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Abstract. With the inception of connected devices in smart homes, the
need for user adaptive and context-aware systems have been increasing
steadily. In this paper, we present an adaptive model predictive control
(MPC) based controller for cyber-physical home systems (CPHS) envi-
ronment. The adaptive MPC controller is integrated into the existing
Energy Efficient Thermal Comfort Control (EETCC) system that was
developed specifically for the experimental smart house, iHouse. The pro-
posed adaptive MPC is designed in a real time manner for temperature
reference tracking scenario where it is evaluated and verified in a CPHS
simulation using raw environmental data from the iHouse.

Keywords: adaptive, model predictive control, smart homes, cyber-
physical systems

1 Introduction

Recent growth in home automation research affirms the importance on enhancing
the quality of life (QoL) in residential and commercial buildings [1-6]. Home au-
tomation typically requires key elements such as sensing, actuation and control.
These key elements forms the cores of cyber-physical systems (CPS), which jus-
tifies its place in smart home environments. One of the active research in smart
homes domain are energy efficient thermal comfort, where building architecture,
envelop, heating, ventilation and air conditioning (HVAC) and control are within
its scope. Model based controls such as model predictive control (MPC) have
gained traction throughout the years especially in applications such as thermal
comfort control [1, 7, 6]. Some of the advantages of MPC in thermal comfort con-
trol application are its capability to apply anticipated control strategies in lieu
of corrective strategies while simultaneously handling multiple objectives and
constraints. However, model based control normally require expert knowledge of
the entire process to design and tune the plant model to accurately represent
the actual control plant. Practical implementations of model based control for
smart homes are generally unrealistic as every room or building have different
thermal and insulation characteristics.
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In this paper, the objective is to address presents an adaptive MPC con-
troller for cyber-physical home systems (CPHS) environment. The main goal
for this paper is twofold: (i) to implement adaptive MPC based temperature
controller for CPHS; and (ii) to implement real time control based on CPS
approach. With adaptive model based control, model tuning effort should be re-
duced significantly as it automatically identify the plant characteristics and tune
the controller parameters at runtime. The rest of the paper is organized as fol-
lows. Section 2 introduces the background on relevant topics to this paper. The
experimental house and its system, adaptive MPC controller and online model
estimator details are described in Section 3. Proposed controllers are simulated
during autumn season while its results and discussions are presented in Section
4. Finally, some relevant conclusions are summarized in Section 5.

2 Research Background

2.1 Cyber-Physical Home Systems

CPS are described as systems where their physical and computational elements
are strictly interlinked together by networking elements [4]. This mechanism is
incorporated into smart home environment to form CPHS, where it is comprised
of the physical and cyber worlds interlinked together by various communication
networks. Sensing and actuating domain are part of the physical world in a CPHS
environment while the computing elements such as data storage and supervisory
control are part the control domain in the cyber world. One of the implementa-
tion of smart homes are the iHouse, which is an advanced experimental smart
house, located at Nomi City, Ishikawa prefecture, Japan. It is a conventional two-
floor Japanese-styled house featuring more than 300 sensors, home appliances,
and electronic house devices that are connected using ECHONET Lite version
1.1 and ECHONET version 3.6 [4]. The EETCC system designed in previous
work was based on the CPS approach, where its implementation in the iHouse
can be found in [4]. The EETCC system tightly coupled appropriate sensors and
actuators together while a state based supervisory controller performs relevant
control to maintain the thermal comfort level in a room. The state based super-
visory controller is a rule based algorithm those objective is to promote energy
efficiency by prioritizing the use of natural resources to maintain the thermal
comfort level in a room rather than the use of HVAC. However, this supervisory
controller suffers from non-optimal control strategies as it senses the changes in
thermal comfort level without anticipating any future events.

3 Adaptive MPC for EETCC System

The control plant in this paper is based on the iHouse, where various types
of networked sensors and actuators are linked together to provide the necessary
feedback parameters and output controls to the proposed controller. The EETCC
system introduced in [4] is used as the CPHS platform, where its architecture is
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illustrated in Fig. 1. The EETCC system is comprised of three main components:
(i) controller; (ii) network and communication; and (iii) plant.
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Fig. 1. Architecture of EETCC system.

In this paper, an adaptive MPC is employed as the local level control of the
HVAC while the EETCC algorithm introduced in [4] is employed as supervisory
level control in the iHouse EETCC system. Proportional Integral (PI) control
algorithm is commonly implemented as local level control due to its low re-
quirement for computing resource while supervisory level control are commonly
governed by rule-based control (RBC) and optimal control algorithms such as
MPC that are resource intensive. An example of such setup can be found in
[1]. Advancement in embedded computing allows MPC to be used in local level
control that are real time in general.

