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Abstract. In this paper, we present a framework to solve the problem of rapidly
determining regions of interest (ROIs) from an unknown intensity distribution,
especially in radiation fields. The vast majority of existing literature on robotics
area coverage does not report the identification of ROIs. In a radiation field, ROIs
limit the range of exploration to mitigate the monitoring problem. However, con-
sidering the limited resources of Unmanned Aerial Vehicle (UAV) as a mobile
measurement system, it is challenging to determine ROIs in unknown radiation
fields. Given the target area, we attempt to plan a path that facilitates the localiza-
tion of ROIs with a single UAV, while minimizing the exploration cost. To reduce
the complexity of exploration of large scale environment, initially whole areas
are adaptively decomposed by the hierarchical method based on Voronoi based
subdivision. Once an informative decomposed sub area is selected by maximiz-
ing a utility function, the robot heuristically reaches to contaminated areas and
then a boundary estimation algorithm is adopted to estimate the environmental
boundaries. Finally, the detailed boundaries are approximated by ellipses, called
the ROIs of the target area and whole procedures are iterated to sequentially cover
the all areas. The simulation results demonstrate that our framework allows a sin-
gle UAV to efficiently and explore a given target area to maximize the localization
rate of ROIs.

Keywords: Environmental Monitoring, Regions of Interest Coverage, Energy-
Efficient Path Planning, UAV

1 Introduction

In a large radiation field, it is important to localize Regions of Interest (ROIs) to monitor
the radiation effects, to localize the hotspots, the sources, and so on. Recent advances
in Unmanned Aerial Vehicle (UAV) offers the ability to access and navigate in un-
structured or cluttered environments. Therefore, a single UAV equipped with dedicated
sensors makes an attractive platform for such kind of tasks. However, it is difficult to
monitor a large field with single UAV. In such situations, it becomes necessary to design
a path planner that can localize the ROIs rapidly.



Radiation field monitoring has been commonly studied in robotics [6,7]. The goal
is to plan a path in which the robot can localize all the contaminated locations in a given
target area. Since the contaminated locations could be spatially distributed throughout
the target area, a search is needed to localize all of them. Thus, required tasks associated
with the search inspire various methods in addressing the coverage problem. Spatial
search techniques should be fitted according to the number of robots used for this ap-
plication. In the case of multiple robots, the target area can be partitioned into smaller
subregions to reduce the search space for each robot. The search strategy is exclusively
benefited by the number of robots and the communication among them. However, in
the case of a single robot exploration, the partitioning of the target area benefits neither
the exploration cost, nor the accuracy.

The early survey on coverage algorithms was provided by Choset [3], where he clas-
sified the solution approaches either based on heuristic or cell decomposition. Heuristic
methods explore the target area with predefined rules or a set of behaviors. The widely
used heuristic methods are lawnmower pattern, raster scanning, inward spiral search,
wall following, etc. Heuristic search is computationally less expensive, but cannot guar-
antee the optimal performance. On the other hand, in cell decomposition, the target area
is decomposed into smaller areas. Galceran and Carries [5] provided a survey of an ex-
act and uniform decomposition of the target area by a grid of equally spaced cells.
Then, the coverage problem can be solved as the Traveling Salesman problem and is
known to be NP-hard. Usually, in that case, a Hamiltonian path is determined using the
spanning tree algorithm, which visits each cell exactly once. In recent year, a variant of
Hamiltonian path utilized for the persistent coverage problem [10]. However, if there
are obstacles in the target area, it is not possible to generate the Hamiltonian path in
all the cases. The Boustrophedon cellular decomposition can then solve this problem
for bounded planar environments with known obstacles [14]. The key idea is to con-
struct a graph by decomposing the target area subject to obstacle positions and finding
a minimal cost tour through all regions. In literature, we have seen an extension of that
algorithm while respecting sensor feedback [1,11,12]. When unknown obstacles exist
in the environment, the Morse decomposition used for determining critical points in the
target area, and then incrementally construct the Reeb graph to solve the online cov-
erage problem optimally [2]. Another way is to satisfy a temporal logic specification
consisting of safety components in a partially unknown environment [8].

