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Abstract
The multi-layered perceptual process of emotion in human
speech plays an essential role in the field of affective
computing for underlying a speaker’s state. However, a
comprehensive process analysis of emotion perception is still
challenging due to the lack of powerful acoustic features
allowing accurate inference of emotion across speaker and
language diversities. Most previous research works study
acoustic features mostly using Fourier transform, short time
Fourier transform or linear predictive coding. Even though
these features may be useful for stationary signal within short
frames, they may not capture the localized event adequately as
speech transmits emotion information dynamically over time.
This case introduces a set of acoustic features via wavelet
transform analysis of the speech signal, and specifically,
models the perceptual process of emotion for language
diversity. For this aim, the proposed features are analyzed in a
three-layer emotion perception model across multiple
languages. Experiments show that the proposed acoustic
features significantly enhance the perceptual process of
emotion and render a better result in multilingual emotion
recognition when compared it to the widely used prosodic and
spectral features, as well as their combination in literature.
Index Terms: wavelet transform, speech emotion recognition,
emotion dimension, three-layer model

1. Introduction
Speech emotional state plays a pivotal role in a daily
conversation for delivering the ideas, thoughts, and moods.
Researchers have recently agreed that people share primary
emotions like anger, happiness, sadness, fear, surprise, and
disgust independent of languages [1, 2]. For instance, emotion
recognition in multilingualism communications has been
shown to be cross-lingual, where multiple spoken languages
may be used in one conversation or even in one sentence.
Multilingual speech emotion recognition (mSER), considering
human diversity for language in realistic conditions, is thus a
growing area of focus within affective computing to enhance a
natural human-machine interaction [3, 4]. Still, there exist two
challenges to facilitate machines understanding emotion from
multilingual speech, i.e., 1) design a computational emotion
model generalizes across languages; and 2) extract powerful
acoustic features with the ability to distinct emotional states.

This paper studies each of these two challenges to model
the perceptual process of emotion for language diversity. Many
computational models thoroughly used in machine learning
and pattern recognition, have been constructed previously for
acoustic SER, such as the Gaussian mixture model, support
vector machine/regression, and hidden Markov model and so
on [5, 6, 7]. All these models were found to be promising for
training and testing on a single specific corpus. However, such

models were limited to generalize in mSER tasks owing to the
specific optimal patterns like the type of a kernel, changing
significantly concerning the diversity for speakers and
languages [8]. To solve this limitation, many researchers have
reconsidered the perceptual process of emotion in human
speech as a multi-layer scheme, and introduced other models
like the extreme learning machine, deep neural network, and
long short-term memory [9, 10, 11]. Despite the advances
made in mimicking the perceptual process of emotion by
multiple layers, this success usually requires a massive set of
training data led to another challenge in data scarcity for
mSER. Still, most deep learning models were performed by
black-box testing using hidden layers, and many scientists
argued these models might fail to clarify a comprehensive
analysis of the perceptual process of emotion.

Emotion psychology studies have shown that, as an
alternative to model the multi-layered perceptual process of
emotion, Brunswik’s lens principles of representative design
seem to be too appealing a topic [12]. Scherer originally
applied a Brunswik’s lens model in three layers to infer the
personality from voice [13]. It was assumed that the emotional
state of a speaker is externalized by distinct distal cues, i.e.,
acoustic features; and proximally perceived as percepts, is the
mechanism of a perceptual process of emotion. This model
benefits greatly from a decomposition of the inference process,
allows for assessing the particular cues of failures to improve
the previous achievement and provide a more clear perceptual
process. In [14], Huang and Akagi proposed to study the
proximal representation of distal cues for describing a
speaker’s state in an expressive speech by adjectives. In [15],
Elbarougy et al. replicated the earlier results after Huang by
using the valence (pleasant and unpleasant) and arousal
(relaxed and aroused) space to identify the speech emotional
state dynamically. All the above mentioned models provide us
the knowledge to understand the perceptual process of emotion
for each single language. Still, the challenge remains to find
the inference rules generalize across languages. Nonetheless,
Li et al. reported four universal proximal percepts (semantic
primitives), in a renewed three-layer perceptual process of
emotion across languages by a feature selection approach,
considering the combined effects of a judgment in human
fuzzy-vague knowledge [16]. Even though the obtained results
in that study may be highly representative on the understanding
of semantic information, it still restricts to gain the nature of
perceptual process of emotion since lacking robust acoustic
features to distinct the emotional state. However, the latter is
fairly vital of the inference of speaker’s state from speech.

