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Emotional Bodily Expressions for Culturally Competent Robots
through Long Term Human-Robot Interaction

Nguyen Tan Viet Tuyen, Sungmoon Jeong, and Nak Young Chong

Abstract— Generating emotional bodily expressions for cul-
turally competent robots has been gaining increased attention
to enhance the engagement and empathy between robots and
humans in a multi-culture society. In this paper, we propose an
incremental learning model for selecting the user’s representa-
tive or habitual emotional behaviors which place emphasis on
individual users’ cultural traits identified through long term
interaction. Furthermore, a transformation model is proposed
to convert the obtained emotional behaviors into a specific
robot’s motion space. To validate the proposed approach, the
models were evaluated by two example scenarios of interaction.
The experimental results confirmed that the proposed approach
endows a social robot with the capability to learn emotional
behaviors from individual users, and to generate its emotional
bodily expressions. It was also verified that the imitated robot
motions are rated emotionally acceptable by the demonstrator
and recognizable by the subjects from the same cultural
background with the demonstrator.

I. INTRODUCTION

Human facial and bodily expressions play crucial roles
in human-human interaction. Psychological researches have
shown that the physical expression of emotion is an integral
part of social interactions to better convey the communica-
tor’s emotion which affects social outcomes [1]. Toward un-
derstanding this effect, many social robotics studies focused
on generating emotional expressions for robots by estimating
environmental stimuli and incorporating robot emotional
states, which is believed to enhance the social interaction
outcomes. In [2], the authors investigated the role of culture
in representing the robot’s emotions, where bodily expres-
sions were utilized to convey the robot’s emotional state. This
research suggested a way to provide social robots with the ca-
pability of learning to behave in alignment with individuals’
cultural traits. Under different cultural environments, robots
could generate different emotional and behavioral responses
to the same environmental stimuli. Specifically, the Pepper
robot’s bodily expressions was motivated by psychological
researches about the mapping of human bodily features into
affective artifacts [3]. A similar approach was found in [4]
for NAO robot, where emotional expressions with bodily
movement and eye color was inspired by the work of Meijer
[5] and other psychological researchers. In [6], an android
head robot imitates human facial expressions with the main
goal to improve the emotion recognition capabilities of
autistic children. The android robot tracks human expression
represented by facial feature points and directly converts
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them into corresponding motor movements of the robot.
Likewise, the UCLIC Affective Body Posture and Motion
Database [7] was utilized to generate emotional expressions
for robots in [8]. UCLIC was originally labeled and rated by
observers, and the best scoring one was chosen and mapped
into the robot model with the provided emotional label.

On the other hand, in order to increase the engagement and
empathy between a robot and a human through long term
interaction, careful attention should be paid to emotional
expressions for robots adapting to the personality and cultural
identity of the interacting user. To archive this goal, this
research investigates the psychological perspectives about in-
fant social development, where the infant’s interpretation and
behavioral responses are highly influenced by their parents
through imitative exchanges [9]. Based on social referencing
described in our previous paper [10], the robot learns to
imitate the user’s emotional and behavioral responses to
environmental stimuli. Through long term interaction, the
robot generates emotional bodily expressions for specific
emotions by taking the following steps: (1) clustering human
emotional behavior samples into different groups based on
the similarity of body movements, (2) utilizing the human
habitual behavior which could be identified by assessing the
frequency of similar behaviors [11] as the references for
generating emotional bodily expressions and (3) mapping the
predicted human habitual behavior into the robot’s motion
space.

In this paper, we introduce our approach for generating
emotional bodily expression of culturally competent social
robots inspired by the infant’s social development process
learning their parents’ affective and behavioral responses.
In the methodology, we describe our proposed behavior
selection model and the model of transformation in order to
generate robot emotional behaviors through long term inter-
action. In the experiment results and discussion section, the
research approach is sequentially validated by two different
scenarios of interaction. Finally, we summarize the results
and our future work in the conclusion and future works
section.

