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ABSTRACT
We propose a novel representation of materials named an ‘orbital-field matrix (OFM)’, which is
based on the distribution of valence shell electrons. We demonstrate that this new representation
can be highly useful in mining material data. Experimental investigation shows that the formation
energies of crystalline materials, atomization energies of molecular materials, and local magnetic
moments of the constituent atoms in bimetal alloys of lanthanide metal and transition-metal can
be predicted with high accuracy using theOFM. Knowledge regarding the role of the coordination
numbers of the transition-metal and lanthanide elements in determining the local magnetic
moments of the transition-metal sites can be acquired directly from decision tree regression
analyses using the OFM.
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1. Introduction

Recently, the increasing volumeof available experimen-
tal and quantum-computational material data, along
with the development of machine learning techniques,
has provided a new opportunity to developmethods for
accelerating discoveries of new materials and physical
and chemical phenomena. By using machine learning
algorithms, hidden information onmaterials, including
patterns, features, chemical rules, and physical laws,
can be automatically discovered from both first-
principles-calculated data and experimental data [1–
8]. It is commonly known that, in a material dataset,
the most important information for identifying a ma-
terial is its structure. Information on the structure of
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a material is usually described using a set of atoms
with their coordinates and periodic unit cell vectors,
which are required for crystalline systems. From the
viewpoint of data science, the material data using this
primitive representation can be categorized as unstruc-
tured data, and themathematical operations performed
on such material data involve the algebra of sets only.
Therefore, advanced quantitative machine learning al-
gorithms cannot be applied directly and effectively to
conventional material data, owing to the limitation of
the algebraic operations of the primitive data repre-
sentation. In order to apply well established machine
learning methods, including predictive learning and
descriptive learning, it is necessary to convert the
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primitive representation into fixed-dimensional vec-
tors or matrices, such that the comparison and calcu-
lations using the new representation reflect the nature
of the materials and the actuating mechanisms of the
chemical and physical phenomena. Various methods
for encoding materials have been developed in the field
of materials informatics.

Previously, Behler and coworkers [9–15] utilized
atom-distribution-based symmetry functions to repre-
sent the local chemical environments of atoms with a
cutoff radius of approximately 1.0 nm, and employed
a multilayer neural network to map these chemical
environments to the associated local (atomic) energies.
The global (total) energy of a given material was then
calculated by taking the summation of its local energies.
This descriptor is recognized as one of the most suc-
cessful descriptors for fitting the atomic potential en-
ergy surfaces. Bartók and colleagues [16–18] employed
the atomic density distribution to compare molecules
and solids. Gaussian kernels were used to smoothly
approximate atomic density in a local structure. And
the similarity between two local structures was esti-
mated by overlapping of their atomic densities which
are expanded by spherical harmonic functions. An-
other successful descriptor was developed by Rupp and
coworkers, and is known as the Coulomb matrix (CM)
[19–21]. The CM descriptor includes all the pairwise
structural information on the atoms in a system and is
long range with a length dependence of 1/r. The CM
is used for predicting the atomization energies of small
isolated organicmolecules and obtained very successful
results [20]. Complementary to thementioned descrip-
tors, there is an effort of combining many types of
materials representation including atomic information,
the partial radial distribution function, the generalized
radial distribution function, etc., together with their
covariances, to predict cohesive energies with high ac-
curacy [22]. In spite of the advantage in some predictive
analyses, the above descriptors cannot be effectively
employed to other interestingmining tasks that require
high interpretability of the learning results, for instance,
the problems regarding pattern detection of materials
behaviors, the extraction of hidden chemical/physical
knowledge from a material dataset, the visualization of
material datasets in a low dimensional space, etc.

Another interesting attempt at descriptor design in-
volves the introduction of informationon the electronic
structures. Previously, Isayev et al. used band struc-
tures and density of states (DOS) fingerprint vectors
as representations of materials to visualize the material
space [5].However, use of informationon the electronic
structure requires first-principles calculations, which
have a high computational cost. We believe that it is
a good direction if we can take into account infor-
mation of the electronic states, and the atomic elec-
tron configuration may be regarded as the zeroth order

approximation and could be considered as a viable
substitution. Structural fragment arrangement has also
been utilized to encode materials in order to predict
their physical properties [5,23]. This kind of descrip-
tor exhibits good performance for molecular systems,
and important fragment patterns concerning a certain
material property can be discovered from the learned
results. Through consideration of these descriptors, the
present authors obtained the concept of developing
a descriptor for crystalline materials based on a local
structure comprised of a center atom and its neighbor-
ing atoms (this local structure can also be regarded as
a structural fragment), along with information on the
atomic electronic structure (electronic configuration)
of the constituent atoms.

