subscripts
of the sensor index are omitted for the sake of simplic-
ity. However, at the estimated target position variable node,
the updated message has to be fed back to each parallel pro-
cess as mentioned above to enable the FG iterations. Hence,
the subscripts of sensor index are needed in the mean and the
variance calculations, which are given by [29]

1

σ 2
x→RA,m

=

M∑
i=1,i 6=m

1

σ 2
RA,i→x

, (38)

mx→RA,m = σ
2
x→RA,m ·

M∑
i=1,i 6=m

mRA,i→x

σ 2
RA,i→x

. (39)

The iterations are performed until certain conditions are
met, e.g., the maximum iteration time is reached, or the gap
between the estimated positions by two iterations is smaller
than a pre-determined threshold. After that, the final estima-
tions will be obtained by (43)-(45), where the variances σ 2

x ,
σ 2
y , and σ

2
z calculated from (40)-(42), respectively, are used.

1
σ 2
x
=

M∑
i=1

1

σ 2
RA,i,→x

, (40)

1
σ 2
y
=

M∑
i=1

1

σ 2
RB,i,→y

, (41)

1
σ 2
z
=

M∑
i=1

1

σ 2
RC,i,→z

, (42)

mx = σ 2
x ·

M∑
i=1

mRA,i→x

σ 2
RA,i,→x

, (43)

my = σ 2
y ·

M∑
i=1

mRB,i→y

σ 2
RB,i,→y

, (44)

mz = σ 2
z ·

M∑
i=1

mRC,i→z

σ 2
RC,i,→z

. (45)
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IV. CRLB DERIVATION
In this section, the Cramer Rao lower bound (CRLB) for the
DOA-based 3D geolocation is derived as the performance
reference. According to [7], the CRLB is given by

CRLB =
√
trace

[
F−1 (g)

]
, (46)

where F denotes the Fisher information matrix (FIM). Given
the target position g and the PDF of the measured random
variable Â, the FIM can be further rewritten by

F (g) = E

[(
∂

∂g
ln p

(
Â
))2

]
. (47)

where Â denotes the DOAmeasurements for both the azimuth
and the elevationwith L samples, and p(·) is the PDF function.
The final expression of the derived CRLB for the proposed
DOA-based 3D geolocation system is then given by

CRLB =

√
trace

[(
JT6−1A J

)
L
]−1

, (48)

where the Jacobian function J can be given by

J =



1y1
1xy12

−
1x1
1xy12

0

1y2
1xy22

−
1x2
1xy22

0

...
...

...
1x11z1

1xyz121xy1

1y11z1
1xyz121xy1

−
1xy1
1xyz12

1x21z2
1xyz221xy2

1y21z2
1xyz221xy2

−
1xy2
1xyz22

...
...

...


. (49)

The detailed derivation of the CRLB can be seen in the
appendix.

V. SINGLE-TARGET SIMULATIONS
A. COMPARATIVE LS APPROACH
In this section, the linear LS detection algorithm is pre-
sented for the DOA-based 3D geolocation for comparison.
According to the equations in (2)-(7), the position estimate[
mx ,my,mz

]T of the linear LS detector is given bymxmy
mz

 = (UTU
)−1

V, (50)

whereU = [U1,U2, . . . ,UM ]T andV = [V1,V2, . . . ,VM ]T .
By omitting the sensor index for simplicity, the vector ele-
ments in U and V are given by

U =

− tan(mϕ) 1 0
1 0 − sin(mϕ) tan(mθ )
0 1 − cos(mϕ) tan(mθ )

 , (51)

V =

 Y − X tan(mϕ)
X − Z sin(mϕ) tan(mθ )
Y − Z cos(mϕ) tan(mθ )

 . (52)

B. SIMULATION RESULTS
In this subsection, the simulation results based on the pro-
posed technique are provided for detecting the single-target
position. Note that the coordinate unit in this paper is always
in meter. First of all, an anonymous target is assumed to
be located at g = [x, y, z]T , with each of the coordinate
dimensions x, y and z ∈ (0, 100). There are 4 distributed
sensors at the border of the sensing area, and their positions
are shown in Table 2.

TABLE 2. Sensor positions (meter) for single-target.

