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We have developed a descriptor named Orbital Field Matrix (OFM) for material structures in
datasets of multi-element materials. The descriptor is based on the information regarding atomic
valence shell electrons and their coordination. In this work, we develop an extension of OFM called
OFM1. We have shown that these descriptors are highly applicable in predicting the physical prop-
erties of materials and in providing insights on the materials space by mapping into a low embedded
dimensional space. Our experiments with transition metal/lanthanide metal alloys show that the
local magnetic moments and formation energies can be accurately reproduced using simple nearest-
neighbor regression, thus confirming the relevance of our descriptors. Using kernel ridge regressions,
we could accurately reproduce formation energies and local magnetic moments calculated based on
first-principles, with mean absolute errors of 0.03 µB and 0.10 eV/atom, respectively. We show
that meaningful low-dimensional representations can be extracted from the original descriptor using
descriptive learning algorithms. Intuitive prehension on the materials space, qualitative evaluation
on the similarities in local structures or crystalline materials, and inference in the designing of
new materials by element substitution can be performed effectively based on these low-dimensional
representations.

INTRODUCTION

Human beings have always paid significant attention
to learning nature’s “game” by observation and imagi-
nation of natural phenomena. In this respect, we have
observed the vast diversity of nature and unified dif-
ferent natural phenomena in a small set of fundamen-
tal variables or laws. This consideration of science is
strongly related to the field of data-mining, which is de-
veloped to discover hidden knowledge. Recently, the in-
creasing volume of available experimental and quantum-
computational material databases, together with the de-
velopment of machine-learning techniques, has provided
new opportunities for developing techniques that help
researchers accelerate the discovery and comprehension
of new materials and phenomena. Machine-learning al-
gorithms can be used to automatically extract knowl-
edge regarding materials, including their patterns and
chemical and physical rules, using both first-principles-
calculated data and experimental data [1–8].

It has been pointed out that using machine learn-
ing algorithms to extract knowledge from data requires
appropriate data representation, appropriate knowledge
representation, appropriate optimization algorithm, and

appropriate evaluation criteria [9]. In a conventional
materials dataset, a material is described by a set of
atoms with their coordinates and periodic unit-cell vec-
tors, which are required for crystalline systems. From
the viewpoint of data science, materials data in primi-
tive representation is categorized as unstructured data,
in which mathematical reasoning follows the algebra of
sets. Therefore, advanced quantitative machine-learning
algorithms can hardly be applied directly to conventional
materials data due to limitations of the algebra of the
primitive data representation.

In order to apply well-established machine-learning
methods including predictive learning and descriptive
learning, an appropriate transformation from primitive
representation to a structured representation, such as
vectors or matrices, is required, such that comparisons
and calculations using the new representation reflect the
nature of the materials and the underlying mechanisms
of chemical/physical phenomena. Various methods for
encoding materials have been developed in the field of
materials informatics. Behler et al. [10–16] utilized
atom-distribution-based symmetry functions to represent
the local chemical environment of atoms, and employed
a multilayer perceptron to map this representation to
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atomic energy. The arrangement of structural fragments
has also been used to encode materials in order to predict
the physical properties of molecular and crystalline sys-
tems [5, 17]. Isayev used the band structure and density
of states (DOS) fingerprint vectors as a representation
of materials to visualize material space [5]. Rupps et al.
developed a representation known as the Coulomb ma-
trix (CM) to predict atomization energies and formation
energies [18–20].

Recently, we have proposed a novel descriptor named
the orbital field matrix (OFM), which incorporates the
valence atomic configuration to describe the local and
the entire structure of materials. This descriptor was
based on the consideration that certain essential aspects
of the electronic structures can be deduced from a simple
description of the valence electrons surrounding a central
atom [21]. Since we focus on the representation of a local
structure including the central atom and those surround-
ing it, the information on the central atoms should play
an essential role in describing the characteristic of the lo-
cal structure. However, our previous descriptor (OFM)
does not explicitly contain the information of the cen-
ter atom. In this study, we extended OFM to the new
(OFM1), which explicitly includes the information on the
central atom in each local structure as seen in Eq. 3. We
demonstrate that these descriptors are highly applicable
in predicting physical/chemical properties of materials,
and in providing insights on materials space by map-
ping into a low-embedded dimensional space. Our ex-
periments with transition metal/lanthanide metal alloys
show that the local magnetic moments and formation en-
ergies can be accurately reproduced using simple nearest
neighbors and kernel ridge regressions (KRR) based on
our descriptors. Using KRR, the local magnetic moments
and formation energies of the materials obtained by first-
principles calculations could be predicted with mean ab-
solute errors (MAE) of 0.03 µB and 0.10 eV/atom, re-
spectively.

