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Abstract

The emergence of web 2.0, which allows users to generate content, is causing a rapid
increase in the amount of data. Platforms (e.g. Twitter, Facebook, and YouTube), which
enable millions of users to share information and comments, have a high demand for ex-
tracting knowledge from user-generated content. Useful information to be analyzed from
those comments are opinions/sentiments, which express subjective opinions, evaluations,
appraisals, attitudes, and emotions of particular users towards entities. If we can build a
model to detect and summarize correctly and quickly opinions from comments of social
media, we can extract/understand knowledge about the reputation of a person, organi-
zation or product. This task raises some challenges due to the unique characteristics of
social media text such as: i) comments may not be in well-grammar text; ii) social media
text covers a variety of domains (e.g., phone, education) that requires a robust approach
against domains; iii) comments may not be related to topics or spams.

The aim of this study is to obtain an effective method for identifying and summarizing
opinions on social media. To this end, the research question is as follows: how to employ
deep learning architectures to deal with the challenges of this task. As the advantages of
deep learning are to self-learn salient features from big data, we expect an efficient result
from this approach for opinions summarization.

To answer the research question, we propose a framework with five subtasks as follows:

• Sentiment analysis - identifies the polarity (positive or negative or neutral) of a com-
ment/review. We propose a freezing technique to learn sentiment-specific vectors
from CNN and LSTM. This technique is efficient for integrating the advantages of
various deep learning models. We also observe that semantically clustering docu-
ments into groups is more beneficial for ensemble methods.

• Subject toward sentiment analysis: determines the target subject which the com-
ment gives its sentiment to or the comment contains spam. We propose a convo-
lutional N-gram BiLSTM word embedding which represents a word with seman-
tic and contextual information in short and long distance periods. Our model
achieves strong performance and robustness across domains compared with previous
approaches.

• Semantic textual similarity: measures the semantic similarity qij of two sentences i
and j, which plays an important role in identifying the most informative sentences
as well as redundant ones in summarization. We propose an M-MaxLSTM-CNN
model for employing multiple sets of word embeddings for evaluating sentence sim-
ilarity/relation. Our model does not use hand-crafted features (e.g., alignment fea-
tures, Ngram overlaps, dependency features) as well as does not require pre-trained
word embeddings to have the same dimension.

• Aspect similarity Recognition (ASR): identifies whether two sentences express one
or some aspects in common. We propose this task to enhance the process of selecting
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salient text for summarization where a summarized review needs to cover all aspects
as well as avoid redundancy. To facilitate the application of supervised learning
models for this task, we construct a dataset ASRCorpus containing two domains
(i.e., LAPTOP and RESTAURANT). We propose an attention-cell LSTM model,
which efficiently integrates attention signals into the LSTM gates.

• Opinions Summarization: employs those signals above for ranking sentences. A
concise and informative summary of a product e is generated by selecting the most
salient sentences from reviews. Applying ASR relaxes the constraint of predefined
aspects in conventional aspect-based opinions summarization.

According to the results, our summarization approach obtains significant improvement
compared to the previous works on social media text. Especially, the proposed Aspect
Similarity Recognition subtask relaxes the limitation of predefining aspects and makes
our opinions summarization applicable in domain adaptation. Further research could be
undertaken to integrate transfer knowledge at sentence level as well as multitask learning
for opinions summarization.

Keywords: Sentiment Analysis, Opinion Mining, Opinions Summarization, Deep
Learning, Aspect Similarity Recognition, Semantic Textual Similarity
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Chapter 1

Introduction

1.1 Background

Opinions Summarization is the collection of typical opinions mentioned in social media,
blogs or forums on the web. This task helps customers to absorb better a large number
of comments and reviews before making decisions as well as producers to keep track of
what customers think about their products [Liu, 2012]. Table 1.1 shows a sample of
summarization on Honda Accord performance.

Due to the fast growth of data over the Internet, automatically opinions summariza-
tion has received a lot of attention in recent years. Most studies focus on extractive
summarization, where the most salient text units are identified and construct a summary.
Ranking candidates for generic summarization usually bases on various handcrafted fea-
tures such as sentence position and length [Radev et al., 2004], word frequency [Nenkova
et al., 2006] or using neural networks for learning salient scores [Zhou et al., 2018].

Table 1.1: An sample of summarization on Honda Accord performance

Reviews Summary

1) I owned this car for only a week, but I am pleasantly surprised
by its performance and build quality.

The car is great, both
with styling and
performance. Overall
performance is good but
comfort level is poor.

2) I just put it on the highway this weekend and its performance
was bad!

3) Gas mileage is disappointing for a vehicle with this type of
performance.

4) Great performance and handling make this a real Winner!

5) Overall performance is good but comfort level is poor. 71% positive

6) The car is great, both with styling and performance. 28% negative

7) It is delicious! 14% spam

In opinions summarization, however, this task is required to consider aspects and/or
sentiments of text candidates for generating a concise and informative summary [Hu and
Liu, 2006]. The popular framework of this problem involves three subtasks [Hu and
Liu, 2004]: i) sentiment analysis which assigns sentiment polarity (positive and negative)
towards subjects/topics mentioned in a piece of text; ii) semantic textual similarity which

1



1.2. RESEARCH OBJECTIVE AND CONTRIBUTION

measures the semantic similarity qij of two sentences i and j, which plays an important
role in identifying the most informative sentences as well as redundant ones; iii) aspect
discovery which extracts the properties of interested entities (e.g., battery life, design,
customer service); and iv) summary generation which uses the three above signals for
selecting the most salient opinions and discarding potentially redundant units to build a
summary.

Recently, the sentiment analysis task is formulated as a classification problem and
trained successfully via supervised learning methods. However, sentiment analysis on
social media faces some challenges such as i) text may not be in well-grammar text; ii)
content covers a variety of domains (e.g. phone, education); iii) some comments are
unrelated to topics or spams.

For the aspect discovery task, there are two main techniques: supervised and unsu-
pervised learning. The former models the aspect extraction as a sequence labeling task.
Due to predefining a list of aspect and heavily relying on annotated data, this approach
suffers from domain adaptation problems. The latter uses a large amount of unlabeled
data for abstracting aspects via the statistical topic modeling LDA [Blei et al., 2003]
or the aspect-based autoencoder model [He et al., 2017b]. However, these unsupervised
techniques have limitations. First, we have to decide on a suitable number of aspects for
each domain. Second, the existing methods require a sufficient amount of data while some
domains may not have enough reviews, known as the cold-start problem [Moghaddam and
Ester, 2013].

In the semantic textual similarity task, the main challenge is the diversity of linguistic
expression. For example, two sentences with different lexicons could have a similar mean-
ing. Moreover, the task requires to measure similarity at several levels (e.g., word level,
phrase level, sentence level). These challenges give difficulties to conventional approaches
using hand-crafted features.

In this thesis, we study deep learning approaches to address the mentioned challenges
of social media text in each task. In addition, instead of using the aspect discovery subtask
for discarding redundant information, we propose a novel subtask which does not require
to redefine a list of aspect. In the next section, we will describe in details our research
question as well as contribution.

1.2 Research Objective and Contribution

The objective of this research is to obtain an effective method for identifying and sum-
marizing opinions on social media. To achieve this aim, the research question is as follow:
how to employ deep learning architectures to deal with the challenges of this task. The
emergence of deep learning models has provided an efficient way to learn continuous rep-
resentation vectors for text (e.g., word2vec, fastText, Glove). These representations have
a huge contribution to the success of deep learning in NLP area such as machine transla-
tion [Maruf and Haffari, 2018], summarization [Chen and Bansal, 2018], text classification
[Wang et al., 2018]. The research question is answered through the five subtasks, which
are shown in Figure 1.1, as follows:

Sentiment analysis identifies the polarity (positive or negative or neutral) of a com-
ment/review. In this task, Long Short Term Memory (LSTM) and Convolutional Neural
Network (CNN) are efficient methods. CNN employs filters to capture local dependencies
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Figure 1.1: The overall framework for opinions summarization.

while LSTM designs a cell to memorize long-distance information. However, integrat-
ing these advantages into one model is challenging because of overfitting in training.
To avoid this problem, we propose a freezing technique to learn sentiment-specific vec-
tors from CNN and LSTM. This technique is efficient for integrating the advantages of
various deep learning models. We also observe that semantically clustering documents
into groups is more beneficial for ensemble methods. According to the experiments, our
method achieves competitive results on the four well-known datasets: Pang & Lee movie
reviews and Stanford Sentiment Treebank for sentence level, IMDB large movie reviews
and SenTube for document level.

Subject toward sentiment analysis determines the target subject which the com-
ment gives its sentiment to or the comment contains spam. In this subtask, we i) proposed
a convolutional N-gram BiLSTM (CoNBiLSTM) word embedding which represents a word
with semantic and contextual information in short and long distance periods; ii) applied
CoNBiLSTM word embedding for predicting the type of a comment, its polarity sentiment
(positive, neutral or negative) and whether the sentiment is directed toward the product
or video; iii) evaluated the efficiency of our model on the SenTube dataset, which contains
comments from two domains (i.e. automobile, tablet) and two languages (i.e. English,
Italian). According to the experimental results, CoNBiLSTM generally outperforms the
approach using SVM with shallow syntactic structures (STRUCT) - the current state-of-
the-art sentiment analysis on the SenTube dataset. In addition, our model achieves more
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robustness across domains than the STRUCT (e.g. 7.47% of the difference in performance
between the two domains for our model vs. 18.8% for the STRUCT).

Semantic textual similarity (STS) measures the semantic similarity qij of two
sentences i and j, which plays an important role in identifying the most informative sen-
tences as well as redundant ones in summarization. Recently, using a pretrained word
embedding to represent words achieves success in many natural language processing tasks.
According to objective functions, different word embedding models capture different as-
pects of linguistic properties. However, the Semantic Textual Similarity task requires
to take into account of these linguistic aspects. Therefore, this research aims to en-
code various characteristics from multiple sets of word embeddings into one embedding
and then learn similarity/relation between sentences via this novel embedding. Repre-
senting each word by multiple word embeddings, the proposed MaxLSTM-CNN encoder
generates a novel sentence embedding. We then learn the similarity/relation between
our sentence embeddings via Multi-level comparison. Our method M-MaxLSTM-CNN
consistently shows strong performances in several tasks (i.e., measure textual similarity,
identify paraphrase, recognize textual entailment). Our model does not use hand-crafted
features (e.g., alignment features, Ngram overlaps, dependency features) as well as does
not require pre-trained word embeddings to have the same dimension.

Aspect similarity Recognition (ASR) predicts a probability rij that two sentences
i and j shares at least one aspect. This task is useful in review summarization where a
summarized review needs to cover all aspects as well as avoid redundancy. We propose
an attention-cell LSTM model, which integrates attention signals into the LSTM gates.
According to the experimental results, the attention-cell LSTM works efficiently for learn-
ing latent aspects between two sentences in both settings of in-domain and cross-domain.
To facilitate the application of supervised learning models for this task, we construct a
dataset ASRCorpus containing two domains (i.e., LAPTOP and RESTAURANT).

Opinions Summarization employs those signals above for ranking sentences. A
concise and informative summary of a product is generated by selecting the most salient
sentences from reviews. To extract aspects of an expression, most studies require a pre-
defined list of aspects or at least the number of aspects. Instead of extracting aspects, we
rate expressions by ASR, which relaxes the limitation of predefining aspects and makes
our opinions summarization applicable in domain adaptation. The proposed extractive
summarization method using ASR shows significant improvements over baselines on the
Opinosis corpus.

1.3 Dissertation Outline

The remainders of this thesis are organized as follows:
Chapter 2 introduces the problem formulation of Sentiment Analysis. We do a litera-

ture review to analyze the gaps in current methods. The proposed freezing technique for
learning features and clustering support for ensemble are explained in details and evalu-
ated over four well-known datasets against strong baselines. We also discuss the results
and analysis some typical error cases for making a conclusion.

Chapter 3 describes the problem formulation of Subject Toward Sentiment Analysis.
We do a literature review to analyze the gaps in current methods. The proposed convo-
lutional N-gram BiLSTM word embedding is explained in details and evaluated over the
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SenTube dataset containing two domains: TABLET and RESTAURANT against strong
baselines. We also discuss the results and analysis some typical error cases for making a
conclusion.

Chapter 4 presents the problem formulation of Semantic Textual Similarity. We do a
literature review to analyze the gaps in current methods. The proposed M-MaxLSTM-
CNN model for employing multiple sets of word embeddings for evaluating sentence simi-
larity/relation is explained in details and evaluated over the benchmark datasets of differ-
ent tasks against strong baselines. We also discuss the results and analysis some typical
error cases for making a conclusion.

Chapter 5 proposes the novel Aspect similarity Recognition task. In the literature
review, we firstly survey some recent approaches for aspect category classification, then
discuss some researches on measuring a relationship between two sentences. We describe
the process of constructing an annotation dataset ASRCorpus containing two domains
(i.e., LAPTOP and RESTAURANT) for this task. The proposed convolutional attention-
cell LSTM model is explained in details and evaluated against over strong baselines. We
also discuss the results and analysis some typical error cases for making a conclusion.

Chapter 6 explains the problem formulation of Opinions Summarization. We do a
literature review to analyze the gaps in current methods. The proposed novel aspect-based
summarization using Aspect Similarity Recognition is explained in details and evaluated
over the Opinosis dataset against strong baselines. We also discuss the results and analysis
some typical error cases for making a conclusion.

Chapter 7 concludes our research and discusses future directions based on our works.
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Chapter 2

Sentiment Analysis

2.1 Introduction

The emergence of web 2.0, which allows users to generate content, is causing the rapid
increase in the amount of data. From this data, we analyze various kinds of knowledges.
One of them is sentimental information, which deliveries how evaluations, attitudes, emo-
tions, opinions of particular users towards a person, a product, or an organization are.
Analyzing sentiments/opinions from text is a fundamental study and has attracted many
research in recent years [Pang and Lee, 2008, Liu, 2012].

Formulating sentiment analysis as a classification problem, Wang and Manning [2012]
used a Support Vector Machine variant with Bag of bi-gram and Naive Bayes features
(NBSVM). According to experiments on long and short reviews, NBSVM shows robust
performances. However, the limitations of Bag of Word model is i)the sparse vectors;
ii) not respect to the semantics of words as well as word order. Recently, Mikolov et al.
[2013a] propose a word embedding technique for encoding word into a continuous repre-
sentation. This model has a huge contribution to research of natural language processing.
In Paragraph Vector [Le and Mikolov, 2014], the authors employed the technique of Word
embedding representation using neural networks [Mnih and Hinton, 2009, Mikolov et al.,
2013a] to represent a document or paragraph as a vector. This document modeling out-
performed the Bag of Words model in sentiment analysis and information retrieval. Li
et al. [2016] have enhanced the architecture of Paragraph Vector by allowing the model
to predict not only words but also n-gram features (DVngram). Kim [2014] efficiently
applies convolutional neural network (CNN) for semantic composition. In this technique,
convolutional filters are utilized to capture local dependencies in term of context windows
but these filters fail for long-distance dependencies. By using a memory cell for captur-
ing information over a long period of time, LSTM can handle CNN’s limitation. Our
motivation is to build a combination approach taking the advantages of these methods.

We organize this paper as follows: Section 2.2 explains the research objective and con-
tribution, Section 2.3 reviews the prior research on opinion mining, Section 2.4 introduces
the proposed architecture of encoding and employing sentiment feature vectors, Section
2.5 describes the ensemble model with clustering support, Section 2.6 explains the dataset
and experimental setup, Section 2.7 reports and discusses the results of the experiments,
and Section 2.8 concludes our work.
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Figure 2.1: The proposed framework for sentiment analysis: (a) Extract two sentiment
scores (3-layer neural network score and NV-SVM score), (b) Cluster sentences using
autoencoder models and represent the sentences by these sentiment scores for sentiment
prediction

2.2 Research Objective and Contribution

As mentioned in Section 1, each model has its own advantages, however, capturing all these
characteristics of various models into one model is difficult. According to our experiments,
which is described in Section 7, the approach of combining two networks into one model
tends to be overfitting. Our objective is to build an ensemble model taking advantages of
various models (e.g., generative models, discriminative models) and avoid to be overfitting.
Particularly, CNN and LSTM are separately trained to encode sentiment information into
feature vectors. To avoid overfitting, we propose a freezing technique during the training
phase. For sentiment classification, these sentiment-specific vectors and the semantic-
specific DVngram vector are passed into the 3-layer neural network. In sentiment analysis,
two sentences with a slight difference could provide opposite sentiments. Generative
models, however, have a tendency to encode similar sentences/documents into similar
vectors. For that reason, we designed an autoencoder model to learn representation
vectors for sentences/documents and used these vectors for clustering. The prediction
score of NBSVM method is provided to enhance the sentiment prediction of each cluster.
Figure 2.1 shows the architecture of our framework.

We compared our model with some competitive methods on the five well-known
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datasets: IMDB large movie reviews [Maas et al., 2011a], Pang & Lee movie reviews
[Pang and Lee, 2005], Stanford Sentiment Treebank [Socher et al., 2013], Stanford Twitter
Sentiment [Go et al., 2009] and SenTube [Uryupina et al., 2014]. According to experi-
ments, the proposed method achieves competitive performances on sentence level as well
as document level. Our main contributions are as follows:

• We generate sentiment vectors via CNN and LSTM under the freezing scheme.
These vectors provide a simple and efficient way to integrate the strong abilities of
deep learning models.

• We propose a scenario to cluster data into groups of semantic similar sentences/documents.
Then, each sentence/document in each group is represented by the prediction scores
of the NBSVM method and the proposed 3-layer neural network. We propose an
ensemble method to employ these scores.

2.3 Related work

Sentiment analysis studies how to extract people’s opinion toward entities. Taboada et al.
[2011] assigned sentiment labels to text by extracting sentiment words. This technique
did not consider aspects of syntax, context. To deal with this limitation, Saif et al. [2016]
introduced a lexicon-based approach for representing semantic sentiment information of
words from their co-occurrence patterns, which can perform for both entity-level and
tweet-level sentiment detection. Liu [2012] formulated the sentiment analysis as a classi-
fication task and applied machine learning techniques for this problem. In this approach,
dominant research concentrated on designing effective features such as word ngram [Wang
and Manning, 2012], emoticons [Zhao et al., 2012], sentiment words [Kiritchenko et al.,
2014]. According to Fersini et al. [2016], several signals (i.e., adjectives, expressive length-
ening) are investigated to evaluate their impact on sentiment analysis. The experimental
results show that adjectives are more impacting and discriminative than others. Context
is a factor for determining the polarity of a word (e.g., cheap design (negative) vs. cheap
price (positive)). To take into account this fact, Vechtomova [2017] applies reference cor-
pora with sentiment annotated documents for disambiguating sentiment polarity. This
information retrieval method is efficient at word-level but sentence-level. However, the
limitation of these above approaches is to require additional resources as well as an inten-
sive effort for designing handcrafted features. In addition, designing features requires a
comprehensive knowledge base and depends heavily on the typicality of its knowledge rep-
resentation which is usually strictly defined and does not allow handling different concept
nuances [Cambria, 2016]. By employing deep learning techniques, our proposed model
could automatically learn efficient features for sentiment analysis.

