
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
局所割当アルゴリズムに基づくマルチプロセッサ用リ

アルタイムタスクスケジューリング

Author(s) Doan, Duy

Citation

Issue Date 2019-09

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/16168

Rights

Description Supervisor:田中　清史, 先端科学技術研究科, 博士

Doctoral Dissertation

Multiprocessor Real-Time Task Scheduling with

Local Assignment Algorithm

Doan Duy

Supervisor: Associate Professor Kiyofumi Tanaka

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

[Information Science]
September, 2019

i

Abstract

With the bloom of smart devices and automatic systems, real-time embedded systems
have been rapidly spreading into different aspects of daily life, science, and industry.
Numerous real-time applications leads to introduction of efficient and powerful processing
architectures such as multiprocessor platforms. The real-time embedded systems are
nowadays becoming diverse and complicated in the sense that the system has to not only
handle various types of tasks, but also manage multiple processing units. Real-time task
scheduling in such systems is therefore challenging to researchers in spite of the fact that
a number of scheduling algorithms have been introduced. One of the critical issues of
multiprocessor real-time task scheduling is exploitation of the increased system capacity
to improve system performance.

It is seen that the problem of real-time task scheduling in uniprocessor systems have
been solved effectively with several optimal algorithms such as Earliest Deadline First
(EDF) which achieves schedulability of 100% with low time complexity. The problem of
multiprocessor real-time task scheduling is however faced with a trade off between the
simplicity and optimality. Simple algorithms with low time complexity are introduced
toward practical applications since they are commonly believed easier for developing,
testing and implementing. Whereas, optimal algorithms are introduced with an attempt
to utilize the entire capacity of the system. Unfortunately, simple scheduling approaches
achieve low schedulability and optimal ones often cause high time complexity.

This dissertation is conducted in challenge of that scheduling trade-off. That is,
scheduling varied workloads on multiprocessors at schedulability of up to 100% with a rel-
atively low time complexity. To this end, algorithm, named Local Assignment Algorithm
(LAA), is introduced. In order to deal with static workloads such as periodic tasks, LAA
exploits the notion of proportionate scheduling in the time-interval scheduling scheme.
Calculations of LAA allow to guarantee full task assignments which reduce unnecessary
idle times of processors on intervals for better utilization of the entire system capacity.
In addition, LAA is associated with a selective method of arranging tasks to processors,
which is effective to lessen task preemptions and migrations.

LAA is theoretically proved as an optimal scheduling algorithm with the schedulabil-
ity of up to 100%. Software simulations are conducted to simulate the behaviors of LAA
in comparison with several existing algorithms including Pfair, RUN, and semi-partition
reservation. Assertive criteria consist of scheduler invocation, task migration, task pre-
emption, and time complexity. Simulation results show that effectively LAA algorithm
invokes approximately 50% of scheduler invocations fewer than the other candidates while
still maintaining relatively lower time complexity. In addition, compared with the out-
standing optimal algorithm RUN, LAA is comparable in terms of task migration and
preemption.

Dynamic workloads such as aperiodic tasks cause difficulties to scheduling algorithms
due to their unknown factors such as entering time, execution time. One of the difficulties
is increase of runtime overhead. In fact, it is possible for aperiodic tasks to be scheduled in
background of periodic ones with low scheduling cost in time. Nevertheless, this approach
makes the aperiodic responsiveness increase. In this dissertation, combination of LAA and
concept of servers, called LAA+, is introduced to deal with the hybrid task sets of periodic
and aperiodic tasks. The aperiodic tasks are therefore scheduled on-line together with

ii

periodic ones through service of servers. LAA+ is also extended with introduction of
secondary scheduling events for better use of servers. The proposed scheduling approach
then effectively improves the aperiodic responsiveness.

Software simulations are conducted to evaluate LAA+ in the context of mixture system
of periodic and aperiodic tasks. The targeted criterion is switched to improving the
aperiodic responsiveness while guaranteeing for periodic tasks to meet their deadlines. In
evaluation, LAA+ continues maintaining the optimality of the original LAA. Simulation
results show that LAA+ efficiently enhances the responsiveness of aperiodic tasks by
approximately 30% compared with LAA and by about 10% compare with other scheduling
candidates. Moreover, LAA+ still achieves lower runtime overheads and less number
of scheduler invocations in comparison with the other candidates. Overall, achieving
remarkably fewer scheduler invocations and relatively lower time complexity indicates that
LAA and LAA+ have better exploitation of system capacity in a sense that the system
time is preferred to spend for executing application tasks rather than the scheduling
algorithm.

Finally, the Local Assignment Algorithm is implemented on a practical embedded
system in order to confirm the applicability of the algorithm. The Zedboard FPGA Eval-
uation KIT is selected as the implementation environment. The system includes a built-in
SoC Zynq7000 which supports a dual-core ARM Cortex-A9 processor. A multiprocessor
real-time operating system (M-RTOS) in which LAA is utilized for scheduling application
tasks is developed based on the ITRON RTOS kernel. It is found that the proposed
algorithm is applicable to actual real-time embedded systems.

Keywords: real-time task scheduling, multiprocessor system, time complexity, ape-
riodic responsiveness, dynamic workload.

iii

Acknowledgments

First of all, I would like to show my deep gratitude to my supervisor Associate Professor
Kiyofumi Tanaka of Japan Advanced Institute of Science and Technology (JAIST) for
his devoted guidance during my work. He appropriately gives me constant advice and
kind encouragements, especially when I am faced with difficulties at work. It was a key
decision that I enrolled at JAIST and then became a student in Tanaka laboratory from
the master’s program to the doctoral one. Looking back on my very first school days
at JAIST, I have progressively grown with his suggestions and comments. Actually I
had several times making mistakes in research; however, he still keeps belief in me and
supports me to overcome difficulties. Without his support, I would not be able to finish
my Ph.D degree successfully. Therefore, again I am extremely grateful to him.

I would also like to give many thanks to Professor Yasushi Inoguchi of JAIST. As
my second-supervisor, he gave me different discussions and advices for several research
situations. Thank to his advice, I can realize my shortcoming and enlarge my knowledge
in the research field. I greatly appreciate Professor Mineo Kaneko of JAIST for his advice.
His certain comments always help me to improve my work consistently. Furthermore, I
would also like to give my gratefulness to Professor Yuto Lim of JAIST and Professor
Yukikazu Nakamoto of University of Hyougo for their advice on my dissertation. Their
comments are really contributive to the success of the dissertation.

Next, I am deeply thankful to Professor Shungo Kawanishi and Dr. Kotona Motoyama
of JAIST for their sincerely sharing and discussion about emerging global issues and
diversity. I acquired great knowledge from their courses, especially Diversity Studies and
Global Leadership Training Seminar, which I have not found out at anywhere else.

I also appreciate Dr. Matthew N. Dailey, Dr. Mongkol Ekpanyapong, technical advi-
sors and colleagues at Pineapple Vision System Co., Ltd. (PVS), Pathumthani, Thailand.
They enthusiastically supported me so that I could finished my internship successfully.
Experience at PVS is very helpful for me to complete my doctoral research.

Next, I am thankful to all members in Tanaka laboratory and Kaneko laboratory,
JAIST officers and my friends at JAIST and over the world who have cheered me up and
helped me to keep going on study and life. With them, I actually had a joyful life in
Japan.

Finally, I would like to thank my family members. They alway stay with me, believe
in me and give my endless love. Their belief and encouragement are my motivation to
overcome difficulties.

iv

Contents

Abstract ii

Acknowledgments iv

1 Introduction 1
1.1 Trend of multiprocessor embedded system 1
1.2 Challenges of multiprocessor scheduling . 2

1.2.1 Exploitation of system capacity of multiprocessors 2
1.2.2 Time complexity of multiprocessor scheduling 3
1.2.3 Dealing with diverse workloads . 6

1.3 Contribution of dissertation . 8
1.3.1 Research objectives . 8
1.3.2 Research process . 8

1.4 Outline of dissertation . 9

2 System model 10
2.1 Multiprocessor architecture . 10
2.2 Task characteristics . 10

2.2.1 Periodic tasks . 11
2.2.2 Aperiodic tasks . 11

2.3 Criteria of multiprocessor real-time task scheduling 12
2.3.1 Optimality . 12
2.3.2 Time complexity and runtime overhead 13
2.3.3 Scheduler invocation . 13
2.3.4 Task preemption . 14
2.3.5 Task migration . 14
2.3.6 Response time . 14

3 Periodic Task Scheduling 15
3.1 Fluid scheduling . 15
3.2 Proportionate scheduling on time-quanta 16
3.3 Proportionate scheduling on time interval 19

3.3.1 Boundary Fairness Scheduling . 19
3.3.2 Largest Local Remaining Execution Time First 21
3.3.3 DP-WRAP . 23

3.4 Reduction to Uniprocessor . 24

v

4 Local Assignment Algorithm for Periodic Task Scheduling 27
4.1 Introduction of Local Assignment Algorithm 27
4.2 Definition of LAA . 28

4.2.1 Time interval . 28
4.2.2 Proportionate scheduling . 29
4.2.3 Local requested execution time . 29
4.2.4 Fully-assigned system . 30
4.2.5 Scheduling plan . 30

4.3 Procedure of LAA . 31
4.4 Example of scheduling with LAA . 34
4.5 Schedulability guarantee of LAA . 35
4.6 Evaluation of LAA . 38

4.6.1 Simulation environment . 38
4.6.2 Simulation results of LAA . 40

4.7 Conclusion: Effectiveness and Limitation of LAA 44
4.7.1 Effectiveness of LAA . 44
4.7.2 Limitation of LAA . 45

5 Aperiodic Task Scheduling 46
5.1 Aperiodic task scheduling with concept of servers 46
5.2 Enhanced Virtual Release Advancing Algorithm for Aperiodic Servers . . . 48

5.2.1 Limitations causing runtime overhead in VRA 48
5.2.2 Enhancement of the EVRA algorithm 48
5.2.3 Proposed algorithm of EVRA . 49
5.2.4 Hardware accelerator for EVRA . 52

5.3 Scheduling aperiodic tasks on multiprocessors 54

6 Enhanced Local Assignment Algorithm for Scheduling Hybrid Task Sets 55
6.1 Introduction to Enhanced Local Assignment Algorithm - LAA+ 55
6.2 Integration of servers . 56

6.2.1 Server establishment . 56
6.2.2 Assignment of aperiodic tasks to servers 57
6.2.3 Consideration of acceptance test for aperiodic tasks 58

6.3 Definitions of LAA+ . 59
6.3.1 Time interval . 59
6.3.2 Proportionate scheduling . 59
6.3.3 Local requested execution time . 59
6.3.4 Fully-assigned system . 60

6.4 Procedure of LAA+ . 61
6.4.1 LAA+ algorithm . 61
6.4.2 Consecutive assignment of LAA+ 62
6.4.3 Example of scheduling with LAA+ 65
6.4.4 Secondary scheduling event . 66

6.5 Schedulability guarantee of LAA+ . 67
6.6 Evaluation of LAA+ . 69

6.6.1 Simulation environment . 69
6.6.2 Simulation results of LAA+ . 70

vi

6.7 Conclusion: Effectiveness and Limitation of LAA+ 71
6.7.1 Effectiveness of LAA+ . 71
6.7.2 Limitation of LAA+ . 72

7 Implementation of multiprocessor real-time operating system 75
7.1 Introduction of multiprocessor real-time operating system 75
7.2 Hardware platform . 76

7.2.1 Xilinx Zedboard Evaluation Kit . 76
7.2.2 ARM Cortex-A9 processor . 77
7.2.3 Operation mode and banked register in ARM Cortex-A9 78
7.2.4 Software tools . 79

7.3 Requirements and difficulties of the implementation 80
7.3.1 Requirements of the implementation 80
7.3.2 Difficulties of the implementation 80

7.4 System design of M-RTOS . 81
7.4.1 Booting sequences . 81
7.4.2 Memory mapping . 83
7.4.3 Organization of ready queue . 84
7.4.4 Dual initialization for M-RTOS . 84
7.4.5 Synchronization required for two processors 86

7.5 Implementation . 87
7.5.1 Hardware platform design . 87
7.5.2 Basic components of M-RTOS . 88

7.6 M-RTOS evaluation . 96
7.6.1 Test scenario . 96
7.6.2 Testing results . 97

7.7 Conclusion . 98

8 Conclusion of dissertation 99
8.1 Summary of the dissertation . 99
8.2 Future work . 100

References 102

Publications 107

Awards 108

vii

List of Figures

1.1 Example of EDF non-optimal on multiprocessors 3
1.2 Impact of task migration on the schedulability of multiprocessor schedulings 4
1.3 Scheduling aperiodic task in background 7

2.1 Model of symmetric multiprocessors . 10

3.1 Concept of fluid schedule . 16
3.2 Difference between fluid schedule and practical schedule 16
3.3 Pfair scheduling vs original periodic scheduling 17
3.4 Pfair scheduling with ”windows” of unit executions 17
3.5 Example of BF scheduling vs Pfair scheduling 20
3.6 Establishment of T-L plane in LLREF . 22
3.7 Scheduling within an T-L Plane . 23
3.8 DP-WRAP scheduling . 24
3.9 RUN: reduction tree . 25

4.1 Identification of intervals . 28
4.2 Local requested execution time of LAA . 30
4.3 Process of consecutive assignment . 33
4.4 Example of making scheduling plans for intervals 35
4.5 Simple mechanism of utilization distribution 39
4.6 Scheduler invocation of LAA . 40
4.7 Runtime overhead of LAA . 41
4.8 Task migration of LAA . 43
4.9 Task preemption of LAA . 44

5.1 Example of virtual release advancing . 47
5.2 Example of deadline advancing in EVRA 51
5.3 Block diagram of the accelerator hardware of EVRA 52
5.4 Structure of a request command . 53

6.1 Local requested execution time of LAA+ 60
6.2 Task selection for processor allocation in LAA+ 64
6.3 Example of scheduling with LAA+ . 66
6.4 Example of scheduling with secondary invocation 67
6.5 Response time of LAA+ . 71
6.6 Runtime overhead of LAA+ . 72
6.7 Scheduler invocation of LAA+ . 74

7.1 Overview of Zedboard Evaluation Kit . 77

viii

7.2 Arm Cortex-A9 MPCore processor . 78
7.3 General-purpose registers corresponding to operation modes [60] 80
7.4 Dual boot sequence on two processors . 82
7.5 Memory address mapping . 83
7.6 Stack pointers planned for operation modes 84
7.7 Organization of ready queues . 85
7.8 Dual initialization for M-RTOS on two processors 86
7.9 Structure of the common block data for processor synchronization 87
7.10 Block diagram of the hardware platform generated by Xilinx Vivado 88
7.11 Vector table for processor 0 . 89
7.12 Vector table for processor 1 . 89
7.13 Setting stack pointers for processor 0 . 90
7.14 Setting stack pointers for processor 1 . 91
7.15 Timer interrupt routine for processor 0 . 92
7.16 Timer interrupt routine for processor 1 . 93
7.17 Configuration of global timer for system time 94
7.18 Schedule tasks using scheduling plan of LAA algorithm 95
7.19 Idle task for processor 1 . 96
7.20 Example of application task involved in the system 97
7.21 Result of dual boot on two processor . 97
7.22 Results of schedule multiple tasks on multiple processor 98

8.1 Making scheduling plans in advance with hardware accelerator 100

ix

List of Tables

1.1 Representatives of multiprocessor system-on-chips 1

2.1 Notations of system specification . 12

3.1 State classification of task τ in Pfair scheduling 19

4.1 Number of cycles of the targeted operations in simulation 38
4.2 Number of operations in execution of LAA 42

5.1 Notations of EVRA algorithm . 49

6.1 Number of operations in execution of LAA+ 73

7.1 Basic system calls provided in Savana RTOS 76
7.2 Operation modes in ARM Cortex-A9 processors 79

x

Chapter 1

Introduction

1.1 Trend of multiprocessor embedded system

Needs for multiprocessor systems
Recent decades have seen the popularization of smart devices and automatic systems

which are developed in order to support a wide range of applications in daily life, science,
and industry. Real-time embedded systems therefore also play a very important role in
the today’s technology-driven world. Due to the increasing diversity and complication
of targeted applications, traditional uniprocessor systems (systems with single proces-
sor) become unaffordable. More powerful and flexible embedded systems are needed to

Table 1.1: Representatives of multiprocessor system-on-chips

Name of MPSoC
Year of

announcement
of pro-
cessors

Application

Lucent Daytona [1] 2000 4 Wireless base stations

C-5 Network
Processor [2]

2001 16
Package processing in
networks

Philips Viper
Nexperia [3]

2001 2 Multimedia

STMicroelectronics
Nomadik [4]

2003 3 Cell phones

Texas Instrument
OMAP [5]

2004 2 Cell phones

ARM MPCore Family
[6]

2005 4 Different applications

Intel IXP2855 [7] 2005 16 Cryptography functions

Cisco Silicon Packet
Processor [8]

2005 192 High-end CRS-1 Router

handle such applications. As an incarnation of very large scale integration (VLSI) tech-

1

nology, multiprocessor system-on-chips (MPSoCs) emerged as a substantial solution for
the demand. Table 1.1 shows a list of MPSoCs which have been introduced for different
applications. The number of processors integrated on a chip is accordingly varied from
two to over one hundred processors. Besides the significant increase of system capacity
with many processing units, MPSoCs exhibit diverseness to support from general systems
like cell phones to specific ones like network routers.