According the assumptions described above, the obtained
DOAs at each sensor suffer from Gaussian measurement
errors. In this simulation, the standard deviations σϕ and σθ
are set at 5◦, 10◦, 15◦ and 20◦, with the snapshot number
L = 500. Note that in practice, σϕ and σθ may differ, not
only at the same sensor, but also among different sensors.
However, in order to capture the performance tendency
of their effects, the DOA measurements at all sensors
are assumed to have the same standard deviation in the
simulations.

A detection trajectory using the proposed technique is
shown in Fig. 3, with σϕ/σθ = 5◦, and the initial guess
is set at (0, 0, 0). It is found that within around 5 itera-
tions, the trajectory converges into a point which is very
close to the true target position at (76, 62, 81). Since the
RMSE result depends on the target position, 1000 targets
are randomly generated within the sensing area to calculate
the average RMSE performances. Fig. 4 shows the average
RMSEs versus iteration times, where the standard deviation
of the measurement error is set as the parameter, and the

FIGURE 3. Trajectory in 3D for the single-target detection.

VOLUME 7, 2019 94635



M. Cheng et al.: DOA-Based Factor Graph Technique for 3D Multi-Target Geolocation

FIGURE 4. Average RMSE versus iterations for 3D single-target detection
with different σϕ/σθ .

snapshot number L is fixed at 500. It has been shown that the
average RMSE curves converge after around 5-6 iterations.
Obviously, the smaller the standard deviation, the lower the
average RMSEs. However, even in the case σϕ/σθ = 20◦,
the proposed technique can achieve an average RMSE less
than 2 meter.

Besides the iteration time, the system performance is also
affected by the snapshot number L, since it determines the
mean and the variance of the measurement error. The value
of L maybe limited in practice, and hence it is meaningful
to evaluate its impact on the average RMSE. Fig. 5 shows
the average RMSE versus σϕ/σθ , where the iteration time is
fixed at 10, and the snapshot number L is set as a parameter.
Obviously, the larger the L value, the better the performance,
in terms of both the simulated average RMSEs and the
CRLBs. The effect of L is also found less significant when
the standard deviation of the error is small. Moreover, it can
be seen that the average RMSEs obtained by simulations are
very close to the corresponding CRLBs derived in (48), espe-
cially when L is large. With L = 1000, the gap is only around

FIGURE 5. Average RMSE versus standard deviation for 3D single-target
detection, with L being the parameter.

0.5 meter even when σϕ/σθ = 20◦, which demonstrates the
high accuracy of our proposed algorithm.

Finally, the proposed FG algorithm is compared to the con-
ventional linear LS approach in terms of the average RMSEs,
and the results are shown in Fig. 6. Clearly, the proposed FG
algorithm outperforms the conventional LS approach. With
L = 500, roughly 1 meter improvement of the detection
accuracy can be observed with the proposed FG algorithm.
In this case, the gaps between the average RMSEs obtained
by simulations and the CRLBs are found to be very small,
i.e., between 0.15 meter with σϕ/σθ = 5◦, and 0.8 meter with
σϕ/σθ = 20◦.

FIGURE 6. Average RMSE comparison between FG and LS for 3D the
single-target detection.

VI. GEOLOCATION FOR MULTIPLE TARGETS
A. SENSOR SEPARATION ALGORITHM
In this section, a DOA-based multi-target geolocation is
investigated. Even though each sensor is assumed to be
capable of measuring the DOAs of different targets, the dif-
ficulty lies in the target-DOA matching among distributed
sensors. Since the matching between the anonymous targets
and their DOAs is a highly combinatory problem, the brute
force approach may be intuitively applicable, but it requires
heavy computational complexity. Instead, a very simple but
yet useful sensor separation algorithm is proposed, which
is detailed below. Note that the proposed algorithm is only
empirical, which does not aim to provide the optimal esti-
mating results [30].