II. GENERATING ROBOT EMOTIONAL EXPRESSIONS
THROUGH LONG TERM INTERACTION

A. Importance of Interacting Partner’s Traits

Social human robot interaction should be treated in a
similar way to the interaction with another person [12].
Hence, in order to sustain the user’s engagement, this re-
search sheds light on the interacting partner’s behaviors in
order to generate appropriate social behaviors for robots,



ensuring that the generated gestures conform to the social
norm. There is a strong psychological evidence known as the
chameleon effect [13] which is the tendency to mimic the
posture, facial expressions, verbal and nonverbal behaviors of
others. Likewise, the importance of the interacting partner’s
personality traits was emphasized that affected the behavior
of social robots in [14], where an interesting experiment was
conducted to examine the influence of KMC-EXPR robot’s
personalities associated with different facial expressions on
the interaction outcomes. The results indicated that inter-
acting with a robot having a similar personality made the
user feel more comfortable than interacting with a robot with
different personalities.

Summarizing, each individual has their own way to ex-
press emotions [7]. The aforementioned studies provide
empirical evidences for the need of considering the user’s
personality traits when generating behaviors for socially
assistive robots and their emotional expressions in particular.
While previous researches focus on mimicry of facial expres-
sions [6][12], this research pays special attention to the robot
bodily expressions. Understanding and reflecting information
of individual users to generate behaviors for social robots, it
is believed that their behaviors could be more acceptable in
our multi-cultural society.

B. Habitual Behavior Selection Model

During daily human robot interactions, it is obvious that
the number and types of human emotional behaviors vary
across cultures and personality traits of individuals that can
be identified after long-term relationships. Thus, robots are
required to have the capability of learning such behaviors in
an unsupervised manner. This idea has been implemented
in different contexts. Mohammad [15] used unsupervised
learning for association between human gestural commands
and robot actions. In [16], the authors made comparisons
between different unsupervised learning algorithms such as
Self Organizing Maps (SOM), Fuzzy C Means (FCM), and
K Means for the recognition of human posture in video
sequences. The capability of robot arm trajectory learning
from human demonstrations was proposed by [17], where the
trajectory clustering and approximation modules take human
demonstrative trajectories as the input and then classify the
trajectories into groups. For each group, the most consistent
trajectory was selected and then a set of generated trajectories
can be visualized in a simulated environment, allowing the
human user to finally select the desired trajectory. Hence,
for everyday social interactions with no a priori information
about human actions, unsupervised learning is the appro-
priate approach for classifying various types of actions into
different groups based on the similarity of actions.

Human body expressions could be recognized us-
ing skeleton features obtained from sensors on-board
the robot or motion capture systems. In each emotion
space, a set of human emotional behaviors A1, A2, ..., An

are gradually received during day-to-day human robot
interaction. Action Ai = [S1, S2, ..., ST ] is the se-
quence of frames over a period of time T and St =

Fig. 1. Emotional behavior selection through long term interaction

[x1, x2, ..., x20; y1, y2, ..., y20; z1, z2, ..., z20] is the human
skeleton information including 20 joint positions at time t.
The Covariance Descriptor method [18] is used to encode
the sequence of frames Ai into the fixed length descrip-
tor. Human emotional bodily expression A1, A2, ..., An are
classified into clusters through the training and clustering
phase. Finally, at the behavior selection phase, by considering
the distribution of body movements, the robot can utilize
the most frequently observed behavior as the reference for
generating its emotional bodily expression. Fig. 1 illustrates
the process of selecting an appropriate emotional behavior
for social robots interacting with the user in a certain
emotional state.

1) Training and Clustering Phase: In order to use an
unsupervised learning approach without a priori knowledge
about the number of clusters, a batch version of Self-
Organizing Map (SOM) [19] was used for the training
phase in our previous paper [10]. It is obvious that topo-
logical preservation is the main advantage of SOM for
classifying encoded descriptors into different groups based
on the similarities. On the other hand, for the scenarios
of long term human robot interaction, since the number of
human emotional behaviors will be sequentially increased,
the robot should be capable of incrementally learning new
gestures without corrupting the existing model. However,
on the grid of SOM neurons, the number of neurons must
be fixed in advance, which makes SOM inappropriate for
incremental learning. To satisfy requirement of incremental
learning while ensuring the topological preservation of the
grid of trained neurons, this research employs a Dynamic
Cell Structure (DCS) neural architecture [20] for the training
phase. DCS adheres to the Kohonen type learning rule [19]
for updating the weight of neural vectors the same as the
SOM approach, yet uses the Hebbian learning rule [21] to
dynamically update the lateral connection structure (topology
of the graph of neurons). At the training phase, new units
could be added on the grid of neurons, if the quantization er-
ror is higher than the predefined stopping condition. Another



approach of growing neural network by dynamic allocation
the feature map in order to evolve its structure are known as
Growing Cell Structure (GCS) [22]. DCS works in a similar
way to GCS excepts one essential difference: the lateral
connections between neuron units are not initially defined,
instead, they are dynamically learned during the training
phase by Herbian learning rule. DCS has been widely used
in many applications for on-line learning purpose. NASA’s
first generation Intelligent Flight Control System program
utilized DCS for on-line learning and estimation of system
parameters [23].