The dominance of multiprocessor embedded systems is easily seen because of the fact
that MPSoCs are now made in reasonable cost and size with the development of manu-
facturing technologies. In addition, FPGA (field programmable gate array) technology is
also a big support to the increase of MPSoCs. There are actually a number of MPSoC
platforms built in FPGA which allows flexible configurations for various purposes. Xilinx
and Intel are, for example, providing several MPSoC FPGA development boards such as
Zedboard Zynq7000 Evaluation KIT [9], Intel R©StratixTM10 Development KIT [10].

The emergence of MPSoC makes it attractive to researchers in the embedded field.
Especially, the scheduler in such systems becomes important and challenging in a sense
that it has to not only handle different task sets, but also manage multiple processors.

1.2 Challenges of multiprocessor scheduling

1.2.1 Exploitation of system capacity of multiprocessors

We ideally expect that upgrading from uniprocessor systems to n-processor systems is
providing n-fold increment in computation capacity. This expectation is unfortunately
impractical in fact. There are several reasons found. The first reason is that most actual
computational problems cannot be effectively executed in parallel. Equation 1.1 exhibits
analysis of Amdahl’s law [11] to the parallel computation of a problem.

s =
1

(1− p) + p
n

(1.1)

where s is the reachable speedup, p is the ratio of the parallel portion of the problems,
and n is the number of processors available. Consider a system of four identical proces-
sors executed a problem 90% of which can be processed in parallel. Applying Amdahl’s
formula, the reachable speedup is as follows:

s =
1

(1− 0.9) + 0.9
4

≈ 3

Obviously, the obtained speedup is much lower than the expected one.
Similarly, in the situation of different problems (tasks), in order to achieve the full

speedup of multiprocessors, tasks must be possible for parallel processing. However,
even in case that parallelism of tasks is satisfied, the system capacity of multiprocessors is
actually decreased due to system overhead caused by task scheduling and context switches.
Dealing with the diversity of tasks and numerous processors, time complexity of scheduling
algorithms is significantly increased. This make increase of runtime overhead, a part of
system overhead. Task preemptions and task migrations are major context switches in
multiprocessor systems. For better exploitation of the system capacity of multiprocessors,
such sources of system overhead needs to be reduced.

2

1.2.2 Time complexity of multiprocessor scheduling

For the emergence of MPSoCs, the need of real-time operating systems (RTOSs) which
provide multiprocessor support are increasingly drawing researchers and engineers. As
an important part of RTOSs, the scheduler has been received serious research attentions
as a result. Although a number of scheduling algorithms have been proposed, effective
approaches for multiprocessor real-time task scheduling still remain challenging topic.

It is obvious that the problem of real-time task scheduling on uniprocessor systems has
been solved successfully with a myriad of optimal scheduling algorithms such as Earliest
Deadline First (EDF) [12], Least Laxity First (LLF) [13]. Such optimal uniprocessor
algorithms are capable of scheduling task sets of utilizations of up to 100% with low time
complexity. However, when considering the multiprocessor systems, researchers are faced
with difficulty: increase of time complexity of scheduling algorithms. This leads to two
concepts of scheduling: simplicity and optimality.

Algorithms on the concept of simplicity are targeted to schedule tasks with low time
complexity. Such simple scheduling algorithms are commonly believed to be easier for
developing, testing and deploying. Whereas optimal scheduling algorithms are expected
to exploit the entire system capacity in order to improve the system performance; that is,
they can schedule any task sets of utilization of up to 100%. However, a mutual trade-
off appears between the two concepts. Simple solutions achieve low schedulability and
conversely, optimal solutions often come up against high time complexity.

Scheduling algorithms with the simplicity

At the early period of concern, researchers strove to extend well-known uniprocessor
scheduling algorithms to the context of multiprocessor. Typically, EDF and LLF were
investigated in the paradigm of global scheduling. In the global scheduling, a common
ready queue of the entire task sets is preserved for the scheduler. Tasks are likely to
migrate among processors for execution during their existing period in the system. This
approach is advantageous to come into the simplicity of such algorithms. Nevertheless, the
optimality is untenable and the obtained schedulability of these approaches is considerably
lower than the system capacity available [15]. Figure 1.1 shows an simple example where

τ0

τ0 τ0

τ2P0

P1
τ1 τ1

0 51 63 Time2 4

Figure 1.1: Example of EDF non-optimal on multiprocessors

the EDF scheduling is faired to schedule tasks on multiprocessors. It is supposed to have
three periodic tasks scheduled on two processors: τ0 and τ1 request executions of two unit
times (ticks) for every three ticks and τ2 requests four-tick executions for every six ticks.

3

The total utilization of tasks is at 100%. If tasks have their phase time at 0, the EDF
scheduling is failed at time 6 when τ0 misses deadline for the second job.

After that, several scheduling algorithms including EDF-US[x] [16, 17], ED/LL, EDZL
[18, 19], and EDCL [20] were successively proposed so as to improve the schedulability.
Those solutions did not achieve the full schedulability yet.

Uniprocessor scheduling algorithms were alternatively applied to multiprocessor scheme
in the manner categorized as partitioned scheduling. In partitioned schedulings, task sets
are divided into concrete subsets which are affordable with unit processor. Processors in
the system are each associated with an ready queue of the assigned tasks and the task
scheduling on a processor is independent of each other. Well-known algorithms like EDF
are independently applied on processors as a result. DC2 [21] and partitioned-EDF [22]
algorithms are appeared in this group.

A big advantage of the partitioned view is obviously that the problem of multiprocessor
scheduling is reduced to the problem of uniprocessor one. In the other words, simplic-
ity of uniprocessor optimal schedulings is prospectively gained. Partitioned schedulings,
however, found themselves confronted by substantial disadvantages. First, partitioning
task set into subsets is actually a bin-packing problem which is one of NP-hard problems.
Non-optimal heuristic methods are often employed for task partition. Consequently, it is
not always for task sets to be separated into subsets completely. Second, the fact that
task migration is not allowed in partitioned scheduling causes negative impacts on the
schedulability. Tasks are not accepted if their utilization exceeds the remaining capac-
ity of individual processors although the remaining capacity of the whole system is still
available. This often happens with heavy tasks which have high utilization. The achieved
schedulability of partitioned schedulings is hence truly low [15, 23] and the system does
not yield high performance.

0 51 632 4

τ0 τ0 τ0

0 51 63

P0

P1

a) Scheduling without migratory task

Time

Time2 4

τ1 τ1

0 51 632 4

τ0 τ2

τ2

τ2 τ2τ0 τ0

0 51 63

P0

P1

b) Scheduling with migratory task

Time

Time2 4

τ1 τ1

Figure 1.2: Impact of task migration on the schedulability of multiprocessor schedulings

Figure 1.2 shows the impact of task migration on the schedulability of the partitioned

4

schedulings. The system is supposed to have three periodic tasks τ0, τ1 and τ2 scheduled
on two processors. τ0 requests unit executions for every two ticks and τ1 and τ2 request
two-tick executions for every three ticks. The system utilization is approximately of 90%.
The first two tasks are partitioned to processors so that τ0 is executed on P0 while τ1 is
allocated on P1 as showed in Figure 1.2(a). It is then impossible to assign τ2 to a processor
since the cumulative utilization would exceed the processors’ capacity.

Figure 1.2(b) shows a more preferable perspective where τ2 is accepted and allowed to
migrate between the two processors. The scheduling scheme is realized as semi-partitioned
scheduling. A number of semi-partitioned solutions have been conducted to improve the
schedulability of partitioned scheduling for practical applications. Semi-partition emerged
as a balance between global scheduling and partitioned scheduling. Semi-partitioned
approaches therefore allow migratory tasks besides the ones that are fixedly assigned to
processors. Migratory tasks are moving among processors during their presentation to
receive processor allocations. To this end, semi-partitioned algorithms are assisted with a
splitting method which can split a task into subtasks so that the subtasks are appropriately
assigned to processors. Works [24, 25, 26, 27, 28] are found in this scheduling class.
Especially, semi-partitioned reservation (SPR)[29], which employs the C = D scheme [30]
as its splitting method, appears as a near-optimality solution. This approach can reach
the schedulability of 99+% with relatively low time complexity. SPR has high potential
to be applied to practical real-time systems.

Scheduling algorithms with the optimality

In the last decades, algorithms pursuing the optimality have been gained much attention
to fully exploit the system capacity of multiprocessor. Well-known optimal multiprocessor
scheduling algorithms are scrutinized in the paradigm of global scheduling. In early period
of investigation, Dertouzos, et al. [31] took account of the problem of hard real-time task
scheduling on multiprocessor systems through a scheduling game representation. In this
work, a critical restriction of multiprocessor scheduling is disclosed; that is, without a
priori knowledge about task sets, such as start time, an optimal multiprocessor scheduling
algorithm is unachievable.

Periodic tasks with release times predictable are early gained attention of researchers.
Pfair with the notion of proportionate scheduling [32] is very first solution achieved the
optimality. Regarding tasks’ utilization, Pfair guarantees a fairness of scheduling for
periodic tasks at fine time scale; it means the scheduler is invoked to make schedules of
tasks at every time tick. In spite of achieving the optimality, Pfair approach is faced
with a difficulty of numerous scheduler invocations. In addition, since task executions
are tentatively fragmentary by unit times, Pfair significantly causes task preemptions and
migrations as sources of runtime overhead.

Another drawback of Pfair scheduling is that the system is not a work-conserving
scheduler which is trying to maintain scheduled resources (processors for instance) busy
if tasks are available in the system. In other words, since the amount of times that tasks
receive in Pfair is restrictedly proportional to the tasks’ utilization (weight), processors
may be put in idle time unnecessarily. This is motivation of fast scheduling [33] and
early-release fair scheduling [34] which improve Pfair to be a work-conserving scheduler.

Is guaranteeing the fairness of scheduling tasks at every unit time a must? The an-
swer for this question was found in the following works: Boundary Fair (BF) [35], and

5

DP-WRAP [37]. These are alternative implementations of proportionate scheduling for
interval (time period), which is considered as coarse time scale schedulings. The sched-
uler is consequently invoked at specific points in respect to time intervals rather than unit
times. The intervals are decided by the periodic tasks’ deadlines, which forms a so-called
deadline partitioning. This approach has advantage of reducing the number of scheduling
points. Task preemptions and migrations are also alleviated since tasks have chance ex-
ecuting seamlessly. Nevertheless, BF and DP-WRAP have their own limitations. First,
amounts of time that the scheduler allocates to tasks on each interval are limited as a
result of the proportionate scheduling. The allocation of BF is likely better with the unit
extra amount than DP-WRAP. Processors’ idle times may occur unnecessarily and the
system capacity is therefore not used effectively. In addition, the context switching points
in DP-WRAP scheduling are planned based on the multiplication of tasks’ utilization
by the interval length. This calculation often results in decimal values. As the system
time is allocated to tasks by integer numbers of slots, complicated calculations are re-
quired to determine the actual context switching points at runtime so as to guarantee the
schedulability.

In later years, Largest Local Remaining Execution time First (LLREF) [36] was pro-
posed to the multiprocessor scheduling problem. LLREF is another coarse time scale
scheduling. Intervals are decided by any two consecutive job releases, which forms T-L
Planes. Like BF and DP-WRAP, LLREF shows effectiveness on reducing the number
of scheduler invocations. However, task preemption and migration are still considerably
high.

In 2011, RUN [38] was emerged as an outperforming optimal algorithm in terms of
task preemption and migration. RUN introduces a novel scheme to cluster tasks into
proper sub-systems which are served with an appropriate number of processors. Tasks in
RUN scheduling are each accompanied with a (virtual) dual task the execution time of
which is the complement of the real task’s execution. Based on the duality, a structure
called reduction tree is produced for a sub-systems in order to select task for execution at
runtime. In the same family of schedulers as RUN, Quasi-Partitioned Scheduling (QPS)
[39] were proposed. QPS offers a dynamic adaptation to the system workload. Namely,
an efficient way was introduced to mutually switch between partitioned EDF scheduling
and global-like scheduling when the workload changes.

Although effectively solving the scheduling problem of periodic tasks, these optimal
algorithms are experienced with difficulty in scheduling dynamic workloads such as ape-
riodic tasks. This is clarified in Section 1.2.3.

1.2.3 Dealing with diverse workloads

Due to the diversity of applications, dynamic workloads more frequently occur in em-
bedded systems. Aperiodic tasks which are entering the system irregularly without any
information known a priori are typical dynamic candidate. While periodic tasks are suf-
ficiently solved with a variety of solutions including optimal algorithms, aperiodic tasks
are difficult to be deal with due to their unknown information. Reminding that according
to work in [15] the optimality is impossible without known information of tasks. Conven-
tional approach to deal with aperiodic tasks is therefore scheduling them in background.
Background scheduling assigns aperiodic tasks processor times unused by periodic tasks.
Aperiodic tasks are experienced long response times as a result. Figure 1.3 exhibits an

6

example of scheduling aperiodic task in background. The periodic task set is scheduled
as the same as the example in Figure 1.2(b). An aperiodic task is supposed to enter the
system at time 2. The aperiodic task must wait for execution until time 5 when processor
P1 is empty of periodic tasks’ execution. It is then finished at time 6 with the response
time of 4. Intentionally, we can see that the aperiodic task can be scheduled for execution
at time 3, ahead of the second instance of τ1, without violating scheduling constrains of
periodic tasks.