In materials science studies, along with the predic-
tion of properties, the detection of the pattern of be-
haviors of materials is also an important task. Herein
we demonstrate that OFM and OFM1 are also applica-
ble for an unsupervised learning to extract the pattern
of behaviors of an atom in a local environment (local
look) and the materials (global look). We show that
the new and meaningful low-dimensional representations
can be extracted from the original descriptor using de-
scriptive learning algorithms. Manifold learning tech-
niques can be applied to the initial representation us-
ing OFM descriptors to discover hidden embedding fea-
tures in the transition metal/lanthanide metal alloys data
set. The dataset is then mapped to the embedding fea-
tures into low-dimensional space. Intuitive prehension
on the local structure space can be easily acquired based
on low-dimensional representations. Qualitative evalua-
tion of the similarity in local structures can be inferred

directly from the Euclidean distance in the extracted low-
dimensional space. Groups of local structures with sim-
ilar symmetries and shapes can be easily identified in
the form of trajectories in the low-dimensional represen-
tations. The extracted low-dimensional space of crystal
structure of the transition metal/lanthanide metal alloys
dataset shows an apparent separation between the two
groups of materials having high and low formation en-
ergies. The obtained results demonstrate that one may
obtain prehension on local structures and crystal struc-
tures, and be able to infer their properties from their
proximities in the extracted low-dimensional spaces.

REPRESENTATION OF MATERIALS

Encoding atom and local structure

From fundamental chemistry and physics, we learned
that the number of atomic orbitals surrounding a cen-
tral atomic orbital plays a significant role in determin-
ing many material properties such as magnetic prop-
erties. To embed this knowledge in material repre-
sentation, we started with the representation of an
atom with a one-hot row vector Oatom using a dic-
tionary comprising the valence subshell orbitals: D =
{s1, s2, p1, p2, ..., p6, d1, d2, ..., d10, f1, f2, ..., f14} (e.g., d5

indicates the electron configuration in which the atomic
valence d orbital holds 5 electrons). Based on this atom
representation, we designed a matrix whose element, Xij ,
represents the number of an atomic orbital, orbital j, co-
ordinated with a central atomic orbital, orbital i, to en-
code a local structure including a central atom and the
neighboring atoms. Here, i and j are in the dictionary
comprising the valence subshell orbitals D. To build this
matrix, we utilized the one-hot row vector representa-
tion for the central atom, Ocentral, and the neighboring
atoms, Ok, where k is the index of the neighboring atoms.
We then summed the vector of the coordinating atoms to
form a vector that represents the environment surround-
ing a central atom, Oenv:

Oenv =

K

k

wk
Ok (1)

where the weight, wk, measures the contribution of the
kth neighboring atom, and K is the number of the neigh-
boring atoms. The representation matrix of a local struc-
ture now becomes:

Xlocal = OT
central × Oenv (2)

where OT
central, a column vector, is the transpose of

Ocentral.
In this study, we adopted the definition of neighboring

atoms by O’Keeffe [22], which utilizes the solid angles, θk,
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FIG. 1. Orbital field matrix representation for Na atom in an octahedral site surrounded by six Cl atoms: atomic one-hot
vector for Na (left), representation of 6 Cl atoms surrounding the Na atom (middle), and representation of Na atom surrounded
by 6 Cl atoms (right). The vector of the central atom is concatenated in the first column on the left-hand side [21].

determined by the faces of the Voronoi polyhedra. This
method can give the same coordination numbers for the
high-symmetry atomic environment, and evaluate the co-
ordination numbers for the lower-symmetry atomic envi-
ronment automatically and with no ambiguity. In this
method, the weight, wk, is determined by the solid an-
gles: wk = θk

