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Fragmentation method combined with Quantum Monte Carlo calculations
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The total energy of a small polypeptide system is calculated by combining the quantum

Monte Carlo (QMC) and fragment molecular orbital (FMO) methods. Electronic correlation

is taken into account using Slater-Jastrow wave functions and the variational quantum Monte

Carlo (VMC) method. We calculate the energy of the whole system directly and by using

the FMO method, finding that the combined QMC-FMO approach works very well.

KEYWORDS: ab initio, FMO, QMC, Biomolecule, polypeptide, Order-N

1. Introduction

One of the recent trends in ab initio electronic structure computations has been the interest

in calculations for large low-symmetry systems, which leads to great computational expense,

both in terms of CPU and memory requirements. Methods for reducing the computational

expense normally involve dividing the system up in some way.

Recently developed order-N methods1,2) for insulators rely on the exponential localization

of the one-particle density matrix, so that distant points can be considered separately. Another

possibility is to divide the systems into fragments and reconstruct quantities such as the energy

and the electronic charge distribution of the whole system from those of the fragments. Suitable

fragmentations can be devised for a number of systems, including many biosystems, which are

of particular interest. Fragmentation is a rather simple idea which can be implemented within

standard electronic structure codes with rather few modifications. Other approaches such
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as embedding methods,3) effective medium methods4) and Quantum Mechanical/Molecular

Mechanical (QM/MM) schemes5) share the same basic idea of an effective treatment of the

interaction with surrounding regions.

QMC methods have recently been developed which use the idea of the exponential localiza-

tion of the one-particle density matrix within insulators6,7) but, so far, no QMC calculations

using the fragmentation approach have been reported. Within the fragmentation approach

the task of performing a calculation for a large system is broken down into a number of

smaller calculations. The fragment molecular orbital (FMO) approach of Kitaura et al.8–10)

is one of the most successful fragmentation methods. It incorporates well-established rules for

determining accurate fragmentations which, within the Hartree-Fock (HF) approximation,

result in deviations in the energy from the full calculation of only a few kcal/mol for typical

polypeptides and proteins. One may be sceptical that such an artificial division of the system

might lead to a significant error in the total energy, but when applied to suitable systems it

performs very well.

With the rapid increase in the availability of computational resources, there has been

interest in combining the FMO technique with electronic structure methods beyond the HF

level. A number of studies11–13) combining Møller–Plesset (MP) perturbation theory and the

FMO technique have been reported. Energies calculated at the MP2 level using the FMO

approach are in very good agreement with MP2 energies for the whole molecule, showing

that the FMO technique can work when electron correlation is included. However, the cost

of an MP2 calculation increases as N5, where N is the number of basis functions, and this

approach is non-variational. The cost of a QMC calculation increases as N3, where N is now

the number of electrons in the system, and QMC techniques are variational.14) QMC methods

are generally well suited to parallel computation, but calculations for large systems become

inefficient if the trial wave function is too large to be stored on each processor. The idea is

that the FMO technique allows the division of the task of performing a calculation for a large

molecule into a number of much smaller tasks which could be distributed among a number of

researchers, who could each use relatively inexpensive local computational resources.

Here we report our attempt to combine the FMO and QMC methods. Taking a glycine

trimer as a simple example, we have compared the ground state energy in the FMO approx-

imation with the result obtained by the full treatment of the whole molecule. Although the

FMO approximation has already been shown to work well at the HF and MP2 levels, QMC is a

very different technique, and it is necessary to show that it can be successfully combined with

the FMO before progressing to more challenging systems where it is impractical to perform

the full calculation. We have developed a FMO-QMC technique and confirmed that it works

well at the variational Monte Carlo (VMC) level. This is the first such attempt and it confirms

the possibility of using FMO-QMC techniques to deal with large biomolecule complexes.
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The plan of this paper is as follows. In § 2 we describe the system studied and its fragmen-

tation. The molecular orbitals obtained from the HF self-consistent field (HFSCF) calculations

are used in the trial wave functions for the QMC calculations. In § 3 we present the details

of the VMC calculations. The VMC results without Jastrow correlations factors (HFVMC

results) are compared with the HFSCF results in § 3-A, while § 3-B describes HFVMC calcu-

lations in which the basis set is effectively improved by including the proper electron-nucleus

cusps in the orbitals. § 3-C describes the VMC calculations with Jastrow factors. We draw

our conclusions in § 4.