After the incremental learning phase with the DCS ap-
proach, the grid of trained neurons m will be classified into
different groups at the clustering phase. Here, classifying
trained neurons into different groups is conducted with Dis-
tance matrix based approach [24]. By clustering the training
neurons rather than descriptors directly, significant gains in
speed of clustering can be obtained [25]. At the end of the
clustering phase, each descriptor x and its corresponding
neuron mi was defined by the Best Matching Unit (BMU)
function given by

||x−mi|| = min{||x−m||} (1)

2) Behavior Selection Phase: During the previous phase,
n action data {A1, A2, ..., An} was encoded to n descriptors
{x1, x2, ..., xn} and then classified into different groups
{Cluster1, Cluster2, ..., Clusterk} (k ≤ N ) based on the
similarity of actions. At the behavior selection phase, consid-
ering the probabilistic distribution of human actions observed
by the robot, an appropriate behavior will be selected out of
the largest cluster Clusteri that contains the highest number
of similar actions. This can be considered habitual actions
affected by their cultural background. Specifically, we can
choose a representative descriptor xrep located closest to the
center of the largest cluster defined as:

||xrep − center|| ≤ ||x− center|| ∀x ∈ Clusteri, (2)

where ||x − center|| is the Euclidean distance between
the center of Clusteri to the descriptor x. Finally, the
corresponding action of descriptor xrep will be detected as
Arep. The robot can select Arep as a target behavior to
generate its emotional bodily expression associated with the
corresponding emotion.

C. Transformation Model

Now the user’s target behavior should be mapped
into the robot model. It is obvious that the number of
Degrees of Freedom (DOFs) and joint configurations
are different between the demonstrator and the robot.
Therefore, the mapping between two agents should be
performed through the transformation model as shown
in Fig. 2. This transformation model receives the human
pose represented by joint coordinates in Cartesian space
as the input and releases a set of corresponding joint
angles for the robot subject to its physical constraints.

Fig. 2. Mapping of human upper body pose into robot motion space

Depending on specific robot platform, the typical kinematic
parameters should be defined [26]. It should be noted
that the kinematic model of the human lower body and
that of the Pepper robot are completely different from
each other. Thus, this paper proposes a transformation
model which focuses on the imitation of the human
upper body including the movements of Hip, Shoulder,
and Elbow on both the Left(L) and Right(R) sides.
Consequentially, the transformation model releases a set of
joint angle data for the Pepper robot given by θPepper =
{(L/R)ElbowRoll, (L/R)ElbowY aw,HipRoll,HipP itch,
(L/R)ShoulderRoll, (L/R)ShoulderP itch}.

Specifically, the transformation model starts with calcu-
lating the reference axis xref , yref , zref which describes
the orientation of the current human pose. The obtained
reference axes are combined with the input human joint
positions to calculate the corresponding robot joint angles
θPepper. The self-collision checking is conducted using the
off-the-shelf API before releasing the calculated θPepper to
the Pepper robot model.

III. EXPERIMENT RESULTS AND DISCUSSION

A. Transferring Human Behaviors into Robot Model

1) Experiment Scenario: The first experiment is aimed to
qualitatively evaluate, from the viewpoint of ordinary people
who are not experienced in robotics, whether initial human
actions and key poses are recognizable on Pepper robot
model. In order to evaluate that, the subjective evaluation
had been setup which made participants have chance to
evaluate how appropriately human actions and key poses
were displayed on robot. An on-line survey was conducted
with a total of 41 participants ranging in the age from 23
to 37 (M = 26.1, SD = 2.9). They come from Bangladesh,
China, Indonesia, Japan, Thailand, and Vietnam and mostly
are not familiar with robots.