0 51 63

Aperiodic
Time2 4

0 51 632 4

τ0 τ2

τ2

τ2 τ2τ0 τ0

0 51 63

P0

P1

Time

Time2 4

τ1 τ1

Figure 1.3: Scheduling aperiodic task in background

Another approach is that aperiodic tasks are scheduled on-line together with periodic
ones. This square deal is in general believed to improve the aperiodic responsiveness.
Considerable issue of the on-line scheduling is high runtime overhead. On one hand,
partition-based schedulings employ complex heuristic algorithms for task grouping at
the system initialization time. With the appearance of aperiodic tasks, the partition
procedure needs to be repeated to assign the tasks to an appropriate processor. The
runtime overhead significantly increases as a result. Moreover, it may be failed to assign
aperiodic tasks to processors due to the non-optimality of the heuristic algorithms.

On the other hand, several optimal algorithms also process complex procedures off-line
to reduce the runtime overhead. The procedure of building the reduction tree in RUN is
for example. In order to schedule aperiodic tasks on-line, such complex procedure needs
to be rerun to include the aperiodic tasks at their released times. This perspective is
actually worse in terms of runtime overhead.

In order to prevent the repeat of complex procedure, concept of servers is introduced
to dedicatedly serve aperiodic tasks at runtime. This scheduling scheme was found in
work of Srinivasan et al. [49] where servers are integrated into Pfair scheduling scheme
for scheduling mixed task sets. Although improving the aperiodic responsiveness, the
problems of enormous scheduler invocations, task preemptions and task migrations still
remain obstacles of the work.

The review on multiprocessor real-time task scheduling shows that several critical is-
sues still exist needing researchers’ attention despite the fact that a number of solutions
have been proposed. Existing problems include the balance between simplicity and op-
timality for effective exploitation of the system capacity, dealing with the variation of
workloads, and increase of runtime overhead. Such existing problems motivate study of
the dissertation.

7

1.3 Contribution of dissertation

This work is conducted to propose an effective scheduling algorithm for the problem of
multiprocessor real-time task scheduling. The proposed algorithm is aimed at challenging
the trade-off between the simplicity and optimality. Is an optimal scheduling algorithm
with relatively low time complexity achievable? This question is the motivating philosophy
of the research. Accordingly, an optimal algorithm is the one can schedule any task
sets at up to 100% of the system capacity. The optimality then reflexes the maximum
schedulability of the algorithm. It is believed that the higher the schedulability is, the
better the system exploitation is. Low time complexity means the system will spend
less processor time for scheduling, which effectively reduces the runtime overhead. On
the other hand, characteristic of low time complexity makes it possible for the algorithm
to be implemented in practical systems with limited hardware supports like embedded
systems.

The research is therefore contributing to improving the system performance and toward
practical implementation.

1.3.1 Research objectives

The research pursues the following objectives:

• Achieving the optimality. This target is to guarantee the schedulability of the
proposed algorithm. Generally, the higher the schedulability is guaranteed, the
better the system capacity is exploited. A full schedulability is therefore targeted (in
theory) so that the proposed algorithm can schedule any task sets of the utilization
of up to 100%.

• Being capable of scheduling hybrid task sets. Task sets are targeted to mixture of
periodic and aperiodic tasks. The proposed algorithm therefore meets the diver-
sity of applications. Additionally, the objective makes the research applicable to
practical embedded systems where hybrid task sets more frequently occur.

• Reducing runtime overhead. The proposed algorithm accordingly achieves the opti-
mality with relatively low time complexity and less number of scheduler invocations.
The accumulative runtime overhead is then reduced so that the system times can
be spent better for task executions.

• Maintaining comparable number of task preemptions and migrations. These criteria
also contribute to the system overhead. The proposed algorithm therefore maintains
the criteria comparable with the existing algorithms.

• The proposed solution is applicable to practical embedded systems.

1.3.2 Research process

Toward the goals specified above, the research process is designed as follows.

1. We first propose an effective scheduling algorithm called Local Assignment Algo-
rithm (LAA) for the problem of periodic tasks on multiprocessors. LAA applies the

8

notion of proportionate scheduling and deadline partitioning to pursue the optimal-
ity. That is, applying the deadline partition, time is divided into intervals (time
slices) based on job releases. The executions of jobs of tasks are then split into
portions which are executed separately on different intervals. How long each of the
portions is is calculated using the fairness of proportionate scheduling. The por-
tions of jobs are then assigned to processors for execution during the interval. The
assignment of jobs, including the amount of execution and the processor allocation,
is local on the involved interval; it means a job can be moved to another proces-
sor with different amount of execution on another interval. This locality makes it
named ”local assignment.” A full assignment scheme is introduced in LAA to fully
utilize the system capacity. Theoretically, LAA is proved to achieve the schedula-
bility of up to 100%. The effectiveness of the proposed algorithm is exhibited with
extremely fewer scheduler invocations and relatively low time complexity in compar-
ison with the other scheduling candidates. Whereas, the results of task preemption
and migration satisfy the goal specified above.

2. We then extend LAA to schedule hybrid task sets of periodic and aperiodic tasks.
Concept of servers are integrated into the system to dedicatedly serve aperiodic
tasks. The extended algorithm is called LAA+. Modeled like periodic task, servers
can be scheduled on-line together with periodic tasks in LAA+. LAA+ then guaran-
tees the optimality from the original algorithm. Several techniques such as secondary
scheduler invocation are applied in order to enhance the aperiodic responsiveness.
As a result, aperiodic tasks’ response times are shortened efficiently without signif-
icantly increasing the time complexity.

3. In addition, a multiprocessor real-time operating system (M-RTOS) in which LAA
is exerted to schedule application tasks is developed for practical applications. The
M-RTOS is an extended version of ITRON real-time operating system [50] for mul-
tiprocessor systems. The system is implemented on Zedboard FPGA Evaluation
KIT which includes a Zynq-7000 MPSoC of a dual-core ARM Cortex-A9 processor.
This shows the applicability of the proposed algorithm.

1.4 Outline of dissertation

The remaining of this paper is organized as follows. Chapter 2 is specification of the
targeted system with tasks’ characteristics and related criteria of multiprocessor real-
time task scheduling. Chapter 3 is introduction of related algorithms and techniques that
are applied to solve the problem of periodic schedule. Chapter 4 shows details of Local
Assignment Algorithm. Chapter 5 describes a preliminary of the concept of server in order
to deal with aperiodic tasks. Chapter 6 shows details of the extended Local Assignment
Algorithm for hybrid task sets. Implementation of multiprocessor real-time operating
system with Local Assignment Algorithm is presented in Chapter 7. Finally in Chapter
8 is a summary of this dissertation and discussions about future work.

9

Chapter 2

System model

2.1 Multiprocessor architecture

In this study, we aim at the system of symmetric multiprocessors (SMP). Figure 2.1
illustrates model of SMP in hardware and software architectures. The system includes
m identical processors each of which has an unit capacity. Processors are integrated
with private cache memory (level 1 cache) for instructions and data. All processors
are fully connected to a single, shared memory and input and output devices (I/O) via
system bus with bus arbiter. In addition, the system is managed by a single operating
system called multiprocessor real-time operating system (M-RTOS). Application tasks are
common among processors; that is, an application task can be executed on any processor
and likely to migrate among processors during its presentation period. Processors are thus
considered as shared resources that needs scheduling in the context of the dissertation.

Memory

Cache

CPU 1

Cache

M-RTOS

Applications

CPU 2

Cache

CPU m
I/O

...

System bus with bus arbiter

Figure 2.1: Model of symmetric multiprocessors

2.2 Task characteristics

The task system is targeted to mixtures of periodic and aperiodic tasks. The specification
of tasks are as follows.

10

2.2.1 Periodic tasks

Periodic tasks are the ones that regularly release jobs as their instant works. A periodic
task τi is typically specified by two attributes: a fixed rate µi and a period Ti; in notation
τi = (µi, Ti). µi represents the processor utilization of the task which refers to the fraction
of processor time spent to finish a job of the task on a single processor. The processor
utilizations are therefore less than or equal to 1; namely, 0 < µi ≤ 1. Ti represents
the time span between two consecutive job releases of the task and therefore Ti ∈ Z+.
Accordingly, the worst-case execution time (WCET) of task τi, the longest execution time
among the task’s jobs, is defined as:

Ci = µi ∗ Ti (2.1)

We denote np (0 < np) as the number of periodic tasks presenting in the system.
Furthermore, we assume that periodic tasks have their phase time (the first time releasing
job) at 0.

In real-time execution, a periodic task is defined as an infinite sequence of jobs. Peri-
odic tasks are hence predictable in terms of release time and deadline. That is, the kth
job of task τi would be released at time ri,k and receive an absolute deadline di,k as follows:

ri,k = k ∗ Ti (2.2)

and
di,k = (k + 1) ∗ Ti (2.3)

where k ∈ N .
This definition indicates that the absolute deadline of a job is the same as the release

time of the next job. As a result, there are no two or more jobs of a task simultaneously
presenting in the system. When released, a job of the task requests an actual execution
time ci,k ≤ Ci which must be accommodated by the deadline di,k. Periodic tasks are thus
considered as hard real-time tasks.

In this study, the system is restricted to feasible systems where the total task utilization
does not exceed the system capacity. That is,

Up =

np−1∑
i=0

µi ≤ m (2.4)

Task sets satisfying Equation 2.4 are considered as feasible sets for scheduling. Situations
of system overload where the total task utilization exceeds the system capacity are out of
the scope of this study and tentatively taken into account in future.

2.2.2 Aperiodic tasks

Aperiodic tasks are the ones that enter the system irregularly and then exit after finishing
their execution. Generally, there are two types of aperiodic tasks: soft real-time aperiodic
task and hard real-time aperiodic task. While no deadline constraints are required for the
soft ones to finish their execution, the hard ones are somehow associated with absolute
deadlines when they are released. In this study, The soft real-time aperiodic tasks are
targeted.

11

Different from the context of periodic tasks where guaranteeing to meet their deadlines
is the most important requirement, aperiodic tasks are expected to finish as soon as
possible. As a result, the scheduling attempt is to improve the responsiveness of aperiodic
tasks while guaranteeing the deadline constrains for periodic ones.

Finally, tasks are fully preemptive and independent of each other. Namely, a task
can be preempted unlimitedly by one another higher prioritized task and then resume
their execution during its presentation period. For the ease of understanding, Table 2.1
summarizes notations related to the system specification in this study.

Table 2.1: Notations of system specification

Notation Description

m Number of processors

np Number of periodic tasks

τi A periodic task

µi Utilization rate of periodic task

Ti Period of periodic task

Ci
Worst-case execution time of periodic
task

ri,k Release time of the kth job of task τi

di,k
Absolute deadline of the kth job of
task τi

ci,k
Actual execution time of the kth job
of task τi

Up Total utilization of periodic tasks

2.3 Criteria of multiprocessor real-time task schedul-

ing

For the ease of understanding and evaluating, in this section basic criteria of multiproces-
sor real-time task scheduling are defined. Definitions include optimality, time complexity,
runtime overhead, scheduling invocation, task preemption, task migration, and response
time. Targets of each criterion in real-time task scheduling are also discussed.

2.3.1 Optimality

In this dissertation, a scheduling algorithm is said to be optimal if it guarantees the
schedulability of 100% of the system capacity. The schedulability is typically considered
as the total utilization of tasks that can be scheduled without any deadline miss. Schedule
of tasks without deadline miss is call a valid schedule. Therefore, an optimal algorithm

12

always finds out a valid schedule for any task sets with the total utilization of up to 100%
of the system capacity. Normally, the optimality of scheduling algorithms is proved in
theory where costs (overheads) of scheduling and context switches are excluded.

2.3.2 Time complexity and runtime overhead

Time complexity (computation complexity) is considered as the timing cost for executing
scheduling algorithms at scheduling points. Execution of scheduling algorithm signifi-
cantly contributes to runtime overhead. In evaluation, runtime overhead is generally cal-
culated by counting the number of cycles during which the instructions in the algorithm
are executed.

In this study, two types of runtime overhead are taken into account: maximum runtime
overhead per tick and accumulative runtime overhead.

• Maximum runtime overhead per tick

This runtime overhead indicates the worst-case computation of the scheduling al-
gorithm over all scheduling points. Consider tick t as a scheduling point. Let Oe(t)
be the runtime overhead caused by execution of scheduling algorithm and Or(t) be
the additional runtime overhead of recording system information at tick t. Then
the total runtime overhead at tick t (denoted as O(t)) is calculated as:

O(t) = Or(t) +Oe(t) (2.5)

The maximum runtime overhead per tick (Omax/tick) is then calculated as:

Omax/tick = max(O(t)) (2.6)

The maximum runtime overhead per tick can be used to assess the time complexity
of an scheduling algorithm.

• Accumulative runtime overhead

The accumulative runtime overhead is the sum of runtime overheads over all sched-
uler invocations. This parameter has meaning to evaluate the performance of the
system. That is, less accumulative runtime overhead means that more system ca-
pacity is utilized for application tasks’ execution. Let K denote the total number
of scheduler invocations, the accumulative runtime overhead (denoted as Otot) is
calculated as:

Otot =
K∑
t=1

O(t) (2.7)

2.3.3 Scheduler invocation

In real-time embedded system, scheduling invocation (or scheduling point) is defined as
the time when the scheduler is invoked to make scheduling decisions. In multiprocessor
systems, a scheduling decision basically includes two processes: (1) selecting tasks for
execution; (2) assigning the selected tasks to processors.

The former process decides necessary context switches among tasks to guarantee
scheduling requirements such as deadline meet. When the scheduler needs to be invoked

13

is therefore importantly concerned in RTOSs to assure the system safety. How often the
scheduler needs to be invoked is another critical issue since it is related to increase of
runtime overhead (the accumulative runtime overhead). A scheduling algorithm which
can guarantee the system safety with less scheduler invocation is actually more preferable.
The latter process is to distribute the selected tasks to processors for execution. Effective
assignment methods can support to improve scheduling criteria including task preemption
and migration which are described in the following sections.

Moreover, typically the scheduler is invoked at integral times to design the schedule
of tasks. Tasks are then received amount of times in integer for their execution.

2.3.4 Task preemption

In real-time embedded system, task preemption is defined as the event when a job of task
which has not finished its execution yet is preempted by one another job of the other tasks.
The preempted job is then resumed its execution according to the scheduling results.

As mentioned above, tasks are all supposed to be preemptive. How many times a
job is preempted is unrestricted. Nevertheless, since task preemptions cause context
switches which increase the system overhead, reducing task preemptions is important in
high performance systems.

2.3.5 Task migration

Task migration is a new criterion rising in the context of multiprocessor systems. An
event when a job of task migrates from a processor to one another processor is counted
for task migration. When a task migration happens, a process called cache coherence
is invoked to keep data required for the job’s execution consistent between the original
processor and the destination one. This causes system overhead of task migration.

In symmetric multiprocessor systems, we assume that the system overhead caused by
one task migration is constant. Namely, timing cost for a job of task to migrate from
processor 0 to processor 1 is the same as the cost when it moves from processor 0 to
processor m− 1.

Like task preemption, reducing task migration is important in high performance sys-
tems.

2.3.6 Response time

Response time is defined as the total amount of times it takes for the system to response
to a task’s request. In other words, response time is the sum of the time the task spends
waiting for execution and the task’s actual execution time. Formally, the response time
of a task is calculated as:

R(τ) = fτ − rτ (2.8)

where rτ and fτ are the release time and the finishing time of the (job of) task, respectively.
For periodic tasks, the responsiveness is a minor issue which is often ignored in schedul-

ing consideration. Whereas, this is the top requirement for aperiodic tasks; the response
times of aperiodic tasks are expected to be as short as possible. Therefore, it is preva-
lent in the context of mixture system that attempt is spent on enhancing the aperiodic
responsiveness while maintaining for periodic tasks to meet their deadlines.