3.1 Adaptive Model Predictive Control

In this section, an adaptive MPC with online model estimation system is intro-
duced. The plant in this context is the iHouse bedroom, subjected to outdoor
environment disturbances as well as HVAC as its input. This is illustrated in
Fig. 2. The MPC controller block is comprised of MPC internal plant model and
state estimator as its prediction block, and the optimization block that computes
input optimization with respect to the imposed cost and constraints.

The thermodynamic characteristics of the plant modeled using heat equations
are comprehensively explained in [6]. Since the controller is a discrete MPC, the
plant is transformed into a thermal resistor-capacitor (RC) model those form is
a discrete state-space model as shown in [6]. Hence, a discrete state-space model
can be given by the following equations

x(k+1) = Az (k) + Bu (k) + Wo (k) (1)
y (k) = Cz (k) + v (k)
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Fig. 2. Adaptive MPC system model.

where z is the state vector, u is the input vector, y is the output vector while
A, B, C and W are constant state-space matrices of coefficients. v (k) is the
disturbance vector at interval k that is consisted of heat gain from outdoor
temperature and solar radiation. The MPC internal plant model in this paper is
a simplified plant, which only considers the HVAC input and room temperature
output. Outdoor environmental disturbances are excluded from MPC prediction.
The MPC controller and online model estimation block are both in discrete
time while the plant is in continuous time. Zero hold order discretization is em-
ployed for the inputs and outputs of the EETCC system controller, where the
signals are held constant during the sampling period until the next sampling in-
stance. This introduced delay into the system which deteriorates the closed loop
performance of non-adaptive MPC controller. Hence, the working of how adap-
tive MPC with online state estimation can reduce internal model discrepancy as
well as managing input delay issues are explained in the following subsections.

State Estimation Besides the internal plant model, state estimation is also
one of the components in MPC prediction block. This section briefly describe a
general state estimator in a MPC controller, Kalman filter (KF) as well as the
linear time varying Kalman filter (LTVKF) state estimator in adaptive MPC.
The state estimate of a MPC controller in the MPC toolbox provided by Simulink
is described in [8], where the controller internal state estimation at interval k
and the updated state estimation at interval k + 1 are given by

(k| k) =al(k | k—1) 4+ Mye(k) (2)

wo(k + 1| k) = Aez"® (k | k — 1) + Buyu® (k) + Byv(k) + Lre(k)  (3)

where z7°V(k | k — 1) is the predicted state estimate at interval k, e(k) is the
difference between measured state and predicted state estimate at interval k,
uPt(k) is the optimal input computed by MPC at interval k, v(k) is the input
disturbance at interval k, A, is the internal plant model state-space matrices of
coefficients, B, and B, are the internal plant state vector for input control and
disturbance, Ly and M) are the KF gain matrices at interval k. Conventional
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MPC pre-calculate the KF gain matrices during initialization of the MPC con-
troller and keep the gain matrices constant throughout the entire runtime of the
controller. This relies on the accuracy of the internal plant model during design
stage, which requires expert knowledge of the entire control process and tedious
parameter tuning to accurately represent the actual control plant. However, this
shortcomings can be alleviated by employing adaptive MPC. Basically, adaptive
MPC works by updating of the KF gain matrices at every interval of k, which
calibrates the controller internal state according to the latest measurement. The
KF gain matrices at interval k are given by

Li = (AkPyj—1Ch i + N) (Con i Pyj—1 Ch i + R)71 (4)

-1
My = Pk|k—1Cr7r;,k (Cm,kpk\k—lcg;,k + R) (5)

where Py;_1 is the state estimate error covariance matrix at interval k based on
the measured state at interval k — 1, Ay and C,, ;. are the state-space matrices
of coefficients updated at interval k, V and R are the state estimation constant
covariance matrices [8].

Optimization Problem One of the advantages of MPC is its ability to handle
multiple objectives and constraints. MPC generally solves a quadratic problem
(QP) at each interval to find the optimal control input with respect to the objec-
tives and constraints. This paper implements a temperature reference tracking
MPC controller bounded by the HVAC capability and plant temperature bound-
ary. A general objective or cost function that penalizes reference signal deviation,
large change in control input and constraint violations can be given by

Ny

Te = {w! [r (k+1[k) —y (k+ 1]k)]}’
i=1

Ny —1
u 2
+ Z {wi™ [Au(k + 1[k)]}” + pee;, (6)
i=0
s.t.