This study contributes to an important challenge in mSER,
i.e., modeling the perceptual process of emotion for language
diversity in three layers by acoustic features, semantic
primitives, and emotion dimensions; and specifically, studying
a set of acoustic features with the goal toward generalizing
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across languages. Most studies traditionally examined the Mel
frequency cepstral coefficients (MFCCs) as one of the
popularly used acoustic features for SER [6, 17]. Despite the
progress made by the MFCCs, they are still restricted to
externalize emotional states in speech due to the following two
reasons. Firstly, MFCCs were computed by the short time
Fourier transforms (STFT), failing to identify sudden burst in a
slowly varying signal because of the windowed STFT holds
uniform resolution over the time-frequency plane [18, 19].
Secondly, MFCCs inherently accept that a speech frame carries
information for only one phoneme per time; however, there
may exist language-dependent adjacent phonemes of both
voice and unvoiced phonemes in nature which affect the low
and high-frequency spectrum separately for SER [20].
Prosodic speech features, on the other hand, such as the
fundamental frequency, energy, and timing, etc. have also been
thoroughly studied for SER [13, 14]. Although prosodic
features appeared to be profitable to predict aroused emotions;
still, they failed to identify emotional states with similar
arousals, like joy and anger which have similar properties in
the prosodic domain with high fundamental frequency, high
energy and so on [21]. In addition, prosodic features are
typically obtained from each frame and then calculated via
statistics of all features in one utterance, losing the temporal
information carried in an emotional speech [21, 22].

The question of extraction of robust acoustic features
generalize across languages is still a major concern of SER.
Nevertheless, researchers largely accepted that the emotional
state in speech has an impact on the speech production
mechanism across the glottal source and vocal tract [23, 24]. In
[25], Li et al. reported that glottal source information advanced
the perception of emotions; besides, vocal tract cues affects
contributed to the dimensional understanding across valence
and arousal. Mokhtari et al. suggested that glottal amplitude
quotient played a vital role in conveying paralinguistic
information [26]. However, the glottal source and vocal tract
are significantly affected by many factors, such as the gender,
culture as well as the speaking style of a speaker and so on
[27, 28]. This fact limits the relative contribution of acoustic
features derived from the glottal source and vocal tract to
model the perceptual process of emotion across languages.

These days, phonologists and phoneticians have popularly
assumed that the expression and perception of emotion in
speech is hierarchic and multi-functional. There exists relevant
information at both short and long-term dependencies from
micro-prosody information on the phonemes, to the prosody of
words, phrases, and the whole sentence [22, 29]. Inspired by
the distinct characteristics of emotional states across different
prosodic levels and frequency structures of vocal fold and
vocal tract, this study takes one step beyond current acoustic
features extraction algorithms and proposes a method for
robust feature extraction via the wavelet transform (WT)
analysis of the speech and glottal signal. The WT benefits the
analysis of acoustic features for mSER due to the following
advantages: First, the WT decomposes a speech or glottal
signal into subsequent sub-bands, allows for discerning the
emotion-related oscillations in speech; and has the potential to
form them separately according to each prosodic level that
might approximately match the human hierarchic perception of
emotion; Moreover, the WT is superior to the traditional signal
processing methods such as the STFT and could process any
non-stationary speech signals. It offers optimal time resolution
for each frequency and can underlie dynamic variations
associated with emotional state in speech.

Figure 1: Schematic diagram of the proposed multilingual
emotion recognition system.

This paper contains the following main parts: 1) we
determined a computational emotion model in three layers to
study the perceptual process of emotion for language diversity;
2) we proposed a set of robust acoustic features derived from
the glottal source and vocal tract by the WT analysis; 3) we
evaluate our proposed features by comparing them to the most
widely used prosodic features, spectral features, as well as
their combination. 4) we lastly strengthen how well the
WT-based acoustic features are suited for characterizing the
language independent cues in mSER.

2. Speech datasets
We chose three corpora of acted emotions across languages of
Japanese, German, and Chinese. In addition, four similar
emotions of neutral, happy, angry, and sad were selected to
train the system and compare performance among corpora.