14

Chapter 3

Periodic Task Scheduling

Periodic tasks are considered as the most important objective of the task scheduling
problem. Ensuring the schedule of periodic tasks becomes a must for any scheduling
algorithm and draws many attentions from researchers. As fundamentals of the research
of the dissertation, typical approaches of periodic task scheduling on multiprocessors are
introduced in this chapter.

The chapter will cover the following approaches:

• Fluid scheduling;

• Proportionate scheduling on time quanta; and

• Proportionate scheduling on time interval.

3.1 Fluid scheduling

The problem of periodic schedule was first taken into account by Liu, et al. in 1969 [51].
In this work, n periodic tasks are scheduled to use m shared resources. A periodic task τ
is characterized by weight µ = C/T (0 < µ ≤ 1). A periodic schedule is then considered
to allocate to task τ exactly C units of time in each interval [k ∗ T, (k + 1) ∗ T) for all
k ∈ N . C and T are accordingly known as task’s (worst-case) execution time and period,
respectively. Periodic schedule is the basic concept to guarantee the resource allocation
for every job (instant execution) of the periodic tasks.

There were a number of works conducted to implement the periodic schedule in mul-
tiprocessor systems. The ideal offer was found in the model of fluid scheduling [52]. The
fluid scheduling assigns resources to tasks at constant rates over time. That is, at any
time t ≥ 0, a periodic task τi has been executed for exactly µi ∗ t units of time where
µi is the task utilization (weight). Figure 3.1 shows the curve of fluid scheduling model.
The diagonal path indicates the constant rate of resource that is allocated to a job of task
which is released at time r with execution time c and received absolute deadline r + d.

However, since the scheduler in practical systems is invoked at integral time and allo-
cates tasks integral amounts of time, exactly guaranteeing the fluid scheduling is impossi-
ble. Figure 3.2 exhibits difference between fluid scheduling and practical scheduling. The
red broken path is the actual rate of resource allocation. The diagonal parts implies the
scheduled periods of the task and the horizontal parts expresses the un-scheduled ones.

15

Execution

time

r

0

r+d

C

d Time

Fluid schedule

Figure 3.1: Concept of fluid schedule

Execution

time

r

0

r+d

C

Time

Fluid schedule

Practical schedule

Figure 3.2: Difference between fluid schedule and practical schedule

Since scheduling periodic tasks at constant rates is impractical, alternative approaches
with dynamic rates are concerned.

3.2 Proportionate scheduling on time-quanta

Proportionate scheduling was early introduced in Pfair algorithm [32]. Pfair is considered
as stronger fairness constraints compared with the original notion of periodic schedule
and as a relaxation of the fluid scheduling. Given a problem of n periodic tasks scheduled
on m identical processors where each task τi has a rational weight µi (0 < µi ≤ 1) for all
i ∈ N and

∑n
i=0 µi ≤ m. Pfair maintains a proportionate progress so that each task is

scheduled resources in proportion to its weight at every unit time (tick). Specifically, at
time t, a task τi with its weight of µi must have been scheduled either bµi ∗ tc or dµi ∗ te
times.

Figure 3.3 shows an example of Pfair scheduling in difference from the original periodic
schedule. It is supposed that a periodic task τ has its weight µ = 1/3 and period T = 6.

16

0 51 632 4

τ

0 51 63

Time

Time2 4

τ

0 51 632 4

τ τ

Time

a) A periodic scheduling, not Pfair scheduling

b) A periodic scheduling, not Pfair scheduling

c) A Pfair scheduling (also periodic scheduling)

Figure 3.3: Pfair scheduling vs original periodic scheduling

The task therefore requests execution of two unit times (= 1/3 ∗ 6) for every six ticks.
In respect of the definition of periodic schedule, the task can be allocated two unit times
at any ticks during the presentation period. However, under the constraints of Pfair
scheduling, at time 3, the task must have been received exactly 1 unit time. Therefore,
while all three cases displayed are periodic schedule, the schedule in Figure 3.3(c) is Pfair
scheduling only.

Obviously, the scheduler utilized Pfair algorithm needs to be invoked at every sys-
tem tick to guarantee the proportionate progress, which also makes Pfair as time-quanta
scheduling. In fact, a task is separated into subtasks of unit executions in Pfair schedul-
ing. Each subtask is therefore only valid to be executed within a certain period (also
known as ”window”). Figure 3.4 illustrates an example of periodic task scheduling with
execution windows.

0

1

1 2 3 4 5

2

3

Time

Execution

time T

C

Figure 3.4: Pfair scheduling with ”windows” of unit executions

The illustration includes a periodic task with weight of 3/5 and period of 5; the task’s
(worst-case) execution time is equal to 3 units of time. The task is separated into three
subtasks each of which has unit execution. The execution windows of subtasks are shown
by arrows with numbers above indicated subtask indexes. Accordingly, the first subtask

17

would be executed within the first two slots, the second one would be executed from time
1 to time 4, and the last one is valid for execution from time 3 to time 5. The start
and finish times of windows can be derived from Pfair calculation using Equation 3.1 and
Equation 3.2.

ts(w
k
i) = bk − 1

µi
c (3.1)

tf (w
k
i) = ts(w

k
1) + d k

µi
− 1e (3.2)

where ts(w
k
i) and tf (w

k
i) are start time and finish time of the window of the kth (1 ≤ k ≤

Ci) subtask of job of task τi.
The difference of Pfair scheduling from the fluid scheduling is formally captured by

the concept of lag. The lag of task τi at time t with respect to schedule S, denoted as
lag(S, τi, t), is defined as:

lag(S, τi, t) = µi ∗ t− S(τi, t) (3.3)

where S(τi, t) is the total time slots that task τi has been received during the period [0, t).
lag is considered as an allocation error associated with each task. Pfair scheduling is
validated in a manner that allocation errors of tasks are guaranteed to be less than one
over all times. That is,

∀τi, t :: −1 < lag(S, τi, t) < 1 (3.4)

Together with the concept of lag, additional definitions including characteristic string
and characteristic substring are introduced in Pfair procedure. Accordingly, the charac-
teristic string of task τi, denoted as α(τi), is an infinite string of symbols {−, 0,+} each
of which at t, denoted as αt(τi), is defined as:

αt(τi) = sign(µi ∗ (t+ 1)− bµi ∗ tc − 1) (3.5)

The characteristic substring of task τi at time t is defined as the finite string:

α(τi, t) = αt+1(τi)αt+2(τi)...αt′(τi) (3.6)

where t′ > t is the minimum successive time so that αt′(τi) = 0.
At every time t, Pfair procedure is executed to select tasks for execution based on

the tasks’ state classification described in Table 3.1. The selection consists of two steps:
(1) Schedule all urgent tasks; (2) Allocate the remaining resources to the highest-priority
contending tasks. The priority of the contending tasks are decided using a so-called
total order � which is delineated as follows: τi � τj if and only if α(τi, t) ≥ α(τj, t)
where the comparison between characteristic substrings α(τi, t) and α(τj, t) is resolved
lexicographically with − < 0 < +.

Although achieving the optimality, Pfair is faced with several drawbacks. First, Pfair
causes a large number of scheduler invocations. Second, tasks’ executions appear to be
fragmentary, which potentially increases task preemption and migration. Third, due to
the heavy processes of task state classification and tie breaking of contending tasks, Pfair
issues major runtime overhead repeatedly at every tick. Therefore, the accumulative
runtime overhead is considerably high in Pfair scheduling. These drawbacks make Pfair
difficult to be applied to practical scheduling situations.

18

Table 3.1: State classification of task τ in Pfair scheduling

State Conditions

Ahead lag(S, τ, t) < 0

Behind lag(S, τ, t) > 0

Punctual τ is neither ahead or behind

Tnegru τ is ahead and αt(τ) 6= +

Urgent τ is behind and αt(τ) 6= −
Contending τ is neither tnegru or urgent

3.3 Proportionate scheduling on time interval

Pfair is a typical periodic scheduling algorithm for multiple shared resources, which guar-
antees the fairness of scheduling for tasks at any unit time. Due to the excessive scheduler
invocations issued in this scheduling scheme, it is risen a question: How exactly does the
fluid scheduling need to be approximated in practical use? The answer to this question
is found in scheduling approaches of boundary fairness, largest local remaining execu-
tion time first, and DP-WRAP. The fairness of scheduling is indeed guaranteed for time
intervals.

3.3.1 Boundary Fairness Scheduling

Boundary Fairness (BF) was introduced to relax the notion of fairness in Pfair. That
is, it is unnecessary to assure the fairness for tasks at any system time. Instead, the
fairness is guaranteed for tasks on time intervals. In BF scheduling, intervals are decided
based on the set of system deadlines (task deadlines): two consecutive deadlines are
forming an interval. Then, on each interval, tasks are receiving an appropriate amount of
times as part of their execution time. In other words, a task is separated into subtasks
corresponding to intervals. Subtasks of different tasks on an interval therefore have the
common deadline at the end of the interval, which is known as deadline partitioning.
Since intervals are mostly longer than a system tick, deadline partitioning scheme tends to
reduce the number of scheduling points in comparison with Pfair scheduling. In addition,
subtasks in BF scheduling can be allocated executions longer than unit time, which has
potential to alleviate task preemptions and migrations.

The execution allocation on each interval can be briefly described as follows. Consid-
ered an interval I = [t1, t2) with its length LI = t2 − t1 where t1, t2 ∈ N and 0 ≤ t1 < t2.
BF algorithm is then processed in four steps:

1. Allocating mandatory units
A task τi must be allocated mandatory units mi(t1, t2) which is calculated as:

mi(t1, t2) = max(0, bRW t1
i + LI ∗ µic) (3.7)

where RW t1
i is the remaining work of τi at time t1. RW t1

i is also known as the
allocation error of τi respect to the fairness required at time t1. RW t1

i is considered

19

to be 0 at time t1 = 0. mi(t1, t2) represents the integer part of the allocation during
interval I that τi must be received in order to maintain the fairness at time t2. The
decimal part of the allocation is captured by a factor called pending work, denoted
as PW t2

i . PW t2
i is then obtained as:

PW t2
i = RW t1

i + LI ∗ µi −mi(t1, t2) (3.8)

2. Allocating optional unit, if any
The remaining time slots within interval I is distributed to tasks as the optional
units. Namely, tasks are selected to receive one extra unit of time. Task τi is eligible
for extra allocation if PW t2

i > 0 and mi(t1, t2) < LI .

3. Updating remaining works
The remaining work of task τi at time t2 is updated as:

RW t2
i = PW t2

i − o
t2
i (3.9)

where ot2i is the optional amount of τi. The remaining work at t2 is hence used for
the future scheduling.

4. Generating schedule on the interval
Finally, based on the allocated amounts on interval I, the schedule of tasks is gen-
erated. The task assignment and execution order on processors are decided using
idea of McNaughton’s algorithm [53].

τ0 τ3 τ0 τ2 τ3 τ0 τ3 τ1 τ4 τ3 τ0 τ0 τ2 τ4τ0

τ4 τ4 τ1 τ4 τ5 τ4 τ4 τ2 τ5 τ4 τ1 τ4 τ3 τ5τ4

I0 I1
I2 I3 I4

a) Pfair schedule

b) BF schedule

0 51 632 4 7 128 13 14 15109 11

P0

Time

0 51 632 4 7 128 13 14 15109 11

P1

Time

τ0 τ1 τ2 τ3 τ0 τ0 τ2 τ3 τ0 τ1 τ0 τ2 τ3τ1

τ3 τ4 τ5 τ4 τ4 τ5 τ3 τ4 τ4 τ5

0 51 632 4 7 128 13 14 15109 11

P0

Time

0 51 632 4 7 128 13 14 15109 11

P1

Time

Figure 3.5: Example of BF scheduling vs Pfair scheduling

Figure 3.5 shows an example of BF scheduling for periodic tasks in parallel with
Pfair scheduling. The example invokes a task set of six periodic tasks: τ0 = (2/5, 5),
τ1 = (1/5, 15), τ2 = (1/3, 6), τ3 = (1/3, 6), τ4 = (2/5, 15), and τ5 = (1/5, 15). In Figure

20

3.5(a), dashed lines at every tick indicate scheduling points of Pfair scheduling. As a
result, it is required 15 times of scheduler invocations to schedule tasks during the first
15 slots. Figure 3.5(b) shows the schedule for BF scheduling. Upward arrows indicate the
time at which job of task is released and double-headed arrows indicate the time at which
job release and job deadline concurrently occur. Based on the job release at time 0 and
system deadlines at 5, 6, 10, 12 and 15, five intervals are identified for BF during the first
15 slots. BF therefore causes only five scheduler invocations to schedule tasks. Obviously,
BF is better than Pfair in terms of scheduling invocation. In addition, the numbers of
preemptions and migrations are also fewer in BF schedule since tasks have more chance
to receive seamless execution during an interval; for example τ4 is executed seamlessly for
three time slots in the first interval.

However, BF has a disadvantage of unnecessary idle times of processors. This is caused
by calculation of allocated resources of tasks on the interval based on mandatory execution
and optional unit execution. In other words, adding only the unit execution is not enough
to exploit the entire system capacity on the interval. For example, consider two periodic
tasks τ0 = (2/3, 3) and τ1 = (2/3, 6) scheduled on two processors. The first interval
therefore is identified for [0, 3). The calculation of mandatory units (using Equation 3.7)
gives tasks two time slots each. Since using Equation 3.8 the pending works for two tasks
are zero, no optional unit is added to tasks. The allocated amount of τ1 is therefore two
time slots on the interval although actually it is possible to assign three time slots to
τ1. One processor is put in idle time unnecessarily at slot 2 as a result. Occurrence of
unnecessary idle times reduces the performance of BF scheduling.

3.3.2 Largest Local Remaining Execution Time First

Largest Local Remaining Execution Time First (LLREF) is another optimal algorithm
introduced to the problem of periodic scheduling on multiple shared resources. LLREF
is also explored the fluid scheduling and fairness notion to pursue the optimality. In
LLREF, an effective abstraction called Time and Local Execution Time Domain Plane
(T-L plane) is utilized to model task execution behaviors. The scheduling algorithm is
then formed based on such modeled task behaviors. Similar to BF scheduling, LLREF is
targeted to guarantee the fairness of scheduling for time intervals during which T-L planes
are established. The concept of interval is defined in LLREF as time periods between any
two consecutive job releases. The definition of time intervals is therefore convertible with
that of BF scheduling where system deadlines are used. This is because both algorithms
are targeted to periodic tasks; except the first job release, deadline of a job of task is also
the release time of the next job.

Figure 3.6 illustrates the establishment of T-L planes. It is supposed to have n periodic
tasks τ0, τ1, ..., τn−1 existing in the systems. C0, C1, ..., Cn−1 are tasks’ (worst-case)
execution times, respectively. Double-headed arrows marks time points that are release
times (and also deadlines) of jobs of the tasks. Let us consider such time points t1, t2,
and t3 and identified intervals [t1, t2) and [t2, t3). Dashed diagonal lines present the fluid
schedule of tasks on their corresponding periods. Based on the task fluid schedules and
interval’s ends, a right isosceles triangle can be found for each task on the interval. As
a result, n such triangles are found on each interval corresponding to n tasks. A T-L
plane of an interval is then constructed by overlapping these n triangles; T − Lk and
T −Lk+1 are for example shown in the figure for the two intervals [t1, t2) and [t2, t3). The

21

τ0

C0

C1

overlapped

Cn-1

t2t1

T Lk T Lk+1

t3

τ0

τn-1

.

.

.

.