The majority of coverage planning work has been proposed for known environ-
ments [12,15,16]. Often these approaches are motivated to minimize the uncertainty
metric of a given map. A common choice is to add an exploration to that location where
the uncertainty metric such as entropy or mutual information is high. However, in many
situations, a radiation map for the target area may not be a priori available. The prob-
lem can then be closely related relation to covering the entire target area for localizing
the contaminated locations. Hence, complete coverage algorithms are often used. Even
though complete coverage algorithms ensure the complete terrain visitation, they lack
the opportunity to optimize the localization rate of contaminated locations.

Considering estimation on environmental boundaries instead of the complete cover-
age provides a useful abstraction that reduces the energy consumption [9,13]. Here, the
path planning problem consists of estimating boundary of contaminated areas that allow



the robot to sense the ROIs. However, when the environment is unknown, it is hard to
plan a path that identifies which areas are interesting and which are not. In conventional
algorithms for the coverage planning with obstacles, the path is usually generated to
cover the free space of the environment in an optimum fashion. In our problem, rather
than avoiding ROIs, we want to identify locations and geometrical size of them rapidly.
For example, when the robot opportunistically finds contaminated areas, firstly, it can
expedite the boundary estimation process to determine ROIs, and then it can bypass ex-
haustively covering the entire regions. Determining ROIs in a radiation field allows us
to prioritize the search area in such a way that minimizes the exploration of the robot.

In this work, motivated by a single UAV coverage, we investigate an additional
component to the coverage problems by incorporating a localization rate factor for the
radiation contaminated locations. Taking account of the localization rate factor which
is important in a single UAV exploration, sometimes the target area is too large for the
UAV to completely cover with limited exploration budget (maximum exploration time).
Since it is also of the interest that the UAV is to localize all the contaminated locations
as quickly as possible, the algorithm must behave as the complete coverage over long
periods of operation. This problem might be thought of as target acquisition problems
[4]. However, there is an important caveat. Target acquisition problems assumed that
the robot equipped with a sensor that has a wide field of view, whereas in our problem,
the robot sensor works in a point-wise fashion. Therefore, the robot needs to travel to a
location to get a measurement.

In this paper, we discuss the online version of this problem, in which the coverage
path of the robot is to be determined based on the information gain metric from the past
exploration. To reduce the search space, we initially partition the target area in a random
manner. Next, we update the partition size based on the size of ROIs. We propose an
optimal path planner, which extends the complete coverage algorithm to reason about a
localization rate factor. Under the assumption that there exist multiple ROIs in a given
target area, the proposed algorithm can increase the localization rate of contaminated
locations while guaranteeing a complete coverage path over long periods of operation.

The contributions of this work are as follows:

1. We have formulated the localization of ROIs which does not require a priori infor-
mation at all.

2. Our algorithm can localize ROIs in a fast manner by minimizing the exploration of
UAV.

3. The proposed algorithm is complete, which means all contaminated locations are
identified for the long operation of UAV.

4. Focusing on the limited computational capabilities of the UAV, the proposed algo-
rithm can robustly determine ROIs.

5. To best of our knowledge, this is the first approach that integrates the environmental
boundary estimation problem to the area coverage problem.

To discuss the aforementioned topics, this paper is organized as follows: in Section
2, we describe the problem formulation; Section 3, we present the heuristic coverage
algorithm based on adaptive hierarchical area decomposition. Section 4, we briefly ex-
plain generalization process of ROIs. Finally, in Section 5 and 6, we present simulation
results and conclude our findings.