Let’s start with a basic 2D two-target scenario, where the
sensors are located on the circle surrounding the two targets,
as shown in Fig. 7. ϕ̄1i and ϕ̄2i are the mean values derived
from the two measured DOAs at the i-th sensor from the
two targets, with the decreasing order ϕ̄1i > ϕ̄2i . Note that
ϕ̄1i and ϕ̄

1
j from the i-th and the j-th sensormay not correspond

to the same target, because the superscript denotes only the
value-ordering of the observed mean DOAs. A sensor separa-
tion algorithm is proposed in this paper to distinguish the two
DOAs from the two targets. Specifically, this algorithm aims
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FIGURE 7. Sensor separation for 2D two-target detection.

to separate the total sensors into two sub-sets, i.e., S1 and S2,
such that ϕ̄1S1 and ϕ̄2S2 are supposed to be from one target,
while ϕ̄2S1 and ϕ̄

1
S2

are from the other. To realize such separa-
tion, the fusion center compares mean values of the differen-
tial DOAs between the neighboring sensors, and finds those
which are smaller than their neighbors in both clockwise and
counter-clockwise directions. By doing that, if the sensor
density is large enough, two sensors can be always found
satisfying the condition stated above and therefore dividing
the total sensors. However, in practice, there could be only
one sensor being found satisfying such condition due to the
low density of sensor distribution. In this case, all sensors
belong to the same sub-set, i.e., ϕ̄1S and ϕ̄2S are associated
with the DOAs from one and the other targets, receptively.
Noted that the sensors used for dividing the sub-sets should
be excluded from the following detection due to two reasons:
(1) it is difficult to decide which sub-set they are in since their
locations are near the border of the sub-sets; (2) the correla-
tion between the two DOAs is supposed to be very large, such
that the estimated PDF from the histogrammeasurement may
not be sufficiently accurate. The pseudocode realization of
this algorithm is presented in Algorithm 1 as follows.

The extension of the sensor separation algorithm to 2D
three-target geolocation is also provided in this section,
as illustrated in Fig. 8. Assume that the i-th sensor observes
three DOAs with the mean values being ϕ̄1i , ϕ̄

2
i and ϕ̄3i from

three targets, where ϕ̄1i > ϕ̄2i > ϕ̄3i . Two differential
mean DOAs 1ϕ̄1i =

∣∣ϕ̄1i − ϕ̄2i ∣∣ and 1ϕ̄2i = ∣∣ϕ̄2i − ϕ̄3i ∣∣ are
calculated for each sensor, based on which the total sensors
can be theoretically divided into 6 sub-sets, if the targets are
not in a line and the sensor density is sufficiently large. The
same as in the two-target case, sensors belonging to the same
sub-set can be used for three-target detection with the same
target-DOAs matching, i.e., the same target corresponds to
the same DOA increasing/decreasing ordering. The proposed
sensor separation algorithm for 2D three-target is detailed

Algorithm 1 Pseudocode of the Sensor Separation
Algorithm for Two-Target

Initialization: S = {1, 2, . . . ,M}, S1 = S2 = R = ∅;
for i = 1:M do

[ϕ̄1i , ϕ̄
2
i ] = sort(two DOAs measured at sensor i) in

decreasing order;
1ϕ̄i = ϕ̄1i − ϕ̄

2
i ;

end
1ϕ̄0 = ϕ̄M ;
1ϕ̄M+1 = ϕ̄1;
for i = 1:M do

if 1ϕ̄i < 1ϕ̄i−1 and1ϕ̄i < 1ϕ̄i+1 then
Put i into set R;

end
end
S1 = {R(1) : 1 : R(end)};
S2 = S − S1;
S1 = S1 − R;

FIGURE 8. Sensor separation for 2D three-target detection.

in Algorithm 2. Similarly, this idea can be extended to the
cases with more than three targets, which will not be detailed
in this paper. It can be clearly understood that more densely
distributed sensors yield higher estimation accuracy with the
proposed sensor separation algorithm, especially when the
number of targets is large.

According to the assumptions described above, at each
sensor, the azimuth is always paired with its corresponding
elevation measured from the same target in 3D. Theoretically,
given multiple distributed sensors, the target-DOAs matching
can be conducted by either the azimuth or the elevation
domains. However, it is impossible to use elevation alone to
sort the DOAs, since in general the elevation does not separate
the targets in height. Instead, the target-DOAs matching
should first rely on the azimuth. Specifically, the proposed
sensor separation algorithm described above can still be
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Algorithm 2 Pseudocode of Sensor Separation
Algorithm for Three-Target

Initialization: S = {1, 2, . . . ,M}, T = ∅;
for i = 1 : M do

[ϕ̄1i , ϕ̄
2
i , ϕ̄

3
i ] = sort(three DOAs measured at sensor

i) in decreasing order;
1ϕ̄1i = ϕ̄

1
i − ϕ̄

2
i ;