Figure 3.6: Establishment of T-L plane in LLREF

bottom side of T-L planes represents the time while the left vertical side indicates a part
of execution of the tasks which is called the task’s local remaining execution time and
appears to be consumed during the interval. The schedules of tasks during intervals are
decided by modeled task behaviors on T-L planes.

Figure 3.7 shows the model of task behaviors on a T-L plane for interval [tc, tf). In
the T-L plane, tasks are modeled as tokens the starting location of which on the vertical
side is equal to their local remaining execution time (l0, l1, ...,ln−1). The dashed diagonal
paths again are the ideal moving paths of tasks following the fluid schedule. However, the
moving of tasks practically deviates from these paths. The model of moving behaviors of
task is described as follows:

• When task is selected for execution, the corresponding token is moved diagonally
down like τ0 moving.

• When task is not selected for execution, the corresponding token is moved horizon-
tally like τn−1 moving.

• When a token hits the bottom side, the represented task has no local remaining
execution time on the interval. The task should not be scheduled any more and
subjects to move horizontally to the end of the interval (tf).

• When a token hits the ceiling of local laxity, the represented task has no local laxity
on the interval. The task must be scheduled seamlessly for the remaining time of
the interval.

The target of scheduling on T-L planes is to guarantee for all tasks to arrive at tf with
no local remaining execution time. Respect to tasks’ moving behaviors, context switches
incur in necessity at events of bottom hit and ceiling hit to guarantee tasks’ executions.

22

Local remaining

execution time

Fluid scheduling curve

Ceiling of local laxity

Token

Notations

0 Timetc tbt tch tf

: Current timetc
: Bottom hit eventtbt
: Ceiling hit eventtch
: Finishing timetf

ln-1

l1
l0

τn-1

τ1

τ0

...

Figure 3.7: Scheduling within an T-L Plane

Therefore, bottom hits and ceiling hits are considered as scheduling points during the
T-L planes besides the evident scheduling point at the starting times of the T-L planes.
LLREF algorithm for scheduling n periodic tasks on m identical shared resources can be
summarized as follows. At every scheduling points, the scheduler will do:

1. Sorting tasks’ tokens in the descending order of local remaining execution times.

2. Selecting m tasks of the highest local remaining execution times.

3. Return m selected tasks and assign to processors for execution.

It is obviously that LLREF scheduling is worst than BF scheduling in terms of number
of scheduling points. Specifically, the number of intervals formed in the two algorithms
is essentially the same. However, due to the scheduler invocations additionally required
at bottom hits and ceiling hits, the number of scheduler invocation of LLREF scheduling
always larger than that of BF scheduling. In addition, LLREF is also suffered with the
increase of task preemption and migration.

3.3.3 DP-WRAP

In the background of real-time task scheduling on multiple identical shared resources,
many scheduling algorithms such as BF, LLREF were introduced based on the fluid
schedule and deadline partitioning. DP-WRAP algorithm was emerged to show a unifying
theory among algorithms.

DP-WRAP introduces DP-FAIR scheduling policies to pursue the optimality. Espe-
cially, DP-WRAP also shows an extension of DP-FAIR to schedule sporadic task sets with
arbitrary deadlines. The algorithm is described with two basic definitions: time slice and
task’s density. Time slice is defined as the time period between two consecutive system

23

deadlines. Specifically, the jth time slice, denoted as σj, is the time period [tj−1, tj) where
j ∈ N and tj−1 and tj are two consecutive deadlines of tasks. The time slice is then have
length of Lj = tj − tj−1. This concept of time slice is therefore similar to the concept of
time interval in BF and LLREF. Task’s density , denoted as δi, is defined in Equation 3.10
where Ci, Ti, and Di are the (worst-case) execution time, period and relative deadline of
the task, respectively.

δi =
Ci

min(Ti, Di)
(3.10)

In consideration of periodic tasks period and relative deadline of which are the same, δi
is known as tasks’ utilization.

Then, DP-WRAP algorithm can be simply described as follows. In time slice σj,
each task τi is allocated a segment of length δi; there are totally n segments created
corresponding to n tasks. Such segments are then concatenated into one line the length
of which is not longer than m since

∑n
i=0 δi ≤ m for feasible sets. Figure 3.8 is an

illustration of the line of six tasks with densities of 0.6, 0.6, 0.4, 0.8, and 0.2, scheduled
on a system of three processors. Note that tasks’ segments can be arranged in any order
in the line. The schedules of tasks on processors are obtained by dividing the line into
m chunks of unit length and assign chunks to the corresponding processors. The order
of tasks on a chunk indicates the execution order of tasks on the respective processor.
Tasks which are split to two processors (τ1 and τ3 in this example) are the migratory
tasks during the time slice. The actual execution time on processors and the context
switching times are found by multiplying each segment’s length by length Lj of the time
slice. The scheme of assigning tasks to processors by chunks is actually inspired of the
McNaughton’s algorithm [53].

0 1 2 3

P0’s segment

0.6 0.6 0.4 0.8 0.4 0.2

P1’s segment P2’s segment

τ0 τ1 τ2 τ3 τ4 τ5

Figure 3.8: DP-WRAP scheduling

DP-WRAP research completely generalizes the theory of guaranteeing fairness for pe-
riodic schedules on time intervals. Especially, this is also applicable to problem of schedul-
ing sporadic tasks. However, since multiplying task density by time slice’s length often
results in decimal values, determining context switches at runtime is very complicated.

3.4 Reduction to Uniprocessor

Recently, RUN (Reduction to UNiprocessor) [38] has been realized as the outperform-
ing optimal algorithm for multiprocessor scheduling in terms of task preemptions and
migrations. Therefore, RUN becomes the appropriate competitive candidate when one
introduces a new scheduling algorithm. In the rest of this section, we briefly review this
scheduling algorithm as a comparison candidate for the evaluation of this dissertation.

The key principle of RUN is an off-line transformation of the multiprocessor system
to an uniprocessor one which is used to schedule tasks at runtime. The transformation is
conducted based on two operations: packing operation and dual operation. In order to

24

present the two operations, RUN introduces concept of server which is a virtual task repre-
sentative for a set of tasks or servers. A server has utilization equal to the total utilization
of its client tasks (servers) and deadlines as union of its client tasks’ (servers’)deadline.
(Readers can refer [38] for the detailed definition of server.) Packing operation accord-
ingly is a partition of a task (server) set into subsets so that the accumulative utilization
of every single subset is less than or equal to 1 and the summation utilization of any two
subsets are greater than 1. As a result, the number of elements in the output server set
of the packing operation is less than then number of elements in the input task (server)
set. Figure 3.9 shows an example of the transformation of RUN. At the bottom of the
figure is the set of four tasks with the utilizations of 0.6, 0.6, 0.6, and 0.2, respectively.
As shown in the figure, the first packing operation reduces the task set to a set of three
servers S0, S1, and S2. S0 and S1 have the same utilization as their original task and S2

has utilization of 0.8 as summation of its two original tasks.

τ0
0.6

τ1
0.6

τ2
0.6

τ3
0.2

S0
0.6 S1

0.6
S2

0.8

S3
0.4 S4

0.4

S6
1

S5
0.2

Task set

Packed servers

Packing

Dualing

Packing

Packed servers

Dual servers

Figure 3.9: RUN: reduction tree

On the other hand, dual operation is a generation of a dual server which has the same
period with the original server and complementary utilization of the original server. In
other words, the dual server of a server S = (µs, Ts) is S∗ = (1−µs, T). For example, the
dual operation applied to servers S0, S1, and S2 in Figure 3.9 generates three servers S3,
S4, and S5 with the utilizations of 0.4, 0.4, and 0.2.

By alternatively conducting the packing operation and dual operation, the problem of
multiple processors is reduced to one processor [38]. Each packing operation corresponds
to a reduction level. This process of transformation generates a so-called reduction tree
in RUN. The root node of a reduction tree is always one server with utilization of 1.
The child nodes are either servers (packed or dual servers) or tasks (at the bottom level).
Branches in a reduction tree therefore indicate packing and dual operations. Note that
for a problem of tasks, RUN transformations can generate many reduction trees each of
them is corresponding to scheduling of a subset of entire task set on a group of processors.

25

A reduction tree of a subset of utilization of UΓ will invoke dUΓe processors.
Using the reduction tree, the schedule of tasks at runtime is decided by tracing servers

from the root to the bottom leaves (the original tasks). The selection of tasks are provided
with the following two basic rules:

• If a node of packed server is selected, then among its child nodes the one which has
the earliest deadline and still have execution remaining is selected.

• If a node of dual server is selected, then its child node is unselected.

Since the server at the root has the utilization of 1, it is always selected at scheduling
time. The tracing process starts at the root of each reduction tree and ends when the
bottom leaves (the original tasks) are reached. The final tasks are selected for execution
on the invoked processors.

Besides effectiveness on task preemption and migration, RUN efficiently reduces run-
time overhead with off-line process of the reduction transformation. However, when the
number of tasks and processors increase, the number of servers dramatically increases and
many reduction trees are required for scheduling. The on-line tracing on all of reduction
trees and updating status of servers (remaining execution times, deadlines) potentially
cause considerable overhead.

26

Chapter 4

Local Assignment Algorithm for
Periodic Task Scheduling

4.1 Introduction of Local Assignment Algorithm

In Chapter 3, we have reviewed several scheduling algorithms which achieve the optimality
by approximating the fluid schedule. These approaches have their own advantages and
disadvantages:

• Pfair early proposes the notion of proportionate scheduling to guarantee the fairness
for periodic tasks. However, time-quanta scheduling makes Pfair ineffective due to
increase of scheduler invocation and runtime overhead.

• Although remarkably reducing the number of scheduler invocations and task pre-
emption with time-interval scheduling, BF has a drawback in exploitation of system
capacity due to unneeded occurrence of idle times of processors.

• Compared with BF, LLREF requires scheduler invocation more frequently. Besides,
increase of task preemption and migration is also worth considering.

• DP-WRAP completes the unifying theory and suggests a simple model for pro-
portionate scheduling on time intervals. Nevertheless, this simple model requires
complicated calculation to determine context switches at runtime.

In this chapter, an effective approach, named Local Assignment Algorithm (LAA), is
proposed for the problem of periodic schedule on multiprocessor systems. The proposed
algorithm is motivated by taking over advantages and overcoming disadvantages of the
existing algorithms mentioned above. In detail, LAA is solving the following issues:

• Employing the notion of proportionate scheduling on time interval (similar to BF
and DP-WRAP schedulings) in order to pursue the optimality with less scheduler
invocations.

• Utilizing the system capacity effectively. It is expected that the system capacity is
fully utilized on every interval. To this end, full assignment scheme is introduced.
Approach of full assignment ultimately reduces unnecessary idle times of processors.

27

• Distributing tasks to processors in a better manner to improve task preemption
and migration. McNaughton’s algorithm and consecutive assignment model of DP-
WRAP are exploited with inclusion of task selection process. In the proposed as-
signment scheme, tasks are assigned to processors selectively using schedule history
and the remaining capacity of processors.

The remaining of this chapter is structured in six sections. Section 4.2 describes
definitions which are basic mathematical calculations of LAA. Section 4.3 is details of the
procedure of LAA. For a complete understanding of the proposed algorithm, an example
of scheduling with LAA is given in Section 4.4. The proof of optimality comes in Section
4.5. Section 4.6 is evaluation of the proposed algorithm in comparison with the existing
algorithms. Finally in Section 4.7 is summary of the effectiveness of LAA as well as
discussion on its limitation.

4.2 Definition of LAA

Before elaborating the procedure of LAA, it is important to make basic definitions in-
volved in the algorithm clear. Definitions include time interval, notion of proportionate
scheduling, local requested execution time, fully-assigned system, and scheduling plan.

4.2.1 Time interval

Since LAA is proposed in the class of time-interval scheduling, definition of time interval
therefore needs to be clarified first.

The time interval of LAA is defined as follows:

Definition 4.2.1. Time interval (or shortly interval) is the time period between any two
consecutive job releases.

Specifically, let ti and tj denote two consecutive job releases where i, j ∈ N and
0 ≤ ti < tj. ti and tj are forming an interval I = [ti, tj) so that ti is included in and
tj is excluded from the interval. The length of interval, denoted as |I|, is then given by
|I| = tj − ti.

Figure 4.1 depicts intervals determined by release times of five periodic tasks. Tasks
are supposed to have period of 3, 9, 12, 4, and 6, respectively. In this figure, upward
arrow at time 0 indicates time of job releases and double-headed arrows indicate time of
concurrently job release and deadline. Materially for this task set, jobs are released at
times 0, 3, 4, 6, 8, 9, and 12 during the first twelve time slots. Therefore, six intervals are
formed as I0, I1, I2, I3, I4, and I5.

0 1 2 3 4 5 6 7 8 9 10 11 12

I0 I1 I2 I3 I4 I5

Time

τ0 = (2/3, 3) 1= (2/3, 9)τ 2= (2/3, 12)τ 3= (1/2, 4)τ 4= (1/2, 6)τ

Figure 4.1: Identification of intervals

28

Each interval is further associated with a factor called system capacity. The system
capacity is the total time slots over all processors that are allocated to tasks for execution
during the interval. Accordingly, an interval I with the length of |I| would have a capacity
equal to m|I| where m is the number of processors available.

4.2.2 Proportionate scheduling

The notion of fairness of Pfair is employed to pursue the optimality of LAA. Reminding
that the proportionate scheduling of Pfair guarantees that at every time t, a task τi must
have been scheduled to receive either bµi∗tc or dµi∗te resources where µi is task utilization
(weight).

The proportionate scheduling is re-defined in LAA as follows:

Definition 4.2.2. Consider t as the end time of an interval. A task τi must receive at
least bµi ∗ tc resources by time t.

The difference is that the flooring term bµi ∗ tc only is required in LAA algorithm.
This simplification is to reduce the time complexity of the algorithm. Let Si(t) denote the
number of time slots (resources) that τi is entitled to receive by time t based on Definition
4.2.2. Si(t) is calculated as follows:

Si(t) = bµi ∗ tc (4.1)

Additionally, we can obtain the sum of the total resources requested by all existing
tasks up to t, denoted as S(t), using Equation 4.2.

S(t) =

np−1∑
i=0

Si(t) (4.2)

Let Ai(t) denote the actual resources that τi has been already assigned by time t (or
during period from time 0 to time t). This value is easily recorded by the operating
system. The total already assigned resources of all tasks up to t, denoted as A(t), can be
obtained using Equation 4.3.

A(t) =
n−1∑
i=0

Ai(t) (4.3)

4.2.3 Local requested execution time

Definition 4.2.3 shows a definition of local requested execution time in LAA.

Definition 4.2.3. Local requested execution time (LRET) is the amount of times for each
task to be executed during an interval.

Since a job of task can be involved in several intervals, LRET is a part of the task’s
execution. The term ”local” here means within one interval; that is LRET of a task is a
part of execution that is accommodated within one interval.

The calculation of LRET of task τi on interval I = [t1, t2), denoted as Ei(t1, t2), is
shown in Figure 4.2. As shown, Ei(t1, t2) consists of two parts: mandatory execution

29

Mi(t1, t2) and extra execution Pi(t1, t2). These parts are calculated using Equation 4.4
and Equation 4.5.

Mi(t1, t2) = bµi ∗ t2c − Ai(t1) (4.4)

Pi(t1, t2) = min(JREi, slack, LI −Mi) (4.5)

: Job remaining execution timeJRE
i

: Slack times of the intervalslack

: Interval’s lengthLI

Notations:

Figure 4.2: Local requested execution time of LAA

Then, the total requested execution time of tasks on interval I, denoted as E(t1, t2),
is calculated in sum as:

E(t1, t2) =

np−1∑
i=0

Ei(t1, t2) (4.6)

4.2.4 Fully-assigned system

Definition 4.2.3 shows a definition of fully-assigned system in LAA.