Ymin S Yy (k + 1|k) S Ymax
Umin S U (k + 1|k7) S Umax

where n, is the controller prediction horizon, n, is the input control horizon,
w? is the plant output tuning gain at ith prediction step, wiA“ is the change in
input control tuning gain at ith prediction step, r is the reference signal, y is
the predicted plant output and Awu (k + 1|k) is the change in the optimal input
control at time k-+17 computed at interval k, p. is the constraint violation penalty
gain and ¢y, is the constraint slack variable at interval k. The HVAC minimum
and maximum saturation points are given by Ui, and Um,q, respectively while
the plant minimum and maximum room temperature are given by ¥, and

ymaa; .
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3.2 Online Model Estimation

The workings of adaptive MPC are described in the previous section, where it
relies on model parameters updates at every interval to tune its internal state es-
timator. This section briefly describes the online model estimator that is used in
this paper to update the adaptive MPC internal state estimator. Several methods
are employed in literature related to online model estimation in buildings, such
as extended KF (EKF) in [2], unscented KF (UKF) in [2,9,3] and controlled
autoregressive integrated moving average (CARIMA) in [10]. Besides, previous
work on the iHouse involves an autoregressive moving average (ARMA) model
based offline estimation in [5]. This paper takes a different approach on model
estimation of the iHouse, where online estimation is employed and input from
HVAC is also taken into account. An autoregressive moving average with exoge-
nous input (ARMAX) model is used in this paper to represent the iHouse. Thus,
the plant dynamic thermal behavior can be expressed in a black box ARMAX
model as

A(Q)y(t) = Blq)u(t — nk) + C(q)e(t) (7)

where y is the plant room temperature, u is HVAC control input, e is the noise
term with zero mean. The parameters of autoregressive (AR) are given by A(q) =
14a1g '+ -+ aneg " and ay, - - -, Ang, where na is the AR order. The param-
eters of exogeneous (X) input are given by B(q) = by + baq™ ! + - -+ + bppq "0F?
and by, - - -, byp, where nb is the X input order. The parameters of moving average
(MA) are given by C(q) = 1+c1q 4+ +¢peqg " and ¢, - - -, Cpe, Where nc is
the MA order. Since the MPC internal model in this paper is intended to be a
simplified plant model, the na, nb and nc are configured as first order to reduce
its complexity.

Two estimation algorithms are employed to identify the ARMAX model pa-
rameters: (i) normalized least mean square (LMS) and (ii) KF algorithm. This
two parameter estimation algorithms can be generally described by

0(t) = 6(t — 1) + K () [y(t) — 9(0)] (®)

where 6 is the estimated ARMAX model parameter, K is the prediction error
gain, y is the measured output and ¢ is the predicted output. In-depth details of
the two algorithms can be found in [11]. Although the ARMAX model param-
eters can be pre-estimated if the initial conditions are known, an initial guess
is used instead during the initialization process to represent a more realistic de-
ployment of such system. Besides, KF algorithm is capable of managing param-
eter estimation uncertainty during initialization by tuning the initial parameter
covariance. Typically, a large initial parameter covariance is used when high un-
certainty exists in the initial estimation. Uncertainty in the state equations and
process noises can also be managed by tuning KF parameter covariance. While
Simulink does not allow online tuning of the delay parameter, the expected delay
value can be pre-configured in the online model estimator. Furthermore, the AR-
MAX model is converted into an equivalent state-space form before propagating
the updated parameters to the adaptive MPC controller.
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4 Numerical Evaluation

This section examines the performance of the proposed adaptive MPC controller
with online model estimation in a CPHS environment, where a conventional
MPC controller is employed as baseline controller. The term “MPC” and “con-
ventional MPC” are used indistinguishably in this section. The simulation is
built based on an actual bedroom in the iHouse and simulated on Simulink
R2017b. Environmental sensors are polled and stored in the EETCC database
at an interval of 10 seconds. Hence, the zero hold order sampling interval is also
set to 10 seconds while MPC prediction and control horizon are configured to 2
minutes. Besides, the simulation outdoor environment is based on measured data
from the iHouse on 1st November 2013 as shown in Fig. 3 while the simulation
is performed on a MacBook Pro with Intel Core i7 processor at 3.1 GHz and 16
GB. The remaining simulation parameters are listed in Table 1.

