
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
局所割当アルゴリズムに基づくマルチプロセッサ用リ

アルタイムタスクスケジューリング

Author(s) Doan, Duy

Citation

Issue Date 2019-09

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/16168

Rights

Description Supervisor:田中　清史, 先端科学技術研究科, 博士



Multiprocessor Real-Time Task Scheduling

with Local Assignment Algorithm

Doan Duy (1620420)
Tanaka’s Laboratory

Graduate School of Advanced Science and Technology,
Japan Advanced Institute of Science and Technology

[Information Science]

August 9, 2019

Abstract

With the bloom of smart devices and automatic systems, real-time embedded systems have
been rapidly spreading into different aspects of daily life, science, and industry. Numerous real-
time applications leads to introduction of efficient and powerful processing architectures such as
multiprocessor platforms. The real-time embedded systems are nowadays becoming diverse and
complicated in the sense that the system has to not only handle various types of tasks, but also
manage multiple processing units. Real-time task scheduling in such systems is therefore challenging
to researchers in spite of the fact that a number of scheduling algorithms have been introduced.
One of the critical issues of multiprocessor real-time task scheduling is exploitation of the increased
system capacity to improve system performance.

It is seen that the problem of real-time task scheduling in uniprocessor systems have been
solved effectively with several optimal algorithms such as Earliest Deadline First (EDF) which
achieves schedulability of 100% with low time complexity. The problem of multiprocessor real-time
task scheduling is however faced with a trade off between the simplicity and optimality. Simple
algorithms with low time complexity are introduced toward practical applications since they are
commonly believed easier for developing, testing and implementing. Whereas, optimal algorithms
are introduced with an attempt to utilize the entire capacity of the system. Unfortunately, simple
scheduling approaches achieve low schedulability and optimal ones often cause high time complexity.

This dissertation is conducted in challenge of that scheduling trade-off. That is, scheduling
varied workloads on multiprocessors at schedulability of up to 100% with a relatively low time
complexity. To this end, algorithm, named Local Assignment Algorithm (LAA), is introduced. In
order to deal with static workloads such as periodic tasks, LAA exploits the notion of proportionate
scheduling in the time-interval scheduling scheme. Calculations of LAA allow to guarantee full task
assignments which reduce unnecessary idle times of processors on intervals for better utilization of
the entire system capacity. In addition, LAA is associated with a selective method of arranging
tasks to processors, which is effective to lessen task preemptions and migrations.

LAA is theoretically proved as an optimal scheduling algorithm with the schedulability of up
to 100%. Software simulations are conducted to simulate the behaviors of LAA in comparison
with several existing algorithms including Pfair, RUN, and semi-partition reservation. Assertive
criteria consist of scheduler invocation, task migration, task preemption, and time complexity.
Simulation results show that effectively LAA algorithm invokes approximately 50% of scheduler
invocations fewer than the other candidates while still maintaining relatively lower time complexity.
In addition, compared with the outstanding optimal algorithm RUN, LAA is comparable in terms
of task migration and preemption.

Dynamic workloads such as aperiodic tasks cause difficulties to scheduling algorithms due to
their unknown factors such as entering time, execution time. One of the difficulties is increase



of runtime overhead. In fact, it is possible for aperiodic tasks to be scheduled in background of
periodic ones with low scheduling cost in time. Nevertheless, this approach makes the aperiodic
responsiveness increase. In this dissertation, combination of LAA and concept of servers, called
LAA+, is introduced to deal with the hybrid task sets of periodic and aperiodic tasks. The aperiodic
tasks are therefore scheduled on-line together with periodic ones through service of servers. LAA+
is also extended with introduction of secondary scheduling events for better use of servers. The
proposed scheduling approach then effectively improves the aperiodic responsiveness.

Software simulations are conducted to evaluate LAA+ in the context of mixture system of
periodic and aperiodic tasks. The targeted criterion is switched to improving the aperiodic re-
sponsiveness while guaranteeing for periodic tasks to meet their deadlines. In evaluation, LAA+
continues maintaining the optimality of the original LAA. Simulation results show that LAA+
efficiently enhances the responsiveness of aperiodic tasks by approximately 30% compared with
LAA and by about 10% compare with other scheduling candidates. Moreover, LAA+ still achieves
lower runtime overheads and less number of scheduler invocations in comparison with the other
candidates. Overall, achieving remarkably fewer scheduler invocations and relatively lower time
complexity indicates that LAA and LAA+ have better exploitation of system capacity in a sense
that the system time is preferred to spend for executing application tasks rather than the scheduling
algorithm.

Finally, the Local Assignment Algorithm is implemented on a practical embedded system in
order to confirm the applicability of the algorithm. The Zedboard FPGA Evaluation KIT is selected
as the implementation environment. The system includes a built-in SoC Zynq7000 which supports
a dual-core ARM Cortex-A9 processor. A multiprocessor real-time operating system (M-RTOS)
in which LAA is utilized for scheduling application tasks is developed based on the ITRON RTOS
kernel. It is found that the proposed algorithm is applicable to actual real-time embedded systems.

Key Words: real-time task scheduling, multiprocessor, time complexity, aperi-
odic responsiveness, dynamic workload

2