The Fujitsu database contains speech with acted emotions
in Japanese, produced by one professional actress. The speaker
uttered a sentence using five emotions: neutral, happiness,
sadness, cold anger and hot anger. These recordings comprise
20 different sentences, each of them repeated once in neutral
and twice in each of the other emotions. A total of 140
utterances were selected from this database: 20 neutral, 40
happiness, 40 hot anger, and 40 sadness.

The German corpus is the well-known Berlin Emo-DB. Ten
professional actors (five males and five females) each uttered ten
sentences in German to perform seven emotions. The number
of utterances of each emotion was: 127 anger, 81 boredom, 46
disgust, 69 fear, 71 joy, 79 neutral, and 62 sadness. Finally, 200
utterances were selected from this corpus with 50 utterances in
each of the four similar emotions as in the Fujitsu database.

The Chinese CASIA corpus contains 9600 utterances of
six emotions: neutral, anger, fear, surprise, happiness, and
sadness, produced by two male and two female professional
actors. Each actor performed six emotions individually and
produced 400 utterances in each category. This study selected
200 utterances of spontaneous content from four actors
consists of 50 neutral, 50 happiness, 50 sadness, and 50 anger.

3. Research method
Figure 1 depicts a schematic diagram of the whole method.
Acoustic features analysis was first given by the WT analysis
of the low-dimensional features (LDFs) in speech across
languages. The robust features based on energy and entropy
were secondly calculated using the WT coefficients and
selected by the sequential floating forward selection (SFSS).
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The three-layer model incorporating fuzzy inference systems
(FIS) took the optimal features as input and mapped them into
valence and arousal dimensions through semantic primitives.
The steps for modeling the perceptual process of emotion for
language diversity were detailed as follows.

3.1. WT analysis of speech features

This study firstly extracted sixteen LDFs of the glottal source
and vocal tract along with the speech waveform from the
COVAREP toolbox(v1.4.2) [30]: fundamental frequency,
normalized amplitude quotient, quasi-open quotient, difference
in amplitude of the first two harmonics of the differentiated
glottal source spectrum, parabolic spectral parameter, maximal
dispersion quotient, spectral tilt/slope of wavelet responses,
shape parameter of the Liljencrants-Fant model of the glottal
pulse dynamics (Rd), the confidence value of Rd, glottal flow,
glottal flow derivative, and the first-fifth formants. Each of
these LDFs was secondly decomposed into six resolution
levels by the discrete wavelet transform (DWT) associated with
the order ten Daubechies wavelets due to its better performance
in SER [31, 32]. Finally, the energy- and entropy-related
features derived from wavelet coefficients were calculated.

3.1.1. Wavelet energy-related features

Let Cl(n) be the detail coefficients formed by DWT of one of
the LDFs, where l=1,2,...,m, n=0,1,2,...,2m-1, m=6 is the
number of decomposition levels, and N is the length of the
detailed coefficients at each node (l,n). Then, the energy at the
decomposition level l will be given by

El = log10

(∑
| Cl(n) |2

N

)
(1)

Consequently, Equation 2 and 3 define the total energy and
relative wavelet energy respectively.

Etot =

m∑
l=1

El (2)

E
(l)
rel =

El

Etot
(3)

Due to the fact that
∑

E
(l)
rel = 1, the distribution of E(l)

rel

reflects a degree of density in a time-scale, which may
contribute some insights into discerning and characterizing
distinct information of emotion in time-frequency planes [33].

3.1.2. Wavelet entropy-related features

The first wavelet entropy-related feature, called normalized
total wavelet entropy (NTWE) performs as a measure of
order/disorder of an emotional speech derived from the relative
wavelet energy (c.f. Eq. 3) and given by

NTWE = −
∑

E
(l)
rel ∗ logE

(l)
rel (4)

In particular, to capture the dynamical changes within the
emotional state of speech, this study additionally defined three
time-varying (TVR) entropy-related features. The TVR wavelet
entropy (WE) is given by

WEl = −
∑
| Cl(n) |2 ∗ log | Cl(n) |2 (5)

Then the total WE and relative WE are defined as

WEtot =

m∑
l=1

WEl (6)

WE
(l)
rel =

WEl

WEtot
(7)

This paper extracted a total of 459 acoustic features based
on the WT analysis of 17 LDFs of the speech signal. Each of the
17 LDFs given 27 features consisting of 13 wavelet energy and
14 entropy-related features at a six level wavelet decomposition.