Specifically, the demonstrator standing in front of the
Pepper robot performs demonstrative actions. The robot
then observes the demonstrator’s action as time series mo-
tion capture data. Through transformation model, skeleton
frames represented by joint positions in Cartesian space were
sequentially converted into the corresponding robot joint
angles. Collision detection was conducted with the calculated
joint angles before releasing to the Pepper robot.

2) Results and Discussion: The actions demonstrated by
the user and imitated by the Pepper robot were firstly
evaluated using the recognition rate. Then, we asked the



Fig. 3. Confusion matrix representing the recognition of human action
after mapping into robot model

Fig. 4. Human pose and the mapped one on Pepper robot

participants to rate the level of pose similarity between the
demonstrator and the Pepper robot ranging in value from 0
to 10. The subjective evaluation was repeated 4 times with
4 different actions and key poses.

Fig. 3 presents the recognition rates of the demonstrated
target actions and their imitated actions by the Pepper robot.
The result confirmed that human actions can be imitated
by the robot and easily recognizable by the participants.
Sometimes, they were confused between the mapped action
3 and 4. Hence, the demonstrated actions were well mapped
into the robot motion space subject to the robot physical
constraints.

In terms of level of pose similarity between the target
and imitated actions, the average score was 7.05 out of 10.
The most similar pose was scored 8.32 and the lowest one
was 6.37. In general, participants agreed that Pepper could
imitate human pose with the high similarity. It was noticed
that this evaluation gave subjects a chance to carefully
evaluate individual parts between the demonstrator’s pose
and mapped one on robot. Thus, minor comments were
received from them about the differences of hand-palm
between the user and Pepper in typical poses as shown in
Fig. 4. Due to the lack of motion capture data, our current
transformation model could not generate (L/R)Wrist Yaw and
Head Pitch/Yaw for the Pepper robot. Further investments
about utilizing external sensors like Leap Motion to estimate
the demonstrator’s hand-palm orientation [27] should be
conducted in the future.

In general, the evaluation results confirmed the feasibility
of transformation model to convert human behaviors into
robot motion space while the recognition of demonstrated
actions are ensured on robot model. The experiment also

Fig. 5. Scenarios of interaction for learning from the user’s emotional
behaviors

revealed the promising approach for teaching robot new
gestures by demonstration instead of off-line programming
as ordinary approach.

B. Generating Emotional Expression through Scenarios of
Interaction

1) Experiment Scenario: In this experiment, the target be-
havior selection model for selecting representative behaviors
through long term interaction and the transformation model
for behavior mapping were connected to each other. The
experiment was set up as shown in Fig. 5, where Pepper
interacted with individual users for learning their emotional
behaviors. Pepper first detected the user through facial de-
tection1 and then started the conversation by greeting the
user with random questions and non-verbal behaviors using a
predefined list of actions. The user then responded to Pepper
with their facial and bodily expressions. Pepper obtained the
user’s motion capture data as a time series similar to the
previous experimental setup. At the same time, the robot
estimated the user’s emotion through their facial expression2.
The user’s bodily expression was associated with the emotion
estimated through the user’s facial expression. This scenario
of interaction is performed repeatedly for 3 consecutive days.
In this research, only the user’s bodily expressions for Happy
and Sad were stored on the robot memory to simplify the
analysis.

In order to evaluate the generated bodily expressions, an
on-line survey was conducted with a group of 30 participants
aging from 23 to 37 (M = 27.4, SD = 3.7) who have the same
cultural background with the interacting user (Vietnamese).
The objective of the survey was to investigate the quality
of generated emotional behaviors aligned with the user’s
cultural background.

2) Results and Discussion: After 3 consecutive days
of interactions, 52 human emotional actions were labeled
”Happy” and 43 actions were labeled ”Sad”. In each
emotion space, the behavior selection model receives the
human actions as the input data and releases a representative
behavior Arep. Through the transformation model, Arep was
converted into the robot motion. Figs. 6 and 7 represent
screen shots of the generated robot behaviors for the emotion
Happy and Sad, respectively.

