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Abstract— In the future smart grid, Demand Side Management 
(DSM) will be implemented to facilitate utility companies and 
consumers in order to achieve mutual benefits such as minimizing 
total energy cost and reducing consumption peaks. The optimal 
energy consumption scheduling is calculated based on user 
preferences in advance, e.g., day-ahead schedules. Most of the 
prior works in the literature have reported good results under the 
assumption that users are committed to the optimal schedules and 
do not deviate from their preferences, which may not be true in 
practice. In this paper, we consider the implications of allowing 
users to change their preferences and request for new schedules 
at any time. Based on user constraints, we propose single and 
multi-user adaptive rescheduling algorithms. The algorithms 
reschedule deviating energy consumption optimally thus 
reducing the total energy cost. Simulation results show that the 
total energy cost of the community can be reduced by as much as 
11.4% in specific scenarios. 

Index Terms-- Demand side management; energy consumption 
scheduling; game theory; smart grid; user preference 

I. INTRODUCTION  
The concept of DSM in the Smart Grid is related to all 

activities pertaining to the alteration of the consumers’ demand 
profiles in order to closely match the supply. DSM can be 
employed to facilitate the integration of distributed generation 
(DG) which can provide a significant reduction in both energy 
generation and transmission. Also, DSM aims to support a 
transition of high penetration rate in renewable energy sources 
(RES) and reduction of carbon emission [1]-[4]. The main idea 
is that the users deploy Home Energy Management System 
(HEMS) solutions in their homes and participate in DSM 
programs of the utility company by using smart meters. The 
HEMS can be used to automatically schedule and manage the 
load consumption based on real-time pricing provided by the 
utility. 

Various designs and mechanisms have been proposed in the 
smart grid literature based on HEMS to manage the flexibility 
offered by DSM. Among them, a game theoretic framework is 
a promising mathematical tool to analyze the interaction 
between utility companies and consumers [5]-[10]. Those 
interactions can be viewed from a technical point of view as 

well as a social viewpoint, such as interactions between smart 
meters and utility company control centers or service 
agreements between the utility companies and their customers. 
For instance, game theory can be applied in designing DSM 
models for developing scheduling of flexible appliances, 
energy pricing, and billing mechanisms. 

The work by Mohsenian-Rad et al. [6] originally formulated 
the energy consumption of houses in a community as a game. 
In this game, each user has specific preferences regarding the 
use of flexible appliances and seeks to find an energy 
consumption schedule in advance that optimizes a payoff 
function which is mainly a function of the energy cost. The 
utility company distributes the total energy cost to all users in 
the form of electricity bills. The cost function depends on the 
total users’ load. This implies that a change in the load of one 
user would impact the total cost, which in turn impacts the 
individual bills of the users. The author also proposed a daily 
billing mechanism which calculates the electricity bill for each 
user proportionally to the energy consumption of the entire day. 
Later, in [8], [9] proposed hourly billing mechanisms, where 
hourly costs are shared among users respectively to their 
consumption. This improves the system fairness level in terms 
of each user’s contribution in the system. 

One of the major drawbacks in [6]-[9] lies in the rigid 
assumptions regarding user behaviors. Those works assumed 
that every user is committed to the optimal schedule assigned 
ahead of time. The assumption is backed up by the fact that the 
users do not benefit financially if their power consumption 
deviates from the optimal schedules. However, this assumption 
rarely holds true in practice, and consumption deviation can 
occur at any time after the schedules have been assigned. For 
example, changes in user preferences is one of the causes that 
lead to changes in using appliances. Recently, only the work in 
[10] considered the assumption of schedule violations and 
further extended the DSM model in [8]. The proposed 
mechanism fairly distributes the cost of schedule violations 
across users with deviating consumption while maintaining the 
same cost for the users that obey the schedules. 

In this paper, we relax the assumptions used in [6]-[9] by 
allowing users to change their preferences at any time, 



deviating from their original promises. The revised user 
preferences may result in different power consumption. Under 
this new assumption, the conventional models fail to achieve 
optimality. Our assumptions differ from [10], as we allow users 
to either increase or decrease energy consumption based on 
their new preferences. Based on the energy consumption game 
framework presented in [9], we propose adaptive energy 
consumption rescheduling algorithms to cope with the 
deviating users. The objective is to minimize the total energy 
generation cost by providing options for users to request new 
schedules. 

The rest of this paper is organized as follows: Sec. II 
introduces the models of the power grid and the energy 
consumption game. In Sec. III, the details of the adaptive 
energy consumption rescheduling algorithms are presented. 
Numerical simulation results and discussion are given in Sec. 
IV. The conclusion of the paper is drawn in Sec. V.  