Recently, the emergence of deep learning models has provided an efficient way to learn
continuous representation vectors for sentiment classification. Mikolov et al. [2013a] intro-
duced learning techniques for semantic word representation. By using a neural network
in the context of a word prediction task, the authors generated word embedding vectors
carrying semantic meanings. Embedding vectors of words which share similar meanings
are close to each other. Because semantic information may provide opposite opinions
in different contexts, some researches [Socher et al., 2011, Tang et al., 2014] worked on
learning sentiment-specific word representation by employing sentiment text. Giatsoglou
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Figure 2.2: Paragraph Vector model which considers paragraph id as a word and uses
the word embedding of this paragraph id as a paragraph representation [Le and Mikolov,
2014]

et al. [2017] enhance the word embedding by integrating emotional words. This hybrid
approach of word embedding and bag-of-words representations shows competitive per-
formances on English and Spanish tweets. Sentiment analysis requires models to take
into account contextual information. Therefore, sentence and document modeling has at-
tracted many studies. Yessenalina and Cardie [2011] modeled each word as a matrix and
used iterated matrix multiplication to present a phrase. Le and Mikolov [2014] encoded
paragraph into continuous representation by employing the word embedding technique
with paragraph information. The authors extended the word embedding learning model
by incorporating paragraph information. Given a paragraph, Le’s method captures and
encodes semantics into a representation vector or a semantic feature. Figure 2.2 illustrates
the paragraph vector model, which is trained under a prediction task about the next word
in a sentence. Deep recursive neural networks (DRNN) over tree structures were employed
to learn sentence representation for sentiment classification such as DRNN with binary
parse trees [Irsoy and Cardie, 2014]. Ma et al. [2018] proposed the Sentic LSTM cell
effectively incorporating commonsense knowledge into the hierarchical attention encoder.
According to experiments, the combination of the proposed attention architecture and
Sentic LSTM can outperform the state-of-the-art methods in targeted aspect sentiment
tasks. Besides, CNN is a strong technique in computer vision and also applied successfully
in natural language processing. For instance, Kim [2014], Zhang and Wallace [2017] used
convolutional filters to capture local dependencies in term of context windows and applied
a pooling layer to extract global features. Tang et al. [2015] used CNN or LSTM to learn
sentence representation and encoded these semantic vectors in document representation
by Gated recurrent neural network. Zhang et al. [2016a] proposed Dependency Sensitive
CNN to build hierarchically textual representations by processing pretrained word em-
beddings. As CNN captures local features while LSTM learns global features, there some
researches try to integrate these models into one. Wang et al. [2016] used a regional CNN-
LSTM to predict the valence arousal ratings of texts. Vo et al. [2017] employed CNN and
LSTM as two channels for sentiment analysis. Gan et al. [2017] proposed a hierarchical
CNN-LSTM architecture for modeling sentences. In this approach, CNN is used as an
encoder to encode a sentence into a continuous representation, and LSTM is used as a
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decoder. Nguyen and Le [2018] proposed the N-gram word embedding by employing CNN
and LSTM. This approach captures context information of a word to disambiguate its
sentiment polarity. Chaturvedi et al. [2016] also use two CNNs for extracting features
in Spain and English, then employ Recurrent neural network with Lyapunov filter for
subjectivity detection. The Lyapunov filter is a linear matrix inequality for deriving the
stability criteria in multi-lingual subjectivity detection.

These prior researches show how well CNN and LSTM work for sentiment analysis.
This inspires us to design a scheme for integrating the advantages of these networks
into one model. We also observe that integrated models have more parameters than
individual models. This fact makes the integrated model more prone to overfitting. To
deal with it, we designed a freezing approach for efficiently learning sentiment document
representations from two variant deep-learning models: CNN and LSTM. Afterward,
these sentiment-specific vectors and the semantic DVngram vector were employed for
sentiment classification. This strategy captures the advantages of variant models by using
feature vectors, which each model generated. We also used NBSVM in clustering mode
to boost the performance of classification. The clustering strategy enhances the problem
of semantically similar sentences carrying opposite sentiments.

2.4 Sentiment representation learning

This section introduces the freezing scheme for generating sentiment vectors from two
models: CNN and LSTM; and a classification model using these sentiment vectors.

Our motivation is to develop a document representation learning model to capture
sentiment information. In our work, we proposed an approach to generate sentiment
representation from CNN and LSTM models. Our idea is to train CNN and LSTM
models under the sentiment classification task. A deep learning network is considered as
a model with two parts: (i) Building target feature - from input samples, the first part
encodes target information into vectors, (ii) Classifying layer - the second part tries to
learn a layer (or a boundary) for classifying these vectors into target labels. Sentiment
vectors generated by a model, however, are much fitting to the classifying layer of this
model. It is not efficient to combine two sentiment vectors generated from two models
because each sentiment vector is fitting to its particular classifying layer. To address this
problem, we proposed a freezing scheme. According to this scheme, the parameters of the
classifying layer are initialized from the uniform distribution and in the training phase,
these parameters are kept unchanged. This technique makes sentiment vectors not too fit
to a particular classifying layer.

2.4.1 LSTM for sentiment feature engineering - LSTM feature

LSTM is a variant of recurrent neural network [Goller and Kuchler, 1996]. To avoid
suffering the exploding or vanishing gradient problem, the LSTM architecture contains
a memory cell which preserves its state over a long period of time and non-linear gating
units regulating information flow into and out of the cell.

Sentences are encoded into continuous representation vectors by recursively applying
an LSTM unit to each input word xt of sentences and the previous step ht−1. At each
time step t, the LSTM unit with l-memory dimension defines 6 vectors in Rl: input gate
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Figure 2.3: LSTM model for sentiment analysis. During training, the neural network
layer’s parameters (blue one) are frozen.

it, forget gate ft, output gate ot, tanh layer ut, memory cell ct and hidden state ht as
follows (from Tai et al. [2015b]):

it = σ(Wixt + Uiht−1 + bi) (2.1)

ft = σ(Wfxt + Ufht−1 + bf ) (2.2)

ot = σ(Woxt + Uoht−1 + bo) (2.3)

ut = tanh(Wuxt + Uuht−1 + bu) (2.4)

ct = ft � ct−1 + it � ut (2.5)

ht = ot � tanh(ct) (2.6)

where σ,� respectively denote a logistic sigmoid function and element-wise multiplication;
Wi, Ui, bi are respectively two weights matrices and a bias vector for input gate i. The
denotation is similar to the others.

Intuitively, the forget gate decides which previous information in the memory cell
should be forgotten, while the input gate controls what new information should be stored
in the memory cell. Finally, the output gate decides the amount of information from
the internal memory cell should be exposed. These gate units help an LSTM model
remember significant information over multiple time steps. The hidden state hl of the
last step, which captures the whole information, is considered as a sentiment feature and
classified by a neural network (NN) layer:

ŷ = σ(hlWnn + bnn) (2.7)

where ŷ is the prediction output; Wnn and bnn are the NN layer’s parameters.
Figure 2.3 explains how to employ the LSTM architecture for memorizing sentiment

information over sequential data. The model contains two parts: (i) Building sentiment
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feature - the LSTM layer encodes sentiment information of input into a fixed-length vec-
tor; (ii) Classifying layer - this sentiment-specific representation vector will be classified
by the last neural network layer (the blue layer in Figure 2.3). As applying the freez-
ing scheme, this NN layer’s parameters Wnn and bnn are unchanged during the training
process.

Figure 2.4: CNN for sentiment analysis. Given a sequence of d-dimension word embed-
dings (d = 4), the model applies 4 filters: 2 filters for region size h = 2 and 2 filters for
region size h = 3 to generate 4 feature maps. During training, the last neural network
layer’s parameters (blue one) are frozen (untrained).

2.4.2 CNN for sentiment feature engineering - CNN feature

We present a sentence of length s as a matrix d×s, where each row is a d-dimension word
embedding vector of each word. Given a sentence matrix S, CNN performs convolution
on this input via linear filters. A filter is denoted as a weight matrix W of length d
and region size h. W will have d × h parameters to be estimated. For an input matrix
S ∈ Rd×s, a feature map vector O = [oo, o1, ..., os−h] ∈ Rs−h+1 of the convolution operator
with a filter W is obtained by applying repeatedly W to sub-matrices of S:

oi = W · Si:i+h−1 (2.8)

where i = 0, 1, 2, ..., s− h, (·) is dot product and Si:j is the sub-matrix of S from row i to
j.

Each feature map O is fed to a pooling layer to generate potential features. The
common strategy is 1-max pooling [Boureau et al., 2010]. The idea of 1-max pooling is
to capture the most important feature v corresponding to the particular feature map by
selecting the highest value of that feature map:

v = max
0≤i≤s−h

{oi} (2.9)
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We have explained in detail the operation of one filter. Figure 2.4 shows an example
of utilizing four filters with variant region sizes to obtain multiple 1-max pooling values.
After pooling, these 1-max pooling values from feature maps are concatenated into a
CNN feature kcnn carrying sentiment information. Intuitively, the CNN feature kcnn is
a collection of maximum values from the feature maps. To make a connection to these
values, an NN layer is employed to synthesize a high-level feature from the CNN feature.
Afterward, this high-level feature is fed to an NN layer with sigmoid activation to generate
the probability distribution over sentiment labels:

x1 = σ(kcnnW1 + b1) (2.10)

ŷ = σ(x1W2 + b2) (2.11)

where ŷ is the prediction output; W1, W2, b1 and b2 are the NN layers parameters.
In the training phase, similar to the strategy in our LSTM model, the last NN layer’s

parameters W2 and b2 are kept untrained to make the sentiment vectors not too fit to a
particular classifying layer.

2.4.3 Classifying with sentiment vectors

We visualize the result of synthesizing feature vectors from CNN and LSTM in Figure
2.5. In the development set of CNN sentiment vectors, we observed some unambiguous
cases. In other words, it is hard to determine sentiment polarities by only CNN sentiment
vectors. Therefore, we add more information to CNN sentiment vectors by concatenating
them with LSTM sentiment vectors or DVngram semantic vectors. From figure 2.5c and
figure 2.5d, we observe that the classification boundary of CNN-LSTM sentiment features
is clearer than the boundary of CNN sentiment features.

As CNN and LSTM sentiment vectors are, however, generated from models of senti-
ment classification, these vectors are easily separated in terms of sentimental categories
by machine learning methods. In other words, a multi-layer NN sentiment classifier using
both of these vectors as input reaches the state of perfect classification on the training set
after a few epochs. In this case, the classifier’s parameters are not efficiently optimized,
and the classifier’s performance has no improvement on the testing set, compared with
using LSTM or CNN for classification (or we call the model overfitting).

To address this problem, we employ a 3-layer NN with Dropout regularization Srivas-
tava et al. [2014a] on the first and second layers (Figure 2.6). By randomly dropping out
each hidden unit with a probability p on each presentation of each training case, Dropout
prevents overfitting and provides a way to combine many variant NN architectures ef-
ficiently. By applying Dropout, our model can examine efficiently variant combination
ways from feature vectors:

y1 = σ(xWl1 + bl1) (2.12)

ỹ1 = dropout(y1) (2.13)

y2 = σ(ỹ1Wl2 + bl2) (2.14)

ỹ2 = dropout(y2) (2.15)

ŷ = σ(ỹ2Wl3 + bl3) (2.16)
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(a) CNN features in the train set (b) CNN+LSTM features in the train set

(c) CNN features in the development set (d) CNN+LSTM features in the development set

Figure 2.5: The t-SNE projection for IMDB dataset.

where x is a feature vector concatenated from the CNN sentiment vector and another
vector (e.g. LSTM sentiment vector or DVngram semantic vector); ỹi is the thinned
output after applying Dropout to yi; ŷ is the prediction output.

2.5 Ensemble with clustering support

Because trained via context information, generative models focus on capturing semantic
information rather than sentiment. Therefore, generative models have a tendency to
transform semantically similar sentences into similar vectors, which are close in vector
space. However, these vectors could carry opposite sentiments. In Figure 2.7, we visualize
sentiment distribution of each group of similar documents in term of semantic. In each
group, in spite of having similar semantic meanings, these documents carry opposite
sentiment polarities. Therefore, it causes some difficulties in sentiment classification.

Our solution is to split data into clusters of semantically similar sentences/documents
and then enhance the classification performance of each group by additional features.
For clustering, we encode sentences/documents into fix-length vectors via an autoen-
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Figure 2.6: Illustration of Dropout technique. Left: a 3-layer NN model; Right: an
example of a thinned network after applying Dropout to a 3-layer NN Srivastava et al.
[2014b]

coder model. These vectors then are used for clustering sentences/documents. Each
sentence/document in each cluster is represented by the prediction score of the method
in Section 2 and the prediction score of NBSVM. The reason for choosing NBSVM is
that NBSVM is an efficient method not based on neural network architectures, and using
Bag of Word model to represent sentences/documents, which is different from the word
embedding representation. We expect NBSVM’s score to be a strong feature for boosting
the performance of each group.

Given a sentence/document, we have two prediction scores: one from the proposed
method in Section 2 and one from NBSVM. A voting approach is applied to these scores.
This method considers each classifier fi as a voter with a confident ratio ri to the final
probability score over classes distribution as follows:

p(ci|x) =
1

N

N∑
k=1

pk(ci|x)rk (2.17)

where ci is the ith sentiment class, N is the number of classifiers, pk(ci|x) is the prediction
score of the classifier k on the ith class for a sentence/document x.

To optimize the classification performance, the ensemble model is trained to assign
an optimal confident ratio to each classifier. We propose a neural network approach for
learning these optimal values. We consider a feedforward process in a 2-layer NN as a
scheme of voting and the NN’s weights as confident ratios. The weights are optimized via
Adamax algorithm [Kingma and Ba, 2015].
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(a) Original set

(b) Cluster 1 (c) Cluster 2

Figure 2.7: The t-SNE projection of CNN+LSTM sentiment features for the IMDB de-
velopment set. BiLSTM autoencoder is used for clustering

Table 2.1: Statistic summary of datasets. cv is 10-fold cross validation. |V |avai is the
proportion of vocabulary available in the Word2Vec embedding.

Dataset average length train size test size vocabulary size V|avai|(%)

MR-L 300 25000 25000 169940 34

AUTO 98 3284 2472 19919 35

TAB 99 4609 2933 19693 34

MR-S 20 10662 cv 18765 88

SST 19 9613 1821 16185 82

Tweet 10 98000 359 129103 19
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(a) BiLSTM model

(b) CNN model. In MR-L dataset, each region size has 300 filters. In MR-S and SST dataset, each
region size has 100 filters

Figure 2.8: Autoencoder models semantically encode sentences into embedding vectors
for clustering.

2.6 Datasets and Experiment setups

2.6.1 Datasets

For evaluation, we use the five well-known datasets: MR-L, MR-S, SST, Tweet, and
SenTube. Table 2.1 shows the statistic summary of datasets.

• MR-L [Maas et al., 2011a] contains 50,000 reviews from IMDB, where each movie
has no more than 30 reviews.

• SenTube [Uryupina et al., 2014] is a collection of 38,000 comments. The authors
compiled a list of products in two domains: automobiles (AUTO) and tablets (TAB)
(e.g. Apple iPad, Motorola xoom, Fiat 500), then collected and annotated comments
from either commercials or review videos of those products.

• MR-S [Pang and Lee, 2005] labels 5,331 sentences as positive and 5,331 sentences
as negative. These sentences are selected from Internet movie reviews.

• Tweet [Go et al., 2009] contains 1,6 million tweets, which are automatically labeled
via positive/negative emoticons. Only the test set is human-annotated. Follow the
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previous research [dos Santos and Gatti, 2014], we randomly select 80,000 tweets for
training and 16,000 tweets for validation. Although tweets are short, their |V |avai
is high. In other words, most of the words in tweets are unknown to the Word2Vec
embedding1. This is a major challenge to word embedding based approaches.

• SST [Socher et al., 2013] is an extended set of MR-L. In addition to the review
sentences, the authors also extract 215,154 phrases and label them via Amazon
Mechanical Turk. In our experiments, these phrases are also used for training.

Table 2.2: Hyper-parameters configuration

Hyper-parameter Value Grid search’s range

LSTM’s dimension l 32 [30, 32, ..., 256]

CNN’s region sizes 3,4,5 Kim (2014)

Number of each CNN’s region size 100 [50, 100, ..., 500]

CNN’s penultimate NN layer 100 [50, 100, ..., 500]

3-layer NN’s first layer input’s dimension

Dropout for 3-layer NN’s first layer 0.9 [0, 0.1, ..., 0.9]

3-layer NN’s second layer 64 [10, 12, ..., 100]

Dropout for 3-layer NN’s second layer 0.5 [0, 0.1, ..., 0.9]

K-mean clustering k 2 [2, 3, ..., 10]

Ensemble’s first NN layer 3 × input’s dimension [1, 2, ..., 10]

2.6.2 Experimental setups

To tune hyper-parameters of our models, we do a grid search on 30% of each dataset.
Grid search is a greedy method searching an optimal value for each hyper-parameter in a
defined range. In detail, we separately optimize the hyper-parameters of each model (i.e.,
LSTM and CNN) and then search the optimal value of the 3-layer neural network. Table
2.2 reports the optimal configuration for all the five datasets as well as ranges for grid
search. However, the optimal number of each region size is 100 instead of 300 for MR-L.

For word vectors, we obtained the pre-trained word vectors Word2Vec. Its vectors have
the dimension of 300. In our LSTM and CNN models, these pre-trained word vectors are
optimized during the training process.

2.7 Results and Discussion

We compared our models against the other methods showed in table 2.3 on the binary
sentiment classification task. In MR-S dataset, we could not reproduce the result 88.1%
of CNN [Kim, 2014]. According to the empirical results, our method of combining feature
vectors 3-layer NN outperforms the individual methods: LSTM, CNN, and DVngram.
That proves the efficiency of the feature combination strategy. In addition, our ensemble
method with clustering support obtains competitive performances on the MR-L, MR-S,

1https://code.google.com/p/word2vec/
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Table 2.3: Accuracy results on the binary sentiment classification task. 3-layer
NN (F1 +F2) denotes using feature vector F1 and F2 as input; CNN-f, LSTM-f denote
sentiment-specific feature vectors generated from the proposed CNN, LSTM respectively;
Ensemble(p1 + p2) denotes applying the proposed Ensemble for the prediction scores of
p1 and p2.

Method MR-S SST MR-L AUTO TAB Tweet

LSTM 80.17 87.81 86.23 71.28 75.79 77.9

CNN (2014) 81.31 86.33 91.18 73.1 76.85 77.1

DVngram (2016) 73.51 74.2 92.14 70.43 74.05 72.15

NBSVM (2012) 79.26 80.39 91.87 72.17 73 77.43

DV-Ensemble (2016) - - 93.05 - - -

DAN (2015) 80.3 86.3 89.4 - - -

SA-LSTM (2015) 80.7 - 92.8 - - -

SkipThought (2015) 79.4 82.9 - - - -

DSCNN-Pretrain (2016a) 82.2 88.7 90.7 - - -

Infersent (2017a) 81.1 84.6 - - - -

CharSCNN (2014) - 85.7 - - - 86.4

BERT (2019) - - 94.9 - - -

Proposed methods

3-layer NN (CNN-f+LSTM-f) (1) 81.59 88.41 91.16 73.75 76.96 78.52

3-layer NN (CNN-f+DVngram) (2) 81.11 86.66 92.98 73.67 76.95 76.24

Without
clustering

Ensemble (1)+NBSVM 82.18a 88.36a 92.50a 73.95a 77a 78.62a

Ensemble (2) + NBSVM 81.1a 87.31a 93.25a 73.82a 76.95a 77.75a

CNN
autoencoder

Ensemble (1)+NBSVM 82.2b 88.46b 92.55b 73.93b 76.94b 79.31b

Ensemble (2)+NBSVM 81.74b 86.87b 93.29b 73.8b 76.9b 79.02b

BiLSTM
autoencoder

Ensemble (1)+NBSVM 82.22b 88.58b 92.54b 73.92b 76.91b 79.52b

Ensemble (2)+NBSVM 81.8b 87.09b 93.32b 73.78b 76.89b 79.11b

a,b denote results statistically significant at p < 0.05 via the pairwise t-test compared with the 3-layer NN method
and the Without clustering method using the same features respectively.