1ϕ̄2i = ϕ̄
2
i − ϕ̄

3
i ;

1̄i =
∣∣1ϕ̄1i − ϕ̄2i ∣∣;

end
1̄0 = 1̄M ;
1̄M+1 = 1̄1;
for i = 1 : M do

if 1̄i < 1̄i−1and1̄i < 1̄i+1 then
Put i into set T ;

end
end
t = length(T );
S1 = S2 = ... = St = ∅;
for i = 1 : t do

put i into Si;
j1 = T (i)− 1;
j2 = T (i)+ 1;
while

{
1ϕ̄1j1 > 1ϕ̄1j1−1

or1ϕ̄1j1 > 1ϕ̄1j1+1

}
and{

1ϕ̄2j1 > 1ϕ̄2j1−1
or1ϕ̄2j1 > 1ϕ̄2j1+1

}
do

Put j1 into set Si;
j1 = j1 − 1;
if j1 == 0 then

j1 = M ;
end

end

while
{
1ϕ̄1j2 > 1ϕ̄1j2−1

or1ϕ̄1j2 > 1ϕ̄1j2+1

}
and{

1ϕ̄2j2 > 1ϕ̄2j2−1
or1ϕ̄2j2 > 1ϕ̄2j2+1

}
do

Put j2 into set Si;
j2 = j2 + 1;
if j2 == M + 1 then

j2 = 1;
end

end
end

utilized, by simply projecting the sensors and the targets onto
the 2D X-Y plane. However, in the case that the projected
multiple targets have very close positions at the X-Y plane,
the measured elevations will directly separate the targets by
their heights, and therefore can provide us the target-DOAs
matching information. Thereby, the multi-target geolocation
in 3D can be similarly decomposed into multiple independent
3D single-target detections.

B. MULTI-TARGET SIMULATIONS
In this section, themulti-target geolocation is simulated based
on the proposed technique. For the initialization, 8 sensors are

assumed to be allocated on the edge of the 3D sensing area,
with their locations given in Table 3. Multi-target detection is
simulated in both 2D and 3D. In the case of 2D, only x and y
columns from Table 3 are used for the sensor positions.

TABLE 3. Sensor position (meter) setup in 3D.

First of all, a trajectory of 2D detection is shown in Fig. 9,
with L = 500, σϕ = 5◦ and the two target positions
being (150, 140) and (130, 40). By utilizing the proposed
Algorithm 1, sensor 2 and sensor 5 are selected to separate
the total sensors, i.e., R = {2, 5}. The two sub-sets of sensors
can then be obtained by S1 = {3, 4} and S2 = {1, 6, 7, 8},
where the sensors in R are excluded. The proposed algorithm
concludes that the mean DOAs from S1 and S2 having dif-
ferent increasing/decreasing orders can be used to detect the
same target. Hence, after separating the sensors, the detection
of two targets can be independently conducted, with their
corresponding DOAs only. It can be clearly seen in Fig. 9 that
with around 3 or 4 iterations for each target, the estimations
converge into the points very close to the true target positions.

FIGURE 9. Trajectories in 2D for two-target detection.

Fig. 10 shows the case of 3D geolocation with two tar-
gets locating at (75, 142, 115) and (150, 50, 108). First of
all, the sensor separation algorithm is performed over the
azimuth dimension, which projects the positions of all objects
onto the 2D X-Y plane. According to our simulation results,
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FIGURE 10. Trajectories in 3D for two-target detection, with the sensor
separation performed in 2D X-Y plane.

R = {4, 8} is obtained, with S1 = {5, 6, 7} and S2 = {1, 2, 3}.
Consequently, the convergence behavior of the 3D trajec-
tories can be well observed. Due to the similarity between
Algorithm 1 and 2, the trajectory for three-target geolocation
is not shown in this paper.

