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ABSTRACT: In this work, we report potential energy
surfaces (PESs) of the sodium dimer calculated by variational
(VMC) and lattice-regularized diffusion Monte Carlo
(LRDMC). The VMC calculation is accurate for determining
the equilibrium distance and the qualitative shape of the
experimental PES. Remarkably, after the application of the
LRDMC projection to this single determinant ansatz, namely,
the Jastrow Antisymmetrized Geminal Power (JAGP),
chemical accuracy (∼1 kcal/mol) is reached in the binding
energy, and the obtained equilibrium internuclear distance and
harmonic vibrational frequency are in very good agreement
with the experimental ones. This outcome is crucially
dependent on the quality of the optimization used to determine the best possible trial function within the chosen ansatz.
The strategy adopted in this work is to minimize the variational energy by initializing the trial function with the density
functional theory (DFT) single determinant ansatz expanded exactly in the same atomic basis used for the corresponding VMC
and LRDMC calculations. This atomic basis is reshaped ad-hoc for QMC calculations. Indeed, we multiply the standard
Gaussian-type atomic orbitals by a one-body Jastrow factor, satisfying, in this way, the electron−ion cusp conditions. In order to
achieve these important advantages, we have defined a very efficient DFT algorithm in the mentioned basis, by estimating the
corresponding matrix elements on a mesh, and by using a much finer mesh grid in the vicinity of nuclei.

1. INTRODUCTION

First-principles quantum Monte Carlo (QMC) techniques,
such as variational quantum Monte Carlo (VMC) and
diffusion quantum Monte Carlo (DMC), are among the
state-of-the-art numerical methods used to obtain highly
accurate many-body wave functions.1 Recent developments
in QMC enable us to calculate not only the ground-state
energy but also vibrational frequencies2,3 and excited states,4,5

as well as to study phase diagrams of materials6 and determine
quantitative properties of a metal−insulator transition7 or
excitonic behavior.8 Because of the large computational cost,
QMC can be easily applied only to model compounds such as
atoms, small molecules, and simple crystals, and, so far, limited
applications are known for complex electronic systems.
However, it should be much more feasible and popular for
“real materials” (e.g., protein, surface, glass, etc.) in the near
future, because the QMC algorithm scales very well with the
number N of electronsat most, N4and sustains almost-
ideal scaling in massively parallel architectures.1

In order to apply QMC for “real materials”, it is convenient
to replace core electrons with pseudopotentials because they
have a little effect on chemical properties, and their
replacement can reduce the QMC computational cost9−11 by
a factor proportional to Z5.5−6.5, where Z is the atomic number.

Nevertheless, all-electron calculations are important because
they represent useful benchmarks for highly accurate methods,
removing the problem to find very accurate pseudopotentials,
though significant progress has been made recently.12−17

Unfortunately, within QMC, all-electron calculations are rarely
applied for atoms of large atomic number, mainly because they
are too computationally demanding, at least in the simplest
formulation of the VMC and DMC algorithms. Indeed, some
progress has been obtained in VMC by considering more
sophisticated trial moves in the Metropolis algorithm. Umrigar
et al.18,19 have proposed an accelerated Metropolis method to
reduce fluctuations in the VMC methodology of full-core
atoms, wherein electrons close to the atomic cores are
displaced much more slowly than those in the valence region.
Analogously, in DMC methodology,1 the velocity is decreased
only around nuclei, by improving the efficiency of the
algorithm, compared with a standard all-electron calculation
with a single very small time step. Moreover, a very accurate
trial wave function is necessary for a reasonably efficient QMC
all-electron simulation, because otherwise large absolute values
of kinetic and potential energies around nuclei usually induce
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large statistical fluctuations. For the latter problem, in this
work, we determine the trial function by using a double-grid
density functional theory (DFT) algorithm that is particularly
accurate in the vicinity of the nuclei and can substantially
reduce the energy fluctuations in the corresponding VMC and
DMC calculations.
In order to obtain a good trial wave function, the Kohn−

Sham Hamiltonian matrix elements involving a rapidly varying
electron density (wave function) in the vicinity of nuclei
should be accurately evaluated in DFT. The matrix elements
are composed of integrals of the kinetic, the Coulomb (Hartree
and electron−ion), and the exchange-correlation (XC) parts.20

When the wave function is expanded using Gaussian-type
orbitals (GTOs), integrals of the kinetic and the Coulomb
parts can be determined analytically.21 However, the integral
should be determined numerically if the wave function is
expanded in Slater-type orbitals (STOs), as well as in our
modified GTO basis. In this case, Poisson’s equation is solved
to determine the Hartree potential by integrating the Coulomb
kernel over the electron density calculated at each point of the
mesh. This scheme is employed in our TurboRVB code.22 If
Poisson’s equation is solved in real space (e.g., the finite
element method23), the integral can be evaluated without any
other approximation than the finite mesh. Moreover, an
arbitrary fine mesh grid can be used in the vicinity of nuclei,
within the so-called multigrid approach.23 On the other hand,
the multigrid approach is not easily implemented when the
very efficient fast Fourier transform (FFT) is used to solve
Poisson’s equation. In this case, the grid should be uniform in
all the space, which increases the computational cost. This
drawback can be solved by the so-called pseudocharge method
within the LAPW technique,20,24 but the corresponding
implementation is rather involved. In this work, we determine
the Hartree potential with standard FFT convolution on a
coarse mesh, then interpolate these values on a much finer
mesh in the vicinity of nuclei. We show that this is enough to
determine a good trial function that can be used as a suitable
starting guess for QMC energy optimization. Although the
DFT energy obtained with the above approximation is not
exactly consistent with the one corresponding to a very dense
uniform mesh, the QMC energies and the variances of the
obtained initial trial wave functions are almost indistinguish-
able from each other. We emphasize that this is just due to the
simple and efficient interpolation scheme of the Hartree
potential that we have introduced in this work.
This method is applied to the sodium dimer, which has been