SST and Tweet datasets. However, clustering support does not work in AUTO and TAB
where the dataset size is small. We discuss more the size of clusters in Section 7.3. As we
mentioned in Section 3, NBSVM uses a different way to present sentences/documents and
a different approach for learning (a discriminative model), so it gives significant support
in our ensemble method. On document level, LSTM method produces a much lower
performance than DVngram method. As a result, the feature vectors generated from
LSTM model does not support as well as DVngram’s vectors when combining with CNN
feature vectors. In case of low V|avai|, Bert and CharSCNN achieve strong performances.
It makes sense because these methods use external resources to pre-train word embeddings
(BERT) or character embeddings (CharSCNN).
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Table 2.4: Accuracy results of the NN model on various features. CNNorg, LSTMorg
denote sentiment vectors generated from the proposed CNN, LSTM without freezing the
last NN layer respectively

Feature MR-S SST MR-L AUTO TAB Tweet

CNNorg 80.61 86.05 91.22 73 76.85 77.5

CNN-f 80.89∗ 86.27∗ 91.38∗ 73.1∗ 76.9∗ 77.6∗

LSTMorg 78.97 86.99 85.5 71.28 74.9 76.6

LSTM-f 79.11∗ 87.64∗ 85.14∗ 72.05∗ 75.79∗ 78.15∗

CNNorg + LSTMorg 80.95 87.31 90.34 72.49 76.81 77.16

CNN-f + LSTM-f 81.59∗ 88.41∗ 91.16∗ 73.75∗ 76.96∗ 78.52∗

CNNorg + DVngram 80.6 85.34 92.66 73.38 76.34 76.04

CNN-f + DVngram 81.11∗ 86.66∗ 92.98∗ 73.67∗ 76.95∗ 76.24∗

LSTMorg + DVngram 79.38 87.2 90.41 71.84 75.58 77.44

LSTM-f + DVngram 79.59 ∗ 88.14∗ 88.04∗ 71.97∗ 75.96∗ 77.83∗
* denotes results statistically significant at p < 0.05 via the pairwise t-test compared with the method without
using freezing.

2.7.1 Freezing vs Unfreezing

Compared against conventional approaches, our model freezes (untrain) the last NN layer’s
parameters to prevent the effect of overfitting. To evaluate the efficiency of this technique,
we compared our vector’s performance against the sentiment-specific vector from the
unfreezing scheme (the conventional way). We passed these vectors to our 3-layer NN
model to achieve the results (details in Table 2.4). One interesting observation is that the
performance of a feature vector in freezing mode is better than one in unfreezing mode for
most of the cases. In addition, we combined a sentiment-specific vector with the semantic-
specific vector - DVngram for evaluating the performance. In general, our freezing scheme
provides higher performance than the unfreezing scheme. The experimental results show
that our freezing scheme works more efficiently on CNN than LSTM, especially in a case
of combining a sentiment-specific vector and a semantic-specific vector.

2.7.2 Evaluation on combining features

In this section, we compared in performance our approach of combining features from vari-
ant models against Merging scheme which horizontally merges variant models (details
in Figure 2.9).

From the result reported in Table 2.5, we found that our approach for feature vectors
combination is applied more efficiently to CNN than LSTM. In the scheme of combining
feature vectors, the CNN feature vector provides robust performance, while the LSTM
feature vector provides inconsistent results: better when combining with the CNN feature
vector, worse when combining with the DVngram vector (compared with Merging scheme).
In most of the cases in Merging scheme, a composition model (i.e., CNN-LSTM) try
to reproduce the result of its child models (e.g., CNN, LSTM) and does not provide a
significant improvement.
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Figure 2.9: The architecture of merging models.

Table 2.5: Accuracy results of features combining scheme and Merging scheme

Method MR-S SST MR-L AUTO TAB Tweet

3-layer NN (CNN-f+LSTM-f) 81.59∗ 88.41∗ 91.16∗ 73.75∗ 76.96∗ 78.52∗

CNN-LSTM 81.07 86.49 91.07 73.4 75.82 74.98

3-layer NN (CNN-f+DVngram) 81.11∗ 86.66∗ 92.98∗ 73.67∗ 76.95∗ 76.24∗

CNN-DVngram 80.79 85.39 92.12 73.5 76.37 75.21

3-layer NN (LSTM-f+DVngram) 79.59∗ 88.14∗ 88.04∗ 71.97∗ 75.96∗ 77.83∗

LSTM-DVngram 80.61 86.49 92.08 70.22 73.88 76.11
* denote results statistically significant at p < 0.05 via the pairwise t-test compared with the Merging scheme using
the same features.

2.7.3 Evaluation on clustering support

In this section, we discuss how clustering methods contribute to the overall performance of
classification. For experiments, we employ two clustering algorithms K-Means [Arthur and
Vassilvitskii, 2007] and Birch [Zhang et al., 1996] with various settings of K (the number
of clusters). We select these algorithms because K-Means is partitioning clustering while
Birch is hierarchical clustering. In addition, we choose the largest dataset MR-L for this
experiment.

According to the results in Table 2.6, we observe a difference in performance between
K-Means and Birch. K-Means shows strong improvement in large clusters compared with
smaller clusters while Birch shows reverse results. For too small clusters (e.g. Birch with
C3 = 592 samples), the proposed approach, however, does not work well. Generally,
K-Means is more efficient in our ensemble approach compared with Birch.

We also evaluate our model with different numbers of clusters. Figure 2.10 shows the
proposed model’s performance with K in a range [0, 10]. K-Means and Birch have the
same behavior when the value of K increases. In other words, their charts have similar
patterns. When K is greater than 9, the contribution of clustering becomes negative. The
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Table 2.6: Accuracy results on MR-L dataset with K-Means v.s. Birch. K denotes the
number of clusters, Ci stands for cluster i and Sample is the number of samples in a
cluster. The number in () denotes the increase/decrease in accuracy compared to the
ensemble approach without using clustering.

K-Means Birch

Sample Accuracy Sample Accuracy

K=2
C1 6703 93.38(0)

93.32(+0.07)
4217 93.48(+0.14)

93.26(+0.01)
C2 18297 93.3(+0.1) 20783 93.21(+0.01)

K=3

C1 3967 93.04(-0.13)

93.26(+0.01)

20780 93.23(+0.01)

93.24(-0.01)C2 13505 93.32(+0.04) 3628 93.3(+0.2)

C3 7528 93.26(+0.02) 592 93.26(-0.15)

more clusters we have, the smaller each cluster is. This fact makes the training processing
inefficient because of the small training set in each cluster.

Figure 2.10: The ensemble model’s performance on MR-L dataset.

2.7.4 Quality analysis

To obtain a better sense of the proposed model’s advantages and disadvantages, we man-
ually inspect some typical samples, which are shown in Table 2.7. These sentences are
good examples of the proposed model’s performance compared to other approaches.

For simple sentences which only carry words in the same sentiment polarity (example
#1 and #2), the proposed model easily identifies the sentiment polarities. In long sen-
tences (example #3, #4 and #5), the model using CNN and LSTM sentiment features
tried to capture sentiment words in these sentences (e.g., romantic, fresh, anguished, bit-
ter) but it failed to interpret the whole sentences, whereas the proposed model with the
support of NBSVM can correctly classify their sentiment polarities. This result agrees

22



2.8. CONCLUSION

with the claim of Wang and Manning [2012] that NBSVM with bi-gram features and NB
log-count ratios consistently performs well on long sentences/documents.

Table 2.7: Some typical samples. CNN+LSTM denotes the results of the 3-layer NN using
CNN and LSTM sentiment features, True denotes the true label with 0, 1 for negative,
positive sentiment labels respectively.

id Sentence CNN+LSTM Proposed True
1 a refreshingly realistic, affecta-

tion free coming of age tale
1 1 1

2 a thoughtful, visually graceful
work

1 1 1

3 apparently, romantic comedy
with a fresh point of view just
doesn’t figure in the present
hollywood program

1 0 0

5 the last scenes of the film are
anguished, bitter and truthful
mr koshashvili is a director to
watch

0 1 1

6 clayburgh and tambor are
charming performers neither
of them deserves eric schaeffer

1 0 0

8 You’ve seen them a million
times.

1 1 0

9 A whole lot foul, freaky and
funny.

0 0 1

In examples #8 and #9, we observe that the source of false hits is the lack of context
information. Depending on context or domains, some words (e.g., foul, freaky, million
times) carry a positive or negative sentiment. Without contextual information, it is
difficult to decide the sentiment polarities of these cases. Therefore, we believe that the
promising direction in future work will be to improve the model for capturing context
information.

2.8 Conclusion

In this work, we apply the proposed freezing technique to CNN, LSTM for generating
feature vectors. This approach is simple but efficient to combine the advantages of var-
ious models. To improve the weakness of generative models, we propose a strategy to
cluster documents/sentences by their semantic similarity. A neural voting ensemble with
additional NBSVM is used to boost the performance of each group. The approach obtains
the strong performance in sentiment analysis.

In our work, we just researched on simple models. It is interesting to apply our freez-
ing scheme approach to combination models (e.g., multi-channel CNN-LSTM, hierarchal
LSTM) for generating feature vectors. In addition, our clustering is based on semantic
similarity. Research on other kinds of similarity can lead to valuable results.
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Chapter 3

Subject Toward Sentiment Analysis
on Social Media

3.1 Introduction

Social network sites are platforms with many facets. These platforms are multi-domain,
multilingual and multicultural since users from different countries can upload images/videos
as well as comments about various topics in different languages. According to Aliaksei
Severyn’s study (2016), 60-80% of comments from YouTube, which is a well-know video-
sharing website, do actually contain opinions. Therefore, a robust method of sentiment
analysis in such an environment is a high interest for both the industry and the research
community. For this reason, our research focuses on YouTube. This environment raises
some challenges to opinion mining such as i) many comments may not be in well-grammar
text; ii) YouTube covers a variety of domains (e.g. phone, education) that requires a ro-
bust approach to extract opinions from different topics; iii) words showing sentiment can
refer to either the content itself of video or the advertised product; iv) some comments
are unrelated to topics or spams; v) YouTube’s content has a large variety of languages;
thus it requires a method to be independent to grammar of natural languages.

To address these challenges, we proposed the Convolutional N-gram BiLSTM word
embedding model for sentiment analysis by capturing semantic and contextual informa-
tion. The advantage of this approach does not require any linguistic resources or handcraft
features but achieves robust performance in a multi-lingual environment.

The remainder of this paper is organized as follows: Section 3.2 outlines the motivation
and contribution of the work, Section 3.3 reviews the previous research on opinion mining,
Section 3.4 introduces the architecture of our model, Section 3.5 describes the SenTube
dataset and the tasks, Section 3.6 reports and discusses the results of the experiments,
and Section 3.7 concludes our work.

3.2 Motivation and contribution of the work

Most prior research on sentiment analysis relied on Bag of Word (BOW) representation.
For instance, Wang and Manning [2012] used a Support Vector Machine variant with
Naive Bayes feature (NBSVM). Presenting a document or a sentence with Bag of bi-gram
features, NBSVM consistently performs well across datasets of long and short reviews.
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The winning system [Mohammad et al., 2013] of the SemEval 2013 shared task used a
BOW representation together with a sentiment lexicon in Support Vector Machine. How-
ever, BOW representation loses the ordering of words, and it also ignores the semantics
of words. The following example illustrates the problem of BOW representation:

iPad 2 is better. the superior apps just destroy the xoom.
In the above comment about the product xoom, there are one negative word and

two positive words, but the sentiment toward the product is negative. This situation is
common in the YouTube environment where people can mention about a video and/or the
product in that video and/or another product. Under BOW representation, we cannot
determine which word a polarity word give an opinion toward. To address the weakness
of BOW representation, Severyn et al. [2016] encoded a comment into a shallow syntactic
tree with enriched tags (STRUCT). The advantage of the STRUCT is to capture sen-
timent words as well as essential concepts about the product and negation words. This
approach requires a POS-tagger tool, a chunker tool and a set of sentiment lexicons for
each language. Therefore, the applicability of this method in a multilingual environment
is limited. In addition, which polarity a sentiment word depends on the context of that
word. This information could not be captured by the tree structure.

Bengio et al. [2003] introduced an unsupervised framework that learns the continuous
vector for each word. In this vector space, semantically similar words have similar vector
representations (e.g., “strong” is close to “powerful”), whereas BOW representation
gives the same distances between two words (e.g., distance(“strong”, “powerful”) =
distance(“strong”, “weak”)). This word embedding representation has contributed to
the success of deep learning methods in natural language processing, especially sentiment
analysis.

A word can have different functions/meanings in different contexts. For example, the
two words ”has” from comment #1 and #2 in table 3.1 have two different functions
(i.e. verb vs auxiliary verb); or in comment #3 and #4, the adjective ”cheap” bears
different sentiments (i.e. negative vs positive). In spite of different functions/meanings
which a word could have, the word embedding model gives a unique vector for each word.
Consequently, this representation loses the word’s function as well as the word’s contextual
meaning.

By observing the neighbor words of a word, a human could identify the function,
meaning, and sentiment of that word. Understanding correctly every word in a sentence
helps to capture clearly the meaning of that sentence. This inspires us to design con-
volutional filters to encode words and their contextual information into a convolutional
N-gram word embedding representation. However, the convolutional filters have two lim-
itations: i) long distance contextual information is missing because of the relatively small
size of filters. For example, the word “Although” restrains the negative sentiment of the
word “outdated” in comment #5 in table 3.1. Because these two words have a long dis-
tance relationship, convolution filters miss this contextual information; ii) the position of a
word in a sentence/document often describes how important that word is (e.g. placing an
adjective in the first position of a review gives an emphasis on that adjective). However,
the convolutional operator does not consider word’s position, it applies the same filters
to each word. To address the weakness of convolutional filters, Bidirectional Long Short
Term Memory (BiLSTM) [Dyer et al., 2015] is applied to the convolutional N-gram word
embedding representation for capturing long distance contextual information and taking
into account of words’ position. This representation is called the convolutional N-gram
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Table 3.1: Some YouTube comments from the SenTube dataset

No.# Comment

1 as would I, jaguar always has a place in my heart. a
place that BMW cannot fill

2 I agree however now Jaguar has been bought out the
reliability should increase.

3 ... Nobody wants it because it’s made of cheap materi-
als...

4 ... i couldnt believe it when my friend told me about
this site. and i can tell u , ive seen this car selling
ridiculously cheap on this site.

5 Although people say the iPads multitasking is out-
dated, i think it makes more sense - you pause one app
and flick to another. I would very rarely want an app to
run in the background on a tablet.

BiLSTM (CoNBiLSTM) word embedding. Figure 3.1 shows an overview of our proposed
framework for YouTube sentiment analysis.

Figure 3.1: An overview of our sentiment analysis model

The contribution of our research is:

1. CoNBiLSTM word embedding representation: To enhance the conventional word
embedding representation for capturing contextual information, we designed mul-
tiple convolutional filters with variant sizes. The convolution N-gram vectors gen-
erated by applying these filters on the word embedding representation are fed to
a Bidirectional Long Short Term Memory (BiLSTM) for encoding long distance
contextual dependencies and information of word’s position.

2. Applicable to any language: because our approach relies on the word embedding rep-
resentation learned in an unsupervised manner, our model does not require any lin-
guistic preprocessor (e.g. POS-tagger, chunker). In some languages (e.g. Japanese,
Chinese, Vietnamese) where words are not delimited by spaces, word embeddings
could be trained on syllables or characters instead of words. Phung and De Vine
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[2015] found that word segmentation does not give any advantage in learning Viet-
namese word embedding representations for text summarization. In Vietnamese so-
cial media, Vo et al. [2017] observe that comments are usually informal and contain
several grammar mistakes. These facts challenge word segmentation tools. As a re-
sult, syllable embedding models outperform word embedding models for Vietnamese
sentiment analysis. Therefore, the applicability of our approach to multilingual en-
vironments is promising.

3. Multilingual experiments : to validate the robustness of this approach across lan-
guages, we carried out experiments on English and Italian comments in the SenTube
dataset [Uryupina et al., 2014].

4. Cross domain experiments : our novel word representation is learned from context
data, while each domain (e.g. tablets, automobiles) has its own word distribution.
Therefore, it is important to evaluate the model’s robustness in a cross-domain
manner where the model is trained on a domain and tested on another domain. In
our work, we performed experiments on two domains: automobiles and tablets in
the SenTube dataset.

5. CoNBiLSTM vs. BiLSTM : since BiLSTM has an ability to capture long and short
dependencies, there is an argument over whether or not convolutional filters have
support to BiLSTM for capturing contextual information. To confirm the efficiency
of using convolutional filters for encoding contextual information, we performed
experiments to compare the performances of the two models (BiLSTM and CoN-
BiLSTM) for classification tasks.

In most of the experiments, our model outperforms BiLSTM model and the prior work
[Severyn et al., 2016], which uses the shallow syntactic tree with Support Vector Machine
(STRUCT). Especially in the cross-domain experiment, the proposed approach is more
robust than the prior work.

3.3 Related work

Sentiment analysis is a study of determining people’s opinions, emotions toward entities.
We firstly review the work on English sentiment analysis and then focus on the work
applied in multilingual settings.

3.3.1 Sentiment analysis in English

Feature based approach

Taboada et al. [2011] assigned sentiment labels to text by extracting sentiment-bearing
words. To apply supervised machine learning techniques for this task, Liu [2012] formu-
lated the sentiment analysis task as a classification problem. In this approach, dominant
research concentrated on designing effective features such as word ngram [Wang and
Manning, 2012], emoticon [Zhao et al., 2012], sentiment words [Kiritchenko et al., 2014].
Saif et al. [2016] introduced a lexicon-based approach for representing semantic sentiment
information of words from their co-occurrence patterns, which can perform for both entity-
level and tweet-level sentiment detection. For sentiment detection, Fersini et al. [2016]
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investigates the impact of several expressive signals (i.e. adjectives, pragmatic particles,
and expressive lengthening). These signals have been employed to enrich the feature space
of baseline and ensemble classifiers. According to the experimental results, the author
concluded that adjectives are more discriminative and impacting than pragmatic parti-
cles and expressive lengthening. The polarity of a single word is impacted by its context
(e.g. cheap price (positive) vs. cheap material (negative)). To disambiguate contextual
sentiment polarity at word-level, Vechtomova [2017] introduced an information retrieval
approach which uses reference corpora with sentiment annotated documents. Although
this approach was shown to be an effective alternative to machine learning approaches for
disambiguating word-level contextual sentiment polarity, the method has not shown an
improvement compared to other methods in sentence-level sentiment analysis. Instead of
using additional reference corpora for disambiguating sentiment polarity, we design the
CoNBiLSTM model to learn contextual sentiment polarity for each word. The experi-
mental results show the efficiency of this approach at sentence-level.

Metaheuristic-based methods have also been applied to opinion mining. Gupta et al.
[2015] proposed a Particle Swarm Optimization approach to select features and applied
these features to the Conditional Random Field method for classifying sentiment. Com-
pared to existing other systems, the method attained promising performance with the
much reduced feature set. Pandey et al. [2017] employed K-means to resolve the problem
of the random initialization in the cuckoo search. By optimizing the cluster-heads of
sentiment dataset, the method outperformed the cuckoo search and the improved cuckoo
search.

However, designing handcrafted features requires an intensive effort as well as linguistic
preprocessing tools (e.g. POST-taggers, chunkers). This weakness limits the applicability
on a multilingual environment like YouTube. In the next section, we review some deep
learning techniques for sentiment analysis. One of the deep learnings main advantages
is its capacity to learn new features from a limited set of features. Therefore, it is a
promising approach for a multilingual environment.