Moreover, the average RMSEs are verified through
simulations and compared to the CRLBs, as shown in Fig. 11.
1000 targets are randomly generated with the x, y and
z-coordinate in (30, 170). It is found from Fig. 11 that the
CRLB of the two-target case increases by roughly 0.25 meter
compared to that of the single-target case, if σϕ/σθ = 20◦.
When the target number increases to three, a larger CRLB
gap can be observed compared to that of the two-target case.
Furthermore, the average RMSEs obtained through simula-
tions in the three cases exhibit almost the same tendencies
of their CRLBs. It should be noted that the performance
loss in our proposed multi-target geolocation is due to the
exclusion of sensors from the sensor sub-sets, which are not

FIGURE 11. Average RMSE versus standard deviation for 3D multi-target
detection.

used in the detection. Therefore, the larger the target number,
the more sensors need to be excluded. That is the reason
for the loss found in the three-target case being more severe
than that of the two-target, with the same sensor setup in this
simulation. This observation invokes a reasonable conclusion
that, the multi-target geolocation performance may further be
improved with more densely distributed sensors, if a larger
number of target is aimed at.

VII. CONCLUSION
This paper has proposed a DOA-based 3D geolocation
technique for anonymous multiple targets using a FG algo-
rithm. It has been shown that the proposed technique outper-
forms the conventional LS approach in terms of the average
RMSE. Due to the assumption ofmultiple distributed sensors,
the matching between DOAs, measured at different sensors,
and their originating target is unknown, which is referred to as
the target-DOAs matching problem. This problem has been
solved by the proposed sensor separation algorithm, such that
the conventional target-specific identification techniques,
e.g., reference signal, are avoided. Moreover, the CRLB of
the proposed system has been mathematically derived. The
performances of the our technique have been evaluated by
simulations, which are shown very close to the CRLB. Up to
our best knowledge, this paper for the first time addressed a
target-DOAs matching problem, for solving the DOA-based
3D multi-target geolocation using FG algorithm. Our next
research target includes developing tracking capability based
on the proposed technique.

APPENDIX
CRLB DERIVATION
The CRLB derivation of the proposed DOA-based 3D geolo-
cation system is presented in this appendix. According to the
Gaussian assumptions shown in (8) and (9), the PDFs of the
measured DOA samples can be given by

p(ϕ̂) =
L∏
l=1

1√
2πσ 2

ϕ

exp

[
−

1
2σ 2
ϕ

(
ϕ̂l − ϕ

)2]
, (53)

p(θ̂ ) =
L∏
l=1

1√
2πσ 2

θ

exp

[
−

1

2σ 2
θ

(
θ̂l − θ

)2]
, (54)

where the true DOAs can be written by

ϕ = arctan
(
Y − y
X − x

)
, (55)

θ = arctan

(
Z − z√

(X − x)2 + (Y − y)2

)
. (56)

Let Â represent the measured DOA variable including both ϕ̂
and θ̂ , the fisher information function can be expressed by

E

[(
∂

∂A
ln p(Â)

)2
]
= −E

[
∂2

∂A2
ln p(Â)

]
. (57)
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According to (53) and (54),

∂2

∂A2
ln p(Â) = −

L

σ 2
A

. (58)

Therefore, the FIM can be further derived by

F(g) =
∂A
∂g

T
E

[(
∂

∂A
ln p(Â)

)T (
∂

∂A
ln p(Â)

)]
∂A
∂g

=
∂A
∂g

T
E

[(
∂

∂A
ln p(Â)

)2
]
∂A
∂g

=
∂A
∂g

T
[
L

σ 2
A

]
∂A
∂g
. (59)

The Jacobian matrix in (59) is given by

J =
∂A
∂g
=



∂ϕ1

∂x
∂ϕ1

∂y
∂ϕ1

∂z
∂ϕ2

∂x
∂ϕ2

∂y
∂ϕ2

∂z
...

...
...

∂θ1

∂x
∂θ1

∂y
∂θ1

∂z
∂θ2

∂x
∂θ2

∂y
∂θ2

∂z
...

...
...


, (60)

where
∂ϕ

∂x
=

1y
1xy

, (61)

∂ϕ

∂y
= −

1x
1xy

, (62)

∂ϕ

∂z
= 0, (63)

∂θ

∂x
=

1x1z
1xy1xyz2

, (64)

∂θ

∂y
=

1y1z
1xy1xyz2

, (65)

∂θ

∂z
=
−1xy
1xyz2

. (66)

The Euclidean distance between the sensor and the target
in 3D space is denoted by 1xyz, and 1xy represents the
projected distance of 1xyz on the X-Y plane.
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