Definition 4.2.4. A multiprocessor system is called a fully-assigned system by time t if
no slack time (empty slot) occurs over processors up to t.

The definition implies that if the system is fully assigned up to time t, all of time slots
are occupied by task execution up to t. As a result, the total already assigned resources
of tasks up to t (or A(t) as denoted above) on fully-assigned system of m processors can
be obtained using Equation 4.7.

A(t) =

np−1∑
i=0

Ai(t1) = m ∗ t (4.7)

4.2.5 Scheduling plan

Definition 4.2.5. Scheduling plans are arrangement of task executions on processors
during intervals. A scheduling plan is therefore solving the following two things:

• The amount of times allocated to each task on each processor and

• The execution order of tasks with allocated amounts on each processor.

Scheduling plans are used as instruction to select tasks for execution and determine
context switches at runtime. The scheduler is then invoked at the start time of every inter-
val to make scheduling plans. The start times of intervals are considered as scheduling
events in LAA. Notably, since periodic tasks are targeted for scheduling, the end time of
the current interval is the start time of the next one and therefore also a scheduling event
in LAA.

30

4.3 Procedure of LAA

Local Assignment Algorithm (LAA) is introduced to make scheduling plans for schedul-
ing tasks on intervals. In respect of the definition of scheduling plan, execution of the
algorithm needs to provide the following two tasks:

1. Calculating local requested execution times as the amount of times allocated to
tasks on the interval and

2. Assigning tasks to processors to make the execution order of tasks on processors.

In addition, toward the goal of achieving the full schedulability of 100%, LAA is
designed to guarantee the system fully-assigned on every interval. Algorithm 1 shows
the pseudo procedure of LAA. This procedure is executed by scheduler at the beginning of
each interval in oder to make the scheduling plan. As shown in the procedure, besides the
task set (indexed by i), the execution of LAA requires two input data: ts as the start time
and te as the end time of the involved interval. These information can be obtained easily
since they are release times of jobs of periodic tasks and can be solved statistically. The
length of the involved interval, LI , is by definition equal to te − ts. Then, the procedure
of LAA consists of three phases: the first two phases are to calculate LRETs for tasks
and the third phase is to assign tasks to processors. The targeted scheduling plan for the
involved interval is therefore obtained at the end of the third phase. Specifically, in the
first phase, LRET Estimation, the mandatory part of LRETs for each tasks is calculated
using combination of Equation 4.1 and Equation 4.4 where t1 and t2 are correspondingly
replaced with ts and te.

Since the flooring term bµi ∗ tec is applied, the total amount of LRETs of tasks from
this step is less than or equal to the system capacity on the interval. In other words,
the fully-assigned system has not been guaranteed with these mandatory amounts and
an adjustment for LRETs is required. This is the work designated to the second phase,
LRET Adjustment. The adjustment process is distributing the remaining slack times of
the interval to tasks in harmony with the tasks’ remaining execution time and interval
length. To this end, a variable slack is computed by subtracting the total mandatory
amount, calculated in the first step, from the system capacity of the interval (m ∗ LI).
Then, tasks are each judged to receive an extra execution equal to the minimum one
among their current job’s remaining execution time (JREi), the remaining slack (slack),
and the possible increment (LI − Ei(ts, te)). The term LI − Ei(ts, te) indicates that the
local requested execution time of a task on the interval is not larger than the interval
length. In other words, the local requested execution time of any task is completely
accommodated within the interval. When task τi is received an extra amount, JREi and
slack are subtracted by the amount.

The final phase, Task Assignment, is to assign tasks with their calculated LRET to
processors appropriately. We introduce a consecutive assignment scheme for this purpose.
Basically, the assignment idea is that the schedule of tasks on actual processors is extracted
from assignment of tasks on an virtual uniprocessor which is established by concatenating
actual processors together.

As described in Algorithm 1, process of consecutive assignment requires two input
data: E(t1, t2) as the set of LRETs of tasks (calculated in the previous two phases) and
Record[][] as the record of schedule history of tasks on processors at every slot. In detail,

31

an access to Record[1][5] returns the identifier of the task that was executed at slot 5 on
processor 1. The output of the process is therefore the targeted scheduling plan for the
involved interval. The process is then described in four steps. For ease of understanding,
the process is elaborated with illustration in Figure 4.3. In this illustration, the problem is
supposed to make scheduling plan of five tasks on three processors for interval I = [t1, t2).
LRETs of tasks are E(t1, t2) = {2, 3, 3, 3, 4} and slot t1 − 1 on the three processors are
scheduled for τ1, τ3, and τ4, respectively.

Algorithm 1: Local Assignment Algorithm
τ = {τi, 0 ≤ i < np} : task set indexed by i
ts, te : the start and end times of the involved interval
LI ← te − ts

1. LRET Estimation:
For each task τi:
Ei(ts, te)← bµi ∗ tec − Ai(ts)

2. LRET Adjustment:

slack ← m ∗ LI −
∑n−1

i=0 Ei(ts, te)
i← 0
while slack > 0 do
{
min← min(JREi, slack, LI − Ei(ts, te))
Ei(ts, te)← Ei(ts, te) +min
slack ← slack −min
JREi ← JREi −min
i← i+ 1

}
3. Task Assignment: consecutive assignment process

Inputs: E(t1, t2) = {Ei(ts, te), 0 ≤ i ≤ np − 1}, Record[][]
Outputs: Schedule plan SP
Procedure:

(1) Establish a virtual uniprocessor UP
(2) Assign tasks just executed at slot ts − 1 to the same processor’s segment:

For each segment p of UP :
p← Ei(ts, te) : 0 ≤ p < m & Record[p][ts − 1] = i

(3) Assign the other tasks to the emptiest space on UP
(4) Convert order of tasks on UP to schedule plan SP

At the first step, virtual uniprocessor is established by joining m actual processors
altogether in series. Each actual processor is therefore corresponding to a segment of
the virtual uniprocessor. The capacity of the virtual uniprocessor is equal to the total
capacity of actual processors; that is m ∗ LI .

At the second step, tasks are selectively assigned to processors’ segments on the virtual
uniprocessor based on the schedule history. Concretely, by indexing slots from 0, the
schedule at slot t1 − 1, the slot just before the scheduling time, is used for this task
selection. Then, the task executed at slot t1 − 1 will be assigned to the segment of the
same processor if its LRET is larger than zero. Accordingly, in this illustration, τ1, τ3 and
τ4 are assigned first to the three processors’ segments, respectively. Tasks are allocated
amounts of time equal to their LRETs.

32

At the third step, the remaining tasks are seamlessly placed at the emptiest space of
the virtual uniprocessor. This action may cause the just-assigned tasks to move along
the processor’s segments to give a fit space for the coming task. Obviously, the capacity
of the virtual uniprocessor is sufficient to satisfy all tasks’ LRETs. In this illustration,
τ0 is placed after τ1 on P0’s segment and τ2 is then placed after τ3 ans belongs to two
segments. τ4 is the moving one to give fit space for τ2.

At the final step, the assignment of tasks on the virtual uniprocessor is converted to
schedule of tasks on virtual processors in correspond to processors’ segments. Specifically,
keeping the order of task executions on the first segment makes the scheduling plan on
the first actual processor. The second and third segments are respectively mapped to
the second and third processors in the same manner. The expected scheduling plan is
obtained.

Time

...
P0

Time

...
P1

Time

...
P2

0 IL
I2*L I3*L

0 IL
I2*L I3*L

0 IL

1
t

2
t

1
t -1

1
t

4
E

3
E

2
E

1
E

0
E

2
t

1
t -1

1
t

2
t

1
t -1

I2*L I3*L

P0’s segment P1’s segment P2’s segment

Time

...
P0

Time

...
P1

Time

...
P2

1
t

2
t

1
t -1

1
t

2
t

1
t -1

1
t

2
t

1
t -1

IL = - 1
tI=[,)

1
t

2
t

 E(,)={2 ,3 ,3 ,3 ,4 }
1

t
2

t

2
t

τ0 τ1 τ2 τ3 τ4Task set:

Interval:

LRET:

(1) Establish

virtual uniprocessor

(2) Assign tasks

to the last processor

(3) Assign tasks

to the emptiest space

(4) From virtual uniprocessor

to actual processors

Figure 4.3: Process of consecutive assignment

It is notable that the consecutive assignment strategy guarantees two important schedul-
ing principles:

1. There exists no concurrent execution of a task on more than one processor at the
same time.

2. All LRETs of tasks are accommodated by the end of the involved interval;

The calculations of LAA guarantee that LRETs of tasks on an interval are less than
or equal to the interval’s length. Observing the allocation scheme of the consecutive

33

assignment (Figure 4.3), there exist two allocation situations happening for LRET of a
task: (1) allocated on one processor’s segment and (2) belong to two adjacent processors’
segments. In the first situation, after the schedule converting process, the task is executed
on one processor during the interval. In the second situation, the LRET of the task is
separated into two sub-executions which are executed on two processors. A sub-execution
is therefore executed at the start of one processor and the other sub-execution is executed
at the end of the other processor. Since the LRET of a task on an interval is not larger
than the interval’s length, the two sub-executions are not overlapping each other. In other
words, no concurrent execution of a task occurs on more than one processor at the same
time.

The latter principle is easily assured with the cumulative capacity of the virtual unipro-
cessor. That is, the capacity of the virtual uniprocessor is equal to the total capacity of
actual processors on the interval. Since for feasible systems the total LRETs of tasks are
less than or equal to the system capacity on the interval, the cumulative capacity of the
virtual uniprocessor is large enough to accommodate LRETs of tasks.

4.4 Example of scheduling with LAA

In Figure 4.4 we show a simple example of task scheduling with LAA. The example is
to deeper clarify steps of making scheduling plans for serial intervals. The problem takes
into account of five periodic tasks with identical utilization of 0.6 and periods of 5, 10, 15,
10, 5, respectively. Tasks are scheduled to execute on three processors. Supposed that all
tasks are first releasing jobs at time 0. Jobs will be continuously released at time 5, 10,
15, ..., and so on. Based on the job releases, two intervals I0 and I1 are forming during
the first ten slots. The scheduler is invoked at time 0 and time 5 to make scheduling plans
for the two intervals.

Applying Algorithm 1 for I0, in the first phase of LRET Estimation, the mandatory
parts of LRETs are calculated for tasks on interval I0 (with ts = 0 and te = 5), which gives
three slots for each task. In the second phase of LRET Adjustment, since the total amount
of mandatory parts fulfills the system capacity of I1 (15 slots in total), tasks receive no
extra execution. The LRETs of tasks on I0 are eventually equal to 3, as express by E0.
E0 is used for allocation of tasks to processors in the last phase of Task Assignment.

In the last phase, a virtual uniprocessor is established for I0 with the capacity of
15 (as capacity of three processors over five slots) as the result of the first step of the
consecutive assignment process. Since at time 0, no schedule history is recorded, the
second step is passed with no task assigned on the virtual uniprocessor. At the third step,
assigning tasks to the emptiest space leads tasks in order of τ0, τ1, τ2, τ3, and τ4 on the
virtual uniprocessor alike task indexes. Each task is allocated three slots on the virtual
uniprocessor. At the last step of the assignment process, order of tasks on the virtual
uniprocessor is converted to the scheduling plans on actual processors. In detail, τ0 is
allocated three slots on P0 followed by two slots of τ1. τ1 is allocated one first slot of P1
followed by three slots of τ2 and one slot of τ3. Finally, P2 will start with two slots of τ3

followed by three slots of τ4. The whole scheduling plan for I0 is found in the figure.
Similarly, the scheduler will be invoked at time 5 to make scheduling plan for I1.

Applying Algorithm 1, LRETs for tasks on I1 are calculated, which eventually results to
give three slots for each task as shown in E1. The consecutive assignment process is then

34

τ0 = (0.6, 5) τ1 = (0.6, 10) τ2 = (0.6, 15) τ3 = (0.6, 10) τ4 = (0.6, 5)

P0

P1

P2

0 1 2 3 4 5 6 7 8 9 10 Time

I0 I1

1050

E =(3,3,3,3,3)0 E =(3,3,3,3,3)1

0 5 10 15

P0’s segment P1’s segment P2’s segment

0 5 10 15

P0’s segment P1’s segment P2’s segment

Task set:

Intervals:

Scheduling plans:

Virtual uniprocessor

for I :0

Virtual uniprocessor

for I :1

Figure 4.4: Example of making scheduling plans for intervals

conducted for I1 with the schedule history recorded for slot 4 (the slot just before time 5).
According to the scheduling plan of I0, τ1, τ3, and τ4 were executed on P0, P1, and P2,
respectively, at slot 4. The consecutive assignment process for I1 is conducted as follows.
As the first step, the virtual uniprocessor is established. Then, based on the schedule
history at slot 4, τ1, τ3, and τ4 are selected to be assigned to the head of three processor’s
segments as the tasks last executed on these processors. The task selection continues to
select τ0 and allocate this task at the space after τ1. τ0 will take the two remaining two
slots of the first segment and one slot at the head of the second segment. As a result, τ3

has to move along the virtual uniprocessor to give fit space for τ0. Repeating the task
selection process, τ2 is selected and assigned to empty space after τ3. In this case, τ4 is
the moved one to give fit spaces for τ2. The order of tasks on the virtual uniprocessor of
I1 and the final scheduling plan for I1 are shown in the figure.

4.5 Schedulability guarantee of LAA

This section gives the proof of achieving the optimality for scheduling system as a whole.
For the optimality (as defined in Chapter 2), we prove that LAA is capable of scheduling
any feasible task set at the total task utilization up to 100% of the system capacity so
that all task deadlines are met. Without loss of generality, we assume that the total task
utilization imposed upon the targeted system is 100%. That is,

np−1∑
i=0

µi = m (4.8)

In case the total utilization is less than m, dummy tasks are inserted to fulfill the system
without any additional cost. Conceptually, a dummy task has its maximum utilization
equal to one and its execution time is arbitrarily large. More than one dummy tasks
may needed to fill the remaining system capacity unused by periodic tasks. All inserted
dummy tasks therefore occupy the rest capacity of m −

∑np−1
i=0 µi. During execution of

dummy tasks, the assigned processor do nothing (or put into idle time for saving energy).

35

Now, we sequentially show that LAA provides the following result:

1. LAA maintains fully-assigned systems for every interval.

2. Maintaining fully-assigned systems for every interval can guarantee the schedulabil-
ity of the system.

The first result comes straightforwardly by exploring Algorithm 1 described in Section
4.3. At the second phase, LRET Adjustment, all of slack times within the interval are
distributed to tasks (including dummy ones) as their extra execution (Section 4.2.3).
The system capacity of the interval is overspread with tasks’ execution as a result. This
indicates that fully-assigned system is achieved on the interval.

For the second result, the proof is supported with two lemmas and then a theorem as
follows.

Lemma 4.5.1. Given a feasible set of np periodic tasks scheduled on m identical processors
and an interval I. If the total amount of local requested execution times of tasks on I does
not exceed the system capacity of I, LAA scheduling can then finish all of the local requested
execution times by the end of I.

Proof. The system capacity on I is equal to m∗ |I|. At the third phase, Task Assignment,
of Algorithm 1, this capacity is set for the capacity of the virtual uniprocessor established
in the consecutive assignment. Since the total amount of local requested execution times
is not greater than m∗|I|, the capacity of the virtual uniprocessor is capable of accommo-
dating that amount. In other words, the task assignment on the virtual uniprocessor is
achievable. Then, scheduling plans obtained from the conversion step of the consecutive
assignment process confirm the correctness of the lemma.