extensively studied both experimentally25−32 and theoret-
ically33−41 in the past decades. Several all-electron VMC and
DMC studies have been reported for various atoms and
molecules;11,18,42−58 however, to our knowledge, only one
paper has reported the sodium dimer,56 wherein the
dissociation energy at the experimental equilibrium distance
has been calculated. Moreover, the full potential energy surface
(PES) and other spectroscopic properties, such as harmonic
vibration frequency, have not been calculated using all-electron
VMC and DMC yet. All-electron calculations for the sodium
dimer is informative as a reference, because it is known that the
use of a pseudopotential sometimes induces discrepancies,
because of the presence of the semicore electrons.59 We
successfully calculated PESs of the sodium dimer with small
statistical errors, and the obtained dissociation energy,
equilibrium internuclear distance, and harmonic vibrational
frequency are in very good agreement with the experimental

values. The main outcome of this work is that, after the
optimization of the energy, a single determinant ansatz, the so-
called JAGP described in the next section, can accurately
describe this very weak and challenging chemical bond, within
the QMC technique. This is very important because a single
determinant ansatz can be extended to much larger systems,
even within the computationally demanding QMC methods.
In contrast, the multireference approach would be certainly
impossible in this case, because it requires a number of
determinants that is exponentially large in the number of
electrons, and a corresponding computational burden.

2. METHODOLOGY
2.1. Variational and Lattice-Regularized Diffusion

Monte Carlo. The Jastrow single determinant Ansatz, a
Jastrow−Slater determinant (JSD), and Jastrow antisymme-
trized geminal power (JAGP)52 variational wave functions, are
defined by the product of two terms, namely, a Jastrow factor
and an antisymmetric part (Ψ = JΨAGP/SD). The Jastrow term
is composed of one-body, two-body, and three/four-body
factors (J = J1J2J3/4). The one-body and two-body factors are
used to fulfill the electron−ion and electron−electron cusp
conditions, respectively. The one-body Jastrow factor is
defined by:

J r r g r J r( , ..., ) exp ( ) ( )N
i I l

I l I l
J

i
i

i1 1
, ,

, , 1∑ ∏χ⃗ ⃗ = ⃗ · ̃ ⃗
i

k

jjjjjjj
y

{

zzzzzzz (1)

J r Z u Z r R( ) exp (2 ) (2 )
I
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3/4 1/4∑̃ ⃗ = − | ⃗ − ⃗ |
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ÑÑÑÑÑÑÑÑÑÑÑ (2)

where ri⃗ are the electron positions, RI are the atomic positions
with corresponding atomic number ZI, l runs over atomic
orbitals χI, l

J (e.g., GTO) centered on the atom I, and u(r)
contains a variational parameter b:

u r
b

( )
2

(1 e )r b/= − −
(3)

The two-body Jastrow factor reads as follows:

J r r v r( , ..., ) exp ( )N
i j

i j2 1 ,∑⃗ ⃗ =
<

i

k

jjjjjjj
y

{

zzzzzzz
(4)

where ri,j is the distance between two electrons (ri,j = |ri⃗ − rj⃗|),
and v(r) contains a variational parameter F:

v r
r

Fr( )
2

(1 ) 1= − −
(5)

The three-body Jastrow factor is defined by:

J r r r r( , ..., ) exp ( , )N
i j

J i j3/4 1 ∑⃗ ⃗ = Φ ⃗ ⃗
<

i

k

jjjjjjj
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(6)

r r g r r( , ) ( ) ( )J i j
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l m
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a l
J

i b m
J

j
, , ,

,
,

, ,∑ χ χΦ ⃗ ⃗ = ⃗ ⃗
(7)

where the indices l and m again indicate different orbitals
centered on corresponding atoms a and b. In the present study,
the coefficients of the three/four-body Jastrow factor were set
to zero in the case of a ≠ b. The antisymmetric part has the
following expression:
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r r r r( , ..., ) det( ( , ))N i jAGP 1 AGPΨ ⃗ ⃗ = Φ ⃗ ⃗ (8)

and the geminal function is expanded over atomic orbitals
(e.g., GTO):

r r r r( , ) ( ) ( )i j
l m a b

a b
l m

a l i b m jAGP
, , ,

,
,

, ,∑ λ ϕ ϕΦ ⃗ ⃗ = ⃗ ⃗
(9)

where indices l and m indicate different orbitals centered on
atoms a and b, and i and j are coordinates of spin-up and spin-
down electrons, respectively. The antisymmetric part can also
be represented by molecular orbitals:53

r r r r( , ) ( ) ( )i j
k

L

k k i k jAGP ∑ λ ψ ψΦ ⃗ ⃗ = ̃ ⃗ ̃ ⃗
(10)

r c r( ) ( )k
a

M

l

L

a l
k

a l, ,

a

∑ ∑ψ ϕ̃ ⃗ = ⃗
(11)

where M is the number of atoms, La is the number of atomic
orbitals belonging to atom a, ca, l

k are the coefficients of the
atomic orbitals, and L is the number of molecular orbitals. If L
is equal to the half of the total number of electrons (N/2), the
antisymmetric part coincides with the Slater determinant.52,53

In this study, the cc-pVDZ basis set taken from the EMSL

Table 1. Basis Set Convergence for the Na Atom

basis seta DFT-LDAb (Ha) VMC-JDFT (Ha) LRDMC (GF = JDFT) (Ha) VMC-JSDc (Ha) LRDMC (GF = JSD) (Ha)

cc-pVDZ + 1B Jastrowd −161.42202 −162.20476(21) −162.23790(35) −162.21331(17) −162.24031(22)
cc-pVTZ + 1B Jastrowe −161.43238 −162.20879(32) −162.24065(14) −162.21350(16) −162.24049(22)
cc-pVQZ + 1B Jastrowf −161.43508 −162.20939(38) −162.24065(15) −162.21464(14) −162.24102(21)

a1B Jastrow denotes J1̃ in eq 26. bDFT-LDA calculations were performed using (0.02 Bohr)3 fine grids. cThe exponent parts were not optimized in
these VMC-JSD calculations. dThe basis set is composed of 9s8p1d (Z ≤ 306.4), and the initial one-body parameter is b = 1.1. eThe basis set is
composed of 11s10p2d1f (Z ≤ 478.6), and the initial one-body parameter is b = 0.9. fThe basis set is composed of 13s12p3d2f1g (Z ≤ 542.5), and
the initial one-body parameter is b = 0.7.