2. System, Fragmentation, and HFSCF Calculations

2.1 Structure and fragmentation

We have considered a trimer of glycine, H2N-CH2-COOH, formed by peptide bonding,

which contains three nitrogen, six carbon, four oxygen, and eleven hydrogen atoms, giving a

system with 100 electrons. We optimized the geometry of the trimer at the HF level using

the Gaussian9815) code with an STO-3G Gaussian basis set, starting from an initial α-helix

structure. The optimized structure is shown in Table I.

The art of fragmentation is well established for peptides and DNA.10,16) At the HF and

MP2 levels with an STO-3G basis, the accuracy has been established to within a few kcal/mol

using the best empirically established dividing rule. In peptides it is considered best to divide

each residue at the Cα site where one of the six electrons is transferred to the adjacent

fragment.10,16) In the present case the molecule is divided into three fragments (fr1, 2, and 3)

at the sites 4 and 11 shown in Table I. The carbon at site 4 (11) is hence shared by fr1 and

fr2 (fr2 and fr3) as shown in the table. The fragmentation is depicted schematically in Fig. 1.

Within the FMO method, the electronic energy ε is considered separately from the repul-

sive energy between the ionic cores ENN, so that the total energy is written as

E = ε + ENN . (1)

The interaction energy between fragments I and J can be expressed as

δεint
IJ = εIJ − (εI + εJ) , (2)

where εI and εIJ are the energies of each fragment and fragment pair calculated under the

influence of the electrostatic potentials of all the other fragments. The electrostatic potential

is evaluated from the charge density of each fragment obtained from HFSCF calculations.

Within this approximation the electronic energy can be expressed as

ε
(FMO)
tot =

∑
I>J

εIJ − (NF − 2)
∑

I

εI , (3)

where NF is the number of fragments. In the present case it reduces to

ε
(FMO)
tot = ε12 + ε23 + ε31 − (ε1 + ε2 + ε3) . (4)
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No. Element x y z fragment

1 N 3.0862 -2.1940 0.4675 1

2 H 3.2786 -1.8310 1.4158 1

3 H 2.2117 -2.7340 0.5750 1

4 C 2.7797 -1.0290 -0.3930 1/2

5 H 3.6895 -0.4400 -0.5280 1

6 H 2.4655 -1.3810 -1.3770 1

7 C 1.6685 -0.1040 0.1810 2

8 O 1.1474 -0.2690 1.2689 2

9 N 1.2465 0.9411 -0.7220 2

10 H 2.0254 1.2783 -1.3010 2

11 C 0.5140 2.0642 -0.0990 2/3

12 H 1.0468 2.5058 0.7482 2

13 H 0.3868 2.8409 -0.8560 2

14 C -0.8950 1.6371 0.4006 3

15 O -1.4790 2.1933 1.3110 3

16 N -1.4400 0.4951 -0.2870 3

17 H -1.0580 0.3979 -1.2330 3

18 C -2.9000 0.2935 -0.2070 3

19 H -3.2760 0.8922 0.6253 3

20 H -3.4180 0.6076 -1.1160 3

21 C -3.2160 -1.2130 0.0723 3

22 O -4.2970 -1.7270 -0.1330 3

23 O -2.1550 -1.9350 0.5931 3

24 H -1.4080 -1.2850 0.5996 3

Table I. Optimized structure of the glycine trimer. All coordinates are given in Angstroms. The

column headed ‘fragment’ specifies the fragment to which the atom belongs, see Fig. 1.