Lemma 4.5.2. Given a feasible set of np periodic tasks scheduled on m identical processors
and two consecutive scheduling events t1 and t2 (t1, t2 ∈ N and 0 ≤ t1 < t2). If making
the system fully assigned can guarantee the schedulability (no deadline miss occurring) up
to time t1, then the system is also schedulable with the same scheduling manner up to time
t2.

Proof. Firstly, the scheduling events t1 and t2 form an interval I with its length |I| =
t2 − t1. Then, the total amount of local requested execution time of tasks on I can be
derived from Equation 4.6 as follows:

E(t1, t2) =

np∑
i=1

Mi(t1, t2) +

np∑
i=1

Pi(t1, t2) (4.9)

Applying Equation 4.4, the total mandatory execution of tasks on I can be obtained
as:

np∑
i=1

Mi(t1, t2) =

np∑
i=1

bµi ∗ t2c −
np∑
i=1

Ai(t1) (4.10)

Since the system is fully assigned up to t1, the total already assigned resources of tasks
is exactly equal to m ∗ t1. Then, by applying Equation 4.7 we have:

np∑
i=1

Mi(t1, t2) =

np∑
i=1

bµi ∗ t2c −m ∗ t1 (4.11)

36

Next, Because Equation 2.4 holds for the feasible task sets, the following result is
obtained:

np∑
i=1

Mi(t1, t2) ≤ m ∗ |I| (4.12)

In addition, the distribution of slack times at the second phase of Algorithm 1 leads
the following result:

np∑
i=1

Pi(t1, t2) = m ∗ |I| −
np∑
i=1

Mi(t1, t2) (4.13)

Equation 4.12 and Equation 4.13 in combination imply that:

E(t1, t2) = m ∗ |I| (4.14)

Now, according to Lemma 4.5.1, we can claim that all local requested execution times
of tasks can be accommodated by the end of interval I, or by t2 and the fully-assigned
system is achieved on I. In other words, the system can be successfully scheduled without
any deadline misses up to time t2.

In the rest of this section, we are showing that, LAA can guarantee the schedulability
of up to 100% for the system as a whole. It concisely states the following theory.

Theorem 4.5.3. Consider a feasible set of np periodic tasks scheduled on m identical
processors. Each task is characterized by a utilization µ ≤ 1 and an integer period T >
0. By maintaining fully-assigned systems for every time intervals, LAA is applicable to
schedule any task set of utilization of up to 100% without deadline miss.

Proof. LetD = {0, t1, t2, ...} be a set of scheduling events (job releases) where t1, t2, ... ∈ N
and 0 < t1 < t2 < ... For the first interval I0 = [0, t1), the total amount of local requested
execution times of tasks is calculated as follows:

E(0, t1) =

np∑
i=1

Mi(0, t1) +

np∑
i=1

Pi(0, t1) (4.15)

Because the already-assigned resources of tasks at time 0 is equal to 0, the total
mandatory execution of tasks on I0 is:

np∑
i=1

Mi(0, t1) =

np∑
i=1

bµi ∗ t1c (4.16)

Since Equation 2.4 holds, we have:

np∑
i=1

Mi(0, t1) ≤ m ∗ t1 (4.17)

Then, the total extra execution of tasks on I0 is obtained as follows:

np∑
i=1

Pi(0, t1) = m ∗ t1 −
np∑
i=1

Mi(0, t1) (4.18)

37

Finally, we can easily reason out that E(0, t1) = m ∗ t1. Accordingly, Lemma 4.5.1
indicates that the amount of local requested execution times can be successfully accom-
modated with a fully-assigned system on interval I0. The system is therefore schedulable
with LAA algorithm up to t1. Then, applying Lemma 4.5.2 also indicates that a fully-
assigned system on the next interval I1 = [t1, t2) can guarantee the schedulability up to
t2. This is repeated on successive intervals and therefore the schedulability is achieved for
the whole system.

4.6 Evaluation of LAA

4.6.1 Simulation environment

Evaluation criteria

The proposed algorithm is evaluated by software simulations. The targeted criteria include
scheduler invocation, task migration, task preemption, and time complexity. The criteria
follow definitions in Chapter 2. In simulation, scheduling overhead and overheads caused
by task preemption and migration are ideal (zero). Instead, the number of scheduler
invocation, task preemption and task migration are objects of assessment. The time
complexity of algorithms is assessed through runtime overhead issued at system ticks and
the maximum runtime overhead per tick is considered. Runtime overhead is obtained by
adding up the number of cycles spent for each instruction execution in the algorithms.
This calculation includes arithmetic, logical, and control operations in the algorithms. The
instruction set of the Cortex-A9 processor [57, 58] is employed as reference for executing
cycle estimation. Table 4.1 shows the simulated number of cycles spent for execution of
different operations. The observation period is 100,000 ticks.

Table 4.1: Number of cycles of the targeted operations in simulation

Operation # of cycles Description

IADD 1 Integer addition

IMUL 2 Integer multiplication

FADD 4 Floating-point addition

FMUL 5 Floating-point multiplication

FDIV 15 Floating-point division

COMP 1 comparison

ASSIGN 1 Assignment

CEIL 1 Ceiling

FLOOR 1 Flooring

38

Task set

In simulation system, task sets are generated corresponding to the simulated number of
processors available. Accordingly, the simulation system is set for cases of 4, 8, 16 and 32
processors. Periodic task sets involved in each case of processors have varied utilization
levels from 75% to 100% with increment divided by 5%. The generation of a periodic task
set follows the following steps:

1. Determine the number of processors.

2. Calculate the total targeted task utilization Up (Up =
∑np

i=0 µi) for each case of
utilization level. For example, in case of 4 processors, Up = 3 if the utilization level
is equal to 75% and Up = 3.6 if the utilization level is equal to 95%.

3. Distribute Up to tasks as their utilization. This step decides the tasks’ utilizations
and the number of tasks in a task set corresponding to Up. Tasks’ utilizations are
generated using exponential distribution. Tasks’ utilizations are restricted to values
in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (one decimal place). The restriction is ap-
plied for ease of implementing comparative algorithms. Furthermore, the number
of tasks in a set follows the constraint: m + 1 ≤ np < 100, where m is the number
of processors. The lower bound of the constraint assures task migrations happening
and the upper bound reflexes the limited number of tasks in practical embedded
systems. Figure 4.5 shows a simple pseudo-code for this utilization distribution.
In this code, utildis is an exponential distribution function with default rate 1.
generator is a random engine to generate a value in the specified range.

std :: exponential distribution <double> utildis(1);
int np ;
int i ;
while(n < m & n>100)
{

np = 0;
i = 0;
while(Up > 0)
{

µ[i]= utildis (generator);
Up = Up−µ[i];
i ++;
np ++;

}
}

Figure 4.5: Simple mechanism of utilization distribution

4. Generate WCET and task period. For each task, WCET is a random value in range
[1, 20]. The task period is task WCET divided task utilization. Limiting value of
WCET is to shorten task period and then increase the number of job releases during
the observation period.

39

5. Export generated data to files for simulation.

For each case of utilization level in each case of processor numbers, ten different task
sets are simulated and the result is reported with the average value.

Comparison candidates

The proposed algorithm is evaluated in comparison with the existing candidates: Semi-
partitioned reservation (SPR) [31], Pfair [32], and RUN [38]. In order to simulate the
behaviors of RUN algorithm, Best-Fit Bin Packing approach is applied for the packing
procedure. Similarly, Worst-Fit Bin Packing approach is selected for the partition proce-
dure in SPR. The two packing methods are used for their best yields in the corresponding
algorithm. Furthermore, SPR is excluded at the evaluation cases of periodic utilization
of 100% since the algorithm occasionally failed in partition of task sets.

4.6.2 Simulation results of LAA

Scheduler invocation

Figure 4.6 shows the total number of scheduler invocation occurring during the observation
period for four examined algorithms.

0

20000

40000

60000

80000

100000

120000

75% 80% 85% 90% 95% 100%

#
 o

f
sc

h
e
d

u
le

r
in

v
o

c
a
ti

o
n

s

Periodic Utilization (Up)

4 Processors

 PFAIR SPR RUN LAA

0

20000

40000

60000

80000

100000

120000

75% 80% 85% 90% 95% 100%

#
 o

f
sc

h
e
d

u
le

r
in

v
o

c
a
ti

o
n

s

Periodic Utilization (Up)

8 Processors

 PFAIR SPR RUN LAA

0

20000

40000

60000

80000

100000

120000

75% 80% 85% 90% 95% 100%

#
 o

f
sc

h
e
d

u
le

r
in

v
o

c
a
ti

o
n

s

Periodic Utilization (Up)

16 Processors

 PFAIR SPR RUN LAA

0

20000

40000

60000

80000

100000

120000

75% 80% 85% 90% 95% 100%

#
 o

f
sc

h
e
d

u
le

r
in

v
o

c
a
ti

o
n

s

Periodic Utilization (Up)

32 Processors

 PFAIR SPR RUN LAA

Figure 4.6: Scheduler invocation of LAA

As a fine time-scale scheduling, Pfair is the worst candidate in this criterion with the
results of 100,000 scheduling points over all simulation cases. Obviously, SPR and RUN
experience a similar trend that the number of scheduler invocation increases together
with the number of tasks that causes the increase of job releases and job completions.

40

Specifically, RUN tends to cause fewer scheduler invocations than SPR does in cases of
4 and 8 processors; scheduler invocation in RUN is more frequent than in SPR in the
other cases where the number of tasks and then jobs is larger. This is because RUN
abstraction significantly increases dual servers in such cases. Overall, the results indicate
that the proposed algorithm, LAA, outperforms the others in this criterion. Using only job
releases as scheduling points, LAA reduces scheduler invocations by over 50% in almost
all simulation cases. This is an important achievement of LAA.

Time complexity

Figure 4.7 displays the results of the maximum runtime overhead per tick which is used to
assess the time complexity of algorithms. In all our simulation cases, PFAIR experiences
significantly high runtime overheads than the other candidates. This is caused by complex
procedure of task classification of PFAIR at every instant time. Therefore, the results of
runtime overhead of PFAIR is not plotted here. For further assessment, results in Table
4.2 are helpful.

Overall, belonging to class of semi-partitioned schedulings, SPR shows advantage in
reducing runtime overhead for all task sets. Compared to the optimal algorithm RUN,
LAA shows better results in most of cases, especially on the scenarios of high numbers
of processors. In cases of 4 and 8 processors, no one of LAA and RUN overwhelms the
other and the gaps between their results are not much different. On the other hand, when
the number of processors increases, the improvement of LAA becomes apparent with the
clear improvement gap. In the case of 16 processors, LAA issues approximately 20% of
runtime overhead less than RUN. The improvement gap increases to about 40% in the
case of 32 processors.

0

100

200

300

400

500

600

75% 80% 85% 90% 95% 100%M
a
x

im
u

m
 o

v
e
rh

e
a
d

/t
ic

k

Periodic Utilization (Up)

4 processors

 SPR RUN LAA

0

200

400

600

800

1000

1200

75% 80% 85% 90% 95% 100%M
a
x

im
u

m
 o

v
e
rh

e
a
d

/t
ic

k

Periodic Utilization (Up)

8 processors

 SPR RUN LAA

0

500

1000

1500

2000

2500

75% 80% 85% 90% 95% 100%M
a
x

im
u

m
 o

v
e
rh

e
a
d

/t
ic

k

Periodic Utilization (Up)

16 processors

 SPR RUN LAA

0

1000

2000

3000

4000

5000

75% 80% 85% 90% 95% 100%M
a
x

im
u

m
 o

v
e
rh

e
a
d

/t
ic

k

Periodic Utilization (Up)

32 processors

SPR RUN LAA

Figure 4.7: Runtime overhead of LAA

41

For deeper assessment of time complexity of algorithms, Table 4.2 shows the average
number of operations invoked in algorithms’ execution at Up = 95% on cases of 4 and
16 processors in Figure 4.7. High runtime overheads of PFAIR are confirmed by a large
number of operation compared with the other candidates. Especially, PFAIR executes
many floating multiplications in comparing characteristic substring [32]; which dominantly
causes runtime overhead.

Table 4.2 also indicates that although the total runtime overhead of LAA may less
than that of RUN, RUN has an advantage of no execution of floating-point numbers.
Whereas, LAA requires processor architectures with floating-point unit.

Table 4.2: Number of operations in execution of LAA

4 processors

PFAIR SPR RUN LAA

Overhead 2932.3 212.1 418 449.9

IADD 682.6 4 19.1 94.7

IMUL 0 0 0 1

FMUL 274.2 0 0 5.9

COMP 474.3 53 216.3 206.6

ASSIGN 250.2 155.1 182.6 111.2

FLOOR 154.2 0 0 5.9

16 processors

PFAIR SPR RUN LAA

Overhead 16954.4 626.5 1959.9 1612.1

IADD 4456.8 110 79.3 400

IMUL 0 0 0 1

FMUL 1315.6 0 0 27.1

COMP 3883 199.9 1035.2 649.6

ASSIGN 391 316.6 845.4 397.9

FLOOR 1645.6 0 0 27.1

In addition, respect to the definition in Chapter 2, accumulative overhead is poten-
tially improved with LAA. Combining characteristics of fewer scheduler invocations and
low runtime overhead, LAA substantially reduces accumulative overhead as the sum of
runtime overheads incurring at every scheduler invocation. This effectively improves the
throughput of the system in a manner that the system can spend more time executing
tasks, rather than processing the scheduling algorithm.

42

0

50000

100000

150000

200000

75% 80% 85% 90% 95% 100%

#
 o

f
ta

sk
 m

ig
ra

ti
o

n
s

Periodic Utilization (Up)

4 Processors

 PFAIR SPR RUN LAA

0

100000

200000

300000

400000

500000

75% 80% 85% 90% 95% 100%

#
 o

f
ta

sk
 m

ig
ra

ti
o

n
s

Periodic Utilization (Up)

8 Processors

 PFAIR SPR RUN LAA

0

200000

400000

600000

800000

1000000

75% 80% 85% 90% 95% 100%

#
 o

f
ta

sk
 m

ig
ra

ti
o

n
s

Periodic Utilization (Up)

16 Processors

 PFAIR SPR RUN LAA

0

500000

1000000

1500000

2000000

75% 80% 85% 90% 95% 100%

#
 o

f
ta

sk
 m

ig
ra

ti
o

n
s

Periodic Utilization (Up)

32 Processors

 PFAIR SPR RUN LAA

Figure 4.8: Task migration of LAA

Task migration and preemption

The total numbers of task migration and task preemption are displayed in Figure 4.8
and Figure 4.9, respectively. Firstly, Pfair causes the largest number of migrations and
preemptions due to the impact of time-quanta schedules. This is because tasks’ executions
are fragmentary by time unit. Fragmentation makes jobs of tasks migrated and preempted
frequently during their presentation.

As an advantage of partition scheduling, SPR is better than RUN and LAA in terms
of task migration. Conversely, it experiences higher number of task preemptions than
RUN and LAA do, especially at heavy workloads of 95%. In other words, limiting tasks’
moving among processors negatively increases the number of preemptions.

Compared with RUN scheduling, LAA is worse in terms of task migration, except
cases of 90% on 4 processors, 85% on 8 processors, 80% on 32 processors. However, LAA
is a superior candidate when it comes to exhibiting lower numbers of task preemption
than RUN does. Overall, it can be seen that the gaps between migration and preemption
results of LAA and RUN are not large.