Table 2. Ground-State Energies of the Na Atom Obtained by HF, VMC, and LRDMC, and the Estimated Exact Energya

method grid used in DFT-LDA energy (Ha) correlation (%)

HF − −161.8589b 0
VMC-JSD − −162.20717(33)c 88.01(8)
VMC-JAGP − −162.1434(7)d 71.9(2)
DMC (GF = JAGP) − −162.2370(1)e 95.6(3)
DMC (GF = STO-HF) − −162.23966(22)f 96.22(6)

DFT-LDA Exact −161.42178g −
(0.02 Bohr)3 −161.42202 −
(0.05 Bohr)3 −165.57724 −
(0.10 Bohr)3 unstable −
(0.05 Bohr)3 + (0.01 Bohr)cubic

3 −161.55184 −
(0.10 Bohr)3 + (0.01 Bohr)cubic

3 −162.97564 −
(0.20 Bohr)3 + (0.01 Bohr)cubic

3 −173.13133 −
(0.20 Bohr)3 + (0.01 Bohr)linear

3 −174.67558 −

VMC-JDFT (0.02 Bohr)3 −162.20476(21) 87.40(5)
(0.05 Bohr)3 −154.580(11) −
(0.10 Bohr)3 unstable −
(0.05 Bohr)3 + (0.01 Bohr)cubic

3 −162.20437(19) 87.30(5)
(0.10 Bohr)3 + (0.01 Bohr)cubic

3 −162.20258(20) 86.85(5)
(0.20 Bohr)3 + (0.01 Bohr)cubic

3 −162.16962(28) 78.52(7)
(0.20 Bohr)3 + (0.01 Bohr)linear

3 −162.16449(28) 77.23(7)

LRDMC (GF = JDFT) (0.02 Bohr)3 −162.23790(35) 95.78(9)
(0.05 Bohr)3 + (0.01 Bohr)cubic

3 −162.23798(24) 95.80(6)
(0.10 Bohr)3 + (0.01 Bohr)cubic

3 −162.23743(26) 95.66(6)

VMC-JSD − −162.21474(17) 89.93(4)
VMC-JAGP − −162.22079(16) 91.46(4)

LRDMC (GF = JSD) − −162.24078(20) 96.51(5)
LRDMC (GF = JAGP) − −162.24249(16) 96.94(4)

Exact − −162.2546h 100
aGF denotes the guiding function. bData taken from ref 86. cData taken from ref 55. dData taken from ref 52. eData taken from ref 52. fSee the
Supporting Information in ref 56. gCalculated by Gaussian 09 Revision E.01 with SPL/cc-pVDZ. hData taken from ref 74.
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Basis Set Library60,61 was used for the atomic orbitals for the
determinant part (ϕ) of sodium both in JSD and JAGP ansatz.
According to the scheme recently introduced by Mazzola et
al.,6 the orbitals whose exponents (Z) are larger than 306.4
were cut to avoid numerical instabilities. We note that the large
exponent elements removed from the basis set are taken into
account implicitly by means of the one-body Jastrow term6

that indeed allows us to fulfill the electron−ion cusp conditions
exactly. The atomic basis set used in this study is finally
composed of 9s8p1d and 5s4p1d for the determinant part (ϕ)
and the Jastrow factor (χJ), respectively. These basis sets were
treated as uncontracted ones. As shown in Table 1, although
the cc-pVDZ basis is clearly poor for DFT-LDA, the
corresponding VMC-JDFTa and LRDMC (GF = JDFT)b

energies are just ∼3 mHa higher than the converged cc-pVQZ
ones. The basis set errors of the cc-pVDZ become much
smaller by optimizing the coefficients of the determinant part
(i.e., JSD in Table 1), namely, ∼1.3 mHa and ∼0.7 mHa for
VMC and LRDMC calculations, respectively. Remarkably, the
JSD result also indicates that convergence to the complete
basis set limit can be achieved more conveniently by
optimizing the exponents of the small cc-pVDZ basis: Indeed,
in this way, we obtain JSD energies of the cc-pVDZ basis (for
VMC, −162 .21474(17) Ha , and fo r LRDMC,
−162.24078(20) Ha; see Table 2) that are statistically
consistent with the ones corresponding to the much larger
cc-pVQZ basis (for VMC, −162.21464(14) Ha, and for
LRDMC, −162.24102(21) Ha; see Table 1). This result, on
one hand, further supports the very fast convergence in the
basis set for QMC methods; on the other hand, it clearly
justifies the use of the minimal cc-pVDZ basis set (with
optimization of exponents) in all the forthcoming QMC
calculations with negligible basis set errors. The variational JSD
and JAGP wave functions were optimized using the stochastic
reconfiguration in combination with the linear method62,63 that
enable us to optimize thousands of parameters simultaneously
even within a stochastic optimization technique. In this work,
three types of VMC calculations were performed. VMC-JDFT
denotes that only the Jastrow factor was optimized using the
JSD ansatz, in which the g matrix elements in eqs 1 and 7, b in
eq 3, and F in eq 5 are the variational parameters. On the other
hand, all variational parameters in the Jastrow factor and the
determinant part were optimized in VMC-JSD and VMC-
JAGP calculations.
Lattice-regularized diffusion Monte Carlo (LRDMC) is a

projection technique that allows a systematic improvement of
the variational ansatz, yielding the corresponding one with the
lowest energy and the same signs in configuration space. This
energy is the so-called “fixed-node” DMC energy and can be
obtained with the standard short time discretization,18 i.e., the
conventional approach, or by the so-called lattice regulariza-
tion, namely, by discretizing on a lattice the continuous
Hamiltonian.64−66 We summarize the method here by
emphasizing some important improvements for the all-electron
case studied here. The interested readers should refer to refs
67−70 for details. In LRDMC, the original continuous
Hamiltonian is regularized by an approximate one Ha, such
that Ha → H for a → 0, where a is the parameter used to
discretize the continuous space. We consider the Hamiltonian
in atomic units:

H V x
Z Z

R R
1
2

( )
i

N

i
I J

I J

I J
∑ ∑= − Δ + ⃗ +

| ⃗ − ⃗ |< (12)

where N is the number of electrons, x ⃗ is 3N dimension
electron coordination, x ⃗ = (r1⃗, r2⃗, ..., rN⃗), and V(x)⃗ = Vee(x)⃗ +
Vei(x)⃗ is the standard many-body potential, which includes the
electron−electron interaction:

V x
r r

( )
1

i j i j
ee ∑⃗ =

| ⃗ − ⃗|< (13)

and the electron−ion interaction:

V x r
Z

r R
( ) ( )

i
i

i I

I

i I
ei ei∑ ∑ ∑ν⃗ = − ⃗ = −

| ⃗ − ⃗ | (14)

where R⃗ and r ⃗ are the ionic and electron positions, respectively.
The kinetic part is approximated by a finite difference form:

i i
a

i
a p

i
a p, ,1Δ ≈ Δ = Δ + Δ ′ −

(15)

where Δi
a,p is defined by a mesh size a and a function p(r)⃗:

f x y z
a

p x a f x a f x

p x a f x a f x x y z

( , , )
1

( /2)( ( ) ( ))

( /2)( ( ) ( ))

i
a p

i i i i i i

i i i i i i

,
2Δ = [ + + −

+ − − − ] + ↔ ↔
(16)

In this work, we have adopted a more convenient and simpler
form for the function p(r)⃗ that is chosen as

p r r R( ) exp( 4 )c
2⃗ = − | ⃗ − ⃗ | (17)

where R⃗c is the position of the nucleus closest to the electron at
r.⃗ The function p decays much faster than the original form
(p(r)⃗ = 1/(1 + Z2/4|r ⃗ − R⃗c|

2)) and enables us to use the larger
lattice space a′ in a wider valence region, because the small
lattice space a is used only if the electron is very close to the
nucleus. The constant a′/a is set to an irrational number in
order to sample all the continuous space of the original
Hamiltonian.67 The potential term V(x) = Vee(x) + Vei(x) is
also discretized by the parameter a to realize a smooth
convergence for a → 0. The electron−electron potential is not
necessarily discretized, but the electron−ion one is modified as

r x x r( ) ( ) Max ( ), ( )i i
a

i
a

iei max , zv, eiν ν ν ν⃗ → ⃗ = [ ⃗ ⃗ ] (18)

x r
x

x
( ) ( )

( ) ( )

2 ( )i
a

i
i a i

zv, ei
,

2 2
G

G
ν ν⃗ = ⃗ +

∇ − ∇ Ψ ⃗
Ψ ⃗ (19)

where ΨG(x)⃗ is a guiding function, and ∇i, a
2 = Δi

a. Although
the electron−ion potential (νei(ri⃗)) on the right-hand side of
eq 18 was regularized by

r
Z

r R a
( )

Max( , )i
I

I

i I
ei ∑ν ⃗ =

| ⃗ − ⃗ | (20)

to cut the Coulomb singularity at small distances, in this work,
we have noticed that this regularization is not necessary within
the so-called fixed-node approximation. This is because νzv,i

a (x)⃗
does not diverge even when the electron−ion distance is small.
Therefore, eq 18 ensures the removal of the singularity unless
in the vicinity of the nodal surface. The fixed-node
approximation also removes this singularity and, therefore,
the algorithm remains always stable, even without the use of eq
20. Now that the Hamiltonian is discretized, the efficient lattice

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00295
J. Chem. Theory Comput. 2019, 15, 4044−4055

4047

http://dx.doi.org/10.1021/acs.jctc.9b00295


Green function Monte Carlo algorithm,64−66 which is valid on
a lattice model, can be applied straightforwardly:

x H H xa

x
x x
a

G , G∑⟨ | |Ψ ⟩ = ⟨ ′|Ψ ⟩
′

′
(21)

The resulting algorithm is called LRDMC. The corresponding
Green function matrix elements with the important sampling
are Gx, x′ = ΨG(x′⃗)(Λx,x′ − Hx′,x

a )/ΨG(x)⃗, where Λ is a diagonal
matrix with Λx,x = λ and λ should be sufficiently large to obtain
the ground state. The LRDMC algorithm is as follows:67 given
a walker with configuration x ⃗ and weight w, a new
configuration x′ ≠ x is px,x′ = Gx,x′/bx, where bx = ∑x′≠xGx′,x
is a normalization factor to make the Green function a
transition probability. The walker weight is updated by a factor
w → w exp(−τxeL(x,⃗ [ΨG])), where τx = −log (rand)/bx is a
diffusion time determined by a random number 0 < rand ≤ 1,
and e x( , )L G⃗ [Ψ ] = H x x( )/ ( )x x x

a
, G G∑ ′ Ψ ′⃗ Ψ ⃗′ is the local energy

corresponding to the guiding function ΨG. Of course, the usual
branching scheme and many-walker technique can also be
used. Unfortunately, the Green function cannot be made
strictly positive for Fermions; therefore, the fixed-node
approximation should be introduced.70 To avoid the sign
problem, the Hamiltonian is modified using the spin-flip term

x( )SF ⃗ (where x( )SF ⃗ = H x x( )/ ( )x s x x: 0 , G Gx x,
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where sx,x′ = ΨG(x)⃗Hx, x′ΨG(x′⃗) and γ ≥ 0 is a real parameter.
Finally, a mixed average of the fixed-node Hamiltonian,

E
Ha

MA
G FN 0

G 0
=

⟨Ψ | |ϒ ⟩
⟨Ψ |ϒ ⟩ (23)

can be calculated by the weights and local energies after
sufficient number of projections, where |ϒ0⟩ is the ground-state
wave function. The mixed average energy is consistent with the
fixed-node energy of the standard DMC in the limit a → 0.67