θmax
, where θk is the solid angle determined

by the face of the Voronoi polyhedra between the cen-
tral atom and the neighboring atom, k, and θmax is the
maximum solid angle among those between the central
atom and the neighbor atoms. Additionally, to incorpo-
rate information on valence orbital sizes, the distance rk
between the central atom and the kth atom should be
included in wk.
Although the matrix Xlocal in Eq. 2 also includes in-

formation on the central atom, but it is not explicitly
exploited in the similarity measure based on vector or
matrix calculations (discussed in detail in the next sec-
tion) [21]. To explicitly incorporate the information on

the central atom, we simply concatenated OT
central to ma-

trix Xlocal as a new column. Finally, we propose the
following form for representing a local structure:

X ′
local = OT

central ×

1.0,



k

Ok
θk

θmax
ζ(rk)


(3)

where ζ(rk) is a function representing the contribution of
rk to wk. In this study, we use the inverse of the distance
as the distance-dependent weight function: ζ(rk) = 1/rk.
Using this formula, the central vector is concatenated to
Xlocal in the first left column (Fig. 1); this descriptor is
named OFM1.

Encoding molecular and crystal structures

Composing the descriptor for a structure (a molecule
or crystal system) from its local structure representa-
tion requires careful consideration. From a data science
viewpoint, the composed descriptors should include as
much information as possible. However, from a mate-
rials science viewpoint, the descriptors should be com-
posed such that they appropriately reflect the nature of
the target physical properties. In this study, for the for-
mation energy (per atom) of a crystal (which can be con-
sidered an accumulative quantity of the contribution of
constituent local structures), we obtained the mean over
the local structure descriptors as the descriptor for the
entire structure:

F =
1

Np

Np

p

X ′
p, (4)

where p and X ′
p are the indices and representations of lo-

cal structures surrounding atoms in a structure, respec-
tively; Np is the number of atoms the unit cell; and F is
the OFM1 representing the entire crystalline material.

PREDICTIVE ANALYSES

Prediction of local magnetic moment

Here, we examine the use of OFM1 to predict the lo-
cal atomic properties of materials. We implement this
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method using the Python Materials Genomics (pymat-
gen) code [23]. We focused on the local magnetic mo-
ments of transition metals in LAT alloys (in ferromag-
netic configuration), the dataset of which includes 658
structures collected from the Materials Project database
[24, 25]. We selected the structures by combining transi-
tion metals and lanthanides from sets of {Sc, Ti, V, Cr,
Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd,
Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au} and {La, Ce,
Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu}.
Details of the data preparation can be found in [21].

Since the local magnetic moment of a transition-metal
site is mainly determined by the number of unpaired elec-
trons in the d-orbitals, our description of local structure
encoding information on valence electron coordination
should include a large amount of information on local
magnetic moment. We examine whether the local mag-
netic moment information is significantly included in the
descriptors by considering that materials with higher sim-
ilarity, as estimated by the descriptors, should possess
similar local magnetic moments. To this end, we test
whether the local magnetic moments can be predicted by
using a nearest-neighbor regression. The cross-validated
root mean square error (RMSE), the mean absolute er-
ror (MAE), and the coefficient of determination R2, were
used to measure the performance of our descriptors.

The principle behind the nearest-neighbor method is
to find a predefined number of training samples clos-
est in distance to the new point, and predict the label
from these samples. The number of samples can be a
user-defined constant (k-nearest-neighbor learning), or
can vary based on the local density of points (radius-
based neighbor learning) [5]. The accuracy of nearest-
neighbor regression therefore directly reflects the per-
formance of data representation and similarity measure-
ment. In nearest-neighbor regression, data properties are
deduced from the properties of nearest neighbors in the
training data. In this study, we employed a nearest-
neighbor regressor implemented in the scikit-learn pack-
age [26]. The number of nearest neighbors was fixed at
5, and the nearest neighbors were determined by a brute-
force search. The prediction was weighted by the distance
to the nearest neighbors. We examined the following dis-
tance measurements for localizing the nearest-neighbor
data:

Euclidean distance deucl(X,Y ) =


i,j(Xij − Yij)2,

Manhattan distance dman(X,Y ) =


i,j |Xij − Yij |,

Cosine distance dcos(X,Y ) = 1−


ij XijYij√
i,j X2

ij

√
i,j Y 2

ij

,

Bray-Curtis distance dbar(X,Y ) =


ij |Xij−Yij |
ij |Xij |+|Yij | ,

Canberra distance dcan(X,Y ) =


ij
|Xij−Yij |
|Xij+Yij | ,

and Correlation distance dcor(X,Y ) = Cov(X,Y )√
σX ·σY

. Here,

X and Y are two vectors representing two data points;
Cov(X,Y ) is the covariance of X and Y ; and σX and σY

are the variances of X and Y , respectively.