To render data-driven approaches meaningful and
useful for materials science studies, it is necessary to
design material representations with which the results
derived using machine learning methods can be inter-
preted in the language of physical chemistry. It has been
well established in fundamental chemistry that certain
important aspects of the electronic structure can be
deduced from a simple description of the nearest atoms
or valence electrons around an atom in a molecular
or crystalline system; e.g. the Lewis theory provides
powerful tools for studying molecular structure [24].
The ligand field and crystal field theories are examples
of other theories developed based on this intuition to
classify or categorize local atomic environments, and
several fruitful results have been obtained using these
theories [25]. Needless to say, within these theories,
information regarding the long-range interactions can
be included by embedding the information on the local
chemical environment of the nearest atoms using a con-
volutional manner. We utilize this heuristic intuition to
implement the above-mentioned concept of developing
a novel representation by incorporating the informa-
tion on the local structure and the number of valence
orbitals (electrons) coordinating the valence orbital of
the center atom. We name this type of descriptor the
‘orbital field matrix (OFM)’.

In this work, with emphasis on the interpretability
of the derived learning results, we design a material
descriptor that (1) utilizes information on the local
structure, (2) incorporates the valence atomic configu-
ration, and (3) accepts algebraic operations to construct
global descriptors from local descriptors. To verify the
applicability of the proposed material representation,
we focus on magnetic materials based on bimetal al-
loys of lanthanide metal and transition-metal (LAT)
and LAT alloys including a light element X, which
may be B, C, N, or O (LATX). We first examine the
decision trees for predicting the magnetic moments
of Mn, Fe, Co, and Ni in LAT alloys. The decision
trees learned from the LAT alloy data show that the
coordination numbers of the occupied d orbitals of the
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transition-metals and the occupied f orbitals of the
lanthanides play important roles in determining the
local magnetic moments of the transition-metal sites.
The obtained results confirm the interpretability of our
OFM representation regarding structural and physical
chemistry. In addition, kernel ridge regression (KRR)
analyses using standard techniques and similarity mea-
sures are implemented in learning prediction models
to quantitatively predict the local magneticmoments of
transition-metal sites in LAT alloys, formation energies
for LATX materials, and atomization energies for or-
ganicmolecules. Our computational experiments show
that the OFM representation can accurately reproduce
the local magnetic moments of transition-metal sites in
LAT alloys, formation energies of crystalline systems,
and atomization energies of molecular systems. The
high prediction accuracy confirms the practicability of
our OFM representation.

2. Methodology

2.1. Representation ofmaterials

To design the representation for a material, we start
with the representation for an atom as a material build-
ing block. We utilize the standard notation for elec-
tron configuration to develop the representation for
an atom; e.g. the electron configurations of Na and Cl
are [Ne]3s1 and [Ne]3s23p5, respectively. In order to
convert this standard notation into a numerical vec-
tor, we borrow the concept of one-hot vector in the
field of natural language processing, in which a word is
represented by a bit vector having the dimension of the
number of words in a dictionary. The vector consists
of elements with values of 0, with the exception of a
single element used uniquely to identify the word. The
representation of an atom is then converted from the
standard notation into a one-hot vector �Oatom by using
a dictionary comprised of the valence subshell orbitals:
D = {s1, s2, p1, p2, . . . , p6, d1, d2, . . . , d10, f 1, f 2, . . . ,
f 14} (e.g. d5 indicates the electron configuration in
which the atomic valence d orbital holds five electrons),
which consists of 32 elements (Figure 1).

Next, we design the representation of the coordina-
tion number. It is not easy to define the coordination
number for realistic crystal structures and there exist
a number of such definitions. In this study, we adopt
the definition by O’Keeffe [26], which utilizes the solid
angles determined by the faces of the Voronoi polyhe-
dra. This method can give the same coordination num-
bers for the high-symmetry atomic environment and
evaluate coordination numbers for the
lower-symmetry atomic environment automatically
and with no ambiguity. We implement this method us-
ing Python Materials Genomics (pymatgen) code [27].