3.2. Primitives-based emotion evaluation

This study defined a computational emotion model to estimate
emotions in speech by a three-layer process, assuming that
human perception of emotion did not originate directly from a
change in acoustic cues, but from an indirect route of a more
subtle perception of semantic primitives. For instance, low
arousal and negative valence speech often convey dark
feelings, in contrast, high arousal and positive valence speech
convey bright moods. We initially examined 17 semantic
primitives in the three-layer model to describe emotional
speech after [14], namely bright, dark, high, low, strong, weak,
calm, unstable, well-modulated, monotonous, heavy, clear,
noisy, quiet, sharp, fast, and slow. To construct the three-layer
model, the three emotional corpora were first evaluated in
terms of each semantic primitive via human listening tests.
Emotional speech was evaluated 17 times by subjects: once for
each semantic primitive for all utterances in one corpus. Each
of the 17 semantic primitives was scored on a five-point scale:
1 Does not feel at all, 2 Seldom feels, 3 Feels a little, 4 Feels, 5
Feels very much. In addition, since this study describes
emotions by a dimensional space spanned by valence and
arousal, the corpora needed to be further annotated in terms of
emotional dimensions. The same subjects were asked to
evaluate these dimensions on a five-point scale (-2, -1, 0, 1, 2)
for valence (-2 being very negative and +2 being very positive)
and arousal (-2 being very relaxed and +2 being aroused).

Eleven native Japanese speakers (nine males and two
females) were asked to evaluate the Fujitsu database, and ten
native Chinese speakers (five males and five females) were
asked to evaluate the CASIA corpus. Still, it was impractical
for us to recruit enough German native speakers for the
listening test. Nonetheless, psychology research has recently
proven that human could recognize emotions in speech cross
languages [14], so we asked nine Japanese native speakers
(eight males and one females) to evaluate the Berlin-Emo DB
instead. The basic theory of the semantic primitives and
emotion dimensions was explained to the participants before
they listened to a small set of demos involving different
degrees of a certain emotion. The training test tried to enable
listeners to understand the adjectives or dimensions. All
stimuli were played randomly via binaural headphones at a
comfortable sound pressure level in a soundproof room.

The averaged results of inter-evaluator correlation for the
semantic primitives in terms of Fujitsu, Berlin Emo-DB, and
CASIA were almost identical with values ranging from
0.84–0.93, 0.84–0.93, and 0.82–0.92, respectively. Besides, the
average correlation between evaluators over valence and
arousal was 0.96 and 0.96 for Fujitsu, 0.92 and 0.94 for Berlin
Emo-DB, and 0.85 and 0.91 for CASIA. The inter-rater
agreement was generally lower for valence than for arousal,
indicating human evaluations were more poorly correlated with
respect to valence compared to that of arousal.
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4. Experiment
This paper studied mSER performance on the estimation of
valence and arousal dimensions in multilingual scenarios.
Obtained results were assessed by the correlation coefficients
(CC) and mean absolute error (MAE) between the averaged
human evaluators and the estimations by systems.

4.1. Experiment setup

Experiments were performed in mixed-corpus setting via leave-
one-speaker-out cross-validation (LOSO), where the model was
trained on all but one speaker’s data of mixed-corpus of three
different languages and then tested on the held data. The held-
out speaker was rotated until all speakers were tested.

The training of the three-layer model was performed based
on the adaptive neuro-fuzzy inference systems (ANFISs)
owing to the ANFISs benefit from a lower root mean square
error on the model of nonlinear input and output relations by
fusing human knowledge [34]. And specifically, the nature of
perception of emotion in speech is vague and fuzzy [6]; and the
three-layer model fused human knowledge from evaluations of
semantic primitives and emotion dimensions, which also
included nonlinear processing to human perception of emotion.
To avoid exorbitant costs in terms of time for system training
and define the optimal features, we additionally used the SFFS
in all selection from original sets of 459 acoustic features and
17 semantic primitives. SFFS is an iterative algorithm to
evaluate the selected subset and combined effects of features
and KNN classifier during the evaluation process. This work
selected 21 acoustic features (c.f. Table 1) and four semantic
primitives of dark, strong, weak, and heavy to model the
perceptual process of emotion for the language diversity.