1doc.aldebaran.com/2-5/naoqi/peopleperception/alpeopleperception.html
2microsoft.com/cognitive-services/en-us/



Fig. 6. Screen shots of Pepper’s bodily expression Happy

Fig. 7. Screen shots of Pepper’s bodily expression Sad

Fig. 8. Recognition rate for Pepper’s expression Sad and Happy

The generated robot behaviors from this experiment was
evaluated by a group of Vietnamese participants. First, they
were asked to watch the robot’s bodily expression and then
choose the most appropriate emotion label among Happy,
Sad, and other. This approach is similar to the strategy
applied in [12], where facial and vocal expressions of
Kistmet robot were evaluated by best matching emotional
labels. Fig. 8 summarizes the recognition rate of Happy and
Sad emotional expressions. At the second phase of survey,
subjects were asked to assign appropriate values of arousal
and valence [28] using the Self-Assessment Manikin (SAM)
five-point scale [29]. This approach allows participants to
asses and express their emotional responses to robot behav-
iors without considering the emotional labels. Participants’
answers were then converted to a group of values in a range
of [−1, 1] as shown in Fig. 9. The distribution of subject’s
evaluation along the dimensions of arousal and valence [28]
is shown in Fig. 10.

The recognition rate of the robot’s emotional expressions
shown in Fig. 8 confirmed that the generated behavior for
Happy was clearly recognizable by the participants. 28 out
of 30 participants believed that Pepper was trying to convey
Happy cue through its bodily movements. On the other
hand, Sad was comparatively less distinctive. 17 out of
30 participants thought that Pepper was showing Sad cue.
The other 9 participants felt that this behavior contains a
different meaning such as Regretful, Bored, or even make
them confused. From the viewpoint of the robot’s user, they
also agreed that the expression Happy was significantly rec-
ognizable and the meaning of their behavior was preserved
on Pepper robot. However, even the bodily expression Sad

Fig. 9. Mean values of arousal and valence on 2 generated expressions

Fig. 10. Distribution of robot expressions on model of affect

was still acceptable, but the user thought that Pepper did not
express it as similar as their behavior. It is noted that the lack
of the robot’s head movements (Head Pitch/Yaw) from the
transformation model significantly affected the recognition
rate of robot expression Sad.

To analyze how different expression cues are within
two generated behaviors, the one-way analysis of variance
(ANOVA) was conducted in the arousal dimension, followed
by the valence dimension. The ANOVA test indicated that
there were significant differences (F (1, 58) = 126.47, p <
0.001) in the arousal dimension. Similarly, differences were
found on the valence dimension (F (1, 58) = 79.84, p <
0.001) between Sad and Happy. This results imply that two
generated behaviors were clearly distinctive from each other
on the two-dimensional affective space. The distribution
of generated robot expressions as shown in Fig. 10 also
supported for the differences between 2 generated emotional
behaviors. 86 percent of the subjects’ answers indicated
that Sad lies in the third quadrant of the model of affect,
while 100 percent of evaluation for Happy belongs to the
first quadrant of the model. It is widely understood that
the first quadrant is the location of Happy, while Sad lies
in the third quadrant of model [28]. Hence, the generated
robot emotional behaviors were correctly located in the two
dimensional affective space with the values of arousal and
valence obtained from the subjects’ evaluation.

There are strong influences of speed and amplitude of
robot motions on the perceived level of arousal and valence
[30]. Our experiments also confirmed that participants often
assigned higher value of arousal and valence for Happy than
Sad because they though that the robot performed gesture of



Happy faster and higher amplitude than the gesture of Sad.
The reason was that the demonstrator performed different
emotional behaviors with different speed of motions, thus,
robot motion capture system obtained different number of
skeleton frames for different emotional behaviors.

IV. CONCLUSION AND FUTURE WORKS

This paper aimed to investigate the importance of the
user’s cultural background when generating emotional bodily
expressions for social robots. In other to meet the require-
ments for cultural competence, we implemented an incre-
mental learning model to select a representative emotional
response through long term human-robot interaction, and
the transformation model to convert human behavior into
the Pepper robot’s motion space. The proposed approach
was validated by two example scenarios of human robot
interaction. The experiments’ results indicated that our re-
search approach provided the robot with the capability of
entering into scenario of interaction for imitation learning
purpose. Through 3 consecutive days of interaction, the
robot utilized the user information to generate its emotional
behaviors which were acceptable by the robot’s user and
recognizable from a group of subjects who share the same
cultural background with the robot’s user.

In the future work, user emotion estimation from multiple
modalities (facial, verbal, heartbeat) as well as segmentation
of time series motion capture data will be investigated. In-
deed, we will extend this research idea by using the proposed
models to generate robot behaviors for other purposes such as
robot non-verbal behaviors associated with the verbal content
of speech.
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