 
II. SYSTEM MODEL 

The system model in this paper is based on the energy 
consumption game in [9] where the interaction of each user is 
coordinated. We consider a community power grid composed 
of a set of 𝒩 =	 1, … , 𝑁  users that share a single energy 
source provided by a utility company. Each user is representing 
a house owning a HEMS coordinated with a smart meter. Each 
HEMS is capable to schedule appliances and compute its own 
electricity bill, 𝐵), using real-time pricing announced by the 
utility company. The communication network provides HEMS 
with two-way communication among users and also to the 
utility. Fig. 1 shows the community power system and 
communication networks.  Without loss of generality, we 
assume that each user has a single flexible appliance such as a 
PHEV or a washing machine. A set of scheduling time period 
ℋ = {1, … , 𝐻} is divided into hourly time slots e.g., 𝐻 = 24 
for a day.  

A. Energy generation cost functions 
The utility company provides energy to the community and 

responsible for generating and distributing electricity. The cost 
of energy can be calculated at each hour ℎ ∈ ℋ. With the 
assumption that marginal costs increase with demand, we can 
assume that the cost function 𝐶3 ∙  is increasing and strictly 
convex [6]. In general, this cost function can be the actual cost 
of electricity production or an artificial cost signal that sent to 
users’ HEMS for computing energy consumption optimization. 
In this paper, we assume the cost function 𝐶3 𝐿3  as a quadratic 
function of the total load 𝐿3 = 𝑥)37

)89 , where 𝑥)3 denotes loads 
at period ℎ of user 𝑛 ∈ 𝒩: 

 𝐶3 𝐿3 = 𝑎3𝐿3< + 𝑏3𝐿3 + 𝑐3      (1) 

where 𝑎3 > 0, 𝑏3 ≥ 0 and 𝑐3 ≥ 0 are the coefficients of the 
cost function. The cost depends on the load in each period ℎ as 
at peak times it is more expensive to produce energy. 

B. Energy generation cost functions 
Each user	𝑛 has a flexible appliance whose operation time 

can be scheduled. Users can set their time preferences for the 

appliances to operate within a time frame	 𝛼), 𝛽) , where 1 ≤
𝛼) ≤ 𝛽) ≤ 𝐻. The user’s HEMS needs to fulfill the energy 
requirement for the appliance to finish its task, denoted as 

 𝐸) 	= 𝑥)3
GH
38IH        (2) 

and  

 𝑥)
3,JK) < 𝑥)3 < 𝑥)

3,JMN       (3) 

where 𝑥)3 = 0 when ℎ is not in the preferred user 𝑛’s period 
ℋ). 	𝑥)

3,JK) and 𝑥)
3,JMN denote the minimum and maximum 

energy level in each hour ℎ respectively. Thus, the energy 
consumption vector for user 𝑛 can be expressed for the whole 
schedule periods as  

 x) = 𝑥)9, 𝑥)<, … , 𝑥)P .      (4) 

Note that the total energy consumption of appliance does not 
change during scheduling, only the operation time (i.e., 
ON/OFF) is shifted. The set of feasible energy consumption for 
user 𝑛 respects the constraints given in (2) and (3) and can be 
defined as  

 𝒳) =
x)|	 𝑥)3

GH
38IH = 𝐸);	𝑥)3 = 0, ∀	ℎ ∈ ℋ ∖ℋ)

𝑥)
3,JK) < 𝑥)3 < 𝑥)

3,JMN	∀	ℎ ∈ ℋ)

 .       

                                                                                            (5) 

C. Energy consumption game 
The utility company is responsible for designing a billing 

mechanism and distributing the cost of energy generation to all 
users participating in the power system. For simplicity, we 
assume a budget-balance case where the total generation cost is 
equal to the sum of all users’ bills. One of the billing 
mechanisms is hourly proportional billing where the total 
energy cost is divided between users at each time period, with 
respect to the energy they consumed. The bill for user 𝑛 is given 
by 

𝐵) =
NHV

NWVX
WYZ

𝐶3 𝐿3P
389 . (6) 

 
Fig. 1    Overview of the community system model 
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The HEMS of each user locally seeks to find the energy 
consumption scheduling vector x) that minimizes the user’s 
electricity bill 𝐵) by solving the following optimization 
problem:  

 min
^H	∈	𝒳H

𝑏)3P
389 x); x_)     (7) 

where x_) is the energy consumption of all other users except 
𝑛 and 𝑏)3P

389 = 𝐵). Since the total cost is affected by the total 
load of all users, the choice of one user’s consumption profile 
also affects all other users. That is, the electricity bill of user 𝑛 
does not only depend on the user’s consumption but also 
depends on all other users’ consumption in the same hour. 
Therefore, we can formalize the problem as an energy 
consumption game among users based on game theory 
framework: 