821 —— Outdoor Temperature 0.8 \E/
[0} — —Solar Radiation o
b
S13 0.4 2
g s
13, \ S
¥ }f 5]
g 5 J t L 0 A~
] (=] o [=] [=) [=] o o [=) o o [=] [=3 [=] )
H 2 2 < 2 2 2 < o 2 2 @ 2 S
o N < \O [ce] o N < \O (o] o N o Q
S =} I} S S — — — — — Y o~ S A
Time
Fig. 3. Outdoor environment on 1st November 2013.
Table 1. Simulation parameters and settings.
Parameter Value
Volume of room (L x W x H), Vioom 5.005 x 4.095 x 2.4m?
Density of air 1.2kg/m?
Specific heat capacity of air 1.005kJ/kg°C
Air volume flow rate, CF M 300 ft® /min
Minimum cooling load of HVAC, umin 5kW
Maximum cooling load of HVAC, umax 6.3 kW
Coefficient of performance, COP 3.44
Area of window type 1, A1 1.815m?
Area of window type 2, A2 0.66 m?
U-value of window type 1, w1 3.4 W/szC
U-value of window type 1, w2 1.7 W/m2°C
Solar transmittance of window type 1, g1 0.79

Solar transmittance of window type 2, gw2 0.41
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4.1 Results and Discussion

Both MPC and adaptive MPC controllers are subjected to the same cost function
and constraints as shown in Eqn. (6). Since the cost function is a reference
tracking, a step signal of 25°C is applied as the reference at 00:00 to the end of
the simulation. Besides, normalized LMS and KF algorithm in the online model
estimator are both evaluated as part of the adaptive MPC controller. Responses
of all MPC controllers and online model estimators during initialization are
shown in Figure 4. MPC reached steady state faster than both adaptive MPC
controllers as the online model estimators requires a number of iterations before
achieving stabilization. The online model estimator system matrix, A converged
from its initial value to a stable value during the first two minutes of initialization
process. During this period, the adaptive MPC applied large rate of change for
the input to reach both ends of the HVAC constraints to quickly identify and
tune the ARMAX model to the characteristics of the plant. Updated state space
parameters are propagated to the adaptive MPC at the same time, where HVAC
control inputs are promptly corrected from maximum cooling mode to heating
mode as observed in Figure 4. Similar input response is also observed in [10].
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Fig. 4. Initial responses of MPC and adaptive MPC for iHouse bedroom. Note: system
matrix and input vector are normalized.



Study of Adaptive MPC for CPHS 9

Since the performance of adaptive MPC is dependent on the online model es-
timator, adaptive MPC with KF based online model estimator performed better
as it offered faster convergences, less oscillations and overshoots than normal-
ized LMS algorithm as shown in Figure 4. Besides, the steady state responses of
all MPC controllers and online model estimators when subjected to disturbance
from outdoor environment are shown in Figure 5. Unlike adaptive MPC, MPC
is susceptible to random disturbances as it is unable to correct its internal model
errors. The upper output error of MPC is 0.173 °C while the lower output error is
0.168 °C. The upper output errors for adaptive MPC with normalized LMS and
KF based online model estimators are 0.0246 °C and 0.0141 °C while the lower
output errors are 0.0208 °C and 0.0183 °C respectively. Although KF performed
better than normalized LMS, KF is computationally heavier. However, computa-
tional load from various online model estimator algorithms are insignificant as it
only constitute not more than 1.5% of the total simulation time while MPC opti-
mization process constitute more than 86.5%. Average simulation time for MPC
and adaptive MPC with online model estimation is 43.6 and 291.3 seconds, where
the difference is more than six times. Thus, trade-offs between performance and
computational cost should be assessed for practical implementations.
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Fig. 5. Steady state responses of MPC and adaptive MPC with disturbance for iHouse
bedroom. Note: system matrix and input vector are normalized.
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5 Concluding Remarks

This paper summarizes the implementation details of real time adaptive MPC
with online model estimation in CPHS environment. The adaptive MPC with
various online model estimators are simulated and benchmarked against a con-
ventional MPC controller to evaluate the performance and advantage of adaptive
capability in a CPHS environment. Both adaptive MPC with KF and normal-
ized LMS based online model estimators showed improvements in temperature
reference tracking scenarios. However, computation required will increase if self
adaptive capability and strict reference regulation are required. System designers
should take note of the trade-offs between performance and computation cost
for practical implementations of predictive control in a CPHS environment.
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