2.2 HFSCF calculations

We used the ABINIT-MP code16–18) for the HFSCF calculations, performing all-electron

calculations with an STO-3G Gaussian basis set. The calculations for fr2 and fr3 included a

‘floating basis’ for a single carbon atom, as shown in Fig. 1.

Self-consistency of the FMO procedure is achieved when the total electronic charge density

has converged. Within the FMO, the total charge density is given by

ρ
(FMO)
tot =

∑
I>J

ρIJ − (NF − 2)
∑

I

ρI , (5)

which is obtained in a similar way to eq. (3). Several levels of approximation of the electro-
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!　

H 2 N C H H( f r 1 ) C O N H C H H( f r 2 ) C O N H C H H C O O H( f r 3 )
H 2 N C H H( f r 1 ) C O N H C H H( f r 2 ) C O N H C H H C O O H( f r 3 )F l t F l t1 6 e l e c t r o n s

1 0 0 e l e t r o n s
3 0 e l e c t r o n s 5 4 e l e c t r o n s

Fig. 1. (Color online) Schematic depiction of the fragmentation. ‘Flt’ indicates a carbon atom ‘float-

ing basis’ with a central charge of Z = 0. The dots denote the electrons around the Cα atoms.

static potential are available in ABINIT-MP, but in this work we have not used any of the

approximate schemes and have instead evaluated the Hartree integrals using the method of

Obara and Saika.19)

The HFSCF results are shown in Table II. At the HF level, the total energy in the FMO

approximation of −687.3874 a.u. is very close to the value of −687.3875 a.u. obtained in

the full calculation. This high level of agreement is typical of that achieved in other FMO

calculations for polypeptides.16)

3. VMC Results

In the VMC method the energy is evaluated as the expectation value of the Hamiltonian

Ĥ with a many-body trial wave function, Ψ,

E =
∫

Ψ∗ĤΨ dR∫
Ψ∗Ψ dR

=
∫
|Ψ|2Ψ−1ĤΨ dR∫

|Ψ|2 dR
(6)

where R is the 3N -dimensional vector of the electron positions, and the energy has been

recast as an average over the probability distribution p(R) = |Ψ|2/
∫
|Ψ|2 dR. The energy

expectation value is evaluated by Monte Carlo integration, using the Metropolis algorithm

to generate points in the R space distributed according to p(R). The statistical efficiency of

the Monte Carlo integration improves as the quality of Ψ improves, because the local energy,

Ψ−1ĤΨ, becomes a smoother function of R.

All of the QMC calculations were performed with the casino QMC code.20) The code was
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HFSCF (a.u.) HFVMC (a.u.) HFVMC (a.u.) VMC (a.u.)

e-n cusp correction No No Yes Yes

ε1 -122.7992 -122.97(8) -123.56(1) -123.901(3)

ε2 -307.6071 -307.6(1) -309.13(2) -309.880(4)

ε3 -683.4616 -683.1(2) -686.32(3) -687.861(4)

ε21 -518.3114 -518.3(1) -520.59(2) -521.725(4)

ε31 -885.1518 -885.4(2) -888.83(3) -890.566(4)

ε32 -1218.9123 -1218.9(2) -1223.40(3) -1225.581(4)

ENN +821.1203 +821.1203 +821.1203 +821.1203

EFMO -687.3874 -687.9(4) -692.69(6) -695.11(1)

EFull;SCF -687.3875

EFull;VMC -687.6(6) -692.60(7) -695.10(1)

Table II. Comparison of the full and FMO results. HFSCF denotes results from self-consistent field

calculations at the HF level, HFVMC denotes VMC results obtained without a Jastrow factor,

and VMC denotes the use of a Jastrow factor.

extended to include the contribution of the electrostatic potential from the other fragments.

The electrostatic potential is evaluated as the sum of the potentials from the nuclei and

a discretized summation of point electronic charge contributions from cubic boxes of side

0.2 a.u. We have performed calculations using the electrostatic potentials obtained both from

the HFSCF charge density and from the correlated charge density, but the difference was

smaller than the statistical error bars. This is consistent with the observation that the small

contraction of the charge density due to the introduction of electron correlation should not

significantly affect the electrostatic potential acting on distant positions.