• Players: Users 𝑛 ∈ 𝒩 = 	 1, … , 𝑁  

• Strategies: the energy consumption schedule vector 
x) ∈ 𝒳) for each user 

• Payoffs: negative billing for each user −𝐵) 

The goal for the utility company is to minimize the cost of 
electricity generation. To find the optimal energy consumption 
schedule vectors, at first, each user	𝑛 ∈ 𝒩 sets the user 
preference 𝛼), 𝛽)  in HEMS. Then, HEMS initially solves the 
optimization problem (7) locally as its best response strategy 
for x) by randomly assuming a vector x_). The resulting 
schedule is shared with other users through a broadcast 
message. Once a user receives the update messages from other 
users, the HEMS updates its local knowledge of other users’ 
aggregated loads x_). Next, HEMS iteratively solves (7) and 
shares the new schedule again until no user announces an 
update. In this way, the iterative player best response strategy 
will converge to the Nash Equilibrium and provide optimal total 
energy cost ([6], Thm. 3). Fig. 2 illustrates an example of day-
ahead scheduling where each user iteratively computes its 
schedule based on given preferred time period and energy 
constraints. The resulting optimal scheduled time ℎ)∗  is shown 
for each user.  

The assumption that every user must commit to the assigned 
energy consumption schedule is necessary for prior works to 
achieve the optimal total energy cost. However, in practice, 
users may want to change their preferences after the schedule is 
assigned. Without a scheduling algorithm to deal with such 
users, the prior works fail to achieve an optimal total energy 
cost and the user’s action may lead to increase consumption 
during peak hours which, in turn, increase the total cost and 
users’ electricity bills. In the next section, adaptive energy 
consumption rescheduling algorithms are proposed to address 
the deviating users. 

 

III. PROPOSED ADAPTIVE ENERGY CONSUMPTION 
RESCHEDULING ALGORITHMS 

Most of the works in the literature assumed that every user 
would fully commit to the schedules, that is, during the 
scheduling period (i.e., ℋ = {1, … ,24}) no user will change its 

preference and the appliance operation will be fulfilled 
according to the schedules. However, in practical scenarios, 
some users may not be able to commit to the day-ahead 
schedules. These deviating users may want to change their 
preferences. To accommodate such users, a rescheduling 
algorithm that can reduce total energy cost is required. Based 
on these assumptions, we proposed adaptive energy 
consumption rescheduling algorithms.  

Let us consider a DSM program that schedules the users’ 
flexible appliances for the next 𝐻 = 24 hours. At the beginning 
of the scheduling period, denoted as Initialization period, the 
utility company broadcast the energy cost and billing functions 
to all user in the community. Each user sets its appliance 
operation preference in HEMS. Then, each HEMS iteratively 
takes turn to calculate the optimal energy consumption schedule 
and shares the results with all other users until all schedules are 
finalized. Once the day-ahead schedules are determined, the 
scheduled appliances operation is fulfilled according to the day-
ahead schedules. We denote this period as Operation period. A 
flow diagram of the initialization and operation periods with the 
proposed rescheduling algorithms are shown in Fig. 3. Next, we 
will explain our rescheduling algorithms for 2 cases depending 
on user constraints in the following sections. 

A. Case I: Single user energy consumption rescheduling 
In this case, we assume that only the deviating users (that is, 

users who changed their preference) can alter their schedules 
while the schedules of all other users remain the same. This is 
based on the constraints that for other users, once the day-ahead 
schedules are assigned, they do not want their schedules to be 
altered. During the operation period, for example at time ℎbc , let 
us assume user 𝑘 ∈ 𝒩 changes its preference from 𝛼b, 𝛽b  to 
𝛼bc , 𝛽bc  for an appliance scheduled to operate at time ℎb∗ , where 
ℎb∗ > ℎbc . To find new energy consumption schedule for user 𝑘, 
the HEMS associated with user 𝑘 updates new preference and 
current aggregated loads information from all other users. Then, 
the HEMS locally calculates new energy consumption schedule 
x′b constrained by the new preference 𝛼bc , 𝛽bc  and scheduling 
period ℋ′ = {ℎbc , … , 𝐻} as  

 min
^f
g ∈𝒳f

g
𝑏b3

P
383f

g xbc ; x_b     (8) 