We represent a local structure surrounding an atom
by considering the sumof theweighted vector represen-

tations of all surrounding atoms in the local structure
using �Oatom and the coordination number. A central
atom at site p in a local structure can be represented
using theOFMwith the elementsXp, which are defined
as follows:

Xp =
np∑

k=1

�OpT × �Ok × wk,

Xp
ij =

np∑

k=1

opi o
k
j

θ
p
k

θ
p
max

, (1)

where i, j ∈ D; k is the index of the nearest-neighbor
atoms; np is the number of nearest-neighbor atoms
surrounding site p; wk is a weight that represents the
contribution of atom k to the coordination number
of the center atom, p; okj and opi are elements of the
one-hot vectors of the kth neighboring atom and p
(ouv is 1 if the valence orbitals of the atom at site u
have electron configuration of type v; otherwise, it is 0)
representing the electron configuration. Further, wk =
θ
p
k /θ

p
max , gives a weight of atom k in the coordination

of the central atom at site p, where θ
p
k is the solid

angle determinedby the face of theVoronoi polyhedron
separating k and p, and θ

p
max is the maximum among

np of them. An element of OFM, Xp
ij , represents the

number of orbitals j coordinating the center orbital i.
Additionally, to incorporate the information on the

sizes of the valence orbitals, the distance rpk between
p and k should be included in wk. We propose the
following form for the calculation of theOFMelements:

X
′p
ij =

np∑

k=1

opi o
k
j

θ
p
k

θ
p
max

ζ(rpk), (2)

where ζ(rpk) is a function representing the contribution
of rpk to wk. In this work, we use the inverse of the
distance as the distance-dependent weight function:
ζ(rpk) = 1/rpk. We use this ζ(rpk) to distinguish atoms
of the same valence configuration with different core
shells and to describe the length dependence between
the atoms. (Note thatwe can add the information on the
core shells to the hot vector without losing the algebraic
operation.)

Composing thedescriptor for a structure (amolecule
or a crystal system) from its local structure represen-
tation requires careful consideration. From the data
science viewpoint, the composed descriptors should
include as much information as possible. On the other
hand, from thematerials science viewpoint, the descrip-
tors should be composed so that the natures of the
target physical properties are reflected appropriately.
For simplicity, in this work, for the atomization energy
of a molecule (which is proportional to the molecule
size), we take the sum of the descriptors of the local
structures as the descriptor for the entire structure:
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Figure 1. OFM representation for an Na atom in a regular octahedral site surrounded by six Cl atoms: atomic one-hot vector for Na
(left), representation for the six Cl atoms surrounding the Na atom (middle), and representation for the Na atom surrounded by six
Cl atoms (right).

Fij =
Np∑

p
X

′p
ij , (3)

where F is the OFM representing the entire molecule.
For the formation energy (per atom) of a crystal, which
is not proportional to the system size, the descriptor
for the entire structure is obtained by averaging the
descriptors of the local structures:

Fij = 1
Np

Np∑

p
X

′p
ij , (4)

where Np is the number of atoms in the unit cell.

3. Results and discussion

3.1. Prediction of local atomic properties

We now examine how the OFM can be employed to
predict the local atomic properties of materials. In this
work, we focus on the local magnetic moments of
transition-metals in LAT alloys (in ferromagnetic con-
figuration), the dataset of which includes 658 struc-
tures collected from the Materials Project database [28,
29]. We select the structures by combining transition-
metals and lanthanides from the sets of {Sc, Ti, V,
Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru,
Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au} and
{La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb, Lu}. We employ Vienna Ab Initio Simulation
Package (VASP) 5.4.1 [30–33] with the generalized gra-
dient approximation (GGA)/Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional[34,35] to calcu-
late the local magnetic moments of these structures.
We followed the Materials Project database regard-
ing the selection of projector augmented wave (PAW)

projectors [36,37], and employed pymatgen 4.3.0 [27]
to prepare the VASP input files with 0.1eV Gaussian
smearing of MITRelaxSet and a k-point mesh density
of 150Å−3. The energy cutoff is 520 eV. The VASP-
PAW includes scalar relativistic effects by default. We
perform collinear spin calculations without spin-orbit
coupling. The systematic simulations performed in this
study were conducted with the assistance of the Or-
ganizing Assistant for Comprehensive and Interactive
Simulations (OACIS) [38].