We also implemented a CM descriptor for a local struc-
ture, and used it to predict the local magnetic moments
for comparison. The local structure determined by the
Voronoi polyhedra was considered a molecule, and the
CM descriptor of this local structure was calculated fol-
lowing the Rupp scheme [18]. We first examine the de-
pendence of MAE for the test set on the number of train-
ing data. Fig. 2 shows the learning curves of the nearest
regression by CM [18], OFM, and OFM1. It is clearly
seen that the OFM and OFM1 yield the more accurate
prediction than that given by CM, and OFM1 shows
a slight improvement over OFM. Table I shows the re-
sults of the nearest-neighbor regression obtained by CM,
OFM, and OFM1 by 10-times 10-fold cross-validation.

As mentioned above, matrix X in Eq. 2 also includes
information on the central atom in the local structure.
This information can be obtained manually by checking
the indices of the non-zero column of the OFM repre-
sentation. It can also be extracted automatically us-
ing similarity measures based on a comparison of di-
rection differences between the vectors. However, infor-
mation regarding valence-orbital coordination (encoded
in the OFM) includes the coordinations of each type of
valence subshell orbital. Therefore, similarity measures
that consider comparisons of the magnitude of dimen-
sions between vectors are preferred. However, both cen-
tral atom information and valence-orbital coordination
information are indispensable for learning the local struc-
ture. Consequently, as seen in Table I, the Manhattan,
Bary-Curtis, and Canberra distances, which include the
differences in both direction and magnitude between vec-
tors, show an overwhelmingly superior prediction accu-
racy (R2 > 0.86) than that of the Euclidean distance
for the OFM (R2 = 0.53) (which does not appropriately
measure the difference in direction between vectors).

To explicitly incorporate central atom information, we
simply concatenated OT

c to matrix X as a new column.
OFM1 with the Manhattan distance provided a remark-
able improvement over OFM, while the OFM yielded a
significantly better performance than CM. This result
implies that our OFM1 can explicitly embed substan-
tially more information about the local structure com-
pared to both OFM and CM. Further, we achieved a
reasonably good performance in the prediction of local
magnetic moments using OFM1 with the Manhattan dis-
tance, with the best RMSE of approximately 0.151µB ,
MAE of 0.036 µB , and R2 of 0.948. This result indicates
that closer materials in our description space of local
structures yield similar local magnetic moments, which
implies that our data representation includes significant
information about local magnetic moments.

For a better representation of local magnetic moment,
we applied a KRR [27] model to predict the local mag-
netic moment. KRR is a combination of the kernel
method and ridge regression, and has recently proved
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FIG. 2. The learning curve of the nearest-neighbor regression
for the prediction of the local magnetic moment: the depen-
dence of MAE on the number of fold in the cross-validation by
OFM1 (green), OFM (yellow), and CM (blue) with Euclidean
(a) and Bay-Curtis (b) distances. The error bar represent the
margin error at the confidence level fo 95%.

TABLE I. Cross-validation RMSE (µB), cross-validation
MAE (µB), and coefficient of determination R2 values for
prediction of local magnetic moments obtained by nearest-
neighbor regression with different distance measurements.

Distance deucl dman dcos dbar dcan dcor

CM [18]
RMSE 0.405 0.354 0.483 0.352 0.245 0.483

MAE 0.168 0.135 0.205 0.132 0.071 0.204

R2 0.639 0.724 0.486 0.727 0.868 0.487

OFM
RMSE 0.263 0.239 0.237 0.237 0.238 0.256

MAE 0.062 0.057 0.070 0.058 0.071 0.069

R2 0.53 0.878 0.860 0.880 0.880 0.860

OFM1
RMSE 0.202 0.151 0.171 0.163 0.160 0.171

MAE 0.042 0.036 0.039 0.037 0.045 0.039

R2 0.906 0.948 0.933 0.939 0.941 0.934

successful in materials and chemical science applications.
In the KRR algorithm, the property of a system can be
given by the weighted kernel function:

y = f(x, c) =


k∈Dref

ckK(x, xk), (5)

where k runs over all reference data (Dref ). We used a
Laplacian function,K(x, xk) = e−γd(x,xk), where d(x, xk)
is the Euclidian distance between x and xk. In order to
minimize the prediction risk, the coefficients ck were de-
termined by minimizing the total square error regularized
by L2 norm (ridge regression):

argmin
c




i

[f(xi)− yi]
2 + λ



k

||ck||22


. (6)