2.2. DFT Algorithm in the Same Basis Used for QMC.
The trial functions for the Jastrow single determinant ansatz
were determined from DFT calculations by using a single
determinant ansatz expanded exactly in the same atomic basis
used for the corresponding VMC and LRDMC calculations.
Within DFT, the Hamiltonian and the overlap matrix elements
required for the solution of the Kohn−Sham equations are
represented as

H r r R H r r Rd ( ) ( ) ( )i j
a b

j
b

b i
a

a,
, ∫ ϕ ϕ= ⃗ ̃ ⃗ − ⃗ ̂ ⃗ ̃ ⃗ − ⃗

(24)

S r r R r Rd ( ) ( )i j
a b

j
b

b i
a

a,
, ∫ ϕ ϕ= ⃗ ̃ ⃗ − ⃗ ̃ ⃗ − ⃗

(25)

where ϕ̃i
a(r ⃗ − R⃗a) and ϕ̃j

b(r ⃗ − R⃗b) are the ith, jth GTO for
atoms a and b multiplied by a one-body Jastrow factor, namely,

r R r R J r( ) ( ) ( )j
b

b j
b

b 1ϕ ϕ̃ ⃗ − ⃗ = ⃗ − ⃗ ̃ ⃗ (26)

where J1̃(r)⃗ is the same as in eq 2. Indeed, as it is simple to
show, each element of the basis set satisfies the so-called
electron−ion cusp condition, namely, that when r ⃗ is close to
any atomic position R⃗b:

Z
r R
r R

lim
r R

j
a

j
a b

b

bb

ϕ

ϕ

∇ ̃

̃ = − ⃗ − ⃗

| ⃗ − ⃗ |→
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(27)

for all a, b. This formulation allows us to suppress the
divergence of the local energy in the vicinity of nuclei in
subsequent VMC and LRDMC calculations.
In order to construct the trial wave function efficiently, we

have defined an efficient DFT algorithm in the mentioned
basis, by estimating the corresponding matrix elements on a
mesh, and by using a much finer mesh grid in the vicinity of
nuclei. The Hamiltonian operator is composed of

H r T V r V r V r( ) ( ) ( ) ( )H ext XC
̂ ⃗ = ̂ + ⃗ + ⃗ + ⃗ (28)

where T̂ is a kinetic operator, VH(r)⃗ is the Hartree (electron−
electron) potential, Vext(r)⃗ is the electron−ion potential (that
may or may not include a true external potential), and VXC(r)⃗
is the exchange-correlation potential. Given that the wave

Figure 1. A two-dimensional schematic figure of the linear interpolation in the case of n = 3. The black dot (blue cross) marks in the right side
figure represent the points on the coarse (interpolated) grid. The value of the Hartree potential on the interpolated grid (x1, y2) ≡ (sx = 1, sy = 2) is
estimated by the four nearest points in two-dimensional case as follows: VH(x1,y2) = V X Y( , )2

3
1
3 H 0 0· + V X Y( , )1

3
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function is expanded in atomic orbitals such as GTO, the
kinetic, electron−ion, and exchange-correlation terms are
readily calculated at any point in real space. On the other
hand, the Hartree potential is not determined in this manner,
since it can be evaluated more conveniently on a uniform grid
by solving Poisson’s equation with FFT:

V r r( ) 4 ( )H πρ∇ ⃗ = − ⃗ (29)

where ρ(r)⃗ is the electron density. Therefore, the use of FFT
with a fine grid in the vicinity of nuclei necessarily involves the
same fine grid in the interstitial regions, where the electron
density smoothly changes, which gratuitously increases the
computational cost. In our implementation, we have found a
good compromise between accuracy and efficiency in the
following way. The Hartree potential is calculated first on a
coarse uniform grid by solving Poisson’s equation with the FFT
algorithm. In the second step, the Hartree potential is
interpolated on a f ine grid only in the vicinity of nuclei,
using standard interpolation methods, such as linear or cubic.
A schematic figure of the linear interpolation in the two-
dimensional case is shown in Figure 1. The values on the fine
grid are interpolated using the nearest four points, namely,
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where XI and YJ represent coarse grid points, xi=nI+sx and yj=nJ+sy
represent interpolated points in the vicinity of nuclei, n is the
ratio of the interpolated grid to the coarse one (i.e., n − 1
coincides with the number of interpolated fine points between
the coarse-grid ones), and 0 ≤ sx, sy < n. The values on the fine
grid is interpolated by the nearest eight points in a three-
dimensional case. The cubic interpolation is performed using
the nearest 24 points. As a result, the matrix elements of the
Hamiltonian can be evaluated by combining a coarse grid and
an interpolated fine grid in the vicinity of nuclei. Notice that a
similar interpolation was done in the pseudopotential
calculation,71,72 wherein the interpolation scheme was used
to evaluate inner products between wave functions and
nonlocal parts of pseudopotentials. The total DFT energy
corresponding to the chosen interpolation for the Hartree
potential is sizably different from the one obtained with a very
fine grid (namely, converged). However, VMC and LRDMC
energies obtained with the Kohn−Sham Slater determinants,
with or without the interpolation scheme proposed, are very
close, indicating that our DFT scheme provides very good
Kohn−Sham orbitals, despite the observed error in the DFT
energy.