In LAT alloys, three types of exchange interactions
exist, including the exchange interaction between
transition-metal (T) atoms in the T sub-lattices (T–
interaction), the exchange interaction between
lanthanidemetal (LA) atoms and the T sub-lattices (LA
–T interaction), and the exchange interaction between
lanthanide metal atoms in the LA sub-lattices (LA –
interaction). The exchange interactions involving LA
elements are mediated by their 5d states, because of
the strong spatial localization of the 4f states. The LA–
T interaction is weak and the LA–LA interaction is
marginal, in comparison to the T–T interaction. Our
description of the local structure in terms of the co-
ordination of the valence electrons is expected to in-
clude a significant amount of information regarding
thesemagnetic interactions, which are essential for pre-
dicting the local magnetic moment. We first exam-
ine which elements in the OFM determine the local
magnetic moments of the Mn, Fe, Co, and Ni sites
in the LAT dataset through decision tree regression
analyses.

To obtain the coordination information, we first
employ Equation (1) to analyze the local magnetic mo-
ments, without considering the effects of different
atomic orbitals having the same angular quantumnum-
bers, but different principle quantum numbers. We
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abbreviateXp
i,j to (i, j)p, which represents the number of

orbitals j surrounding orbital i. For instance, to encode
the local structures of the metal sites in Sm-Fe alloys
via OFM, we begin by representing the valence electron
configuration of atomic Fe by s2d6 ([Ar] 3d64s2) and
that of Sm by s2f 6 ([Xe] 4f 66s2). The (d6, s2)Fe element
in the derived OFM indicates the total coordination
number of the Fe sites, as s2 appears in both the Fe
and Sm sites. The (d6, f 6)Fe element represents the
number of Sm sites surrounding the Fe sites, and the
number of Fe surrounding an Fe site can be found
at the (d6, d6)Fe element. For simplicity, we drop the
superscript (p) hereafter. The decision tree regressions
for the local magnetic moments of the Mn, Fe, Co,
and Ni sites derived from the data are summarized in
Figure 2. It is clearly apparent that the (dn, dn) elements
dominate the decision trees while the (dn, s2), (dn, f n),
or (dn, dm) elements decorate the trees. This is con-
sistent with the fact that the local magnetic moment
of a transition-metal site is determined mainly by the
number of unpaired electrons of the d-orbitals of the
central transition-metal atom as well as by the T–T
interaction between the same element due to the energy
level relation. The appearance of (dn, s2), (dn, f n), or
(dn, dm) elements indicates that the LA–T interaction
also plays a significant role in the determination of the
local magnetic moment.

The tree for the Fe site cases shows that themagnetic
moment is less than 2.2μB when the (d6, d6) element
is less than 6.6 or greater than 9.15. This result implies
that the Fe atom appears to have a smaller magnetic
moment when surrounded by less than seven Fe atoms
or more than nine Fe atoms. The latter case reminds us
of the anti-ferromagnetic ground state of face-centered
cubic (fcc) Fe with 12 as (d6, d6). Further, the magnetic
moments of the Fe sites may be greater than 2.5μB
when the (d6, d6) element is greater than 6.6, but the
(d6, s2) element (namely, the total coordination num-
ber including the contribution of the lanthanide metal
atoms) is less than 8.73. The decision tree for theNi sites
shows that those sites tend to have a small magnetic
moment (less than 0.2μB) when the (d8, d8) element
is less than 7.22. However, a large magnetic moment
(greater than 0.4μB) can be obtained when the (d8, d8)
element is greater than 8.25. This implies that the Ni
atom has a large magnetic moment when surrounded
bymore than nine Ni atoms. Themagneticmoments of
theNi sitesmaybe greater than 0.4μBwhen the (d8, d8)
element is greater than 7.22, but the (d8, s2) element
(namely, the total coordination number including the
contribution of the lanthanidemetal atoms), is less than
9.15. This result is also qualitatively consistent with
the observation that Ni cannot sustain its magnetic
moment alone in metals [39].