We used stratified ten-fold cross validation for model se-
lection and performance estimation. Parameters γ and
λ were determined in an inner loop of the ten-fold cross
validation by using a logarithmic scaling grid. This pro-
cedure is routinely applied in machine learning and statis-
tics to avoid overfitting and overly optimistic error esti-
mation.

TABLE II. Cross-validated RMSE (µB), MAE (µB), and coef-
ficient of determination R2 values for prediction of local mag-
netic moments obtained by KRR with CM, OFM, OFM1.

Descriptor CM [18] OFM OFM1

RMSE 0.21 0.18 0.12

MAE 0.11 0.05 0.03

R2 0.90 0.93 0.97

The prediction results of local magnetic moments are
summarized in Table II. The OFM and OFM1 also show
advantages compared to CM with KRR regression. We
obtained RMSE, MAE, and R2 values of approximately
0.12 µB , 0.03 µB , and 0.97, respectively. These results
confirm that OFM and OFM1 can be useful for predicting
the local magnetic moment in LAT alloys.

Prediction of formation energies

Next, we applied our descriptors, OFM and OFM1,
to predict the formation energy of LATX alloy systems.
First, we examined how our description of materials can
represent the formation energies of these systems by us-
ing nearest-neighbor regression to predict the formation
energies of materials. We focused on transition metal bi-
nary alloys (TT) and bimetal alloys of lanthanide metals
and transition metals (LAT), as well as LATX and TTX,
which are LAT and TT alloys including a light element
X. We selected transition metals from {Sc, Ti, V, Cr,
Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh,
Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au}, lanthanides
from {La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb, Lu}, and X elements from {B, C, N, O}. We
collected the data of more than 4,000 alloys, including
their structures and formation energies, from the Mate-
rials Project repository: 1510 LATX alloys, 1311 TTX
alloys, 692 LAT alloys, and 707 TT alloys. For brevity,
this dataset is referred to as LATX. It notes that although
there is the error of PBE calculations on the formation
energy for the f-metals, the magnitude of the MAE is
comparable to the overall MAE [28]. Herein, we aim to
obtain the materials descriptors (and their applications)
that accurately reproduce a DFT description of systems.
Thus, comprehensive studies to compare theoretical and
experimental results are beyond the scope of this study.
The distance measurement was similarly selected for

predicting local magnetic moment in order to determine
the nearest-neighbor materials. The energy of a mate-
rial is determined by its five nearest-neighbor materials
in the training data weighted by their distances. The
nearest-neighbor materials were determined by a brute-
force search. We first investigate the dependence of MAE
on the size of the train set. Fig. 3 depict the learn-
ing curves of the nearest neighbor regression by CM [19],
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FIG. 3. The learning curve of the nearest-neighbor regression
for the formation energy of LATX dataset: the dependence of
MAE on the number of training data by OFM1 (green), OFM
(yellow), and CM (blue) with Euclidean (a) and Bay-Curtis
(b) distances. The error bar represent the margin error at the
confidence level of 95%.

TABLE III. Cross-validated RMSE (eV/atom), MAE
(eV/atom), and coefficient of determination R2 values for pre-
dicting the formation energies of LATX obtained by nearest-
neighbor regression with different distance measurements.