Deep learning approach

Recently, the emergence of deep learning models has provided an efficient way to learn
continuous representation vectors for sentiment classification. Bengio et al. [2003] and
Mikolov et al. [2013a] introduced learning techniques for semantic word representation.
By using a neural network in the context of a word prediction task, the authors gen-
erated word embedding vectors carrying semantic meanings. The embedding vectors of
words which share similar meanings are close to each other. However, semantic infor-
mation might provide opposite opinions in different contexts. Therefore, some research
[Maas et al., 2011b, Socher et al., 2011, Tang et al., 2014] worked on learning sentiment-
specific word representation by employing sentiment text. For sentence and document
level, composition approach attracted many studies. Yessenalina and Cardie [2011] mod-
eled each word as a matrix and used iterated matrix multiplication to present a phrase.
Deep recursive neural networks (DRNN) over tree structures were employed to learn sen-
tence representation for sentiment classification such as DRNN with binary parse trees
[Irsoy and Cardie, 2014], Recursive tensor neural network with sentiment treebank [Socher
et al., 2013]. Convolutional neural network (CNN) has recently been applied efficiently
for semantic composition [Kalchbrenner et al., 2014b, Kim, 2014]. This technique uses
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convolutional filters to capture local dependencies in term of context windows and ap-
plies a pooling layer to extract global features. Le and Mikolov [2014] applied paragraph
information into the word embedding technique to learn semantic document representa-
tion. Tang et al. [2015] used CNN or LSTM to learn sentence representation and encoded
these semantic vectors in document representation by a gated recurrent neural network.
Zhang et al. [2016a] proposed Dependency Sensitive CNN to build hierarchically textual
representations by processing pretrained word embeddings. Huy Tien and Minh Le [2017]
propose a freezing scheme to learn sentiment features. This technique efficiently integrates
the advantages of LSTM-CNN and avoids overfitting. Although contextual information
might change the sentiment polarity of a word, this property is still not carefully con-
sidered in the prior work. To confirm the efficiency of the proposed CoNBiLSTM for
encoding contextual sentiment polarity, we carried out experiments and quality analysis
to compare the performances of CoNBiLSTM and BiLSTM.

3.3.2 Sentiment analysis in multi-lingual setting

Severyn et al. [2016] proposed a shallow syntactic tree with enriched tags. This structure
captures not only words from the sentiment lexicons, but also important concepts about
the product and negation words. For evaluation, the work has released a YouTube corpus
(in Italian and English). According to the experimental results, the method improves
performance for both the languages. Vilares et al. [2017] evaluated the performance of
classifying multilingual polarity in various settings such as a multilingual model trained
on a multilingual dataset, a dual monolingual model with/without language identifica-
tion. The experimental results on English and Spanish tweets showed the efficiency and
robustness of the multilingual approach.

To avoid using syntactic features, Giatsoglou et al. [2017] proposed a hybrid vectoriza-
tion approach for integrating emotional words along with the word embedding approach.
The experiments are carried out on English and Greek languages. By combining word
embedding and Bag-of-Words representations, the hybrid method outperformed existing
other approaches.

As relying on linguistic resources (e.g. emotional words, sentiment lexicons, POS-
tagger), these above approaches could not be applied for low-resource languages. In
contrast, our work enhanced the word embedding representation by capturing contextual
information without using any additional linguistic resources. Employing convolutional
filters and BiLSTM, the proposed contextual word embedding model achieves a better gen-
eralization across different domains, where the word distribution and vocabulary changes,
compared to the prior work [Severyn et al., 2016].

3.4 Convolutional N-gram BiLSTM word embedding

In this section, we introduce i) the background of BiLSTM architecture, and then ii) the
proposed model - CoNBiLSTM word embedding.
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Figure 3.2: Illustration of our Convolutional N-gram BiLSTM word embedding model for
classification.

3.4.1 Bidirectional Long Short Term Memory (BiLSTM)

In LSTM explained in Section 2.4.1, sentences of variable length are transformed to fix-
length vectors as follows:

it = σ(Wixt + Uiht−1 + bi) (3.1)

ft = σ(Wfxt + Ufht−1 + bf ) (3.2)

ot = σ(Woxt + Uoht−1 + bo) (3.3)

ut = tanh(Wuxt + Uuht−1 + bu) (3.4)

ct = ft � ct−1 + it � ut (3.5)

ht = ot � tanh(ct) (3.6)

However, the LSTMs hidden state ht only takes the information of the left context and
knows nothing about the right context. To address this weakness, Dyer et al. [2015]
has proposed Bi-directional LSTM (BiLSTM). For capturing the left and right context,
BiLSTM applies two separate LSTM units, one for forward direction and one for back-
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ward direction. Two hidden states hfordwardt and hbackwardt from these LSTM units are
concatenated into a final hidden state hbilstmt :

hbilstmt = hforwardt ⊕ hbackwardt (3.7)

where ⊕ is concatenation operator.

3.4.2 Convolutional N-gram BiLSTM word embedding

We present a document of length s as a matrix d× s, where each column is a d-dimension
word embedding vector of each word. Given a document matrix S, we performs convolu-
tion on this input via linear filters Hk. Each filter Hk is denoted as a weight matrix WHk

of length 1 and region size hk and a bias value bHk
. WHk

will have hk+1 parameters to be
estimated. Given an input matrix S ∈ Rd×s and a filter Hk, the matrix S is converted into
Sk ∈ Rd×hk/2+s+hk/2 by padding zero, which makes the result of convolutional operator
be the same dimension as the matrix S. Then a convolutional N-gram word embedding
matrix Ck ∈ Rd×s is obtained as follows:

Ck[i, j] = WHk
· Sk[i, j − hk/2 : j + hk/2] + bHk

(3.8)

where · is dot product operation and Sk[i, l : t] is the sub-matrix of Sk from column l to
t of row i.

To obtain a final convolutional N-gram word embedding matrix, an average pooling is
applied over those convolutional N-gram word embedding matrices Ck as follows:

C[i, j] =
1

N

N∑
k

Ck[i, j] (3.9)

where N is the number of filters.
In the YouTube context, a comment can give sentiment to either a video or the product

in that video or even other products. This challenge makes sentiment analysis in the
YouTube environment more difficult. For facilitating the model’s ability to determine
which subject a comment refers to, we use the video title as an additional feature. The
reason for this choice is that a video title usually describes the product in that video.
Given a comment and the title of the video which the comment belongs to, we apply the
above process to achieve two convolutional N-gram word embedding matrices Ccomment

and Ctitle for the title and the comment respectively.
To make our convolutional N-gram word embedding take into account the word’s

position as well as capture long distance contextual information, we apply BiLSTM to
this word embedding:

T = BiLSTM(Ccomment ⊕ Ctitle) (3.10)

where ⊕ is concatenation operator, each column in T ∈ R2l×s is a 2l-dimension CoNBiL-
STM word embedding vector of each word, which is constructed by the equation (7), and
l is the LSTM unit’s dimension.

For classification tasks with CoNBiLSTM word embedding, the first and last columns
of T , which are the word embedding vectors capturing a whole context in forward and
backward direction respectively, are fed to a two full-connected-layers neural network:
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x0 = T [1, :]⊕ T [s, :] (3.11)

x1 = sigmoid(x0Wl1 + bl1) (3.12)

ŷ = softmax(x1Wl2 + bl2) (3.13)

where x0 is a 4l dimension vector constructed by concatenating the first column T [1, :]
and the last column T [s, :]; Wl1 ∈ R4l×d1 , bl1 ∈ Rd1 , Wl2 ∈ Rd1×d2 , and bl2 ∈ Rd2 are the
parameters of the neural network; and ŷ is the prediction output of our model.

In summary, the input includes a comment and the title of the video which that
comment belongs to. From this input, our model builds the CoNBiLSTM word embedding
and then uses this word embedding to predict a target class. In Figure 3.2, we illustrate
our CoNBiLSTM word embedding model, in which we use two filters with size 1, 3. In
the training phase, the gradient descent optimization called ADADELTA is used to learn
model parameters. Details of ADADELTA method can be found in [Zeiler, 2012]

3.5 SenTube dataset & Task description

In this section, we introduce (i) the description of three classification tasks, (ii) the Sen-
Tube dataset as well as the procedure of preparing train/validation/test sets.

3.5.1 Task description

In our experiment, we evaluated the proposed model on three tasks:

• Sentiment task: This task detects whether a comment expresses a positive, a
negative, or a neutral sentiment. The sentiment can be general or about a specific
topic (e.g. product or video).

• Type task: One challenge in the YouTube environment is that a comment expresses
its sentiment toward not only the product in the video but also the video itself.
Therefore, it is important to determine the target subject which the comment gives
its sentiment to. Additionally, a comment could be irrelevant for both the product
and the video (off-topic) or even contain spam. In this task, we classify a comment
into video, product or uninformative (off-topic or spam) type.

• Full task: In this task, we want to jointly predict the sentiment and the type of
each comment. The problem is cast into a multi-label classification with 7 labels:
the Cartesian product between {product, video} type labels and {positive, neutral,
negative} sentiment labels, and uninformative class.

3.5.2 SenTube dataset

SenTube [Uryupina et al., 2014] contains about 38,000 English comments and 10,000
Italian comments. The author compiled a list of products in two domains: automo-
biles (AUTO) and tablets (TABLET) (e.g. Apple iPad, Motorola xoom, Fiat 500), then
collected and annotated comments from either commercials or review videos of those
products. For several products, there is no corresponding Italian commercial or review
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video. Table 3.2 highlights some differences between the two languages as well as the two
domains. In YouTube, the number of Italian audiences is much less than the number of
English audiences, so the number of Italian comments is quite small compared to English
comments. However, the average length of Italian comments is quite longer than English
comments.

Table 3.2: Corpus statistics for the SenTube dataset. In-vocabulary size denotes the
number of terms existing in the pre-trained word embedding.

English Italian

AUTO TABLET ALL AUTO TABLET ALL

Video in total 78 139 217 98 100 198

Comment in total 16787 22073 38860 4725 5539 10264

Avg.len. of comment 98 99 99 154 111 131

Avg.len. of title 41 36 38 39 47 43

Vocabulary size 39936 38790 66862 25362 20137 39955

In-vocabulary size 11536(29%) 10491(27%) 16013(24%) 10802(43%) 7729(38%) 14517(36%)

For each task, we prepare the dataset as follows:

• Sentiment task: Each comment is labeled as positive, negative or neutral senti-
ment. Comments with ambiguous sentiments (i.e. contain both positive and neg-
ative sentiments) and comments which are irrelevant for both the product and the
video (off-topic) or contain spam are excluded.

• Type task: Each comment is labeled as video, product or uninformative (off-topic
or spam) type.

• Full task: Each comment is labeled as product-positive, product-neutral, product-
negative, video-positive, video-neutral, video-negative or uninformative. We ex-
cluded comments annotated as both video and product types as well as comments
with ambiguous sentiments.

For both of the languages, we split the videos into 45% training set, 5% validation set
and 50% test set, such that each video contains all its comments. Table 3.3, 3.4 show the
data distribution of each class for English and Italian respectively. Since the number of
comments in each video is different, the number of comments in the train and validation
sets is not the same as the number of comments in the test set. Generally, the class
distributions of the train set, validation set, and test set are similar. For example, in
English Sentiment task for AUTO domain, the neutral class is the most frequent, and
the negative class is the least frequent in the train set, validation set, and test set.

3.6 Experiment & discussion

In this section, we i) describe the model setting for English and Italian, and report the
experimental results of ii) the in-domain experiment, iii) the cross-domain experiment,
iv) the per class experiment, and v) give a quality analysis for our model.
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Table 3.3: Summary of English YouTube comments data used in Sentiment, Type and
Full tasks

Task Class
AUTO TABLET

Train Validation Test Train Validation Test

Sentiment

Positive 1536(30%) 501(30%) 1601(30%) 2393(29%) 270(16%) 1666(27%)

Negative 917(18%) 330(20%) 871(16%) 1441(17%) 505(29%) 1267(21%)

Neutral 2591(52%) 843(50%) 2895(54%) 4476(54%) 963(55%) 3171(52%)

Total 5044 1674 5367 8310 1738 6104

Type

Product 2755(43%) 952(44%) 2536(36%) 5938(57%) 1331(55%) 4411(59%)

Video 2078(33%) 664(31%) 2525(36%) 1961(19%) 361(15%) 1435(19%)

Uninfo 1565(25%) 538(25%) 1917(28%) 2608(25%) 723(30%) 1630(22%)

Total 6398 2154 6978 10507 2415 7476

Full

Product-pos 1107(11%) 284(16%) 349(10%) 1096(12%) 472(13%) 712(11%)

Product-neg 931(9%) 212(12%) 217(6%) 1152(12%) 452(12%) 869(14%)

Product-neu 1921(20%) 376(20%) 447(13%) 2837(30%) 1073(29%) 2400(37%)

Video-pos 924(9%) 175(10%) 444(13%) 698(7%) 247(7%) 412(6%)

Video-neg 459(5%) 65(4%) 104(3%) 314(3%) 101(3%) 150(9%)

Video-neu 1892(19%) 199(11%) 939(28%) 844(8%) 300(8%) 599(9%)

Uninfo 2618(27%) 513(28%) 897(26%) 2583(27%) 1071(28%) 1314(20%)

Total 9852 1824 3397 9524 3716 6456

3.6.1 Model configuration

English model

To tune the hyper-parameters of our models, we do a grid search on 30% of the dataset
for Full task:

• Word embedding layer : we obtained the pre-trained word vectors Word2Vec1. It
was trained on 100 billion words from English Google News, and its vectors have
the dimension of 300. During the training process, these pre-trained word vectors
are optimized.

• Convolutional filters : two filters (h = 1, 3) are employed to construct a convolutional
N-gram word embedding.

• BiLSTM layer: the dimension for each direction the same as the word embedding
layer (l = 300).

• First full-connected layer: the dimension is the same as BiLSTM layer (d1 = 600)

• Dropout layer: For avoiding overfitting, we employ a dropout layer (p=0.5) between
the first and second full-connected layers.

• Second full-connected layer: the dimension is the number of target labels. We used
a softmax activation for this layer.

1https://code.google.com/p/word2vec/
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Table 3.4: Summary of Italian comments data used in Sentiment, Type and Full tasks

Task Class
AUTO TABLET

Train Validation Test Train Validation Test

Sentiment

Positive 665(35%) 115(32%) 265(24%) 521(22%) 50(22%) 364(23%)

Negative 462(24%) 91(25%) 262(24%) 481(20%) 32(15%) 357(22%)

Neutral 787(41%) 159(44%) 590(53%) 1379(58%) 139(63%) 881(55%)

Total 1914 365 1117 2381 221 1602

Type

Product 1005(45%) 73(20%) 736(44%) 2045(63%) 287(56%) 836(62%)

Video 647(29%) 181(50%) 525(31%) 498(15%) 120(24%) 249(18%)

Uninfo 601(27%) 107(30%) 426(25%) 685(21%) 104(20%) 266(20%)

Total 2253 361 1687 3228 511 1351

Full

Product-pos 253(11%) 50(7%) 176(14%) 218(10%) 172(16%) 154(10%)

Product-neg 216(10%) 132(18%) 190(15%) 355(16%) 145(13%) 211(13%)

Product-neu 283(13%) 148(20%) 272(21%) 719(33%) 451(41%) 551(35%)

Video-pos 271(13%) 50(7%) 146(11%) 92(4%) 22(2%) 112(7%)

Video-neg 127(6%) 51(7%)) 36(3%) 41(2%) 11(1%) 62(4%)

Video-neu 351(16%) 113(15%) 171(13%) 246(11%) 64(6%) 195(12%)

Uninformative 661(31%) 206(15%) 294(13%) 527(24%) 243(22%) 285(18%)

Total 2162 750 1285 2198 1108 1570

Italian model

To tune the hyper-parameters of our models, we do a grid search on 30% of the dataset
for Full task:

• Word embedding layer : we obtained the pre-trained word vectors from Bojanowski
et al. [2017b]. It was trained on Italian Wikipedia data, and its vectors have the
dimension of 300. During the training process, these pre-trained word vectors are
optimized.

• Convolutional filters : two filters (h = 1, 17) are employed to construct a convolu-
tional N-gram word embedding.

• The other layers are the same as the English model.

3.6.2 In-domain experiment

To evaluate CoNBiLSTM word embedding model, we compared with BiLSTM and the
previous work [Severyn et al., 2016] - STRUCT method on three tasks mentioned in
Section 3.5.2. Table 3.5 shows the accuracy performance of three models on the SenTube
dataset for the two languages and domains.

In most of the cases, the proposed method outperforms the others. In the previous
work - STRUCT method, we observed that the performance on AUTO is much lower
than on TABLET across all tasks. The author explained that i) TABLET contains more
training data and (ii) the different types of audiences in AUTO and TABLET domains:
well-informed users and geeks expressing better-motivated opinions about a product for
the former vs. more general audiences for the latter. This makes the comments in AUTO
more challenging to analyze. In our model, we achieved a smaller gap between AUTO and
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Table 3.5: The result of the in-domain experiment

Language Task
AUTO TABLET

STRUCT BiLSTM CoNBiLSTM STRUCT BiLSTM CoNBiLSTM

English

Sentiment 55.7 66.35 66.89a,b 70.5 68.89 70.17b

Type 59.4 66.78 68.36a,b 78.6 78.57 79.49a,b

Full 41.5 51.84 53.81a,b 60.3 60.08 61.28a,b

Italian

Sentiment 61.6 59 61.41b 64.4 64.47 65.6a,b

Type 70.7 74.1 74.75a,b 77.3 78.46 79.64a,b

Full 45.6 47.47 51.05a,b 52.4 53.24 55.03a,b

a,b denote results statistically significant at p < 0.05 via the pairwise t-test compared with STRUCT and BiLSTM respectively.

TABLET domains (e.g. 7.47% of the difference in performance between the two domains
for our model vs. 18.8% for the STRUCT in English Full task). It shows the robust of our
model to domains with different types of audiences. More specifically, the performance
on AUTO domain is much improved across all tasks except Sentiment task for Italian
AUTO and English TABLET.

In the case of Sentiment task, although STRUCT outperformed our model in En-
glish TABLET and Italian AUTO domains, the difference is not statistically significant.
STRUCT used a pre-defined list of sentiment words to determine sentiment words in a
comment. Intuitively, this facilitates the process of sentiment analysis, especially when
training data is small. In our approach, we aim to a multilingual task where labeled
resources (e.g. sentiment dictionary, synonym dictionary) and linguistic preprocessing
tools (e.g. POS-tagger, syntactic parser) are limited; hence we do not use any additional
labeled data as sentiment dictionaries.

Table 3.6: The results of the cross-domain experiment

Language Source Target Task STRUCT BiLSTM CoNBiLSTM

English

AUTO TABLET

Sentiment 66.6 68.23 69.01a,b

Type 64.1 66.51 67.81a,b

Full 38.3 46.2 48.03a,b

TABLET AUTO

Sentiment 61.9 63.54 64.94a,b

Type 55.6 63.15 64.57a,b

Full 44.7 47.2 47.6a,b

Italian

AUTO TABLET

Sentiment 61.2 60.54 62.92a,b

Type 63.8 61.1 62.24a,b

Full 29.7 33.82 37.34a,b

TABLET AUTO

Sentiment 54.3 56.27 57.07a,b

Type 56.4 59.8 60.8a,b

Full 31.7 38.24 39.5a,b

a,b denote results statistically significant at p < 0.05 via the pairwise t-test compared with STRUCT and BiLSTM
respectively.

3.6.3 Cross-domain experiment

In this experiment, we trained a model on the data from one domain and tested on the
data from the other domain. This experiment examines the adaptability of our models as
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well as whether we need training data for a new domain. Table 3.6 reports the accuracy
of the three tasks in the cross-domain setting.

According to the experimental results, our model shows a more robust and stable
performance in the cross-domain setting. For example, in English Full task, the difference
between the performances of our model trained on AUTO (48.03%) and on TABLET
(47.6%) is 0.43%, while the difference of STRUCT is 6,4%. This proved that our model
has more robustness and stronger generalization.