2 Problem Formulation

We are given a target area T , which contains radiation sources, strength of can be sensed
by the robot. We assume that T can be decomposed into a regular grid with n cells.
Let us denote this grid by G. Since radiation sources might be spatially distributed.
Thus, G contains two type of cells, i.e., free cells and contaminated cells. Furthermore,
nearby sources cumulatively affect the target area, resulting in a joint distribution of
measurement attributes. Let us assume that each cell c is associated with a measurement
attribute z. The robot is equipped with a sensor to make a point-wise measurement
z(t) at its position x(t) at time t. The Regions of Interest (ROIs) in T are those cells
J := {c|z > 0} where the robot finds z > 0. The contaminated areas are contiguous.
Therefore, the robot can trace such areas by tracking only to the boundaries. Therefore,
the definitions of the contaminated and the free cell are quantified through a binary
probability value given by

pc =

{
0, if z≈ 0
1, otherwise

(1)

Fig. 1. The dark blue cells have no measurement attributes whereas other colored cells represent
the measurement attributes.

Fig. 1 shows an example world map of size 50× 50. Depending on the spatial lo-
cations of the radiation sources, measurement attributes are also spatially distributed
throughout T . The dark blue cells are the cell where pc = 0. The other colored cells
represent the fact that measurement attributes are available such that pc = 1. We can
then find multiple ROIs while splitting J subject to spatial distances.

Definition 1. Regions of Interest (ROIs): A collection of cells corresponds to a set of
contaminated locations in a given target area T , i.e. the set {J ∈ T |pc = 1}.

The global mission of the robot can be defined in two different ways, which implies
two different objective functions as follows

– the minimum time to localize an ROI,
– the total time to localize all the ROIs in T .



Without loss of generality, we assume that the travel time is proportional to the travel
distance. Therefore, firstly, we will use the boundary estimation technique that mini-
mizes the robot’s exploration to localize an ROI. Secondly, we will use the heuristic
area coverage technique that ensures to localize all the ROIs in T . The total time is
taken into account by summing up the boundary estimation paths and the heuristic area
coverage paths.

Let us formally define these objective functions. First, starting from an initial cell,
we denote the coverage path followed by the robot throughout the free cells by P . We
assume that, |J|<< n i.e., the contaminated cells are far fewer than the number of free
cells. We define the event SP as the event that the robot reaches to any ROI which is
not localized beforehand. The complete coverage path P can be then discretized by the
presence of ROI. Therefore, the probability to find an ROI can be expressed as follows

E[SP ] = ∑
c∈P

(1− pc) . (2)

Thus, the first objective is to find an online coverage path that minimizes E[SP ]. Note
that, in this objective, the heading of the path is not important, once the robot heuris-
tically reaches any location of an ROI, the boundary tracking algorithm is followed to
determine the ROI size.

For the second objective, we denote the sequence of newly discovered ROIs along
the coverage path P . if there exists k number of ROIs in T , we discretize P into a
subset Q = {q1.q2, ...,qk}. Since the travel time is proportional to the length of qk, we
want to find the minimum length paths in the set Q to localize all the ROIs. Therefore,
the total events C (P) that the robot is experienced to localize a finite set of ROIs given
by

C (P) = ∑
qk∈Q

Sqk s.t. |Q|≤ |ROI|, (3)

where |Q| is the cardinality of set Q and |ROI| is the number of ROIs are detected in T .
If |ROI| is a priori given, our focus is to find the minimum exploration time to achieve
that number. We then derive the performance index of the robot from eq. (3). A formal
definition of the performance index as follows.

Definition 2. Performance Index (PI): The performance index of the robot is eval-
uated with respect to the minimum explored path to localize all of ROIs, i.e. PI =
argminC (P) s.t. |Q|≤ |ROI|.

Since we do not know the exact number of ROIs exists in T , it is not possible to stop
the robot’s exploration when all ROIs are localized. Then, the robot exploration can be
terminated by exploration budget. Otherwise, the robot’s task is to plan an online path
through T such that every ROIs is rapidly localized while subject to complete area
coverage.