3. VALIDATION OF THE INTERPOLATION SCHEME
To investigate the quality of the trial wave functions obtained
by the interpolation technique, ground-state energies of the Na
atom were calculated using DFT, VMC, and LRDMC. DFT
calculations were performed with a single fine grid or using the
interpolation scheme, wherein the LDA functional developed
by Perdew and Zunger73 was employed. Three types of single-
grid DFT calculations were performed with (0.02 Bohr)3,
(0.05 Bohr)3, and (0.10 Bohr)3 grids. For comparison, three

types of DFT calculations using the cubic interpolation
method were performed, namely, the (0.01 Bohr)3 grid was
used for the core electron region, while the (0.05 Bohr)3, (0.10
Bohr)3, or (0.20 Bohr)3 grids were used for the valence
electron region, wherein the core−electron region, centered on
the Na atom, was chosen with a volume of (2.00 Bohr)3. The
calculation using the linear interpolation method was also
performed using (0.01 Bohr)3 and (0.20 Bohr)3 grids. Then,
three types of VMC and LRDMC calculations were performed
starting from the resultant wave functions. VMC-JDFT
denotes that only the Jastrow factor was optimized using the
Jastrow−Slater ansatz, namely, the nodal surface was
determined by the DFT. VMC-JSD and VMC-JAGP denote
that both the Jastrow factor and the determinant part were
optimized using the Jastrow−Slater and Jastrow antisymme-
trized geminal power ansatz, respectively. LRDMC (GF =
JDFT, JSD, JAGP) denotes that the wave functions optimized
using each ansatz were used for the guiding functions (GF). All
results are summarized in Table 2.
In the fine grid calculations, without using the interpolation

technique discussed above, a well-converged result was
obtained only by using the (0.02 Bohr)3 single grid. Indeed,
DFT calculation with the (0.05 Bohr)3 grid resulted in a much
worse DFT-LDA and corresponding VMC-JDFT energies and
a very coarse (0.10 Bohr)3 grid implies numerical instabilities.
On the other hand, a very coarse (0.10 Bohr)3 grid is already
sufficient to obtain a reasonable trial wave function when the
cubic interpolation method is used. As expected, the DFT
energy obtained by the interpolation method with (0.10
Bohr)3 + (0.01 Bohr)3 grids (−162.97564 Ha) is not
consistent with that obtained by the very fine mesh
(−161.42202 Ha), because of the approximation in the
Hartree potential. However, the wave function obtained in
this way can be used as a trial wave function for accurate VMC
and DMC calculations, because the nodal surface is almost the
same as the fine-grid one: The VMC-JDFT calculations (i.e.,
only the amplitude is optimized) show that the VMC energy
obtained by the interpolation grid (−162.20258(20) Ha) is
almost the same as the fine-grid one (−162.20476(21) Ha),
where the deviation is only a few mHartree. The LRDMC (GF
= JDFT) calculations also show a very good agreement
[−162.23743(26) and −162.23790(35) Ha for the cubic
interpolation and fine grid, respectively]. We stress that VMC-
JDFT and LRDMC (GF = JDFT) energies obtained by the
denser (0.05 Bohr)3 + (0.01 Bohr)3 grid are essentially
consistent with those obtained using the (0.02 Bohr)3 single
grid. Furthermore, our LRDMC (GF = JDFT) calculations
also reproduce the reference energy (−162.23966(22) Ha)
that was obtained by an all-electron DMC (GF = STO-HF)
calculation using a very large basis set (quadruple-ξ-4-fold-
polarized: QZ4P). These results indicate that the nodal surface
determined by the interpolated DFT is as good as the fine-grid
and the large-basis one. Thus, the interpolation method
enables us to obtain a reasonable trial wave function with a low
computational cost. Notice that, this interpolation method was
applied also with (0.20 Bohr)3 and (0.01 Bohr)3 double mesh
grids with much worse results as far as the quality of the nodal
surface and corresponding VMC energies are concerned.
Nevertheless, with such a sizable error, it can be clearly
appreciated that the cubic interpolation performs better than
the linear one.
The wave function can be further improved by optimizing

the determinant part in the presence of the Jastrow factor. As
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shown in Table 2, VMC-JSD and VMC-AGP show lower
variational energies than VMC-DFT, and LRDMC (GF = JSD,
JAGP) also show lower variational energies than LRDMC (GF
= JDFT) thanks to the improvement of the nodal surfaces.
Remarkably, our LRDMC energy, corresponding to our best
VMC-JAGP, is very close to the estimated exact total energy,
namely, −162.2546 Ha.74

4. APPLICATION TO THE SODIUM DIMER
Potentail energy surfaces (PESs) of the sodium dimer were
calculated by VMC-JAGP and LRDMC, by using the
developed interpolation scheme, and were compared with
previous experiments and calculations. First, a PES was
calculated using JAGP ansatz by changing the internuclear
distance from 1.8 Å to 10.0 Å; then, a PES was again calculated
by LRDMC starting from the optimized wave functions. The
energies obtained by LRDMC for each a were extrapolated by
quartic polynomial fits E(a) = E0 + ba2 + ca4 to obtain the a →
0 limit (E0), wherein a = 0.03, 0.04, 0.05, 0.06, 0.07, and 0.08
were employed (Figure 2) in all of these calculations. The

VMC-JAGP and LRDMC energies are summarized in Table 3,
and the obtained PESs are shown in Figure 3. The PESs
obtained using HF, MP2, CCSD(T)c calculated using
Gaussian 09, Revision E.01,75 and the experimental values
reported by Verma et al.30 are also shown in Figure 3 for
comparison. Notice that the energy of the molecule at large
distance coincides with twice the energy of a single atom,
namely, the size consistency is perfectly fulfilled within VMC-
JAGP and LRDMC calculations (see the bottom of Table 3).
We have analyzed the PESs, by using the simple analytic

Murrell−Sorbie (MS) function76 that has been widely used to
describe the PES of neutral dimers,

E D a a a a( ) (1 ) exp( )e 1 2
2

3
3

1ρ ρ ρ ρ ρ= − + + + − (31)

where De is the dissociation energy without the zero-point
vibration energy (ZPVE), ρ = d − deq, d is the internuclear
distance between the sodium atoms, deq is the equilibrium
internuclear distance, and a1, a2, and a3 are fitting parameters.
The De, deq, a1, a2, and a3 were determined using the
scipy.optimize.curve_fit module implemented in the Python
SciPy library.77 Then, harmonic vibration frequencies (ωe
(cm−1)) were calculated according to the following relation-
ship:38

c
D a a1

2
( 2 )

e
e 1

2
2ω

π μ
=

−
(32)

where c is the light velocity and μ is the reduced mass. The
obtained values are summarized in Table 4.
The VMC calculation reproduces the qualitative shape of

the experimental PES (Figure 3), and is accurate for
determining the equilibrium distance and the harmonic
frequency (Table 4). However, it is not enough to obtain
the accurate dissociation energy and reproduce the binding
character in the range of 5.0−8.0 Å (i.e., showing higher
energies than the dissociation limit). Notice that the VMC-
JAGP is usually enough to reproduce almost correct binding
energies for the second-row dimers.78 This suggests that DMC
is extremely important for molecules of large atomic number
and that our Jastrow factor is not accurate enough to describe
this weak chemical bond.