 
Fig. 2      Day-ahead energy consumption scheduling    
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where the set of feasible energy consumption for user 𝑘 follows 
the new constraints and is updated as   

 𝒳b
c =

x′b| 	 𝑥b3
Gf
g

38If
g = 𝐸b;	𝑥b3 = 0, ∀	ℎ ∈ ℋ′ ∖ ℋb

c

𝑥b
3,JK) < 𝑥b3 < 𝑥b

3,JMN	∀	ℎ ∈ ℋb
c

	(9)  

and ℋb
c = 𝛼bc , … , 𝛽bc . The resulting schedule consumption is 

shared with all other users and the utility for future use. The 
proposed algorithm provides a possibility for users to change 
their preferences while reducing the energy cost. Note that only 
user 𝑘’s schedule is changed while all other users’ schedules 
remain the same. The example of the proposed single user 
rescheduling is illustrated in Fig. 4 where user 1 changed its 
preference at time ℎ9c  from 𝛼9, 𝛽9  to 𝛼9c , 𝛽9c . Then, the new 
scheduled time is recalculated and changed from ℎ9∗ to ℎ9c∗, 
where other users’ scheduled time remains the same.  

B. Case II: Multiple user energy consumption rescheduling 
In case II, we further allow the rescheduling algorithm to 

alter schedules of other qualified users within their preferences. 
That is, after the new schedule for the deviating user is 
determined, the schedule of the user 𝑚 ∈ 𝒩\ 𝑘  qualifies for 
rescheduling if the appliance operation time is scheduled later 
than the time that user	𝑘 requests for rescheduling ℎbc : 

 𝑚|	ℎJ∗ ≥ ℎbc , ∀	𝑚 ∈ 	𝒩\ 𝑘 	    (10) 

where ℎJ∗  is the scheduled time of user 𝑚’s appliance. Then, if 
the preference 𝛼J is earlier than ℎbc , adjust the preference from 
𝛼J, 𝛽J  to ℎbc , 𝛽J . Otherwise, use the same preference 
𝛼J, 𝛽J : 

 𝛼J, 𝛽J = 	
ℎbc , 𝛽J ,					𝛼J < 	ℎbc

𝛼J, 𝛽J , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (11) 

Thus, the process continues from the single user rescheduling 
during operation period, after user 𝑘 determined the new 
schedule and shared with all other users, all users’ associated 
HEMS check the conditions in (10). The user that satisfied (10) 
updates his preference according to (11) and iteratively 
reschedules the energy consumption in (8) until all schedules 
are fixed. The user which does not qualify the condition in (10) 
only updates the current aggregated load information without 
rescheduling.  

      Fig. 5 shows an example of the proposed multiple user 
rescheduling algorithm. After user 1 changed his preference 
and determined a new schedule, user 2, 3 and 4 check their 
conditions in (10). User 2 scheduled time ℎ<∗  is before the time 
of rescheduling ℎbc . Thus, we cannot change the schedule of 
user 2. For user 3 and 4, the condition in (10) is satisfied. User 
3 further checks the condition in (11) and adjusts his preference 
period to ℎ9c , 𝛽q , where user 4 retains his preference period as 
𝛼r, 𝛽r . Then, user 1, 3 and 4 iteratively recalculate their 

schedule according to the procedure described above. The final 
scheduled times are shown for each user as ℎ)c∗. 

The advantage of the proposed rescheduling algorithm is 
that it can adaptively reschedule power consumption of 

 
Fig. 5    Multiple user energy consumption rescheduling 
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Fig. 4    Single user energy consumption rescheduling  
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Fig. 3  A diagram of energy consumption scheduling with the proposed 
adaptive energy consumption rescheduling     
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deviating users and reflects practical scenarios where users’ 
commitments cannot be guaranteed. 

 