Distance deucl dman dcos dbar dcan dcor

CM [19]
RMSE 0.593 0.534 0.577 0.519 0.632 0.577

MAE 0.340 0.309 0.334 0.302 0.365 0.334

R2 0.805 0.842 0.815 0.85 0.778 0.815

OFM
RMSE 0.301 0.251 0.280 0.245 0.259 0.280

MAE 0.161 0.137 0.144 0.134 0.148 0.144

R2 0.950 0.965 0.956 0.966 0.963 0.956

OFM1
RMSE 0.245 0.217 0.231 0.211 0.244 0.231

MAE 0.128 0.114 0.118 0.109 0.136 0.118

R2 0.967 0.974 0.970 0.975 0.967 0.970

OFM, and OFM1. It is clearly seen that OFM and OFM1
both have an advantage of over CM, whereas OFM1
gives a slight improvement over OFM. Table III shows
the cross-validated RMSE, MAE, and R2 values for pre-
dicting the formation energies obtained by 10-times 10-
fold cross-validation. It was also observed that the re-
sults of nearest-neighbor regression effectively predicted
the formation energies. We obtained the best cross-
validated RMSE value of approximately 0.211 eV/atom,
and R2 above 0.975 by using the Bary-Curtis distance.
This result was substantially better than that given by
KRR with the CM descriptor, which resulted in a cross-
validated RMSE of 0.47 eV/ atom and R2 of 0.87 ob-
tained by KRR. The CM is implemented following the
work of Faber and coworkers [19]; this implies that our
materials description also includes a significant amount
of information on the formation energies of these mate-
rials.

We also applied KRR to represent the formation en-
ergy of LATX alloys. The cross-validated RMSE, MAE,
and R2 values with OFM were approximately 0.190
eV/atom, 0.112 eV/atom, and 0.98, respectively, while
those obtained by OFM1 were 0.18 eV/atom, 0.098

TABLE IV. Cross-validated RMSE (eV/atom), MAE
(eV/atom), and coefficient of determination R2 values for for-
mation energies of LATX obtained by KRR using CM, OFM,
and OFM1 descriptors.

Descriptor CM [19] OFM OFM1

RMSE 0.470 0.190 0.180

MAE 0.390 0.112 0.098

R2 0.87 0.98 0.99

eV/atom, and 0.99, respectively (Table IV).

DESCRIPTIVE ANALYSES

Dimensionality reduction with manifold learning

The results obtained from predictive analyses imply
that our OFM and OFM1 embeds appropriate and signif-
icant information not only on local structure but also on
local magnetic moments and formation energies of crys-
talline materials. The results also indicate that closer
local structures and materials in our description space
yield similar local magnetic moments and formation en-
ergies, respectively. This fact motivates us to introduce
dimensionality reduction techniques to perform descrip-
tive analyses on the LATX dataset.
Several dimensionality reduction algorithms, for e.g.,

principle component analysis (linear dimensionality re-
duction method) and manifold learning (non-linear di-
mensionality reduction method), have been developed
and employed to discover low-dimensional structures
from high-dimensional data. In this study, we focused on
the ISOMAP [29] manifold learning technique. ISOMAP
aims to extract a low-dimensional data representation
that best preserves all pairwise distances between input
points, as measured by their geodesic distances along the
manifold. It approximates the geodesic distance as a se-
ries of hops between neighboring points. ISOMAP can
be viewed as an adaptation of Classical Multidimensional
Scaling (MDS) [30], in which geodesic distances replace
Euclidean distances. The first step of ISOMAP is to
construct the pairwise distance between all points in the
original space, identify the neighbors of each point, and
make a connection between the center points to their
neighbors. In the second step, the geodesic distances
between all the points are estimated. Finally, MDS
is applied to the geodesic distance matrix to find the
lower-dimensional representation embedded in the orig-
inal high-dimensional representation. In this study, we
applied ISOMAP to find a low-dimensional representa-
tion of valence-orbital coordination descriptors of ma-
terial space for the visualization and detection of pat-
terns of behaviors in the material space of LATX alloys.
The visualization of materials space is expected to pro-
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FIG. 4. Maps of the chemical environments of Fe, Co, and Ni based on the five embedded features extracted from the descriptors
for local structures by ISOMAP. Diagonal panels show the histograms of the embedded features; the upper-right panels show
scatter plots of all the environments, colored by the number of the transition metal atoms surrounding the central atom; the
lower-left panels show scatter plots, colored according to chemical symbol: Fe (red), Ni (green), and Co (blue).

vide important insights supporting the inferences on the
properties of new materials based on their locations and
proximities.

Local structure space visualizations

Fundamental chemistry and physics have shown that
elements prefer to reside in some particular chemical en-
vironments according to their valence states. As de-
scribed above, our descriptor includes essential informa-
tion on valence shell electrons and configurations, and

the coordination of atoms around a central atom. Our
descriptor is expected to be vital in providing insights
and searching for the suitable environment for a specific
element.