For the Co sites, we see that the decision tree uses
(d7, f 12) and (d7, d1), where f 12 comes from Er and d1

comes from La, Ce, Gd, and Lu at the lower branches.
Careful analysis reveals that these branches are con-
structed to separate the cases ofμ = 0.5–1.5μB for LA-
Er and (La, Ce, Gd, Lu)-Co from the case ofμ > 1.5μB.
There are five Er-Co with a local magnetic moment of
1.5μB and five Er-Co with a local magnetic moment
of less than 1.5μB, the criterion of which is (d7, f 12) =
1.7. The (d7, d1) leaf separates Ce-Co and La-Co (the
magnetic moments of which are 1.596 and 1.624μB,
respectively) from thosewithmagneticmoments of less
than 1.5μB . The maximum local magnetic moment of
LA-Co is 1.74μB. The leaf for which the local magnetic
moment is largest, i.e. larger than 1.5μB, contains 36
positive and 19 negative cases, if we do not use (d7, f 12)
or (d7, d1). However, this leaf contains 34 positive and
five negative cases if we use the information related to
the T–LA interaction to cluster the cases appropriately.

For the case of the Mn sites, the trend is not as clear
as for Fe, Co, or Ni. In fact, it is observed that the
local magnetic moments for the Mn sites fall within
a large range, i.e., from 0.0 to 3.2μB. To obtain a lo-
cal magnetic moment greater than 2.0μB, a (d5, d5)
element less than 7.34 and (d5, s2) greater than 8.69
are required. However, among the 12 cases satisfying
these conditions, only six positive cases were found.
Further, three of the six negative cases exhibit local
magnetic moments of less than 1.0μB, whereas the
other three cases exhibit local magnetic moments of
1.0–2.0μB. This observation can be attributed to the
complexmagnetic structures of thehalf-filledd orbitals.

These results show that clustering by the decision
trees can determine important elements of the OFM
that are consistent with the physical or chemical pic-
ture. Further, we can automatically derive quantitative
relations between the elements of theOFMand the local
magnetic moments using the developed method. Thus,
we can expect that the OFM, which we employed as de-
scriptors in the decision trees, can be good descriptors
for the regression of the local magnetic moments of the
LAT systems.

In the next step, we examine how the local magnetic
moments can be represented by the OFM descriptors
based on the fact that materials with higher similar-
ity (as estimated by the descriptors) should possess
similar local magnetic moments. For this purpose, we
employ a simple nearest-neighbor regression method
to predict the local magnetic moments, and the cross-
validated root mean squared error (RMSE) is used to
measure the performance of our descriptors. In the
nearest-neighbor regression, a property of a data point
is deduced from the properties of the nearest-neighbor
points in the training data. For the quantitative predic-
tion of physical properties, it is necessary to distinguish
the valence orbital using a different principal quantum
number, e.g., the 3d orbitals should differ from the 4d
orbitals. Therefore, hereafter, we use Equation (2) with
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(a) (b)

(c) (d)

Figure 2. Decision tree regression for Mn (a), Fe (b), Co (c), and Ni (d). In each leaf, the upper part indicates the values of the local
magnetic moments, whereas the lower part indicates the number of positive (P) and negative (N) examples.

Table 1. Cross-validated RMSE (μB) and R2 for predicted local
magnetic moments obtained via nearest-neighbor regression
with selected distance measurements (enumerated in the
supplemental information).

Distance deucl dman dcos dbar dcan dcor

RMSE 0.26 0.21 0.23 0.21 0.21 0.23
R2 0.86 0.90 0.89 0.90 0.90 0.90

the distance weight to generate the descriptors for the
local and global structures.

Table 1 summarizes the cross-validated RMSE and
the coefficient of determination R2 between the
observed and predicted values obtained using our
nearest-neighbor regression anddifferent distancemea-
surements. We achieve a reasonable performance as

regards the prediction of the local magnetic moments,
obtaining an RMSE of approximately 0.2μB and an
R2 value of 0.9. This result indicates that close materi-
als in our description space of a local structure yield
similar local magnetic moments, which implies that
our data representation includes significant informa-
tion about the local magnetic moments. To further
improve the prediction of the local magnetic moments,
we apply KRR as the prediction model. We obtain
a cross-validated RMSE of 0.18μB, a cross-validated
mean absolute error (MAE) of 0.05μB, and an R2 value
of 0.93, as indicated in Table 2.

To assess the capability of the OFM descriptor (X ′
in Equation (2)), we compare its performance with that
of the CM descriptor proposed by Rupp and cowork-
ers [19–21]. We treat the local structures in the same
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Table 2. Cross-validated RMSE (μB), cross-validated MAE (μB),
and R2 for predicted local magnetic moments obtained via KRR
regression with OFM and CM descriptors.