Generally, the proposed model provides an improvement in accuracy in both of the
languages compared with BiLSTM and STRUCT, except the Type task with Italian
AUTO as a source domain. In the Italian AUTO domain, the average length of comments
(l = 154) is quite long compared with TABLET domain (l = 111) and the in-vocabulary
size (in Table 3.2) of target domain TABLET (38%) is small compared with AUTO domain
(43%). These differences give a challenge to our model.

Table 3.7: The precision, recall and F1 scores of CoNBiLSTM for each class in the English
experiments

Task Class
AUTO TABLET

Precision Recall F1 Support Precision Recall F1 Support

Sentiment

Positive 66.78 62.4 64.51 1601 78.95 60.56 68.55 1666

Negative 41.46 17.57 24.68 871 55.29 33.39 41.63 1267

Neutral 69.62 84.21 76.22 2895 70.2 89.91 78.84 3171

Acc 66.89 70.17

Type

Product 71.43 78.59 74.84 2536 84.55 91.20 87.75 4411

Video 69.50 65.43 67.40 2525 79.15 63.48 70.46 1435

Uninfo 62.12 58.69 60.35 1917 64.39 61.90 63.12 1630

Acc 68.36 79.49

Full

Product-pos 62.95 55.01 58.72 349 54.39 39.19 45.55 712

Product-neg 35.71 34.56 35.13 217 45.67 37.63 41.26 869

Product-neu 43.03 54.59 48.13 447 67.1 79.71 72.86 2400

Video-pos 68.2 46.85 55.54 444 78.45 68.93 73.39 412

Video-neg 21.05 7.69 11.27 104 27.68 20.67 23.66 150

Video-neu 68.71 44.2 53.79 939 52.05 46.58 49.16 599

Uninfo 50.15 76.48 60.57 897 61.71 64.16 62.91 1314

Acc 53.81 61.28

3.6.4 Performance on each class

In this section, we analyze the per-class performance of the three tasks. Table 3.7 reports
Precision, Recall and F1 scores of each class. In Sentiment task, we observed that the
negative class contributes the largest error in both of the domains. In fact, negative
comments in the dataset take the smallest proportion and probably contains complicated
grammars, so it is more difficult to learn an efficient classifier for the negative class
compared with the positive class and the uninformative class. We discuss the difficulty
of detecting negative sentiment in Section 3.6.5. In Type task, the uninformative class
is considerably more difficult than the other classes. An uninformative comment could
be a spam or an off-topic comment or even a comment about unrelated products, so it is
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intuitively quite hard to classify it. In Full task, the Product-negative and Video-negative
classes have the worst performance. This confirms with the result from Sentiment task.

3.6.5 Quality analysis

To obtain a better sense of the improvement and limitation of the proposed model, we
manually inspect some typical cases, which are shown in table 3.8. These samples are a
great way to show the proposed model’s advantages and disadvantages.

Table 3.8: Some typical samples for quality analysis. The labels are 0:product-positive,
1:product-neutral, 2:product-negative, 3:video-positive, 4:video-neutral, 5:video-negative
and 6:uninformative

No. Title Comment BiLSTM CoNBiLSTM True

1 ferrari 430 review... ferrari look so dull (spelling) and boring!
lamborghini is so much more awsome! they
look so mean! and just evil!

0 2 2

2 bugatti veyron vitesse
video review

is it just me? or does the dash look pretty
dull...

0 2 2

3 ferrari 430 review... this is my dream car, and its getting
cheaper and cheaper o yah!

2 0 0

4 2012 range rover evoque
coupe hd video review

so it does have a rear wiper as in the new
lexus rx eh?...

1 0 2

5 ferrari 430 review... why did they change the music... the orig-
inal was way more dramatic

4 4 5

6 2012 fiat 500 test drive review but toyotas and hondas are still the
most reliable cars on the planet. my 1997
honda civic still has the original engine
even though it has 400,000 miles on it.

0 0 2

The first source of the improvement is to capture better long distance dependencies
compared with BiLSTM. In sample #1, the comment gives two polarity sentiments: one
negative sentiment toward the product (Ferrari) mentioned in the title and one positive
sentiment toward the other (Lamborghini). Analyzing the main sentiment of this com-
ment requires capturing a long distance relationship between the title and its comment.
The second advantage of our model is to build a better word embedding, which captures
contextual information and the part of speech. For example, word “pretty” in sample #2
is an adverb and almost contributes nothing to the meaning of this comment. However,
BiLSTM considered this word as an adjective word bearing a positive sentiment. Con-
sequently, BiLSTM made the wrong prediction for this sample. Another example is the
word “cheaper”. This word has two opposite sentiments depending on context. In sample
#3, our model correctly assigned the positive sentiment for “cheaper” while BiLSTM did
not.

As we mentioned in Section 3.6.4, our model has quite low performance in the negative
class. To analyze the difficulty of negative comments, we also inspect some typical negative
comments, which are reported in table 3.8. Comment #4 actually is a rhetorical question
and carries a negation meaning. In sample #5 and #6, these comments do not directly
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mention the products in the titles. However, these comments implicitly give negative
sentiments toward those products by giving good reviews for other products. These facts
make the negative class more challenging than the others in sentiment analysis.

3.7 Conclusion

In this work, we introduced a convolutional N-gram BiLSTM word embedding model. Our
approach enhances the conventional word embedding by using i) multiple convolutional
filters with variant sizes for capturing contextual information; ii) BiLSTM for encod-
ing long distance contextual dependencies. Through the multilingual and cross-domain
experiments on the SenTube dataset, our model shows the more robust and better per-
formance compared with the previous work STRUCT - the state-of-the-art method on
the SenTube dataset. While the previous work requires a pre-defined sentiment dictio-
nary and some linguistic preprocessing tools, our model only requires a pre-trained word
embedding which is trained in unsupervised learning scheme. Therefore, our model has
larger applicability to multilingual environments as YouTube.

For future work, we plan to improve the ability to interpret implication, where main
subjects are not mentioned explicitly as we analyzed in Section 3.6.5. In addition, we also
plan to build a model for extracting helpful comments, which give polarity sentiments
and explanation for those sentiments.
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Chapter 4

Semantic Textual Similarity

4.1 Introduction

Measuring the semantic similarity/relation of two pieces of short text plays a fundamental
role in a variety of language processing tasks (i.e., summarization, plagiarism detection,
question answering, and machine translation). Semantic textual similarity (STS) task is
challenging because of the diversity of linguistic expression. For example, two sentences
with different lexicons could have a similar meaning. Moreover, the task requires to
measure similarity at several levels (e.g., word level, phrase level, sentence level). These
challenges give difficulties to conventional approaches using hand-crafted features.

Recently, the emergence of word embedding techniques, which encode the semantic
properties of a word into a low dimension vector, leads to the successes of many learning
models in natural language processing (NLP). For example, Kalchbrenner et al. [2014a]
randomly initialize word vectors, then tunes them during the training phase of a sentence
classification task. By contrast, Huy Tien and Minh Le [2017] initialize word vectors via
the pre-train word2vec model trained on Google News [Mikolov et al., 2013b]. Wieting
et al. [2015] train a word embedding model on the paraphrase dataset PPDB, then apply
the word representation for word and bi-gram similarity tasks.

Several pre-trained word embeddings are available, which are trained on various cor-
pora under different models. Levy and Goldberg [2014] observed that different word
embedding models capture different aspects of linguistic properties: a Bag-of-Words con-
texts based model tends to reflect the domain aspect (e.g., scientist and research) while
a paraphrase-relationship based model captures semantic similarities of words (e.g., boy
and kid). From experiments, we also observed that the performance of a word embed-
ding model is usually inconsistent over different datasets. This inspired us to develop a
model taking advantages of various pre-trained word embeddings for measuring textual
similarity/relation.

4.2 Research Objective and Contribution

Our research objective is to learn a novel word embedding capturing various linguistic
properties from multiple sets of pretrained word embeddings and then measure simi-
larity/relation between two sentences via this embedding. In this paper, we propose a
convolutional neural network (CNN) to learn a multi-aspect word embedding from various
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pre-trained word embeddings. We then apply the max-pooling scheme and Long Short
Term Memory (LSTM) on this embedding to form a sentence representation. In STS
tasks, Shao [2017] shows the efficiency of the max-pooling scheme in modeling sentences
from word embedding representations refined via CNN. However, the max-pooling scheme
lacks the property of word order (e.g., sentence(“Bob likes Marry”) = sentence(“Marry
likes Bob”)). To address this weakness, we use LSTM as an additional scheme for mod-
eling sentences with word order characteristics. For measuring the similarity/relation
between two sentence representations, we propose Multi-level comparison which consists
of word-word level, sentence-sentence level, and word-sentence level. Through these levels,
our model comprehensively evaluates the similarity/relation between two sentences.

We evaluate our M-MaxLSTM-CNN model on three tasks: STS, textual entailment
recognition, paraphrase identification. The advantages of M-MaxLSTM-CNN are: i)
simple but efficient for combining various pre-trained word embeddings with different di-
mensions; ii) using Multi-level comparison shows better performances compared to using
only sentence-sentence comparison; iii) does not require hand-crafted features (e.g., align-
ment features, Ngram overlaps, syntactic features, dependency features) compared to the
state-of-the-art ECNU Tian et al. [2017] on STS Benchmark dataset.

Our main contributions are as follows:

• Propose the MaxLSTM-CNN encoder for efficiently encoding sentence embeddings
from multiple word embeddings.

• Propose the Multi-level comparison (M-MaxLSTM-CNN) to learn the similarity/relation
between two sentences. The model achieves strong performances over various tasks.

The remainder of this paper is organized as follows: Section 4.3 reviews the previ-
ous research, Section 4.4 introduces the architecture of our model, Section 4.5 describes
the three tasks and datasets, Section 4.6 describes the experimental setting, Section 4.7
reports and discusses the results of the experiments, and Section 4.8 concludes our work.

4.3 Related work

Most prior research on modeling textual similarity relied on feature engineering. Wan
et al. [2006] extract n-gram overlap features and dependency-based features, while Mad-
nani et al. [2012] employ features based on machine translation metrics. Mihalcea et al.
[2006] propose a method using corpus-based and knowledge-based measures of similarity.
Das and Smith [2009] design a model which incorporates both syntax and lexical semantics
using dependency grammars. Ji and Eisenstein [2013] combine the fine-grained n-gram
overlap features with the latent representation from matrix factorization. Xu et al. [2014]
develop a latent variable model which jointly learns paraphrase relations between word
and sentence pairs. Using Dependency trees, Sultan et al. [2014] propose a robust mono-
lingual aligner and successfully applied it for STS tasks. Ferreira et al. [2016] present a
novel sentence representation at three layers: lexical, syntactical and semantic. Through
the proposed statistical-semantic similarity measurement, the approach achieves strong
performances in semantic textual similarity, redundancy elimination in multi-document
summarization. According to AL-Smadi et al. [2017], these features (i.e., lexical, syntac-
tic, and semantic ) also achieve competitive performance in Arabic news tweets. Ferreira
et al. [2018] also employ the three-layer representation with different machine learning
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methods for identifying paraphrase. Although not achieving the state-of-the-art results
in general terms, the model handles the problems of meaning and word order. Jiang et al.
[2017] and Qu et al. [2018] propose some semantic computation approaches using features
based on the structure of Wikipedia. These models are efficient in determining semantic
similarity between concepts and have a better human correlation than previous methods
such as Word2Vec and NASARI [Camacho-Collados et al., 2016].

The recent emergence of deep learning models has provided an efficient way to learn
continuous vectors representing words/sentences. By using a neural network in the context
of a word prediction task, Bengio et al. [2003] and [Mikolov et al., 2013a] generate word
embedding vectors carrying semantic meanings. The embedding vectors of words which
share similar meanings are close to each other. To capture the morphology of words,
Bojanowski et al. [2017a] enrich the word embedding with character n-grams information.
Closest to this approach, Wieting et al. [2016b] also propose to represent a word or
sentence using a character n-gram count vector. However, the objective function for
learning these embeddings is based on paraphrase pairs.

For modeling sentences, composition approach attracted many studies. Yessenalina
and Cardie [2011] model each word as a matrix and used iterated matrix multiplica-
tion to present a phrase. Tai et al. [2015a] design a Dependency Tree-Structured LSTM
for modeling sentences. This model outperforms the linear chain LSTM in STS tasks.
Convolutional neural network (CNN) has recently been applied efficiently for semantic
composition [Kalchbrenner et al., 2014a, Kim, 2014, Shao, 2017]. This technique uses
convolutional filters to capture local dependencies in term of context windows and applies
a pooling layer to extract global features. He et al. [2015] use CNN to extract features
at multiple levels of granularity. The authors then compare their sentence representa-
tions via multiple similarity metrics at several granularities. Gan et al. [2017] propose a
hierarchical CNN-LSTM architecture for modeling sentences. In this approach, CNN is
used as an encoder to encode a sentence into a continuous representation, and LSTM is
used as a decoder. Conneau et al. [2017b] train a sentence encoder on a textual entail-
ment recognition database using a BiLSTM-Maxpooling network. This encoder achieves
competitive results on a wide range of transfer tasks. To enhance the conventional word
embedding representation for capturing contextual information, Nguyen and Le [2018]
proposed an N-gram word embedding via convolutional filters. This approach achieves
robust performance in multi-lingual sentiment analysis. As trained under one pre-trained
embedding, these above approaches depend on the objective function of that embedding.

At SemEval-2017 STS task, hybrid approaches obtain strong performances. Wu et al.
[2017] train a linear regression model with WordNet, alignment features and the word em-
bedding word2vec1. Tian et al. [2017] develop an ensemble model with multiple boosting
techniques (i.e., Random Forest, Gradient Boosting, and XGBoost). This model incor-
porates traditional features (i.e., n-gram overlaps, syntactic features, alignment features,
bag-of-words) and sentence modeling methods (i.e., Averaging Word Vectors, Projecting
Averaging Word Vectors, LSTM).

MVCNN model Yin and Schütze [2015] and MGNC-CNN model Zhang et al. [2016b]
are close to our approach. In MVCNN, the authors use variable-size convolution filters on
various pre-trained word embeddings for extracting features. However, MVCNN requires
word embeddings to have the same size. In MGNC-CNN, the authors apply independently
CNN on each pre-trained word embedding for extracting features and then concatenate

1https://code.google.com/p/word2vec/
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these features for sentence classification. By contrast, our M-MaxLSTM-CNN model
jointly applies CNN on all pre-trained word embeddings to learn a multi-aspect word
embedding. From this word representation, we encode sentences via the max-pooling and
LSTM. To learn the similarity/relation between two sentences, we employ Multi-level
comparison.

Figure 4.1: The proposed M-MaxLSTM-CNN model: (a) MaxLSTM-CNN encoder; (b)
Multi-level comparison.

4.4 Model description

Our model (shown in Figure 4.1) consists of three main components: i) learning a multi-
aspect word embedding (Section 4.3.1); ii) modeling sentences from this embedding (Sec-
tion 4.3.2); iii) measuring the similarity/relation between two sentences via Multi-level
comparison (section 4.3.3).

4.4.1 Multi-aspect word embedding

Given a word w, we transfer it into a word vector econcatw via K pre-trained word embed-
dings as follows:

econcatw = e1w ⊕ e2w ⊕ ...⊕ eKw (4.1)

where ⊕ is concatenation operator, eiw is the word embedding vector of w in the ith
pre-trained embedding.
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To learn a multi-aspect word embedding emultiw from the representation econcatw , we
design H convolutional filters. Each filter ri is denoted as a weight vector with the same
dimension as econcatw and a bias value bri . The emultiw is obtained by applying these filters
on the econcatw as follows:

eriw = σ(econcatw rTi + br1) (4.2)

emultiw = [er1w , e
r2
w , ..., e

rH
w ] (4.3)

where σ denotes a logistic sigmoid function.
The next section explains how to model a sentence from its multiple-aspect word

embeddings.

4.4.2 Sentence modeling

Given an input sentence s = [w1, w2, ..., wn], we obtain a sequence of multiple-aspect word
embeddings smulti = [emultiw1 , emultiw2 , ..., emultiwn

] using Eq. (1-3). For modeling the sentence
from the representation smulti, we use two schemes: max-pooling and LSTM.

Max-pooling scheme: To construct a max-pooling sentence embedding emaxs , the
most potential features are extracted from the representation smulti as follows:

emaxs [i] = max(emultiw1
[i], emultiw2

[i], ..., emultiwn
[i]) (4.4)

where emultiwk
[i] is the ith element of emultiwk

.
LSTM scheme: From Eq. (4.4), we find that the max-pooling scheme ignores the

property of word order. Therefore, we construct a LSTM sentence embedding elstms to
support the sentence embedding emaxs . The representation smulti is transformed to a fix-
length vector by recursively applying a LSTM unit to each input emultiwt

and the previous
step ht−1. At each time step t, the LSTM unit with l-memory dimension defines six
vectors in Rl: input gate it, forget gate ft, output gate ot, tanh layer ut, memory cell ct
and hidden state ht as follows (from Tai et al. [2015a]):

it = σ(Wie
multi
wt

+ Uiht−1 + bi) (4.5)

ft = σ(Wfe
multi
wt

+ Ufht−1 + bf ) (4.6)

ot = σ(Woe
multi
wt

+ Uoht−1 + bo) (4.7)

ut = tanh(Wue
multi
wt

+ Uuht−1 + bu) (4.8)

ct = ft � ct−1 + it � ut (4.9)

ht = ot � tanh(ct) (4.10)

elstms = hn (4.11)

where σ,� respectively denote a logistic sigmoid function and element-wise multiplication;
Wi, Ui, bi are respectively two weights matrices and a bias vector for input gate i. The
denotation is similar to forget gate f , output gate o, tanh layer u, memory cell c and
hidden state h.

Finally, the sentence embedding es is obtained by concatenating the two sentence
embeddings emaxs and elstms :

es = emaxs ⊕ elstms (4.12)
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4.4.3 Multi-level comparison

In this section, we describe the process for evaluating the similarity/relation between two
sentences. We compare two sentences via three levels: word-word, sentence-sentence, and
word-sentence.

Word-word comparison

Given two input sentences s1 and s2, we encode them into two sequences of multi-aspect
word embeddings smulti1 and smulti2 (Section 4.3.2). We then compute a word-word simi-
larity vector simword as follows:

Aij =
smulti1 [i] · smulti2 [j]∥∥smulti1 [i]

∥∥∥∥smulti2 [j]
∥∥ (4.13)

simword = σ(Wwordg(A) + bword) (4.14)

where smultit [i] is the ith multi-aspect word embedding of sentence st; g() is a function
to flatten a matrix into a vector; and Wword and bword are a weight matrix and a bias
parameter, respectively.

Sentence-sentence comparison

Given two input sentences s1 and s2, we encode them into two sentence embeddings es1
and es2 (Section 4.3.1 and 4.3.2). To compute the similarity/relation between the two
embeddings, we introduce four comparison metrics:

Cosine similarity:

dcosine =
es1 · es1
‖es1‖ ‖es2‖

(4.15)

Multiplication vector & Absolute difference:

dmul = es1 � es2 (4.16)

dabs = |es1 − es2| (4.17)

where � is element-wise multiplication.
Neural difference:

x = es1 ⊕ es2 (4.18)

dneu = W neux+ bneu (4.19)

where W neu and bneu are respectively a weight matrix and a bias parameter.
As a result, we have a sentence-sentence similarity vector simsent as follows:

dsent = dcosine ⊕ dmul ⊕ dabs ⊕ dneu (4.20)

simsent = σ(W sentdsent + bsent) (4.21)

where W sent and bsent are respectively a weight matrix and a bias parameter.
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Word-sentence comparison

Given a sentence embedding es1 and a sequence of multi-aspect word embeddings smulti2 ,
we compute a word-sentence similarity matrix simws

s1
as follows:

ewss1 [i] = es1 ⊕ smulti2 [i] (4.22)

simws
s1

[i] = σ(Wwsewss1 [i] + bws) (4.23)

where smulti2 [i] is the multi-aspect word embedding of the ith word in sentence s2; W
ws

and bws are respectively a weight matrix and a bias parameter.
As a result, we have a word-sentence similarity vector simws for the two sentences as

follows:
simws = σ(Wws′ [g(simws

s1
)⊕ g(simws

s2
)] + bws

′
) (4.24)

where g() is a function to flatten a matrix into a vector; Wws′ and bws
′

are respectively a
weight matrix and a bias parameter.