We collected all the chemical environment vectors (Eq.
1) of Fe, Co, and Ni in the LATX dataset, and applied
nonlinear manifold learning to find the hidden features
embedded in the dataset. The 36 nearest neighbors were
used to build the graph for geodesic distance calculations.
For visualization, we maintained the five major new di-
mensions extracted by the ISOMAP algorithm. Fig. 4
shows the maps (the pairplots) of the chemical environ-
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FIG. 5.

Groups of local structures with similar symmetries and shapes can be identified in the form of trajectories in the maps with
embedded features obtained by ISOMAP algorithm. T1 indicates an atom of a fourth-period transition metal in the periodical

table of elements. T2 indicates a fifth- or sixth-period transition metal atom. LA indicates a lanthanide metal atom.

ments of Fe, Co, and Ni in five hidden features obtained
by ISOMAP. The upper right panels show scatter plots of
all the environments, colored by the number of transition
metal atoms surrounding the central atom; the lower left
panels show scatter plots showing each chemical symbol
in a different color : Fe (red), Ni (green), and Co (blue).
The upper triangular panels of Fig. 4 show the maps of
all the local environments of Fe, Ni, or Co, with contin-
uously changing number of transition metal atoms sur-
rounding the central atoms (TT-coordination number).
The plots in the first row show the separation of high
and low TT-coordination numbers. The upper left plot
shows the continuing change in TT-coordination number,
implying that the first hidden feature correlates with the
TT-coordination number. We obtained the correlation
coefficient for this feature and a TT-coordination of 0.7.

Interestingly, these maps show some continuous trajec-
tories, which, upon careful analyses, can be assigned to
the gradual deformation of specific structure prototypes.
We focus on the two-dimensional map plotted using the
first and the second major dimensions extracted by the
ISOMAP algorithm (left panel of Fig. 5). A series of
dots, or look lines if the density of dots is higher, can
be observed in the map. We pick up three characteristic
and easy-to-recognize series named (a), (b), and (c), and
investigate the corresponding local structures to clarify
the manner in which the present descriptor recognize the
similar structures. The representative local structures in
the three series are shown in the right-hand-side panel of
Fig. 5. T1 indicates an atom of a fourth-period transi-
tion metal atom in the periodical table of elements. T2
indicates a fifth- and sixth-period transition metal atom.

LA indicates a lanthanide metal atom.
For the case of the local structures in the series (a),

most of the neighboring atoms are T2 and two of the
neighboring atoms are T1 in the local structure (a1). The
local structure (a2) is the same as (a1), except that all the
neighboring atoms are T2. The larger atomic radius of
T2 than that of T1, leads to a variation in the local sym-
metry and an elongation in the bond lengths of (a2). The
coordination number of the transition metal atoms sur-
rounding the central atoms increases continuously from
the local structures (a1) to (a2). Furthermore, in order to
obtain a higher coordination number, the local structure
(a2) changes drastically to the local structure (a3) with
higher symmetry. The trend in the series (b) is almost the
same as that of the series (a). Two T1 atoms are neigh-
boring atoms in the local structure (b3), and become T2
atoms in (b2). The coordination number of transition
metal atoms surrounding the central atom increases con-
tinuously from the local structures (b1) through (b2) to
(b3).
The trend in the series (c) is slightly different from that

in the series (a) and (b). All the neighboring atoms are
T1 in (c1), but one atom in the top edge is LA in (c2),
and another atom on the bottom edge is also LA in (c3).
The replacement of T1 by LA increases the bond length
and disrupts local symmetry significantly. Because the
corresponding solid angles of the LA atom are small,
only tiny deformations are counted in the OFM repre-
sentation. Consequently, the three structures are close
to each other in the ISOMAP, though the one-hot vec-
tor of LA is significantly different from that of T1. We
can see the similar series of dots or lines in other pan-
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(a) (b)

FIG. 6. Maps of the LATX dataset with two new embedded
features extracted from the descriptors for entire crystalline
materials by ISOMAP (a) and MDS (b).