Descriptor OFM CM

RMSE 0.18 0.21
MAE 0.05 0.11
R2 0.93 0.90

manner as isolated molecules, and the calculated CM
descriptors are used to predict the local magnetic mo-
ments using KRR regression. Using the CM descriptor,
we obtain a cross-validated RMSE of approximately
0.21μB, a cross-validated MAE of 0.11μB, and an R2

value of 0.90, as indicated in Table 2. The obtained
results show that the OFM descriptor, which includes
information on the coordination of valence electrons,
is more informative and, consequently, yields a slight
improvement in prediction accuracy compared to the
CM descriptor for the local magnetic moments of the
LAT alloys.

3.2. Prediction ofmaterial properties

With the aim of obtaining a prediction model with
high prediction accuracy, the representation of ma-
terials is usually designed to include as much infor-
mation as possible via a large number of descriptors,
without considering their interpretability. In this work,
as mentioned above, we focus on developing descrip-
tors, taking both the applicability and interpretability
into consideration. Therefore, instead of designing a
complicated representation for materials, we choose a
simple approach in which the descriptor of a material
is derived by averaging or summing the descriptors
for the local structures of its constituent atoms. Here,
we implement the prediction models for the formation
energies of crystalline systems and the atomization en-
ergies of molecular systems in order to examine the
applicability of the OFM descriptors.

For crystalline systems, we focus on transition-metal
binary alloys (TT), and bimetal alloys of lanthanide
metal and transition-metal (LAT), as well as LATX and
TTX, which are LAT and TT alloys that include a light
element X. We select the transition-metals from the set
of {Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo,
Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au},
the lanthanides from {La, Ce, Pr, Nd, Pm, Sm, Eu, Gd,
Tb, Dy, Ho, Er, Tm, Yb, Lu}, and the X elements from
{B, C, N, O}. We collect the data of more than four
thousand compounds, including their structures and
formation energies, from the Materials Project reposi-
tory: 1510 LATX compounds, 1311 TTX compounds,
692 LAT compounds, and 707 TT compounds. We use
the average of the descriptors for their local structures
to build the global descriptor for each of thesematerials.

Table 3. Cross-validated RMSE (eV/atom), cross-validated MAE
(eV/atom), andR2 for formation energy of LATX andatomization
energy of QM7 dataset obtained usingOFM and CMdescriptors.

Dataset LATX QM7

Descriptor OFM CM [20] OFM CM [19]

RMSE 0.190 0.470 0.043 0.040
MAE 0.112 0.390 0.027 0.020
R2 0.98 0.87 0.98 0.99

For these crystalline systems,we compare the perfor-
mance of our OFMdescriptor (X ′ in Equation (4)) with
that of the CM descriptor, which is based on the Ewald
sum and which was developed by Faber and coworkers
[20]. We use a KRR model with a Laplacian kernel for
both the OFM and CM descriptors. A 10-fold cross-
validated comparison between the DFT-calculated for-
mation energies and the machine learning-predicted
formation energies is shown for the OFM in Figure
3. The DFT-calculated and ML-predicted formation
energies showgood agreement, with anR2 value of 0.98,
a cross-validated RMSE of 0.19 eV/atom, and a cross-
validated MAE of 0.11 eV/atom. This result is better
than that obtained using the CM descriptor, which
yields an R2 value of 0.87, a cross-validated RMSE of
0.47 eV/atom, and a cross-validated MAE of
0.39 eV/atom, as summarized in Table 3. A similar
relatively poor result of the CM descriptor has been
already reported on the performance in the prediction
of the formation energies of crystal systems [20].

For the molecular systems, we focus on the atom-
ization energies of organic molecules. We use the QM7
dataset with 6915 organic molecules [19,40]. (Origi-
nally, the QM7 dataset contained 7195 molecules, but
more than 100 molecules were removed because of a
technical problem in determining Voronoi polyhedra
for flat structures). As noted above, the descriptor of
a molecule is built by summing over the descriptors
of its local structures. Using our OFM representation,
Equation (2), and KRR regression, we obtain a cross-
validated RMSE of 0.043 eV/atom, a cross-validated
MAE of 0.027 eV/atom, and an R2 value of 0.98. In
contrast, theCMyields a cross-validatedRMSEof 0.040
eV/atom, a cross-validatedMAE of 0.020 eV/atom, and
an R2 value of 0.99 [19–21], as indicated in Table 3. It
is worth noting that although our dimension of our
OFM seems to be high compared to CM for the small
systems, the advantage of OFM is that its dimension is
fixed regardless the size of the system. In fact, our OFM
contains the only small number of non-zero elements
depending on data set. For the QM7 data set, we only
need 25 features.