3 Adaptive Hierarchical Area Decomposition And Coverage

Fig. 2 shows the overall schematic of our proposed system. The algorithm we propose
can be broken down into three steps. In the first step, Adaptive Hierarchical Area De-
composition, we adaptively partition the target area in hierarchical order to reduce the



search space of the robot. We then find the subregions given by the partition using the
Finding subregions. When the subregions are determined, we examine the utility to tra-
verse each subregion that explained in the Utility function design. The subregion which
has maximum utility, we plan a coverage path through the set of unvisited cells. The
robot progresses through this path. If the robot notices an ROI along its path, it will
drop exploring more and iterates whole steps. Otherwise, the whole steps iterated after
traveling along the entire path.

Fig. 2. System Overview: The figure shows all the steps performed by the heuristic area cover-
age, and ROI estimation algorithms. Starting from an arbitrary location, the robot can iteratively
localize the desired number of ROIs using this framework.

3.1 Adaptive Hierarchical Area Decomposition

To reduce the computational complexity while navigating a large environment, the
search space for the path planning needs to be at a tractable level. We argue that these
objectives can be achieved by adaptive partitioning of the target area in hierarchical
order. Given the position of ROIs, the hierarchical order is determined by a local min-
imum distance with the respect to the robot’s relative position. Therefore, we propose
Voronoi-based partition in the sense of limiting the search space. Fig. 3 shows the over-
all overview of each algorithm. With a given partition, our goal is to find an ROI through
the limited exploration.

The Voronoi-based subdivision (VBS) uses the Voronoi-based approach to partition
the target area. The main idea is to partition the area by representing the ROI centers
as the Voronoi centroids. Since in our case the ROI centers are not apriori available,
we have introduced a few changes to the original Voronoi-based partition algorithm.



Fig. 3. VBS decomposition: Starting with the random partitions, the partitions updated by the
center position of ROIs. The algorithm iteratively approaches to optimal decomposition.

Firstly, it randomly partitions the target area using four random points inside the target
area. Secondly, it leads the robot to the nearest centroid from its initial location. Finally,
TSP algorithm generates the coverage path. The robot starts to explore along this route
when a contaminated cell found; it switches to the boundary estimation planner. An
ROI then computed from the estimated boundary. The robot finds a minimum route to
ROI from its location either while traveling to the Voronoi centroid or while executing
TSP path. Although these paths increase the probability of finding ROI, if there are no
contaminated cells in the subregion, then the complete coverage path would be large
because of traveling to the centroid. Note that in VBS, the initial search space limited
by the random partition. The partition of the target area updated by the center position
of the detected ROI.

In the second phase, VBS finds a coverage path that connects the desired number of
ROIs. Finding such path is possible by iteratively updating the Voronoi centroids. The
iterative updates of centroids lead VBS to generate an optimal partition of the search
space. However, when the number of ROIs is greater than the number of random initial
points, the partition centroids are not only iteratively updated but also incrementally
constructed. The four basic operations of this decomposition are as follows. Firstly, we
generate randomized incremental construction of partitions to reduce the search space.
Secondly, the robot moves to the Voronoi centroid, and TSP algorithm creates a cover-
age path to explore the unexplored cells optimally of a given subdivision. Thirdly, when
an ROI is determined, we terminate the exploration and update the Voronoi centroids.
Finally, the region of each division is determined.

We demonstrate the Voronoi-based subdivision while the robot is covering its free
space using an example depicted in Fig. 3. Voronoi Diagram is the partitioning method
of a plane with n points into a specific subset of the plane such that each subset contains
exactly one generating point. In typical Voronoi diagram, the set of generating points
is apriori known. The Voronoi polygons are then constructed such that every point in a
given polygon is closer to its generating point than to any other. However, in our case,
we randomly initialize the generating points and iteratively update their positions.