els in Fig. 4, which illustrate the the manner in which
the OFM represents the structure if they are examined
in detail.
The lower left panels of Fig. 4 show that distribu-

tions of the chemical environment of Fe, Ni, and Co can
be distinguished. It should be noted that in the LATX
dataset, both the alloys with single and multiple species
of the transition metal were included, and more than half
of the data belonged to alloys with multiple species of the
transition metal. The obtained result explicitly indicates
the differences in the preferred chemical environments of
Fe, Co, and Ni. However, an overlap is also observed
in the preferred chemical environment of these transi-
tion metals, which indicates that these transition metals
have similar chemical environments in some materials.
This is consistent with the results suggesting that our
descriptor can be very useful for measuring the similar-
ity between local structures in the materials. Therefore,
we suggest that Fe, Co, or Ni can replace one another
in the chemical environments belonging to the common
preferred environment regions. Consequently, hypotheti-
cal structures for new stable alloys can be obtained auto-
matically from a known alloy by partially substituting its
transition metal sites with another transition metal that
shares similar preferred chemical environments. Further
application of this method for materials design is promis-
ing.

Material space visualizations

As reported above, a reasonably good performance of
our nearest-neighbor regression in the prediction of for-
mation energies indicates that a material and its neigh-
boring materials in our representation space are “close”
in terms of energy. On the other hand, we know that the
formation energy of a material can be calculated using
information of atomic positions in the optimal structure
model. Therefore, the features of an optimal structure
model of materials, as well as its derived formation en-

FIG. 7. Different parts of the LATX dataset: LAT, LAT-
C, LAT-B, LAT-O, and LAT-N in maps by two embedded
features extracted from the descriptors for entire crystalline
materials by ISOMAP.

ergy, results in a series of optimizing processes and has
strong correlations to one another. In other words, con-
sidering descriptors that can express all the degrees of
freedom of the material structures, the structures of sta-
ble materials lie on a hyper surface of the space spanned
by these descriptors. Based on this aspect, we expect
that LATX dataset is on a manifold in the material struc-
ture space described in the orbital field matrix space.
Hence, we applied nonlinear manifold learning to find
the hidden features embedded in the dataset. ISOMAP
with geodesic distance was employed in this study. The
ten nearest neighbors were used to build the graph for
geodesic distance calculations. For visualization, we only
present the two major new dimensions extracted by the
ISOMAP algorithm.

Fig. 6 (a) and (b) depict the map of LATX in the space
with two new embedded features obtained by ISOMAP
and MDS, respectively. The ISOMAP image shows two
separate groups of alloys with high formation energy
(left) and low formation energy (right). Interestingly,
the MDS image does not show this separation. However,
low-formation energy alloys tend to cluster in the cen-
ter of the map. As seen in Fig. 7, LAT, LATB, LATC,
and LATN alloys mainly lie in the high-energy region,
while the LATO alloys mainly lie in the low-energy re-
gion. This observation can be attributed to the high
affinity of LAT metals to oxygen. It is noted that using
our orbital field matrix combined with manifold learn-
ing, datasets with transition metal and lanthanide metal
alloys can be mapped to low dimensional maps with a
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meaningful pattern.

CONCLUSION

Herein, we have developed descriptors for material
structures for datasets of multi-element materials, based
on the information on atomic valence shell electrons
and their coordination. Our experiments with transi-
tion metal/lanthanide metal alloys show that the local
magnetic moments and formation energies can be ac-
curately reproduced using simple nearest neighbors and
kernel ridge regressions based on our descriptors. Using
kernel ridge regressions, we could accurately reproduce
DFT formation energies and local magnetic moments
with MAE values of 0.03 µB and 0.098 eV/atom, re-
spectively. ISOMAP and MDS can be applied using the
OFM and OFM1 descriptors to discover the hidden em-
bedding features in the local structures and crystal struc-
tures of materials in the LATX dataset. The dataset is
then mapped to transform the embedding features into
low-dimensional spaces. Intuitive prehension on the local
structure space can be easily acquired using these hidden
embedding features. Qualitative evaluation of the simi-
larities in local structures can be inferred directly using
the Euclidean distance, and groups of local structures
with similar symmetries and shapes can be easily iden-
tified in the form of trajectories in the extracted low-
dimensional space. The extracted low-dimensional space
of the crystal structure of the LATX dataset shows an
apparent separation between the two groups of materials
having high and low formation energies. The obtained
results suggest a guideline for designing new materials
by element substitution.
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