This result confirms that the construction of the
OFM of a material, which is achieved by averaging or
summing the descriptors of all the local structures of
the constituent atoms, yields superior prediction accu-
racy than the CM descriptor for the formation ener-
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Figure 3. Comparison of formation energies calculated using DFT and those predicted through machine learning (ML-predicted),
using OFM.

(a) (b)

Figure 4. Standard deviations of local OFMs of QM7 (a) and LATX (b) datasets.

gies of LATX systems, and comparable accuracy to the
CM descriptor for the atomization energies of organic
molecular systems in the QM7 dataset. It may be noted
that, for molecular systems (the QM7 dataset contains
light elements such as C, H, O, N, and S only), the
CM descriptor yields a slightly better result than our
OFM. However, for LATX systems with a variety of
elements (the LATXdataset contains transition-metals,
lanthanides, and light elements), our OFM exhibits su-
perior prediction ability.

Figure 4(a) and (b) depicts the standard deviations
of the OFMs of all local structures for the QM7 and
LATXdatasets, respectively. It is apparent that theQM7
dataset contains only a small number of non-zeroOFM
elements, whereas the LATX dataset exhibits a large
variety of OFMs. Moreover, the QM7 dataset exhibits a
small deviation of the OFM, whereas the LATX dataset
has a greater deviation. These differences arise because
the QM7 dataset is comprised of organic molecules,
where the covalent bonding formed by the sp
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hybridization is a major factor determining the geom-
etry of the nearest neighbor atoms or the coordination
number, in principle. Therefore, the QM7 dataset ap-
pears to be less divergent as regards the OFM descrip-
tors. On the other hand, the crystalline materials in the
LATX dataset, which includes so-called ionic bonding
as well as covalent bonding, have considerably higher
diversity in terms of both composition and structure.
Interestingly, our OFM yields a better result for these
complex and divergent systems. The important point
to note is that the OFM can describe large diversity in
atomic composition and structure more clearly, facili-
tating the learning and prediction of the properties of
both crystalline and molecular systems. The OFM in-
cludes the effect of the nearest neighbor sites chosen by
the Voronoi polyhedra only. However, for a molecule,
the OFM can yield performance equivalent to that of
the CM, the descriptors of which are based on long-
range power-law decay. Further, the OFM results are
of considerably better quality than those of the CM for
the periodic LATX systems. Thus, our results indicate
that our developed OFM technique offers an essential
basis for the theoretical design of materials properties,
via an approach similar to building blocks.

4. Conclusions

We have proposed a novel representation of crystalline
materials named as ’orbital-field matrix (OFM)’, which
is based on the distribution of valence shell electrons.
We have demonstrated that this new representation
can be highly useful in describing and measuring the
similarities of materials or local structures in bimetal
alloys of lanthanide metal and transition-metal (LAT)
as well as LATX (X: light element) ternary alloys. Our
experiments show that our OFM can accurately re-
produce the DFT-calculated local magnetic moments
of transition-metal sites in LAT alloys with a cross-
validated RMSE of 0.18μB and an R2 value of 0.93.
Moreover, the results can be interpreted in the language
of physical chemistry; that is, the ligand field theory for
the local magnetic moment. Decision tree regression
shows the importance of the coordination numbers of
the occupied d orbitals of the transition-metals and the
occupied f orbitals of the lanthanides in determining
the local magnetic moments of the transition-metal
sites. Further, the formation energies of crystalline sys-
tems and the atomization energies ofmolecular systems
can be well predicted using our OFM. That is, with
KRR representation, the formation energies of the crys-
talline systems and atomization energies of the molec-
ular systems can be accurately reproduced with an R2

value of approximately 0.98. Incorporating informa-
tion on the atomic orbital coordination, OFM exhibits
superior applicability to systems with high diversity
in atomic composition and structure in LATX com-
pared to theCMapproach. The acquired results suggest

that OFM could be useful formining chemical/physical
information on materials from available datasets using
modern machine learning algorithms.

Details of the methods and the model parameter
optimization are summarized in the supplemental ma-
terials.
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