3.1 HFVMC calculations

We first performed VMC calculations using a trial wave function consisting of the product

of up and down-spin determinants of the HFSCF orbitals,

Ψ (R) = D↑ (R) D↓ (R) . (7)

The HFVMC calculations without cusp corrections should give the same results as the HF-

SCF ones, apart from the statistical errors and any bias from the different treatment of the

electrostatic potentials. Comparing the HFVMC results (without cusp corrections) with the

HFSCF data given in Table II, we see that the agreement is good. The total energies from the

SCF and VMC methods are within a single standard deviation for the full calculations, and

within two standard deviations for the FMO calculation. The fragment and its pair energies

show a similar level of agreement to the total FMO energies. This demonstrates that any bias

6/12



J. Phys. Soc. Jpn. Full Paper

due to the treatment of the electrostatic potentials is reasonably small. The FMO and full

HFVMC energies (without cusp corrections) agree to within error bars. Unfortunately the

error bars on the HFVMC energies (without cusp corrections) are large because the quality

of the trial wave function is poor.

3.2 Cusp-corrected HFVMC calculations

The HFSCF calculations reported above were performed with a relatively small basis

set. While the basis set quality could readily be improved for the glycine trimer, for very

large systems even HF calculations can be difficult with high quality basis sets. The basis set

error in the HF energy can be substantially reduced by replacing the molecular orbitals in

the region around the nucleus by a form which obeys the electron-nucleus cusp condition. It

would also be possible to optimize the Gaussian coefficients and exponents directly within a

QMC procedure, both with and without the Jastrow factor, although we have not attempted

this here.

We have used the cusp correction procedure introduced by Ma et al.21) A molecular orbital

φ satisfies the electron-nucleus cusp condition if

d 〈φ〉
dr

∣∣∣∣
r=0

= −Z 〈φ(r = 0)〉 , (8)

where < φ > denotes the spherical average of the orbital about the nucleus at r = 0, and Z

is the nuclear charge. Within a small radius around each nucleus, the part of each molecular

orbital arising from the s-Gaussian basis functions is replaced by a form which ensures that the

electron-nucleus cusp condition is satisfied. This procedure significantly improves the quality

of the HF molecular orbitals. The addition of cusp corrections lowers the HFVMC energy by

5.0(6) a.u. for the full calculation and 4.8(4) a.u. for the FMO calculation. The cusp corrections

also improve the energies for each of the fragments and fragment pairs, as shown in Table II.

The full and FMO HFVMC energies, calculated with cusp corrections, agree to within error

bars, indicating that, as expected, the FMO approximation also works well at this level. The

improvement in the molecular orbitals also substantially reduces the correlation length of the

energy along the random walk and the variance of the energy, resulting in the reduction in

the error bars apparent in Table II.

3.3 Slater-Jastrow trial wave functions

The Slater-Jastrow trial wave function is given by

Ψ (R) = exp [J (R)] D↑ (R) D↓ (R) , (9)

where exp [J (R)] is a Jastrow correlation factor. We used the cusp-corrected HF orbitals

described above to form the determinants D↑ and D↓.
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We used Jastrow factors of the form22)

J (R) =
∑
i>j

u (rij) +
∑

I

∑
i

χI (riI) +
∑

I

∑
i>j

fI

(
riI , rjI , rij

)
, (10)

where the indices i and j denote electrons and I denotes ions. The u term describes ho-

mogeneous, isotropic, electron-electron correlations, the χ term describes one-body isotropic

electron-nucleus correlations, and the f term describes isotropic electron-electron-nucleus cor-

relations. Each of the terms is represented as a power series in its arguments, and is chosen so

as to enforce the electron-electron cusp conditions while maintaining the electron-nucleus cusp

conditions. The three terms are cut off smoothly at distances of Lu = 5.0 a.u., Lχ = 4.0 a.u.,

and Lf = 3.0 a.u., respectively. By keeping the number of variable parameters and the cutoff

lengths the same for all calculations we hope to construct Jastrow factors of equal quality for

each calculation.