The robot starts to cover the space in a vast cell by moving into the centroid of
the current Voronoi region (red dot) which is located at the rightmost corner; the target
area is shown as the black rectangle in Fig. 3. Then, the robot constructs a TSP path
to cover the given region. Whenever the robot reaches the cell where Pc = 1, which is



the unvisited location of a contaminated area, it finishes covering the centroid path or
the TSP path. Since the contaminated area is unknown a priori, the robot follows the
boundary tracking algorithm to cover it. The robot then constructs an ellipse over the
estimated boundary to represent the ROI, shown as the orange ellipse in Fig. 3. At this
point, it encounters the update of Voronoi centroid. The Voronoi centroid of the current
region is replaced by the center point of the ellipse, shown as blue dots in Fig. 3. If
there are more ROIs than the Voronoi centroids which are chosen initially, the overall
Voronoi partitions are reconstructed with updated centroids. Note that the minimum
number of subdivisions in this case is four, and the algorithm can also cover more than
four subdivisions. The robot chooses the subdivision that maximizes the utility function
and repeats the step described above as shown in Fig. 3. Since the Voronoi regions are
connected, the robot is guaranteed to visit all the subdivisions in the target area, and
thus completely cover the space.

3.2 Finding subregions

At the end of the second phase, each algorithm finds the subregions based on its partition
method. For this purpose, it begins by creating the graph G = (V,E,B) induced from
above mentioned methods. We represent the target area as a rectangular box B in G.
The initial partitions are the edge set E that includes edges with infinite lengths. To find
subregions Λ, firstly, we shorten each edge e∈E subject to B. Let V be the set of vertices
that includes three types of subsets such that V = {{ψG},{ψb},{ψc}}. Let ψG be the
first subset of V that represents the vertices at the intersection between B and E. Also, let
ψb be the set of vertices that represents the corner points of B, and let ψc be the centroid
of ROIs. Once we trim the long edges, the new partition represented by Eψ . Secondly,
we find all the possible combination of edges on B and represent by Eb. The G is then
updated by combining these two set of edges such that E ← {{Eb}∪{Eψ}}. Finally,
we group all subregions Λ by finding the neighbor edges. Finding such a neighbors is
straightforward. Given ψc, an anti-clockwise walk along the E can sort such neighbors.

3.3 Utility function design

In the third phase, each algorithm finds the best search space among all subdivisions of
the target area. For this action, it computes the utility between each of subdivisions. The
utility is designed to favor destinations which offer higher expected information gain.
Throughout this work, we use an explored grid map, m, to model the environment. This
map is a binary map where each cell represents visited or unvisited information. Let i
be the index of each subdivision and the division of such a map satisfies the following
equation

m = ∑
i

m[i]. (4)

An action at generated at time step t is represented by a sequence of relative move-
ments at = ût:T−1 which the robot has to carry out starting from its current position xt .
During the execution of at , if the robot finds a contaminated cell along its path, then it



estimates an ROI in the map. Therefore, the explored trajectory of the robot indicates
some of the cells in m as follows

x1:t = ∃c ∈ m. (5)

In the case when the robot finds an ROI in the map, we have to treat the ROI cells
differently. We assumed that traveling inside an ROI is redundant, and want to avoid
such a region. Therefore, the cells bounded by an ROI considered as similar as visited
cells. Let dt be the set that represents these cells as follows

dt = {∀c ∈ ROI1,∀c ∈ ROI2 · · ·}. (6)

Assuming that each cell c in m is independent of each other. Then the posterior entropy
of m can be computed as follows

H(p(m|x1:t ,dt)) =−∑
c∈m

p(c) log p(c)+

(1+ p(c)) log(1− p(c)).
(7)

Given a subdivision, since the robot does not know when it will find an ROI along its
path, the coverage path should include all cells to compute the expected information
gain. Thus, the entropy of target subdivision can write as follows

H(p(m[i]|x[i]t+1:T ,dt ,at)) =− ∑
c∈m[i]

p(c) log p(c)+

(1+ p(c)) log(1− p(c)).
(8)

To compute the information gain of a subdivision, we calculated the change in en-
tropy caused by the integration of posterior and predicted prior into the robot’s world
model as follows

I(m[i],at) = H(p(m|x1:t ,dt))−H(p(m[i]|x[i]t+1:T ,dt ,at)). (9)

After computing the expected information the utility for each action under consid-
eration, we select the action a∗t with highest expected information

a∗t = argmax
at

I(m[i],at). (10)

There are some works in exploration and mapping problems that consider another quan-
tity besides the information gain in Eqn. (10). That is the cost to reach the subdivision.
However, we observed that adding such a quantity with the utility function decreases
the overall performance of both algorithms. Thus, every time the robot has to make the
decision where to go next, it uses only information maximization metric to determine
the action a∗t .