Figure 2. Total energy vs a in the LRDMC calculations of the sodium
dimer. The energies labeled by Na atom are for two isolated Na
atoms. The error bars are within the markers.

Table 3. Summary of the VMC-JAGP and LRDMC
Calculations of the Sodium Dimera

dNa−Na (Å) EVMC−AGP (Ha/Na2) ELRDMC (Ha/Na2)

1.8 −324.37708(34) −324.43673(43)
1.9 −324.39731(25) −324.45269(45)
2.0 −324.40784(33) −324.46654(44)
2.2 −324.42894(27) −324.48354(46)
2.4 −324.44191(22) −324.49596(44)
2.5 −324.44593(30) −324.50076(44)
2.7 −324.45197(25) −324.50514(45)
2.9 −324.45554(25) −324.50944(44)
3.0789 −324.45664(23) −324.51033(44)
3.1 −324.45668(21) −324.50982(43)
3.3 −324.45505(23) −324.50911(44)
3.5 −324.45303(29) −324.50616(44)
4.0 −324.44710(36) −324.50139(44)
5.0 −324.44120(28) −324.48999(43)
6.0 −324.44028(28) −324.48502(42)
7.0 −324.44054(23) −324.48538(42)
8.0 −324.44156(20) −324.48511(43)
9.0 −324.44202(30) −324.48443(42)
10.0 −324.44219(30) −324.48459(43)
Na atom −324.44158(32) −324.48499(31)

aThe energies labeled by Na atom are for two isolated Na atoms.

Figure 3. PESs of the sodium dimer. The broken lines show the
obtained MS functions. The solid line shows the experimental values
cited from ref 30. The error bars are within the markers.
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The experimental PES is accurately described after the
application of the LRDMC projection to the JAGP (Figure 3).
The equilibrium distance (deq = 3.083(11) Å) and the
harmonic frequency (ωe = 163.4(3.4) cm−1) obtained by our
LRDMC calculations are very consistent with the experimental
values (deq = 3.08 Å, ωe = 159.1 cm−1, and deq = 3.079 Å, ωe =
159.12 cm−1, taken from refs 79 and 80, respectively). The
dissociation energy (De = 25.28(44) mHa) is also consistent
with the experimental ones (De = 26.82 mHa (from ref 80)
and De = 27.44 mHa (from ref 79)), and several theoretical
works, such as coupled cluster calculations (De = 26.49 mHa
for CCSD(T) and De = 26.53 mHa for QCISD (from ref 38))
and full valence configuration interaction calculation (De =
26.85 mHa (from ref 33)), converged within the chemical
accuracy (∼1 kcal/mol ≈ 1.6 mHa).
Although the deviation of the dissociation energy is small

enough, it is worth discussing how to obtain a more-accurate
result. In the work of Nemec et al.,56 the deviation was argued
to be due to insufficient nodal error cancellation between the
atoms and the dimer. They reported that the dissociation
energy of the sodium dimer was underestimated (De =
23.87(57) mHa at d = 3.0789 Åd) by an all-electron DMC
calculation starting from STO.56 The improvement in the error
cancellation is important to obtain a more accurate result. In
order to compare directly our results with the previous DMC
one,56 LRDMC (GF = JDFT, JSD, JAGP) calcuations for the
sodium dimer at the same distance (d = 3.0789 Å) were
performed. The results are shown in Figure 4 and are
summarized in Table 5. LRDMC (GF = JDFT) and LRDMC
(GF = JSD) give De = 23.64(63) mHa and De = 23.48(50)
mHa, respectively, which are statistically consistent with the
previous DMC calculation (De = 23.87(57) mHa). On the
other hand, our LRDMC (GF = JAGP) greatly improves the
error cancellation and provides, to our knowledge, the best
binding energy (De = 25.34(54) mHa) so far available within
QMC techniques. Figure 4 shows that the best variational
energies are obtained when LRDMC is applied to the JAGP
guiding functions both for the atom and the dimer, meaning
that the corresponding nodal surfaces are better than previous
calculations. Table 6 summarizes the absolute energies of the
Na atom and dimer, as well as the residual errors in the
absolute energies and corresponding binding energies within

the fixed-node approximation. The nodal surface errors in
LRDMC (GF = JSD) are 27.64 mHa and 30.98 mHa for two
Na atoms and for the dimer, respectively. This implies 3.34
mHa smaller binding energy (De = 23.48(50) mHa) than the
experimental value (De = 26.82 mHa) due to insufficient error
cancellation. On the other hand, the nodal surface errors in
LRDMC (GF = JAGP) become smaller, 24.21 mHa and 25.69
mHa for two Na atoms and the dimer, respectively, thanks to
the multiconfigurational nature of JAGP81,82 (i.e., static
correlation). This leads to a much better binding energy (De

= 25.34(54) mHa), because of the improvement in the error
cancellation. Figure 5 shows the energy diagram and the results
of the error cancellations. Compared to LRDMC (GF = JSD),
LRDMC (GF = JAGP) reduces the nodal error for the two Na
atoms by 3.43 mHa, while that for the dimer is reduced by 5.29
mHa, resulting in a better error cancellation and a
corresponding more-accurate binding energy. While the value
of ref 80 is used for the exact binding energy in this discussion,
the conclusion does not change when the other experimental
value (e.g., 27.44 mHa (from ref 79)) is employed. The fact
that LRDMC (GF = JAGP) lowers the total energy more
effectively in the dimer rather than in the atom indicates that
the JSD nodes have some error also in the valence region,
because one can assume an almost-exact nodal error
cancellation in the core region.56 Thus, we expect that the
use of more-flexible wave functions such as backflow83 or
pfaffian84 should further reduce the error and should lead to an
almost-exact error cancellation (i.e., better binding energy) and
essentially exact binding energies of dimers, as well as PESs.