Finally, we compute a target score/label of a sentence pair as follows:

sim = simword ⊕ simsent ⊕ simws (4.25)

hs = σ(W l1sim+ bl1) (4.26)

ŷ = softmax(W l2hs + bl2) (4.27)

where W l1, W l2, bl1 and bl2 are model parameters; ŷ is a predicted target score/label.

4.5 Tasks & Datasets

We evaluate our model on three tasks:

• Textual entailment recognition: given a pair of sentences, we predict a direc-
tional relation between the sentences (entailment/contradiction/neutral). We eval-
uate this task on SICK dataset. It was collected for the 2014 SemEval competition
and includes examples of the lexical, syntactic and semantic phenomena and ignores
other aspects of existing sentential datasets (i.e., idiomatic multiword expressions,
named entities, telegraphic language).

• Semantic textual similarity: given a pair of sentences, we measure a semantic
similarity score of this pair. We use two datasets for this task:

– STSB: comprises a careful selection of the English data sets used in SemEval
and *SEM STS shared tasks from 2012 to 2017. This dataset cover three
genres: image captions, news headlines, and user forums. Each sentence pair
is annotated with a relatedness score ∈ [0, 5].

– SICK: Each sentence pair is annotated with a relatedness score ∈ [1, 5].

• Paraphrase identification: given a pair of sentences, we predict a binary label in-
dicating whether the two sentences are paraphrases. Microsoft Research Paraphrase
Corpus (MRPC) is used for this task. It includes pairs of sentences extracted from
news source on the web.

Table 4.1 shows the statistic of the three datasets. Because of not dealing with name
entities and multi-word idioms, the vocabulary size of SICK is quite small compared to
the others.
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Table 4.1: Statistic of datasets. |V |, l denote the vocabulary size, and the average length
of sentences respectively.

Dataset Train Validation Test l |V |
STSB 5,749 1,500 1,379 11 15,997

SICK 4,500 500 4,927 9 2,312

MRPC 3,576 500 1,725 21 18,003

4.6 Experimental setting

4.6.1 Pre-trained word embeddings

We study five pre-trained word embeddings2 for our model:

• word2vec is trained on Google News dataset (100 billion tokens). The model
contains 300-dimensional vectors for 3 million words and phrases.

• fastText is learned via skip-gram with subword information on Wikipedia text.
The embedding representations in fastText are 300-dimensional vectors.

• GloVe is a 300-dimensional word embedding model learned on aggregated global
word-word co-occurrence statistics from Common Crawl (840 billion tokens).

• Baroni uses a context-predict approach to learn a 400-dimensional semantic em-
bedding model. It is trained on 2.8 billion tokens constructed from ukWaC, the
English Wikipedia and the British National Corpus.

• SL999 is trained under the skip-gram objective with negative sampling on word
pairs from the paraphrase database PPDB. This 300-dimensional embedding model
is tuned on SimLex-999 dataset [Hill et al., 2016].

4.6.2 Model configuration

In all of the tasks, we used the same model configuration as follows:

• Convolutional filters: we used 1600 filters. It is also the dimension of the word
embedding concatenated from the five pre-trained word embeddings.

• LSTM dimension: we also selected 1600 for LSTM dimension.

• Neural similarity layers: the dimension of bword, bsent, bws and bws
′

are respectively
50, 5, 5 and 100.

• Penultimate fully-connected layer: has the dimension of 250 and is followed by a
drop-out layer (p = 0.5).

We conducted a grid search on 30% of STSB dataset to select these optimal hyper-
parameters.

2These embeddings are available at anonymous

47



4.7. EXPERIMENTS AND DISCUSSION

4.6.3 Training Setting

Textual entailment recognition & Paraphrase identification

In these tasks, we use the cross-entropy objective function and employ AdaDelta as the
stochastic gradient descent (SGD) update rule with mini-batch size as 30. Details of
Adadelta method can be found in Zeiler [2012]. During the training phase, the pre-trained
word embeddings are fixed.

Semantic Textual Similarity

To compute a similarity score of a sentence pair in the range [1, K], where K is an integer,
we replace Eq. (27) with the equations in Tai et al. [2015a] as follows:

p̂θ = softmax(W l2hs + bl2) (4.28)

ŷ = rT p̂θ (4.29)

where W l1, W l2, bl1 and bl2 are parameters; rT = [1, 2, ..., K]; ŷ is a predicted similarity
score.

A sparse target distribution p which satisfies y = rTp is computed as:

pi =


y − byc , i = byc+ 1
byc − y + 1, i = byc

0 otherwise
(4.30)

for i ∈ [1, K], and y is the similarity score.
To train the model, we minimize the regularized KL-divergence between p and p̂θ:

J(θ) =
1

m

m∑
k=1

KL(p(k)||p̂(k)θ ) (4.31)

where m is the number of training pairs and θ denotes the model parameters. The
gradient descent optimization Adadelta is used to learn the model parameters. We also
use mini-batch size as 30 and keep the pre-trained word embeddings fixed during the
training phase. We evaluate our models through Pearson correlation r.

4.7 Experiments and Discussion

This section describes two experiments: i) compare our model against recent systems; ii)
evaluate the efficiency of using multiple pre-trained word embeddings.

4.7.1 Overall evaluation

Besides existing methods, we also compare our model with several sentence modeling
approaches using multiple pre-trained word embeddings:

• Word Average:

es =
1

n

n∑
i=1

econcatwi
(4.32)
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Table 4.2: Test set results with Pearson’s r score×100 for STS tasks, and accuracy for
other tasks. Boldface values show the highest scores in each dataset. SICK-R and SICK-E
denote the STS task and the entailment task in SICK dataset respectively.

Method STSB SICK-R SICK-E MRPC

Ensemble models/Feature engineering

DT TEAM [Maharjan et al., 2017] 79.2 - - -

ECNU [Tian et al., 2017] 81 - - -

BIT [Wu et al., 2017] 80.9 - - -

TF-KLD [Ji and Eisenstein, 2013] - - - 80.41/85.96

Neural representation models (NNM) with one embedding

Multi-Perspective CNN [He et al., 2015] - 86.86 - 78.6/84.73

InferSent [Conneau et al., 2017b] 75.8 88.4 86.1 76.2/83.1

GRAN [Wieting and Gimpel, 2017] 76.4 86 - -

Paragram-Phrase [Wieting et al., 2016a] 73.2 86.84 85.3 -

HCTI [Shao, 2017] 78.4 - - -

NNM with the five embeddings using sentence-sentence comparison (S)

S-Word Average 71.06 81.18 80.88 71.48/81.1

S-Project Average 75.12 86.53 85.12 75.48/82.47

S-LSTM 77.14 85.15 85.6 70.43/79.71

S-Max-CNN 81.87 88.3 84.33 76.35/83.75

S-MaxLSTM-CNN 82.2 88.47 84.9 77.91/84.31

NNM with the five embeddings using Multi-level comparison (M)

M-Max-CNN 82.11 88.45 84.7 76.75/83.64

M-MaxLSTM-CNN 82.45 88.76 84.95 78.1/84.5

where es is the sentence embedding of a n-words sentence, and econcatwi
is from Eq.

(1)

• Project Average:

es = σ(W (
1

n

n∑
i=1

econcatwi
) + b) (4.33)

where W is a 1600× 1600 weight matrix, and b is a 1600 bias vector.

• LSTM: apply Eq. (5-11) on econcatwi
to construct the 1600-dimension es sentence

embedding.

• Max-CNN: apply Eq. (2-4) on econcatwi
to construct the 1600-dimension es sentence

embedding.

We report the results of these methods in Table 4.2. Overall, our M-MaxLSTM-
CNN shows competitive performances in these tasks. Especially in the STS task, M-
MaxLSTM-CNN outperforms the state-of-the-art methods on the two datasets. Because
STSB includes complicated samples compared to SICK, the performances of methods
on STSB are quite lower. In STSB, the prior top performance methods use ensemble
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approaches mixing hand-crafted features (word alignment, syntactic features, N-gram
overlaps) and neural sentence representations, while our approach is only based on a neural
sentence modeling architecture. In addition, we observed that InferSent shows the strong
performance on SICK-R but quite low on STSB while our model consistently obtains the
strong performances on both of the datasets. InferSent uses transfer knowledge on textual
entailment data, consequently it obtains the strong performance on this entailment task.

According to Wieting et al. [2016a], using Word Average as the compositional archi-
tecture outperforms the other architectures (e.g., Project Average, LSTM) for STS tasks.
In a multiple word embeddings setting, however, Word Average does not show its effi-
ciency. Each word embedding model has its own architecture as well as objective function.
These factors make the vector spaces of word embeddings are different. Therefore, we
intuitively need a step to learn or refine a representation from a set of pre-trained word
embeddings rather than only averaging them. Because Project Average model, LSTM
model, and Max-CNN model have their parameters for learning sentence embeddings,
they significantly outperform Word Average model.

Table 4.3: Evaluation of exploiting multiple pre-trained word embeddings. |V |avai is
the proportion of vocabulary available in a word embedding. In case of using all word
embeddings, |V |avai denotes the proportion of vocabulary where each word is available in
at least one word embedding.

Word embedding
STSB SICK-R & SICK-E MRPC

Pearson |V |avai(%) Pearson Acc |V |avai(%) Acc/F1 |V |avai(%)

word2Vec 78.9 75.64 87.27 84.09 98.53 75.42/82.13 67.81

fastText 79.95 84.27 87.59 83.42 99.18 74.31/81.75 79.04

Glove 80.1 91.71 88.21 84.71 99.78 74.9/82.782 89.85

SL999 80.31 94.76 87.26 84.55 99.83 76.46/83.13 94.19

Baroni 79.81 90.54 86.9 83.99 98.83 74.84/82.4 87.92

Glove+SL999 81.14 95.07 88.28 84.45 99.83 76.17/83.01 94.29

Glove+SL999+fastText 81.73 95.45 88.38 84.91 99.83 76.46/83.22 94.83

Glove+SL999+fastText+Baroni 82.16 95.65 88.74 84.94 99.83 76.63/82.99 95.06

All 82.45 95.65 88.76 84.95 99.83 78.1/84.5 95.97

We observed that MaxLSTM-CNN outperforms Max-CNN in both of the settings
(i.e., sentence-sentence comparison, Multi-level comparison). As mentioned in Section 4.1,
Max-CNN ignores the property of word order. Therefore, our model achieves improvement
compared to Max-CNN by additionally employing LSTM for capturing this property.

We only applied Multi-level comparison on Max-CNN and MaxLSTM-CNN because
these encoders generate multi-aspect word embeddings. The experimental results prove
the efficiency of using Multi-level comparison. In the textual entailment dataset SICK-E,
the task mainly focuses on interpreting the meaning of a whole sentence pair rather than
comparing word by word. Therefore, the performance of Multi-level comparison is quite
similar to sentence-sentence comparison in the SICK-E task. This is also the reason why
LSTM, which captures global relationships in sentences, has strong performance in this
task. In Section 4.6.3, we provide a deeper analysis explaining why LSTM’s performance
is better than our model’s in SICK-E.

50



4.7. EXPERIMENTS AND DISCUSSION

4.7.2 Evaluation of exploiting multiple pre-trained word embed-
dings

In this section, we evaluate the efficiency of using multiple pre-trained word embeddings.
We compare our multiple pre-trained word embeddings model against models using only
one pre-trained word embedding. The same objective function and Multi-level compar-
ison are applied to these models. In case of using one pre-trained word embedding, the
dimension of LSTM and the number of convolutional filters are set to the length of the
corresponding word embedding. Table 4.3 shows the experimental results of this compari-
son. Because the approach using five word embeddings outperforms the approaches using
two, three, or four word embeddings, we only report the performance of using five word
embeddings. We also report |V |avai which is the proportion of vocabulary available in
a pre-trained word embedding. SICK dataset ignores idiomatic multi-word expressions,
and named entities, consequently the |V |avai of SICK is quite high.

We observed that no word embedding has strong results on all the tasks. Although
trained on the paraphrase database and having the highest |V |avai, the SL999 embedding
could not outperform the Glove embedding in SICK-R. HCTI [Shao, 2017], which is the
current state-of-the-art in the group of neural representation models on STSB, also used
the Glove embedding. However, the performance of HTCI in STSB (78.4) is lower than
our model using the Glove embedding. In SICK-R, InferSent [Conneau et al., 2017b]
achieves a strong performance (88.4) using the Glove embedding with transfer knowledge,
while our model with only the Glove embedding achieves a performance close to the
performance of InferSent. These results confirm the efficiency of Multi-level comparison.

In STSB and MRPC, as employing the five pre-trained embeddings, the |V |avai is
increased. This factor limits the number of random values when initializing word em-
bedding representations because a word out of a pre-trained word embedding is assigned
a random word embedding representation. In other words, a word out of a pre-trained
word embedding is assigned a random semantic meaning. Therefore, the increase of the
|V |avai improves the performance of measuring textual similarity. In STSB and MRPC,
our multiple pre-trained word embedding achieves a significant improvement in perfor-
mance compared against using one word embedding. In SICK-R and SICK-E, although
the |V |avai is not increased when employing five pre-trained embeddings, the performance
of our model is improved. This fact shows that our model learned an efficient word
embedding via these pre-trained word embeddings.

4.7.3 Quality analysis

We manually inspect some samples to analysis the advantages and disadvantages of our
model (listed in Table 4.4). To answer sample #1, our multi-word embeddings model
well evaluates the sharing meaning between words (man∼person and horse∼animal)
compared to single-word embedding models. This capability is a fundamental requirement
for STS tasks. However, totally basing on this measurement is not enough for textual
entailment tasks. As in sample #2, the rule from sample #1 could not be applied (i.e.,
people and spectator are not interchange in the context of sample #2). The degree of word
similarity has to consider contextual information. A Context-based similarity evaluator
is a promising approach for textual entailment tasks. That is the reason why LSTM
focusing on comparing the whole context meanings rather than each word has a strong
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Table 4.4: Some typical samples for quality analysis.

No Sentence pair Proposed True

1
a man is riding a horse

Entailment Entailment
the person is riding the animal

2
two spectators are kickboxing and some people are
watching

Entailment Neutral

two people are kickboxing and spectators are watch-
ing

3
microwave would be your best bet.

2.8 0
your best bet is research.

4
it ’s not a good idea.

3.9 1
it ’s not just a good idea, it ’s an excellent idea.

5

“ this is america, my friends, and it should not hap-
pen here, ” he said to loud applause.

Paraphrase Not paraphrase
“ this is america, my friends, and it should not hap-
pen here. ”

6

the victims were last seen at church last sunday ;
their bodies were discovered tuesday .

Not paraphrase Paraphrase
the family was last seen july 6 and their bodies were
found tuesday .

performance in this task.
In sample #3 and #4, we observed these two pairs share some phrases (e.g., your best

bet, a good idea). Although having the same phrases, these pairs are manually assigned
low similarity scores by human, which contradicts our model. In these samples, each word
or phrase contributes to its sentence at different degrees. For example, “microwave” and
“research” are more important than “your best bet”. The word ”just” usually does not
contribute so much to its sentence meaning. However, in sample #4, it changes the whole
meaning of the sentence. Therefore, the role or contribution of each word in a sentence
should be considered for evaluating sentence similarity or textual entailment.

Compared to STS tasks, Paraphrase identification has a little different rule which
requires a paraphrase sentence pair to share the same meaning and use different words,
phrases or forms. In sample #5, the sentence pair shares the form and almost words,
so they are not called paraphrases. As a result, similarity measurement models without
the constrain of using different forms, words fail to handle the cases as sample #5. In
addition, some cases require extra knowledge as sample #6. Without prior-knowledge, it
is hard to link “victims” to “family”. These challenges make the paraphrase task difficult.

4.8 Conclusion

In this work, we study an approach employing multiple pre-trained word embeddings
and Multi-level comparison for measuring semantic textual relation. The proposed M-
MaxLSTM-CNN architecture consistently obtains strong performances on several tasks.
Compared to the state-of-the art methods in STS tasks, our model does not require
handcrafted features (e.g., word alignment, syntactic features) as well as transfer learning
knowledge. In addition, it allows using several pre-trained word embeddings with different
dimensions.
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Future work could apply our multiple word embeddings approach for transfer learning
tasks. This strategy allows making use of pre-trained word embeddings as well as available
resources.
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Chapter 5

Aspect Similarity Recognition

5.1 Introduction

In natural language processing, there are many tasks measuring a relationship between
two sentences: semantic similarity, paraphrase identification and textual entailment recog-
nition. In this work, we propose a new task - Aspect Similarity Recognition (ASR) - for
measuring sentence similarity in term of aspects. Two sentences are identified as aspect
similar if they mention at least one aspect in common.

In Table 5.1, we introduce some examples for this task. The first sentence of sample
#1 mentions the aspect of performance while the second sentence mentions the aspects of
performance and design. Therefore, this sentence pair shares the aspect of performance.
In sample #2, there is no aspect in common between the two sentences where the first
is about food and the second is about location. Through sample #3, we could find out
how the ASR task is different from the semantic similarity task. The two sentences
mention food but the semantic meanings of these two sentences are different. Compared
to the aspect category classification task (ACC), which identifies aspects expressed in each
sentence, the aspect similarity recognition task learns patterns and terms between two
sentences for identifying aspect similarity. In other words, the ACC task learns patterns
and terms directly belonging to some particular aspects, while the ASR task learns the
aspect similarity of patterns and terms between two sentences without directly using
the information of aspects. Therefore, the ASR approach is promising for cross-domain
application, where models are trained in a domain and applied to other domains. The
ASR task has a high demand in review summarization, which requires a summarized
review to be short, accurate, fluent and to cover all aspects of its original reviews.

The ASR task is challenging because of the diversity of linguistic expression. For
example, different lexicons and syntaxes could be used to express the same aspect or
topic. In addition, one sentence could carry one or many aspects. This fact makes
measuring aspect similarity more difficult. According to our knowledge, there has been
no research for this task. One reason is that a training corpus is not available so far.

The main contributions of this work are as follows:

• Propose a new task - Aspect Similarity Recognition task and build an Aspect Sim-
ilarity Recognition corpus (ASRcorpus) with two domains (e.g., restaurants and
laptops) which is constructed from the SemEval 2016 Aspect Category Detection
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Table 5.1: Some samples of Aspect Similarity Recognition

No. Sentence Aspect Similarity

1
The Dell runs so fast.

Yes
I like its performance and design.

2
The food is great.

No
The restaurant’s location is good.

3
I love its food.

Yes
I bought pizza from the restaurant yesterday.

dataset1.

• Design and analysis some conventional deep learning models for this task under
in-domain and cross-domain setting.

• Propose an attention-cell LSTM model (ACLSTM) for ASR which enhances the
LSTM model via employing attention signals into the input gate and the memory
cell. ACLSTM shows improvements compared to the conventional attention models
for both settings of in-domain and cross-domain.

The remainder of this paper is organized as follows: Section 2 reviews the related
research, Section 3 introduces our model, Section 4 describes the procedure of constructing
the dataset, Section 5 describes the experimental setting and discusses the results of the
experiments, and Section 6 concludes our work and future work.

5.2 Related work

In this section, we firstly review some recent approaches for aspect category classification,
then discuss some researches on measuring a relationship between two sentences.