4 Finding ROIs

We employ a boundary estimation algorithm to determine the ROIs by using the pro-
posed exploration method. ROIs over the target area T are dependent on the boundary
line estimated by environmental boundary algorithm. Memorizing a complex boundary
is computationally expensive, therefore to obtain the tractable level of computation, we
require the parametric estimation of the boundary.

Definition 3. Boundary line: The line is said to be boundary line if it represents the
intersection between the contaminated area and non-contaminated areas.

Assume an contaminated area δA is a non-convex set where the continuous bound-
ary is defined by a level set δA as follows

δA =
{

x ∈ R2|z(x) = β
}
, (11)

where β is the measurement threshold.
Boundary algorithm ensures that an environmental boundary can be estimated by

tracking the robot states such that δA = {x1:t}. When the exploration is terminated,
this set δA can be used to estimate of the best fit to an ellipse. This generalization is
done by the least squares criterion from the set δA . We also consider the possible tilt
of the ellipse from the conic ellipse representation as follows

ROI(δA ) = aSx
2 +bSxSy + cSy

2 +dSx + eSy + f = 0, (12)

where {Sx,Sy} ∈ δA and a,b,c,d,e, f are the parameter for a second degree polyno-
mial equation. After the estimation, the tilt is replaced by a rotation matrix from the
ROI, and then the rest of parameters are extracted from the conic representation.

5 Simulation Results

To find the shortest coverage path, we perform 4 different experiments using MATLAB.
We assume that the target area contains at most 5 ROIs. The performance of each algo-
rithm was evaluated by the distance of coverage paths. To demonstrate the efficiency,
we start localizing 2 out of 5 ROIs and conclude by 5 out of 5 ROIs. We also have ana-
lyzed the worst case performance and we present a statistical analysis of two algorithms
from 20 trial runs. The performance of algorithms significantly varied from each other.
In particular, we have observed a noticeable difference of the algorithms on localizing
uniformly distributed random ROIs. It is noteworthy that to compute the efficiency, the
ROIs shape should remain fixed for each algorithm, we then overlook the additional
path cost required to estimate ROIs.

5.1 Finding coverage path that connects the desired number of ROIs

We now consider the case of finding ROIs that meet the desired level of exploration.
Therefore, we focus on the shortest coverage path for a given number of ROIs. We



0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50
Iteration 1

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50
Iteration 2

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50
Iteration 3

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50
Iteration 4

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

Fig. 4. The robot starts the coverage in cell (1,1) and detects any 3 ROIs out of 5. The shape of
each ROI is elliptical and is represented in unique color. The lower grid map represents the cover-
age map. The measured cells are represented by black color. A cell is called to be measured if it is
included either in coverage trajectory or it is bounded by the detected ROIs. VBS coverage paths
on a sample map with uniformly distributed random ROIs. The dark green line in upper figure
shows the coverage path, while the colored lines are the partition of the target area. The centroid
of each region is represented by the same colored cycle. For a new region, the searching process
is started from the centroid. The partitions are iteratively updated based on the true position of
the center of ROIs.

consider a 50m×50m grid area where 5 uniformly distributed random ROIs are located.
Starting from an initial location (1,1), the robot has to find the minimum coverage path
that connects the desired number of ROIs. The coverage path can be found by adjusting
the cost to the inversely proportional to the unexplored area. In another word, the robot
explores the mostly unexplored region first.