Table 4. Summary of the Obtained Dissociation Energies,
Equilibrium Distances, and Harmonic Vibrational
Frequencies in This Worka

Method De (mHa) deq (Å) ωe (cm
−1)

UHF 3.20 3.60 78.93
UCCSD(T) 26.49 3.179 154.82
QCISDb 26.53 3.181 151.63
VMC 13.57(10) 3.051(6) 155.5(1.7)
LRDMC 25.28(44) 3.083(11) 163.4(3.4)
Full valence CIc 26.85 3.09 159.1
Experimentd 27.44 3.08 159.1
Experimente 26.82 3.079 159.12

aValues obtained by previous ab initio calculations and the
experimental values are also listed. bData taken from ref 38. De =
0.72193 (eV), deq = 0.31813 (nm), and ωe = 151.63 (cm−1); cData
taken from ref 33. De = 5892 (cm−1), deq = 5.83 (Bohr), and ωe =
159.1 (cm−1); dData taken from ref 79. De = 6022.6 (cm−1), deq =
5.82 (Bohr), and ωe = 159.1 (cm−1); eData taken from ref 80. De =
0.7298 (eV), deq = 0.3079 (nm), and ωe = 159.12 (cm−1).

Figure 4. Total energy versus a in the LRDMC calculations of the
sodium dimer at the experimental equilibrium distance (dNa−Na =
3.0789 Å). The error bars are within the markers. GF denotes the
guiding function.

Table 5. Dissociation Energies of the Sodium Dimer at the
Experimental Equilibrium Distance (dNa−Na = 3.0789 Å)

method GFa Edimer−2atoms (mHa)

DMC STO-HF 23.87(57)b

LRDMC JDFT 23.64(63)
LRDMC JSD 23.48(50)
LRDMC JAGP 25.34(54)

aGF denotes the guiding function. b14.981 ± 0.357 kcal/mol. See the
Supporting Information of ref 56.
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5. SUMMARY

In this work, we report potential energy surfaces (PES) of the
sodium dimer calculated by variational Monte Carlo (VMC)
and lattice-regularized diffusion Monte Carlo (LRDMC)
methods. Remarkably, after the application of the LRDMC
projection to the Jastrow Antisymmetrized Geminal Power
(JAGP) ansatz, chemical accuracy is reached in the binding
energy, and the obtained equilibrium internuclear distance and
harmonic vibration frequency are in good agreement with the
experimental ones. The trial wave functions for the VMC and
LRDMC calculations were prepared by the DFT single
determinant ansatz expanded exactly in the same atomic
basis used for the QMC calculation, which we have
conveniently devised to satisfy the electron−ion cusp
conditions exactly. We have found that the improvement in
the description of the electron correlation and the weak
chemical bond of the sodium dimer is mainly achieved thanks
to the energy optimization strategy that we have developed in
this work. For the all-electron calculation, the DFT step is
computationally very demanding, at least in the convenient
basis that we have chosen. Therefore, we have developed an
efficient DFT algorithm in the mentioned basis, by estimating
the corresponding matrix elements on a mesh, and by using a
much finer mesh grid only in the vicinity of the nuclei. In this
way, we can have a very good description of this chemical bond
and evaluate the corresponding PES with a high degree of
accuracy. We believe that our work represents an important
step to define a quantum Monte Carlo method that will have

the same reliability and accuracy of modern quantum
chemistry packages in the future, with the considerable
advantage that QMC with the single determinant ansatz used
in this work scales very well with the number of electrons and
has an almost-ideal scaling for massively parallel computations.
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Table 6. Absolute Energies of the Sodium Atom and Dimer (dNa−Na = 3.0789 Å) Obtained by LRDMC (GF = JSD, JAGP) and
Experimentsa

LRDMC (GF = JSD) LRDMC (GF = JAGP) Experiment

Energy (Ha) NS error (mHa) energy (Ha) NS error (mHa) exact energy (Ha)

2 Na atoms −324.48156(40) 27.64 −324.48499(31) 24.21 −324.5092
dimer −324.50504(30) 30.98 −324.51033(44) 25.69 −324.5360
De 23.48(50) (mHa) 25.34(54) mHa 26.82
NS error 3.34 mHa 1.48 mHa −

aThe nodal surface errors (NS errors) of the absolute energy and the binding energies due to the error cancellations are also shown. The exact
energy of the Na atom and the exact binding energy are taken from refs 74 and 80, respectively. The exact energy of the sodium dimer was
calculated from these values.

Figure 5. Diagram of the absolute energies of the Na atom and dimer. The nodal surface errors and the binding energies are also shown. The exact
energy of the Na atom and the exact binding energy are taken from refs 74 and 80, respectively. The exact energy of the sodium dimer was
calculated from these values.
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■ ADDITIONAL NOTES
aVMC-JDFT denotes that only the Jastrow factor was
optimized using the JSD ansatz.
bLRDMC and GF denote lattice-regularized diffusion Monte
Carlo and the guiding function, respectively. See the next
paragraph for details.
cThe aug-cc-VQZ basis sets were used for these calculations.
dThe original value is 14.918 ± 0.357 kcal/mol at d = 3.0789
Å. See the Supporting Information in ref 56.
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(47) Lüchow, A.; Anderson, J. B. First-row hydrides: Dissociation
and ground state energies using quantum Monte Carlo. J. Chem. Phys.
1996, 105, 7573−7578.
(48) Yoshida, T.; Miyako, G. Diffusion quantum Monte Carlo
calculation of positronium affinity of lithium. J. Chem. Phys. 1997,
107, 3864−3866.
(49) Huang, C.-J.; Umrigar, C.; Nightingale, M. Accuracy of
electronic wave functions in quantum Monte Carlo: The effect of
high-order correlations. J. Chem. Phys. 1997, 107, 3007−3013.
(50) Shlyakhter, Y.; Sokolova, S.; Lüchow, A.; Anderson, J. B.
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