5.2.1 Aspect Category Classification

Zhou et al. [2015] propose a semi-supervised embedding learning along with a hybrid fea-
ture extraction approach for aspect recognition. This model captures semantic relations
between word-word, word-aspect and sentiment word-aspect in a unified framework. Toh
and Su [2016] introduce an ensemble approach with handcrafted features (i.e., word, head
word, name list, word embedding, word cluster) and convolutional features. This proposed
model achieves the best performance in SemEval-2016 for aspect category classification.
Xue et al. [2017] design a multi-task model based on neural networks. By using BiL-
STM and CNN to encode sentences, the model classifies aspect categories and extracts
aspect terms simultaneously. He et al. [2017a] employ an attention model (ABAE) to
de-emphasize irrelevant words and improve the coherence of aspects. By learning word

1http://alt.qcri.org/semeval2016/task5/index.php?id=data-and-tools
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co-occurrence patterns, ABAE discovers more meaningful and coherent aspects. However,
these approaches explicitly use aspect information for training. Therefore, the application
on cross-domain setting is limited.

5.2.2 Sentence Relationship Measurement

For modeling sentences, Tai et al. [2015a] extend LSTM with a Dependency Tree-Structured
architecture. This model works more efficiently in semantic textual similarity tasks com-
pared to the linear LSTM. There are some researches applying successfully Convolutional
Neural Network (CNN) for semantic composition [Kalchbrenner et al., 2014b, Huy Tien
and Minh Le, 2017, Shao, 2017]. This technique uses convolutional filters to capture
local dependencies in context windows and applies pooling layers to extract global fea-
tures. He et al. [2015] learn multi-level granularity features via CNN. The author then
compares sentence representations via multiple similarity metrics at several granulari-
ties. Gan et al. [2017] introduce a hierarchical CNN-LSTM model. In this approach, a
continuous representation is generated via CNN, and LSTM is used as a decoder. Con-
neau et al. [2017b] employ textual entailment transfer learning to encode sentences. This
BiLSTM-Maxpooling network achieves competitive results on a wide range of transfer
tasks. Tien et al. [2018] propose an M-MaxLSTM-CNN to encode sentences via multi-
word embeddings. The author also proposes multiple comparisons to measure sentence
relations.

Figure 5.1: The proposed framework for the aspect similarity task

In the SemEval-2017 semantic textual similarity task, ensemble approaches achieve
strong results. Wu et al. [2017] train a linear regression model with WordNet, align-
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ment features and the word embedding word2vec2. Tian et al. [2017] develop a hybrid
model with multiple boosting techniques (i.e., Random Forest, Gradient Boosting, and
XGBoost). This model incorporates conventional features (i.e., n-gram overlaps, syntac-
tic features, alignment features, bag-of-words) and sentence embedding techniques (i.e.,
Averaging Word Vectors, Projecting Averaging Word Vectors, LSTM).

In this work, we propose a task to measure aspect similarity between two sentences.
To the best of our knowledge, this is the first work doing research on this task.

5.3 Methodology

The proposed model of measuring aspect similarity contains three parts: i) Sentence
modeling; ii) Sentence comparison; and iii) Aspect similarity transferring. Figure 5.1
shows an overview of our model.

5.3.1 Sentence modeling

For this part, we describe the four sentence embeddings models: Word Average, CNN,
LSTM, and BiLSTM.

Word Average[Wieting et al., 2016a]: By representing a word wi by a pre-trained
word embedding ewi

, we construct a sentence S of n words as a sequence of n word
embeddings S = [ew1 , ew2 , ..., ewn ]. The sentence embedding esis obtained via the following
equation:

es =
1

n

n∑
i=1

ewi
(5.1)

Convolutional neural network (CNN)[Kim, 2014]: A sentence S could be consid-
ered as a matrix d × s, where each row is a d-dimension word embedding vector of each
word. CNN performs convolution operator on this sentence matrix S via linear filters.
A filter is represented as a weight matrix W of length d and region size h. W will have
d × h parameters to be learned. For an input matrix S ∈ Rd×s, a feature map vector
O = [oo, o1, ..., os−h] ∈ Rs−h+1 of the convolution operator with a filter W is obtained by
applying repeatedly W to sub-matrices of S:

oi = W · Si:i+h−1 (5.2)

where i = 0, 1, 2, ..., s−h, (·) is dot product operation and Si:j is the sub-matrix of S from
row i to j.

A pooling layer is applied to each feature map O to capture potential features. The
common strategy is 1-max pooling [Boureau et al., 2010]. The idea of 1-max pooling is
to extract the most important feature v corresponding to the particular feature map by
selecting the highest value of that feature map:

v = max
0≤i≤s−h

{oi} (5.3)

We have described in detail the process of one filter. In our model, we apply multiple
filters with variant region sizes to obtain multiple 1-max pooling values. After pooling,

2https://code.google.com/p/word2vec/
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these 1-max pooling values from feature maps are concatenated into a sentence embedding
es.

Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997]: By em-
ploying a memory cell, LSTM has the ability to capture efficiently long distance depen-
dencies of sequential data without suffering the exploding or vanishing gradient problem
of Recurrent neural network [Goller and Kuchler, 1996].

A sentence s is transformed to a fix-length vector es by recursively applying a LSTM
unit to each word embedding ewt and the previous step ht−1. At each time step t, the
LSTM unit with l-memory dimension defines six vectors in Rl: input gate it, forget gate
ft, output gate ot, tanh layer ut, memory cell ct and hidden state ht as follows (from Tai
et al. [2015a]):

it = σ(Wiewt + Uiht−1 + bi) (5.4)

ft = σ(Wfewt + Ufht−1 + bf ) (5.5)

ot = σ(Woewt + Uoht−1 + bo) (5.6)

ut = tanh(Wuewt + Uuht−1 + bu) (5.7)

ct = ft � ct−1 + it � ut (5.8)

ht = ot � tanh(ct) (5.9)

es = hn (5.10)

where σ,� respectively denote a logistic sigmoid function and element-wise multiplication;
Wi, Ui, bi are respectively two weights matrices and a bias vector for input gate i. The
denotation is similar to forget gate f , output gate o, tanh layer u, memory cell c and
hidden state h.

Bi-directional LSTM (BiLSTM): According to the LSTM’s equations, the hidden
state ht only employs information of the left context, and does not take the right context
into account. To handle this weakness, Dyer et al. [2015] have designed Bi-directional
LSTM (BiLSTM) which captures both the left and right context. BiLSTM contains two
separate LSTM units, one for forward direction and one for backward direction. Two
hidden states hfordwardt and hbackwardt from these LSTM units are concatenated into a final
hidden state hbilstmt :

hbilstmt = hforwardt ⊕ hbackwardt (5.11)

es = hbilstmn (5.12)

where ⊕ is concatenation operator.
Attention cell LSTM To enhance recurrent neural networks, we aim to emphasize

salient words as encoding sentences over LSTM. A straightforward approach is to learn
attention signals by self-attention and then apply these signals into inputs before feeding
them into LSTM. In other words, these attention signals are applied to all gates of an
LSTM cell. However, we assume emphasized input makes the cell forget more information
on the previous state (the forget gate’s function) while this state stores the most salient
information by the support of attention signals. This conflict causes the inefficiency of
integrating attention signals with LSTM. Therefore, we propose a novel LSTM cell which
prevents the state from forgetting too much salient information as employing attention
signals for encoding sentences. For the ASR task, the proposed attention-cell LSTM
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Figure 5.2: The proposed attention cell LSTM

outperforms the conventional LSTM with/out using attention in both of settings: in-
domain and cross-domain.

By representing a word wi by a pre-trained word embedding ewi
, we construct a sen-

tence S of n words as a sequence of n word embeddings S = [ew1 , ew2 , ..., ewn ]. Contextual
information is incorporated in the word embeddings over the bidirectional GRU [Bah-
danau et al., 2014] and then the self-attention signal ai of wi is learned as follows (from
Yang et al. [2016]):

←−
hi =

←−−−
GRU(ewi

) (5.13)
−→
hi =

−−−→
GRU(ewi

) (5.14)

hi =
←−
hi ⊕

−→
hi (5.15)

ui = tanh(Wahi + ba) (5.16)

ai =
exp(uTi ua)∑
i

exp(uTi ua)
(5.17)

ēwi
= ew1ai (5.18)

where ⊕ is concatenation operator, wa, ba, ua are respectively a weight matrix, a bias,
and a context vector. These parameters are randomly initialized and optimized during
training.

A sentence s is transformed to a fix-length vector es by recursively applying a LSTM
cell to each word embedding ewt and the previous step ht−1. At each time step t, the
LSTM unit with l-memory dimension defines six vectors in Rl: input gate it, forget gate
ft, output gate ot, tanh layer ut, memory cell ct and hidden state ht [Tai et al., 2015a].
We modify the conventional LSTM cell to employ attention signals without the conflict
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of remembering and forgetting as follows:

it = σ(Wiēwt + Uiht−1 + bi) (5.19)

ft = σ(Wfewt + Ufht−1 + bf ) (5.20)

ot = σ(Woewt + Uoht−1 + bo) (5.21)

ut = tanh(Wuēwt + Uuht−1 + bu) (5.22)

ct = ft � ct−1 + it � ut (5.23)

ht = ot � tanh(ct) (5.24)

es = hn (5.25)

where σ,� respectively denote a logistic sigmoid function and element-wise multiplication;
Wi, Ui, bi are respectively two weights matrices and a bias vector for input gate i. The
denotation is similar to forget gate f , output gate o, tanh layer u, memory cell c and
hidden state h. In the attention-cell LSTM, we introduce the attention signal at to
only the input gate it and the tanh layer ut, which are in charge of deciding what new
information is going to be stored in the cell state. This approach allows the LSTM cell
to employ attention for remembering salient information and avoid the unexpected effect
of attention on the forget gate. We visualize how the attention-cell LSTM manipulates
attention signals in Figure 5.2.

5.3.2 Sentence comparison

After encoding two input sentences s1 and s2 into two sentence embeddings es1 and es2
(Section 5.3.1), we compute the aspect relation between the two embeddings via the
following comparison metrics:

Cosine similarity:

dcosine =
es1 · es1
‖es1‖ ‖es2‖

(5.26)

Multiplication vector & Absolute difference:

dmul = es1 � es2 (5.27)

dabs = |es1 − es2| (5.28)

where � is element-wise multiplication.
Neural difference:

x = es1 ⊕ es2 (5.29)

dneu = W neux+ bneu (5.30)

where W neu and bneu are respectively a weight matrix and a bias parameter.
As a result, we have a sentence-sentence similarity vector dsent as follows:

dsent = dcosine ⊕ dmul ⊕ dabs ⊕ dneu (5.31)

60



5.4. ASPECT SIMILARITY RECOGNITION DATASET

5.3.3 Aspect similarity transferring

The sentence-sentence similarity vector is transferred into an aspect similarity label y
through a two layers neural network as follows:

simsent = σ(W sentdsent + bsent) (5.32)

¯sim
sent

= dropout(simsent) (5.33)

ŷ = σ(W y ¯sim
sent

+ by) (5.34)

where W sent,W y, bsent, and by are weight matrices and bias parameters, respectively.
We apply the Dropout layer [Srivastava et al., 2014a] for our model. This technique

prevents networks from overfitting by randomly dropping out each hidden unit with a
probability p on each presentation of each training case. To train this model, we employ
the cross entropy loss function and AdaDelta as the stochastic gradient descent (SGD)
update rule. Details of Adadelta method can be found in [Zeiler, 2012]. During the
training phase, the pre-trained word embeddings are fixed.

Table 5.2: Statistic of ASRCorpus

RESTAURANT LAPTOP

Train Dev Test Train Dev Test

Sentences 1,239 469 587 1,657 382 573

Sentence pairs 458,676 68,778 98,066 447,506 26,270 44,560

Similarity 229,338 34,389 49,033 223,753 13,135 22,280

Not similarity 229,338 34,389 49,033 223,753 13,135 22,280

Vocabulary 3,769 3,649

5.4 Aspect Similarity Recognition Dataset

To construct the dataset ASRcorpus for ASR, we employ the Aspect-Based Sentiment
dataset from SemEval-2016. In the SemEval dataset, each sentence is labeled with one
or some category-opinion pairs. The reason for selecting this dataset is that aspect an-
notation is much specific. For example, the sentence in Figure 5.3 mentions the four as-
pects (i.e., FOOD#QUALITY, RESTAURANT#PRICES, FOOD#STYLE OPTIONS,
and FOOD#PRICES) and the four polarities are assigned to these aspects.

In Table 5.2, we report the statistic of ASRCorpus in details. The procedure of
constructing ASRCorpus is followed as:

1. For each domain, we construct pairs of sentences from the Semeval-2016 dataset.

2. For each pair: if the two sentences share one or some categories, this pair is an-
notated as aspect similarity (label = 1). Otherwise, it is not aspect similarity
(label = 0).
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Figure 5.3: A sentence in the Aspect-Based Sentiment dataset from SemEval-2016

3. Because the number of not aspect similarity pairs is much greater than aspect
similarity pairs, some of not aspect similarity pairs are randomly removed to make
these numbers equal.

Table 5.3: Hyper-parameters setting on both of domains: RESTAURANT and LAPTOP

Hyper-parameter Value

Sentence embedding CNN\LSTM\BiLSTM 300 \ 300 \ 600

BiGRU attention dimension 300

tanh attention dimension 300

Neural difference dimension 5

Penultimate layer simsent dimension 250

Dropout p 0.5

Batch size 60

5.5 Experiment

5.5.1 Experimental Setting

To tune hyper-parameters of the four models, we do a grid search on 30% of LAPTOP
domain. As a result, we obtain these hyper-parameters listed in Table 5.3. We employ
Glove word embedding3 to encode words. For CNN, we used 3 region sizes of 3, 4, 5; the
number of each region size is 100.

3https://nlp.stanford.edu/projects/glove/
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Table 5.4: The in-domain and cross-domain experimental results on the two domains:
RESTAURANT and LAPTOP. ”→Y” denotes that models are tested on Y but trained on
the other. Accuracy metric is used for evaluation. The results are statistically significant
at p < 0.05 via the pairwise t-test.

Method RES LAP →RES →LAP

Word Average 70.75 65.12 54.5 54.59

CNN 77.57 67.23 54.08 54.49

LSTM 79.4 70.21 59.1 57.59

BiLSTM 79.2 71.14 59.2 57.95

Attention 78.79 68 57.92 54.55

LSTM-attention 50 50 50 50

ACLSTM-AspectReg 73 65 - -

Attention-Cell LSTM 80 72.73 59.77 58.1

Attention-Cell BiLSTM 79.42 71.65 59.3 58

5.5.2 Results & discussion

We compare our model to some strong baselines as well as the conventional recurrent net-
works using attention. In addition, we also compare with a two-steps approach (ACLSTM-
AspectReg): extract aspects from a sentences via an Attention-Cell LSTM model, then
identify the aspect similarity between two sentences via their extracted aspects. The F1
scores of ACLSTM-AspectReg in the aspects extraction task for RES and LAP are re-
spectively 70 and 47. Table 5.4 shows the results of our experiments. According to the
results, the recurrent neural networks (i.e., LSTM and BiLSTM) obtain strong perfor-
mances. The RESTAURANT domain is quite simpler than the LAPTOP domain where
the number of categories is large. Consequently, the performances of LSTM and BiLSTM
are similar in the RESTAURANT domain while BiLSTM shows a large improvement
compared to LSTM in the LAPTOP domain. By employing efficiently attention signals,
the attention-cell LSTM outperforms the conventional recurrent models using attention.
As we analysis in Section 4, applying attention to all gates of an LSTM cell causes the
conflict of remembering and forgetting. This drawback makes the training of the LSTM-
attention model inefficient. Consequently, the trained LSTM-attention model predicts the
same label for all inputs. According to the results of ACLSTM-AspectReg, our approach
considering aspects as latent variables works more efficiently in this task.

We also evaluate how the models perform in cross-domain setting where the models
are trained on one domain dataset and tested on the other. We reports these results in
Table 5.4. The cross-domain results are consistent with the in-domain results where the
recurrent neural networks outperform the others. We observe that CNN, which captures
the best features from sentences by filters, is better than Average Word in in-domain
setting but fails in cross-domain setting. These results also prove that these approaches
are potential for cross-domain application. We observe that a set of salient words in each
domain is different. Therefore, the support of attention signals in domain adaptation is
not significant compared to the recurrent models without attention.

To obtain deeper analysis, we inspect the attention-cell LSTM’s performance on each
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Table 5.5: The attention-cell LSTM’s performance on each class.

Domain Class Precision Recall F1

RES
Not Similarity 0.76 0.88 0.81

similarity 0.86 0.82 0.78

LAP
Not Similarity 0.68 0.87 0.76

similarity 0.82 0.59 0.68

→RES
Not Similarity 0.58 0.68 0.63

similarity 0.62 0.52 0.56

→LAP
Not Similarity 0.56 0.72 0.63

similarity 0.61 0.44 0.51

class (e.g., “similarity” and “not similarity”) by precision, recall and F1 scores reported
in Table 5.5. In both of the domains and settings, the model performs better on “not
similarity” class than “similarity” class in term of F1 score. According to the results in
cross-domain setting, we could conclude that the models learn rules, patterns for identi-
fying aspect similarity rather than remembering topic words and keywords in a particular
domain.

Table 5.6: Some error samples of the Attention-Cell LSTM

No. Sentence Aspect Similarity

1

I went there with some friends one
night to play bingo and watch the
sox game and it was a blast!

RESTAURANT#GENERAL

No

Everything I’ve had here is good,
taco salads, burritos, enchiladas i
love this place.

RESTAURANT#GENERAL

2
This is right up there with places
in Tokyo as far as the freshness is
concerned.

FOOD#QUALITY
No

There is only one place on the east
coast that has it all, plus a lot more.

RESTAURANT#GENERAL

3
Food was good and cheap. FOOD#QUALITY

Yes
The best Chuwam Mushi I have ever
had.

FOOD#QUALITY

4
Cannot even get to bios. LAPTOP#OP PERFORMANCE

Yes
Just a click and a BLACK
SCREEN.

LAPTOP#OP PERFORMANCE
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5.5.3 Error analysis

To evaluate the challenges of this task, we manually inspect some cases of the wrong
prediction by the Attention-Cell LSTM model, which are shown in table 5.6. These pairs
are typical examples of the Attention-Cell LSTM model’s weakness.

In Sample #1, the second sentence gives positive opinions toward lots of foods (i.e.,
taco salads, burritos, enchiladas) but its overall content is highlighted by the phrase “love
this place” (i.e., FOOD#QUALITY→RESTAURANT#GENERAL). This fact gives chal-
lenges to our model. Similarly, the word “freshness” modifies the aspect mentioned in
the latter sentence of Sample #2 although these sentences carry the word “place”. To
handle this problem, models need to pay more attention to polarity words (e.g., freshness,
overpriced) and make a connection between aspect terms and polarity words. Therefore,
an attention mechanism is promising to deal with this difficulty.

Another source of the wrong prediction comes from proper nouns. For example, the
word “Chuwam Mushi” refers to a Japanese food. Without this prior knowledge, it is hard
to answer Sample #3. In addition, terminology words (e.g., bios and back screen) also
make this task more challenge. The word “BLACK SCREEN” usually expresses a design
aspect but in the context of LAPTOP domain, it refers to an error in performance. To
tackle this problem, we could apply a preprocessing to replace proper nouns or terminology
words with more abstractive words (e.g., “Chuwam Mushi” → “food” and “BLACK
SCREEN”→“error”).