Fig. 4 shows a toy example of VBS algorithm. In VBS, the initial search space
is generated by randomly choosing 4 points bounded in the target area. We will call
these points as the Voronoi centroids. The initial search space is then subdivided into
four regions based on the Voronoi centroids. The robot moves the centroid of a Voronoi
region first and exhaustively search for an ROI within that region. When an ROI is
found whether traveling to the centroid or searching the entire subregion, the robot
updates the Voronoi diagram. The robot avoids exploring the cells bounded by the ROI.
These processes are iterated until the end of the mission. The VBS requires at least 3
points to partition the entire search space optimally. When there are less than 3 ROIs in
total area and the robot has to localize all of them, the VBS performance is not stable.



5.2 Performance comparison

We compare VBS algorithm to recursive quadratic subdivision (RQS) which follows a
greedy approach, wherein each step it leads the robot to the nearest ROI to its current
location that has not been covered yet. The three basic operations of RQS are as follows.
Firstly, we generate a TSP path to explore the unexplored cells optimally. Secondly,
when an ROI is determined, we terminate the exploration and decompose the area.
Finally, the region of each division is determined.

Fig. 5 shows a performance comparison. To access the long-term performance of
each algorithm, we ran the same experiments for 20 times by gradually increase the
target numbers. Fig. 5 shows the results in area coverage percentage metric. We divided
the given target area into three different regions- 1) explored by the robot 2) covered
by the ROIs 3) remained unexplored. Our goal is to minimize the explored region as
small as possible. To make a fair comparison, we use five uniformly distributed random
ellipses and try to find the shortest path that connects 2, 3, 4, and 5 ROIs. For them,
the covered regions by ROIs are 6, 9, 13, and 16 percentage of the target area. The
unexplored region then determined by subtracting the covered and explored regions
from the total area.

The reduction of search space directly influences of the explored areas. When the
number target of ROIs is less than total ROIs existed in the target area, the robot dra-
matically reduces the amount of explored region. In worst case scenario, when the robot
needs to localize all five ROIs, it requires traveling more locations to find the ROIs, re-
sulting in higher exploration regions. However, the performance of each algorithm is
not stable, and we use the error bar of the bar chart to represent their standard deviation
(SD). For both algorithms, the SD increases with the increment of the number of target
ROIs.

It is evident from the Fig. 5, the VBS always outperforms the RQS because of the
optimal search space division strategy. Furthermore, when the number of target ROIs is
less than the total number of ROIs, the VBS significantly reduces the explored region
than the RQS. We reported the numeric performance comparison between the VBS and
the RQS in Fig. 5.

6 Conclusion

In this paper, we have discussed the ROIs determining problem for a large environment
and its various aspects. First, we have proposed a novel online framework to integrate
the environmental boundary estimation and area coverage problems. Second, we theo-
retically analyze the properties of the boundary estimation algorithm which is deemed
to best satisfy such conflicting requirements. Third, we proposed the adaptive area de-
composition and search algorithm to localize the desired number of ROIs rapidly: VBS,
which uses an optimal partitioning strategy for updating the search space. Fourth, we
demonstrate these algorithms in a simulated environment, and statistically analyze their
relative performance.

The simulation results show that, in general, VBS creates coverage path is shorter
than the coverage path by RQS. VBS has clear benefit when handling fewer ROIs since
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Fig. 5. Area coverage: Every bar chart is generated from 20 trial runs of each algorithm. The
performance is evaluated by comparing the size of following areas: unexplored, covered and
explored area. The error bar of the bar chart represents the standard deviation of each area.

it performs a global planning of the coverage according to the size of the target area.
On the other hand, RQS plans only local best decomposition, resulting in overall poor
performance. Both algorithms do not require to complete coverage of the target area
and save a significant amount of redundant exploration. Comparing all the experiments,
we have shown that, in general, required explored areas are less than unexplored areas.
Furthermore, the robot does not need to visit the covered areas by ROIs. As a result,
even in worst case scenarios, the required exploration to determine ROIs is always less
than complete area coverage algorithms.

In future, we would like to extend the algorithms for multi-robot systems. We would
also consider the problem associated with non-stationary environmental boundaries.
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