To assess and compare the gain from using the proposed
WT-based acoustic features, we built three baselines: the first
set of features was 19 prosodic speech features (PSFs),
contains four fundamental frequency-related features, four
power-envelope related features, five power spectrum-related
features, three duration-related features, and three
voice-quality related features. These 19 prosodic features have
been widely studied in a three-layer model in the literature
[15, 35]. The second set consists of 196 statistical modulation
spectral features (MSFs) that were derived from the acoustic
frequency and modulation frequency domains. Superior to the
standard MFCCs that carry a signal’s short-term spectral
properties only. The MSFs benefit both temporal and spectral
properties of a speech signal as used by humans via an analysis
of temporal envelope of multiple acoustic frequency bins
[36, 37]. This has been proven by literature that MSFs
outperformed MFCCs in SER [37]. The reader is suggested to
refer to [36] for a detailed description of the MSFs. Moreover,
the third baseline combined the PSFs and MSFs. Each of the
three baselines was the same in training the three-layer model
using the best four semantic primitives, but the best acoustic
features chosen from each individual feature set.

4.2. Experiment results and discussion

Table 2 shows the CC and MAE of the estimation using the
proposed acoustic features and the three baselines. As seen, the
proposed WT-based acoustic features achieve the best
performance in all estimations of emotion with respect to the
valence and arousal dimensions, providing a CC of 0.82 and
0.93, while the MAE was 0.47 and 0.30 respectively. This
result outperformed all another three baselines of the PSFs,
MSFs, and the combination of PSFs and MSFs in predicting

Table 1: Selected 21 acoustic features in three-layer model

Low dimensional features Functionals
Time signal E

1/5/6
rel , WE6, E2, NTWE

glottal flow E3, WE2/5, WE4
rel

2nd formants Etot, E6
rel

parabolic spectral parameter E3, WE
3/4
rel , WEtot

5th formants Etot

glottal flow derivative E2, WE5
rel

1st formants WE2
rel

fundamental frequency WE4
rel

Relative wavelet energy at every decomposition level l (E(l)
rel);

wavelet entropy (WEl); wavelet energy (El); normalized total
WE (NTWE); relative WE (WE

(l)
rel); total energy (Etot); total

WE (WEtot)

Table 2: The CC and MAE obtained for valence and
arousal using different acoustic features. ** indicate that the
features outperform other alternatives; * indicate the features
outperform the baselines of PSFs and MSFs, but not significant
different with PSFs+MSFs. (p < 0.001)

Features Valence Arousal
CC MAE CC MAE

PSFs 0.64 0.64 0.91 0.36
MSFs 0.57 0.73 0.87 0.44
PSFs+MSFs 0.75 0.51 0.93 0.29
Proposed 0.82 0.47** 0.93 0.30*

valence dimension, yielding a relative error reduction rate
(RErs) of 50%, 58%, and 20% for CC, and 26.5%, 35.6%, and
7.8% for MAE. These differences are statistically significance
(p < 0.001). Besides, the proposed features consistently
outperformed other baselines on the estimation of arousal
dimension. The individual values of the RErs are 22.2% and
46% for CC, and 16.7% and 31.8% for MAE in comparison
with that of the PSFs and MSFs.

As an aside, the PSFs appeared to be suitable for the
estimation of the arousal dimension; still, it limited to that of
valence. The main reason was attributed to the existence of
similarities between properties of some emotions, such as joy
and anger have similar properties for the fundamental
frequency [16, 21]. Moreover, the MSFs produced a
comparatively low performance when compared it to other
alternative features, were probably not immune to the diversity
with respect to language and speaker [29, 36]. Further, the
result of the fused features of PSFs and MSFs was observed to
boost for arousal, nevertheless, rendered a low performance on
the valence dimension. Clearly, the wavelet transform analysis
of low-dimensional features in speech advances the mSER.
The wavelet energy- and entropy-related features contributed
to the study of the perceptual process of emotion and also led
to a better understanding of their dynamics.

5. Conclusions
This paper studied the perceptual process of emotion for the
language diversity in a three-layer model. A new set of
acoustic features derived from the wavelet transform analysis
of speech signal was proposed to capture the emotional
information across languages better. The effectiveness of the
proposed features was assessed under LOSO validations across
three emotional corpora, yielded significant improvement over
conventional prosodic and spectral features in the literature.
The proposed method is potentially intriguing to underlie the
dynamic process in emotional speech across languages and
could be coped with affective speech-to-speech translation
systems.
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