The coefficients in the power expansions are determined by minimizing the self-consistent

unreweighted variance of the energy using a VMC procedure. As the coefficients appear lin-

early in the Jastrow factor, the optimization can be performed efficiently using the scheme

devised recently by Drummond et al.23)

The FMO-VMC energy of −695.11(1) a.u. and the full-VMC energy of −695.10(1) a.u.

agree within error bars, demonstrating that the FMO method works well at the correlated

VMC level. The statistical error bars on the correlated VMC energies are much smaller than

those for the HFVMC results because the correlated wave functions are much more accurate.

The computational cost of the FMO-QMC calculations is also a matter of interest. The

FMO-QMC approach is not expected to be very efficient for the system studied here because

of its small size, but it turns out that using precisely the same methodology in an FMO-QMC

calculation for a large system would also be inefficient. The problem is that the evaluation of

the FMO energy expression of eq. (3) for a system of NF fragments requires a total number of

calculations proportional to N2
F, as one must consider both the fragments and the fragment

pairs. Because each of the calculations is independent, the total statistical error is equal to the

square root of the sum of the squares of the errors in the individual calculations. The cost of a

QMC calculation is approximately proportional to the cube of the number of electrons (N3),

from which one can readily deduce that the present implementation of the FMO calculation

actually requires more cpu time than the full calculation!

A more efficient methodology is therefore required for FMO-QMC calculations on large

systems. Significant savings can be achieved for large systems by neglecting the correlations

between distant fragment pairs, and in the most favorable case the total number of calculations

required would be proportional to NF rather than N2
F. When NF is sufficiently large this saving

is already sufficient to make the FMO-QMC calculation more efficient than the full calculation.

Further efficiency gains can be made by employing correlated sampling techniques.24)
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Writing the FMO energy of eq. (3) directly in terms of the interaction energies, we obtain

ε
(FMO)
tot =

∑
I>J

δεint
IJ +

∑
I

εI . (11)

It is clear from this expression that the FMO energy can be calculated within QMC using a

correlated sampling approach for the interaction energies, δεint
IJ . Correlated sampling can be

implemented efficiently within VMC, and at the DMC level using the reptation QMC tech-

nique.25) Combining FMO with QMC in this manner would provide a powerful and efficient

technique.

The FMO-QMC formulation has some further advantages. Firstly, the FMO-QMC formu-

lation requires trial wave functions only for fragments and fragment pairs, which are normally

much smaller than the full system. Accurate trial wave functions for small systems are much

more readily obtained than for large systems, and we would like to perform FMO calculations

on some systems which are so large that the full calculation is not feasible. Secondly, the

individual calculations in the FMO formulation are much smaller than the full calculation

and require much less memory, so that they may be performed using smaller computational

facilities.

4. Conclusion

The QMC ground state energy of a glycine trimer has been calculated within the FMO

approximation and compared with that obtained by a full calculation, at the level of HFVMC

with/without electron-nucleus cusp corrections, and at the VMC level with an optimized

Jastrow function. The introduction of electron-nucleus cusp corrections significantly improves

the quality of the molecular orbitals, reducing the correlation length of the energy along

the random walk, the variance of the energy and the energy itself. The energies from the

FMO and full calculations agree within the statistical energy bars at each level of theory. We

have demonstrated that the FMO approximation works well within a variational explicitly

correlated wave function technique. The FMO-VMC technique will become efficient for large

systems if it is possible to neglect the correlations between distant fragments and/or if the

interaction energies are evaluated using a correlated sampling technique. We also intend to

examine the accuracy of the FMO approximation using the more sophisticated and accurate

diffusion quantum Monte Carlo (DMC) technique.
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