IV. RESULTS AND DISCISSION  
We numerically present and assess the performance of the 

proposed algorithms. In our considered system, we have 20 
users scheduling for the next 𝐻 = 24 hours. The user 
preference values 𝛼) and 𝛽) are randomly generated for each 
user. The energy cost functions are 𝐶3 𝐿3 = 0.01𝐿3< +
2𝐿3	for	ℎ < 12 and 𝐶3 𝐿3 = 0.03𝐿3< + 𝐿3	for	ℎ ≥ 12 as in 
[9]. Each user has a single flexible appliance to be scheduled, 
such as a washing machine, dishwasher, etc. The total energy 
𝐸) required for each appliance is randomly selected between 5 
and 40𝑘𝑊. We randomly selected users that changed their 
preferences from the day-ahead schedules during 8 a.m. to 5 
p.m. The deviated preferences values 𝛼′) and 𝛽′) are randomly 
assigned at a later point in time. To establish a base case, we 
consider the case where no rescheduling happens. In this case, 
the deviating users randomly consume energy within their 
deviated preferences periods. Fig. 6 demonstrates a comparison 
of aggregated consumption profiles assigned by the 
conventional day-ahead scheduling and consumption profile of 
deviating users without rescheduling. The corresponding 
aggregated electricity cost in both cases are shown in Fig. 7. 
The simulation results show that the total energy cost when 
some users deviated their consumption is increased by 5.9% 
from 1034.7 cents to 1095.8 cents. This is because the deviating 
users consumed energy without taking into consideration the 
loads of other users in the community, causing higher peaks and 
energy generation cost.  

Using these settings, we compared the performance of the 
proposed rescheduling algorithms against the base case. Fig. 8 
shows comparison of 3 aggregated consumption profiles of 20 
users in the cases of no rescheduling, single user rescheduling, 
and multiple user rescheduling. The corresponding aggregated 
energy cost of the algorithms are shown in Fig. 9. The total 
energy cost of the proposed single user rescheduling algorithm 
is 1009.7 cents, which is 7.8% reduction compared to the case 
of no rescheduling (1095.8 cents). The proposed multiple user 
rescheduling further reduced the total energy cost to 1000.5 
cents, which is 0.9% reduction compared to the single user 
rescheduling case (8.7% reduction compared to the base case of 
no rescheduling). The single user rescheduling algorithm uses 
new preferences set by the deviating users and recalculates 
energy consumption schedules considering the loads of other 
users in the community. Thus, the resulting schedules are 
assigned in such a way that high demand is avoided during the 
same hour and lower the total energy cost. The multiple user 
rescheduling algorithm also recalculates the loads of other 
qualified users and further flattens the aggregated load profile, 
resulting in greater energy cost reduction. 

In addition, we compared the total energy cost of our 
proposed reschedules algorithms to the case of no rescheduling 
by varying the number of deviating users from 1 to 10 (out of 
20). Fig. 10 shows the normalized total energy cost for 3 cases; 
no rescheduling, single user rescheduling, and multiple user 
rescheduling. The results show that when the number of 
deviating users increase, the greater the cost reduction that the 

proposed rescheduling algorithms achieved. When 50% of 
users deviate their preferences, up to 11.4% reduction in cost is 
achieved by the proposed multiple user rescheduling. The 
marginal energy cost reduction between the single and multiple 
user rescheduling indicates that rescheduling the loads of other 
qualified users can further help reduce the total energy cost.  

These results demonstrate the effectiveness of the proposed 
algorithms when it comes to avoid consumption peaks and thus 
flattening the total consumption profiles, resulting in lower total 
energy costs. 

 

V. CONCLUSION 
In this paper, we proposed adaptive energy consumption 

rescheduling algorithms for DSM programs. We considered the 

 
Fig. 6    Comparison of aggregated energy consumption of 20 users for 
day-ahead scheduling and no scheduling when user deviated 
consumption. 
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Fig. 7    Comparison of the corresponding aggregated energy cost of 20 
users for day-ahead scheduling and no scheduling when user deviated 
consumption. 
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implications of allowing users to deviate from their original 
preferences and request new energy consumption schedules 
that are different from the assigned day-ahead optimal 
schedules. Both a single user and a multiple user energy 
consumption rescheduling algorithm were proposed. The single 
user rescheduling algorithm recalculates only the deviating 
user’s schedule while the multiple user rescheduling algorithm 
further recalculates the qualified users’ schedules. Simulation 
results confirmed that the proposed rescheduling algorithms 
reduce the total energy cost of the community from the 
conventional day-ahead scheduling by adaptively rescheduling 
user loads in response to their changing preferences. 
Furthermore, as the number of deviating users increases, there 
are more opportunities to reduce the energy cost. By being able 
to address changes in user preferences, the proposed algorithms 
will further help DSM programs to achieve a practical 
deployment in the future smart grid.  
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Fig. 8    Comparison of aggregated energy consumption of 20 users for 
no rescheduling, single user rescheduling and multiple user 
rescheduling 
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Fig. 9    Comparison of the corresponding aggregated energy cost of 20 
users for no rescheduling, single user rescheduling and multiple user 
rescheduling 
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Fig. 10    Comparison of the aggregated energy cost of 20 users versus 
the number of deviating users for no rescheduling, single user 
rescheduling and multiple users rescheduling 
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