5.6 Conclusion

In this work, we propose a new task - Aspect Similarity Recognition for identifying whether
two sentences share some aspects. We also construct a dataset ASRcorpus from the
SemEval-2016 Aspect Sentiment Analysis dataset with two domains: RESTAURANT
and LAPTOP. To evaluate how the performances of supervised learning models, we com-
pare our proposed attention cell LSTM model to some strong baselines as well as the
conventional recurrent networks using attention for this task. Through the experimental
results, the proposed model which integrates efficiently attention signals into LSTM out-
performs the baselines on both settings of in-domain and cross-domain. In addition, the
cross-domain results show that these models are also applicable to cross-domain learning.
According to the error analysis, we identified some typical difficulties of this task. An
aspect-polarity attention with pre-processing is expected to handle these challenges.
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Chapter 6

Extractive Opinions Summarization

6.1 Introduction

In extractive opinions summarization, most existing approaches use the aspects infor-
mation for discarding potentially redundant units. For minimizing repeated information
on the same aspect, we only need to identify whether two text units have at least one
aspect in common, which is called Aspect Similarity Recognition - ASR [Nguyen et al.,
2018], rather than explicitly extracting aspects of each text unit. Follow this observation,
we propose an aspect-based summarization using ASR instead of aspect discovery. The
advantage of ASR is to learn patterns and relations between two text units and not need
to identify the aspects of each unit, therefore it is potential to cross-domain application.
Our contributions in this work are as follows:

• We introduce a novel aspect-based summarization using Aspect Similarity Recog-
nition. This approach relaxes the constraint of predefined aspects.

• According to the experiments, our method outperforms strong baselines on Opinosis
corpus. We also evaluate our method in regard to domain adaptation.

The remainder of this paper is organized as follows: Section 6.2 reviews the related
research, Section 6.3 describes the problem formulation, Section 6.4 introduces the pro-
posed summarization using ASR, Section 6.5 discusses the experiments for ASR and
summarization, and Section 6.6 concludes our work and future work.

6.2 Related work

In the scope of this paper, we focus on discussing neural-based systems for generic and
opinions summarization. For a comprehensive literature of non-neural techniques, we
refer the reader to Liu and Zhang [2012].

For extractive generic summarization, Cao et al. [2015] rank sentences in a parsing
tree via a recursive neural network. However, the model requires handcrafted features
as input. Cheng and Lapata [2016] propose an end-to-end model for extracting words
and sentences. In this system, a document is encoded via convolutional and recurrent
layers, then an attention architecture is employed to extract sentences and words. Follow
this work, Zhou et al. [2018] enhance the previous system by jointly learning to score
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and select sentences. By integrating sentence scoring and selecting into one phase, as the
model selects a sentence, the sentence is scored according to the partial output summary
and current extraction state.

To our knowledge, the first neural-based model of extractive opinions summarization
is proposed by K̊agebäck et al. [2014], which uses an unfolding recursive auto-encoder
to learn phrase embeddings and measures similarity by Cosine and Euclidean distance.
The limitation of this system is to purely rely on semantic similarity without taking into
account the aspect information. Yang et al. [2017] use the unsupervised neural attention-
based aspect autoencoder (ABAE) [He et al., 2017b] for presenting each aspect in an
aspect embedding space. Then, the representative sentence for each aspect is selected via
its distance with the centroid of that aspect. For summarization, however, ABAE is not
efficient compared to K-mean in the aspects which occur more frequently in the dataset.
Angelidis and Lapata [2018] introduce seed words of each domain to the autoencoder
ABAE. This weakly-supervised model which is trained under multi-task objective out-
performs the unsupervised model for aspect extraction. Different from the previous work
in aspect-based opinions summarization, we apply aspect similarity recognition (ASR)
instead of aspect extraction. ASR facilitates the problem of domain adaptation in sum-
marization.

6.3 Problem Formulation

Every product e contains a set of reviews Re = {rei , ..., ren} expressing users’ opinions on
that product. A review rei is viewed as a sequence of sentences (s1, ..., sm). For each
product e, our goal is to select the most salient sentences in reviews Re for producing a
summary. The proposed approach is divided into subtasks as follows:

1. Sentiment prediction determines the overall polarity ps ∈ [−1,+1] a sentence car-
ries, where −1,+1 respectively indicate maximally negative and positive. According
to Angelidis and Lapata [2018], highly positive or negative opinions are more likely
to contain informative text than neutral ones. In our system, we use the ensemble
sentiment classifier proposed in Chapter 2, which achieves strong performances at
sentence level.

2. Semantic textual similarity measures the semantic similarity qij of two sentences
i and j, which plays an important role in identifying the most informative sentences
as well as redundant ones. We use the multi-word embeddings and multi-level
comparison model proposed in Chapter 4 for this task.

3. Aspect similarity recognition (ASR) predicts a probability rij that two sen-
tences i and j shares at least one aspect. This subtask facilitates the elimination of
redundant text in summarization, especially for domain adaptation. The attention
cell LSTM proposed in Chapter 5 is applied for this task.

4. Summarization generation employs the three signals above for ranking sentences.
A concise and informative summary of a product e is generated by selecting the most
salient sentences from reviews Re.

Section 6.4 explains how to combine the polarity, semantic and aspect similarity to
produce a summary.
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6.4 Opinion Summarization

Given a product e, we aim to rank a set of sentences D = {si} from the reviews talking
about the product e. The procedure of scoring and selecting sentences for constructing
an opinion summary K of the product e is as follows:

1. In the first step t = 0, we score each sentence si ∈ D and select the most salient
sentence ŝ0 for the summary K:

aspt=0
si

=
1

|D|
∑
j∈D

rij (6.1)

simt=0
si

=
1

|D|
∑
j∈D

qij (6.2)

salt=0
si

= (1 + α|psi |) ∗ aspt=0
si
∗ simt=0

si
(6.3)

ŝ0 = arg max
si∈D
{salt=0

si
} (6.4)

Kt=1 = K ∪ {ŝ0} (6.5)

Dt=1 = D \ {ŝ0} (6.6)

At the step t = 0, the salient salsi is computed by the semantic similarity simsi , the
aspect coverage simsi and the polarity psi . Different from the previous works, we
also take into account the aspect coverage in which a sentence carrying more aspects
has a higher salient score. In addition, the polarity of a sentence contributes to its
ranking by a coefficient α ∈ [0, 1].

2. In the next step t, the salient sentence ŝt is selected as follows:

asptsi =
1

|Dt|
∑
j∈Dt

rij (6.7)

simt
si

=
1

|Dt|
∑
j∈Dt

qij (6.8)

¯sal
t=0
si

= (1 + α|psi |) ∗ asptsi ∗ sim
t
si

(6.9)

To avoid the redundant information, we penalize each sentence si by the aspect
similarity acovtsi and semantic similarity scovtsi of that sentence with the selected
sentences, in which β is a coefficient:

acovtsi =
1

|Kt|
∑
j∈Kt

rij (6.10)

scovtsi =
1

|Kt|
∑
j∈Kt

qij (6.11)

saltsi = ¯sal
t
si
− β ∗ acovtsi ∗ scov

t
si

(6.12)

ŝt = arg max
si∈Dt
{saltsi} (6.13)

Kt+1 = Kt ∪ {ŝt} (6.14)

Dt+1 = Dt \ {ŝt} (6.15)
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3. We repeat step 2 until the number of selected sentences is reached or the most salient
score at the current step t is lower than a threshold. To avoid missing topic words
in a summary, in step 1 and 2, we only select sentences containing words belonging
to the list of frequent words on that topic. According to our observation, the topic
words are the most frequent.

6.5 Experiments & Results

The Opinosis dataset [Ganesan et al., 2010] includes user reviews of 51 different topics
(e.g., hotel, car, product). Each topic includes between 50 and 575 sentences made by
various authors and around 4 reference summaries created by human. The corpus is suited
for opinion summarization as well as evaluating the ability of domain adaptation.

We use ROUGE to assess the agreement of generated summaries and gold summaries.
Our experiments include ROUGE-1, ROUGE-2 and, ROUGE-SU4, which base on one-
gram, bi-gram, and skip-bigram co-occurrences respectively.

The model for each subtask in our summarization system is implemented as follows:

• Sentiment prediction: the ensemble classifier proposed in Chapter 2 is trained on
Stanford Sentiment Treebank [Socher et al., 2013] with the accuracy of 88.6%.

• Semantic textual similarity: the multi-level comparison model proposed in Chapter
4 is trained on STSbenchmark1 with the accuracy of 82.45%.

• Aspect similarity recognition: the attention-cel LSTM proposed in Chapter 5 is
trained on the ASRcorpus of both domains with the accuracy of 76.2%.

• Summary generation: we set α = 1.67 and β = 0.1. The number of the most
frequent words is three. These parameters are optimized over a set of 5 topics
randomly selected from the Opinosis dataset. According to the analysis of Ganesan
et al. [2010], the size of a summary is two sentences.

For comparison, we use MEAD [Radev et al., 2000] and CW-AddEuc [K̊agebäck et al.,
2014] as baselines. MEAD is an extractive method based on cluster centroids which
selects the salient sentences by a collection of the most important words. CW-AddEuc
measures the Euclidean similarity between two sentences by their continuous vector space.
In addition, we also report the contribution of using aspect and sentiment information in
summarization. The results denoted OPTR and OPTF in Table 6.1 describe the upper
bound score of recall and F-score respectively. As the reference summaries of Opinosis
are generated in abstractive approach by humans, our generated summaries cannot fully
match with the reference summaries. For example, the maximum recall which an extrac-
tive method could achieve in ROUGE-1 is 57.86%.

While MEAD selects long sentences (around 75 words) containing a lot of salient
words to achieve a high score in recall but low in precision, our approach obtains a
balance between these scores with quite shorter sentences (around 17 words).

To analyze why sentiment signals cause negative impacts on the summarization gen-
eration, we inspect the most polarity sentences in the corpus. Some typical sentences are

1http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
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Table 6.1: Performace comparison between the proposed methods and baselines.

Method
ROUGE-1 ROUGE-2 ROUGE-SU4

Recall Precision F Recall Precision F Recall Precision F

OPTR 57.86 21.96 30.28 22.96 12.31 15.33 29.5 13.53 17.7

OPTF 45.93 48.84 46.57 20.42 19.94 19.49 23.17 26.5 23.7

MEAD 49.32 9.16 15.15 10.58 1.84 3.08 23.16 1.02 1.89

CW-AddEuc 29.12 22.75 24.88 5.12 3.6 4.1 10.54 7.59 8.35

The proposed summarizer

Semantic 28.24 28.63 27.62 7.34 7.19 7 10.69 10.94 10.4

Semantic+Aspect 29.2 29.19 28.24 7.45 7.29 7.12 11.25 11.26 10.78

Aspect+Polarity 27.77 27.86 26.92 7.24 7.09 6.93 10.42 10.55 10.04

Semantic+Aspect+Polarity 28.56 28.31 27.5 7.06 6.84 6.71 10.92 10.83 10.4

listed in Table 6.2. We observe that most of these sentences express individual experi-
ences and too subjective to be selected for summarization. According to the Opinosis
dataset, overstrong words (i.e., rude, extremely) and subjective words (i.e., my wife, I,
we) are seldom present in a summary. These factors lead to an unexpected result of using
polarity information in summarization although sentences carrying the most polarity are
still informative.

Table 6.2: Some sentences carrying the most polarity in the Opinosis dataset.

Positive sentences

I purchased a 2007 Camry because of the looks of the redesigned model and because of the
legendary Toyota quality and reliability.

The Concierge staff, exceptional and extremely helpful, right from suggestions on trans-
portation excursion options to recommending an amazing restaurant.

When I checked in, I asked to be shown several rooms and the staff was happy to do so.

Negative sentences

My wife does say the vehicle is not as comfortable for long trips as other cars we’ve owned.

We had to go up a floor and into a service area to find ice.

The rude and poor service started from the concierge who was curt when I asked a question.

We expect that aspect signals support to generate an informative summary, which
is a summary carrying salient information on various aspects. However, the ROUGE
metric measures the number of matches between two pieces of text, so it is difficult to
compare which one is more informative. Therefore, we execute an informative test to
understand whether aspect signals help to generate a more informative summary. Given
reference summaries and two summaries generated by the system with/out using aspect
signals respectively, three persons are asked to select one of the three answers: which
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Table 6.3: Informative test for using Semantic with Aspect against without Aspect.

Domain Class Semantic + Aspect

Tablet

More informative 33%

Less informative 13%

Equally informative 54%

Others

More informative 17%

Less informative 8%

Equally informative 72%

system’s summary is more informative, or both of them are equally informative. The
inter-rater agreement Cohen’s Kappa score for each pair of assessors is more than 0.74.
The overall answer is concluded by the majority vote scheme. In case of receiving three
different answers, that pair of summaries is assigned as equally informative. The result
reported in Table 6.3 includes domain specification (15 samples in Tablet and 36 samples
in Others), which facilitates the evaluation of domain adaptation. As the ASR system is
trained on the restaurant and laptop dataset, we consider tablet’s topics in the Opinosis
corpus as in-domain and others as out-of-domain. According to the informative test, the
system with aspect dominates in both of the domains (Tablet and Others). This result
proves the contribution of aspect signals and the domain adaptation of the ASR system.

To obtain a better view of the advantages and disadvantages in our system, we show
some generated summaries against reference summaries in Table 6.4. In extractive meth-
ods, the most salient sentences are selected from different reviewers, so it is possible to
have repeated information in a summary. For instance in the case #1, the first sentence
mentions quiet and comfortable ride while the second one contains ride and seating. Al-
though these sentences still have different opinions (i.e., quiet vs seating), the repeat of
comfortable ride downgrades the generated summary’s quality. For improvement, we sug-
gest a post-processing for a more concise summary by filtering redundant information.
As the proposed aspect-based system ranks a sentence by not only semantic cover but
also aspect cover, it selects the more salient opinions for summarization. For instance,
although both of the systems extract different features (e.g., interior vs seating, breakfast
vs tube and bus), the opinions (i.e., seating, tube and bus) chosen by the system with
aspect support are more suited to the reference summaries.

In each topic, although the reference summaries and generated summary share most of
the meaning, they deliver information in different ways as well as words. This fact makes
the quality evaluation of generated summaries difficult. In addition to the ROUGE metric,
we conducted the informative test for quality evaluation. However, for a large corpus or
multiple systems comparison, this test requires a huge amount of human effort. Therefore,
it is a high demand to have a reliable metric for summaries evaluation without human
involvement.
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Table 6.4: Human and system summaries for some products/services. For each topic, we
list three summaries by human.

Summary on the Comfort of Toyota Camry 2007

Human

[1] The Camry offers interior comfort, while providing a quiet ride. Com-
fortable seating and easy to drive.

[2] Overall very comfortable ride front and back. Nice and roomy.

[3] Its very comfortable and a quiet ride with low levels of noise.

Semantic The ride is quiet and comfortable. Very comfortable, quiet interior.

Semantic+Aspect The ride is quiet and comfortable. Very comfortable ride and seating.

Summary on the location of Holiday Inn London

Human

[1] Location is excellent, very close to the Glouchester Rd. Tube stop.

[2] Excellent location. Near the tube station.

[3] The location is excellent. The hotel is very convenient to shopping, sight-
seeing, and restaurants. It is located just minutes from the tube stations.

Semantic Great location but don’t bring the car! Great location great breakfast!

Semantic+Aspect Great location but don’t bring the car! Great location for the tube and bus!

6.6 Conclusion

In this work, we introduced a novel aspect-based opinions summarization framework using
aspect similarity recognition. This subtask relaxes the constraint of predefined aspects in
conventional aspect categorization tasks. For summarization, we evaluated our system on
the Opinosis corpus. In addition to ROUGE metric, an informative test with human in-
volvement was implemented to show the domain adaptation ability of our system and how
informative our generated summaries are. In the corpus, we observe that sentences car-
rying the most polarity are not suited to summarization. Therefore, employing sentiment
for summarization needs deeper analysis. Due to the ASR task’s advantage, we believe
that it has a high demand in some fundamental tasks of natural language processing such
as information retrieval, and sentence comparison.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Our thesis is motivated by the fact that opinions summarization on social media will
benefit for many applications, and deep learning are a promising approach for solving
that task.

The main contributions of this dissertation are summarized as follows:

• Sentiment analysis (Chapter 2): We combine the advantages of various mod-
els (e.g., LSTM and CNN) via the proposed freezing technique. This approach
efficiently prevents joint networks from over-fitting. In addition, we also observe
that clustering semantically documents/sentences supports generative models’ draw-
backs. A neural voting ensemble with additional NBSVM is used to boost the per-
formance of each cluster. The approach obtains the strong performance in sentiment
analysis.

• Subject Toward Sentiment Analysis on Social Media (Chapter 3): To en-
code contextual information into the conventional word embedding, a convolutional
N-gram BiLSTM word embedding model is learned via i) multiple convolutional
filters with variant sizes for capturing contextual information; ii) BiLSTM for en-
coding long distance contextual dependencies. Our model achieves significant im-
provements and robustness in the multilingual and cross domain experiments on
the SenTube dataset compared with the previous work STRUCT - the state-of-
the-art method on the SenTube dataset. While the previous work requires a pre-
defined sentiment dictionary and some linguistic preprocessing tools, our model only
requires a pre-trained word embedding which is trained in unsupervised learning
scheme. Therefore, our model has larger applicability to multilingual environments
as YouTube.

• Semantic textual similarity (Chap 4): The proposed M-MaxLSTM-CNN archi-
tecture, which employs multiple pre-trained word embeddings and Multi-level com-
parison for measuring semantic textual relation, consistently obtains competitive
performances on several tasks. The advantage is that the model allows using several
pre-trained word embeddings with different dimensions. Compared to the state-of-
the art methods in STS tasks, our model does not require handcrafted features (e.g.,
word alignment, syntactic features) as well as transfer learning knowledge.
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• Aspect Similarity Recognition (Chap 5): We proposed an attention cell LSTM
model for a new task - Aspect Similarity Recognition for identifying whether two
sentences share some aspects. A dataset ASRcorpus is also constructed from the
SemEval-2016 Aspect Sentiment Analysis dataset with two domains: RESTAU-
RANT and LAPTOP. Through the experimental results, the proposed model which
integrates efficiently attention signals into LSTM outperforms the baselines on both
settings of in-domain and cross-domain. In addition, the cross-domain results show
that these models are also applicable to cross-domain learning.

• Extractive Opinions Summarization (Chap 6): an opinions summary for prod-
uct’s reviews is generated vi a novel aspect-based opinions summarization framework
using aspect similarity recognition. By applying this subtask, we relax the constraint
of predefined aspects in conventional aspect categorization tasks. For experiments,
we evaluated our system on the Opinosis corpus. In addition to ROUGE metric,
an informative test with human involvement was implemented to show the domain
adaptation ability of our system and how informative our generated summaries are.

7.2 Future Work

The next study will focus on the following things:

• Sentiment analysis (Chapter 2): In our work, we just researched on simple models.
It is interesting to apply our freezing scheme approach to combination models (e.g.,
multi-channel CNN-LSTM, hierarchal LSTM) for generating feature vectors. In
addition, our clustering is based on semantical similarity. Research on other kinds
of similarity could lead to valuable results.

• Subject Toward Sentiment Analysis on Social Media (Chapter 3) For future
work, we plan to improve the model’s inference for cases where main subjects are
not mentioned explicitly. In addition, it is useful if a model can extract helpful
comments, which give polarity sentiments and explanation for those sentiments.

• Semantic textual similarity (Chap 4): Recently, transfer learning at sentence
level achieves many successes. The combination of our multiple word embeddings
approach and transfer learning can lead to interesting results.

• Aspect Similarity Recognition (Chap 5): To improve the performance, the
model has to pay more attention to aspect and polarity words as analyzed in Section
5.5.3. In addition, a preprocessing step to replace proper nouns or terminology words
with more abstractive words should be considered.

• Extractive Opinions Summarization (Chap 6): Through the error analysis
on the Opinosis corpus, we observe that sentences carrying the most polarity are
not suited to summarization. Therefore, employing sentiment for summarization
needs deeper analysis. Due to the robust results of applying the aspect similarity
recognition in summarization, we believe that it is promising to apply this subtask
for other tasks such as information retrieval, and sentence comparison.
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