Furthermore, it is notable that results of task migration and preemption also indi-
cate a trend that increase of task migrations potentially has potential to decrease task
preemptions. In other words, moving a task to alternative processors means giving more
chance to the task to be executed seamlessly, which can reduce the task preemption. For
example, let us observe results of migration and preemption of LAA and RUN on the
case of 32 processors. For task migration, LAA has better result than RUN on the case
of 80%; but increases task migration on the other cases. Whereas, for task preemption,
80% is only the case where LAA is worst than RUN; LAA issues less task preemptions

43

0.0

50000.0

100000.0

150000.0

200000.0

75% 80% 85% 90% 95% 100%

#
 o

f
ta

sk
 p

re
e
m

p
ti

o
n
s

Periodic Utilization (Up)

4 Processors

 PFAIR SPR RUN LAA

0.0

50000.0

100000.0

150000.0

200000.0

250000.0

300000.0

350000.0

75% 80% 85% 90% 95% 100%

#
 o

f
ta

sk
 p

re
e
m

p
ti

o
n
s

Periodic Utilization (Up)

8 Processors

 PFAIR SPR RUN LAA

0.0

100000.0

200000.0

300000.0

400000.0

500000.0

600000.0

700000.0

75% 80% 85% 90% 95% 100%

#
 o

f
ta

sk
 p

re
e
m

p
ti

o
n
s

Periodic Utilization (Up)

16 Processors

 PFAIR SPR RUN LAA

0.0

200000.0

400000.0

600000.0

800000.0

1000000.0

1200000.0

75% 80% 85% 90% 95% 100%

#
 o

f
ta

sk
 p

re
e
m

p
ti

o
n
s

Periodic Utilization (Up)

32 Processors

 PFAIR SPR RUN LAA

Figure 4.9: Task preemption of LAA

than RUN on the other cases.
This can be considered as trade-off between task migration and task preemption in

multiprocessor scheduling.

4.7 Conclusion: Effectiveness and Limitation of LAA

4.7.1 Effectiveness of LAA

First, LAA clearly shows effectiveness in reducing accumulative runtime overhead. This
advantage is obtained from the combination of fewer scheduler invocations and low time
complexity. The system performance therefore is improved in a sense that the system can
afford to execute more tasks in practical.

Especially in embedded systems where the number of tasks is smaller, LAA may
become more effective to reduce accumulative runtime overhead. First, it is plausible
that smaller numbers of tasks potentially issue fewer number of job releases. The number
of scheduler invocations is then decreased. Second, observing Algorithm 1, calculations
of LRETs at steps 1 and 2 are done for each task and tasks are individually allocated
on the virtual uniprocessor at step 3. Therefore, the process of scheduling can be faster
when the number of tasks is decreased. This means the runtime overhead (scheduling
overhead) is lower for smaller numbers of tasks.

Second, as showed in Algorithm 1, local requested execution times of tasks are resulted
in integral values. It means the actual context switches can be determined easier at

44

runtime. This is a plus of LAA compared with DP-WRAP where complicated calculations
are required to decide the context switches at runtime.

Third, full assignment scheme allows LAA to better exploit the system capacity for
high performance. This is better than the distribution scheme of BF scheduling. Further-
more, the adjustment for full assignment actually does not required any priority of tasks;
namely, tasks can be selected arbitrarily to increase their local requested execution time
at the second phase in Algorithm 1. It is effective to eliminate the additional runtime
overhead for task sorting.

Finally, thank to relatively low time complexity, LAA can utilize a more complex pro-
cess of consecutive assignment than the simple model in DP-WRAP (also McNaughton’s
wrap algorithm). That is, instead of arranging tasks to processors simply based on task
indexes in DP-WRAP, tasks are selectively distributed to processors in LAA to reduce
task preemption and migration. Therefore, LAA can guarantee task preemption and mi-
gration comparable with the other candidates. Furthermore, migration occurs at most
once for a task during an interval based on the consecutive assignment scheme. This can
be considered as an effectiveness in terms of reducing task migrations. However, since the
migratory task is restrictedly moved to the adjacent processor in this assignment scheme,
it can cause unexpected preemptions on the tasks that have already assigned. In fact, a
more complex procedure can be introduced to select a more appropriate processor for the
migratory task to move, which is in trade-off with the increase of runtime overhead.

4.7.2 Limitation of LAA

The first limitation of LAA is that it is not a work conserving system. In fact, scheduling
plans on intervals are made using WCET of tasks. The schedule of tasks at runtime within
an interval is completely instructed by the corresponding scheduling plan. However, the
actual execution of jobs of tasks is normally less than its WCET. Therefore, a (job of)
task can spend shorter execution than its assigned amount of LRET on the interval. In
this case, due to the preserved resources of scheduling plan, the processor is continuously
assigned for the task until its LRET is exhausted. The processor becomes idle unnec-
essarily. SPR and RUN are better to deal with this situation when the other tasks can
utilized the processor. Fortunately, this disadvantage of LAA happens only within the
involved interval. The processor is utilized in the next interval since the already finished
tasks are not included in calculation of scheduling plan for the next interval.

Another limitation is that the current version of LAA is incapable of scheduling spo-
radic tasks. However, since LAA is based on notion of proportionate scheduling similarly
to DP-WRAP, it is considerable to apply DP-WRAP’s approach for sporadic tasks. This
is worth considering as future work.

45

Chapter 5

Aperiodic Task Scheduling

In periodic task scheduling, guaranteeing deadline constraints for periodic tasks is the top
requirement. Deadlines of periodic tasks are fixedly decided and any deadline miss can
make the system unsafe. Differently, aperiodic tasks are not strict on deadline require-
ments. There exists soft real-time aperiodic tasks executed without deadlines. Another
type of aperiodic tasks is hard real-time, which is assigned an absolute deadline at its
release. The absolute deadlines of hard real-time aperiodic tasks are calculated flexibly
based on the system situation (unused system capacity for example). Instead, improving
response time is most important for aperiodic tasks. Appearance of aperiodic tasks leads
to increase of time complexity of scheduling algorithms. Scheduling aperiodic tasks with
concept of servers has emerged as a promising approach. In this section, preliminary
studies including enhanced virtual release advancing for aperiodic tasks are presented.

5.1 Aperiodic task scheduling with concept of servers

Looking back to the problem of real-time task scheduling on uniprocessor systems, con-
cepts of servers is very successful to deal with aperiodic tasks. There are several op-
timal solutions introduced to schedule mixture context of periodic and aperiodic tasks
on uniprocessors. Total Bandwidth Server [40], Dynamic Priority Exchange [41], and
Constant Bandwidth Server [42] are representative scheduling schemes.

Among these approaches, TBS shows remarkable achievements on responsiveness with
relatively low implementation complexity. In TBS context, the periodic tasks’ deadlines
are explicitly designed to be equal to their period ending while the aperiodic tasks are
assigned absolute deadlines using Equation 5.1. In this equation, k means the kth ape-
riodic task, dk is the absolute deadline of the kth task, rk is release (arrival) time of the
kth task, dk−1 is the absolute deadline of the (k − 1)th (previous) task, Ck is worst-case
execution time of the kth task, and Us is the bandwidth of the server (the remaining
system capacity unused by the periodic tasks).

dk = max(rk, dk−1) +
Ck
Us

(5.1)

EDF [12] is then applied to schedule periodic and aperiodic tasks altogether. For
the aim of further improving response time for aperiodic tasks, virtual release advancing
(VRA) technique was introduced [43]. The techniques based-on TBS context tried to
assign the target aperiodic tasks earlier deadlines in a sense that earlier deadlines lead

46

to earlier scheduling for aperiodic tasks under EDF. Materially, earlier deadlines can
be obtained by introducing virtual release times earlier than task’s actual release times
in the deadline calculation. To this end, VRA tries to virtually and retroactively move
release times backward to the past while maintaining the past schedule. In VRA, absolute
deadline of aperiodic tasks are calculated using Equation 5.2 in which vrk, virtual release
time obtained by the virtual advancing, is replacing rk in Equation 5.1 of the original
TBS.

dk = max(vrk, dk−1) +
Ck
Us

(5.2)

The scheduling example in Figure 5.1 shows the effectiveness of VRA in improving
responsiveness of aperiodic tasks. The example encompasses two periodic tasks τ0 =
(1/3, 3) and τ1 = (1/2, 4). The processor utilization by the periodic tasks is Up = 1/3 +
1/2 = 5/6 and then the bandwidth of the server is Us = 1 − 5/6 = 1/6. An aperiodic
task is supposed to enter the system at t = 6 with its execution time of 1. According to
the original TBS, the aperiodic task receives an absolute deadline at t = 12. Scheduling
with this deadline leads the aperiodic task to finish at t = 8 with response time of 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vr
Response time = 2

delayed

Response time = 1

k rk dkvdk
Aperiodic

Request
C = 1
Us = 1/6

τ0
T1 = 3
C1 = 1
U1 = 1/3

τ1
T2 = 4
C2 = 2
U2 = 1/2

Figure 5.1: Example of virtual release advancing

In this case, by applying the virtual release advancing technique, an earlier virtual
release time for the aperiodic task is set up at t = 2 as indicated by a red, upward dashed
arrow. This new release time leads the absolute deadline in VRA at t = 8 as depicted by
a red, downward dashed arrow, four ticks earlier than the original deadline in TBS. This
new deadline is earlier than that of the third instance of τ0 (at t = 9). Under the EDF
algorithm, the target aperiodic task is hence immediately executed ahead of the periodic
instance and finishes sooner at t = 7 with the response time of 1.

In spite of significantly improving the response time of aperiodic tasks, VRA has a
problem with its high time complexity. The runtime overhead of VRA increases due to
the repeat of release time advancing backward to the pass by single slot. The problem
is motivation of the technique called Enhanced Virtual Release Advancing. Study on
Enhanced Virtual Release Advancing is considered as one of preliminary researches to
deal with aperiodic tasks in this dissertation. Section 5.2 presents the technique in detail.

47

5.2 Enhanced Virtual Release Advancing Algorithm

for Aperiodic Servers

5.2.1 Limitations causing runtime overhead in VRA

In fact, virtual release times of tasks (vrk) in VRA are obtained by supposedly moving
the actual release times (rk) backward to the past. A loop is implemented for this purpose
in respect of three limit factors: previous deadline, last empty slot, and previously-used
maximum deadline [43]. As introduced above, the VRA technique checks limit factors
slot by slot from the target task’s arrival time (rk) backward to the past. The loop is
then checking limits slot by slot and stops when one of the limit factors is reached. This
advancing method by single slot may increase runtime overhead as follows.

• Firstly, the algorithm checks two factors, previous deadline and last empty slot, in
every iteration. However, there are actually only one previous deadline and one last
empty slot and they remain constant during the algorithm’s execution.

• Secondly, consecutive slots spent by the same instance of a task are checked one by
one. It is obviously unnecessary since such slots have the same associated deadline.

• Thirdly, the limit how long past the release time is advanced is not defined.

By observing these sources of runtime overhead, EVRA algorithm described in Section
5.2.3 is introduced to overcome these inefficiencies.

5.2.2 Enhancement of the EVRA algorithm

Different from the original VRA where the advancing is done for tasks’ release times,
EVRA is deadline-based advancing. That is, the absolute deadlines of tasks are virtually
moving backward to the past. To this end, definitions of boundary deadline, check-
bounding slot, and representative slot are emerged in EVRA. (The details of these def-
initions can be found in [54].) The approach of deadline-base advancing has significant
advantages to reduce the sources of runtime overhead as follows:

• First, with boundary deadlines, limits of previous task’s deadline and last empty
slot. As a result, these limits are checked once only. This helps to reduce the
influence of repeated checking.

• Check-bounding slot is introduced to solve the limit how long past the deadline
advancing is performed.

• EVRA advances tasks’ deadlines instance by instance using representative slots of
instances. This is effective in reducing loop count and memory costs. In the original
VRA, the associated deadlines of the used slots all have to be recorded for advancing
by single slot. In EVRA, on the other hand, only the first slots of instances need
recording. Actually, the number of released instances is in most cases smaller the
number of past slots. Therefore, advancing over the representative slots is obviously
more efficient than over every used slots.

48

• In addition, EVRA is supported with a hardware accelerator which allows tasks’ ab-
solute deadlines to be advanced faster. This shows effectiveness in further reducing
runtime overhead of EVRA.

5.2.3 Proposed algorithm of EVRA

Algorithm 2 shows the pseudo code of the EVRA algorithm. Notations used in the
algorithm are described in Table 5.1. The purpose of the algorithm is to obtain a virtual
deadline, vdk, for the targeted aperiodic task by advancing the actual release time, rk,
backward to the past. The advancing is done under conditions of limiting deadlines (vd′k,
vd′′k, and vd′′′k) calculated corresponding to the previous deadline, last empty slot, and
last starting time of τmax and the maximum deadline of the previous used slots (max dl).
Accordingly, the expected virtual deadline vdk cannot be earlier than vd′k, vd

′′
k, vd

′′′
k , or

max dl.

Table 5.1: Notations of EVRA algorithm

Notation Description

vdk The expected virtual deadline for the targeted aperiodic task

rk The actual release time of the target aperiodic task

vrk The virtual release time of the target aperiodic task

Ck The worse-case execution time of the target task

dk−1 The deadline of the (k − 1)th (previous) aperiodic task

Us The bandwidth of TBS server

Us The bandwidth of TBS server

last empty
The slot number of the last empty slot (which is assumed to be -1
for no empty slot)

lsmax
The start time of the last instance of τmax (the task that has the
maximum period)

vd′k, vd
′′
k,

vd′′′k

Limiting deadlines calculated corresponding to the previous
deadline, last empty slot, and last starting time of τmax

dl[] Record of past slots’ associated deadlines

S[] The start times of the released instances

max dl
Holding the maximum associated deadline of traced S[] elements
during the advancing process

Z
The number of released instances (up to the current time of
executing)

For ease of understanding, the algorithm’s execution is explained in accompany with an
example depicted in Figure 5.2. In this example, EVRA is applied for the target aperiodic
task in the scheduling situation in Figure 5.1 above. Here, when the scheduler is invoked

49

at time t = 6 as the target task is released, the algorithm is executed. According to this
situation, at the beginning of the algorithm’s execution (the first step), vdk is initialized
using the actual release time rk. vdk then results in value of 12.

Algorithm 2: The EVRA algorithm
1: /*Definition*/
2: vdk = rk + Ck/Us
3: /*Checking limit of k-1-th deadline*/
4: vr′k = dk−1

5: vd′k = vr′k + Ck/Us
6: if vdk ≤ vd′k then
7: vdk = vd′k
8: Goto End
9: endif
10: /*Checking limit of last empty slot*/
11: vr′′k = last empty + 1
12: vd′′k = vr′′k + Ck/Us
13: /*Checking limit of previously-used slots*/
14: vd′′′k = dl[lsmax]
15: bound = max(vd′k, vd

′′
k, vd

′′′
k)

16: i = Z − 1
17: max dl = 0
18: While vdk > bound do
19: vrk = S[i]
20: if max dl < dl[vrk] then
21: max dl = dl[vrk]
22: endif
23: if vdk ≤ max dl then
24: break
25: endif
26: vdk = vrk + Ck/Us
27: if vdk ≤ max dl then
28: vdk = max dl
29: break
30: else
31: i = i− 1
32: endif
33: endwhile
34: Label: End

Then three limiting deadlines (vd′k, vd
′′
k, vd

′′′
k) are calculated at steps 2, 3, and 4, re-

spectively. The first limiting deadlines (vd′k) is calculated corresponding to the deadline of
the previous aperiodic tasks using the TSB formula. Because the previous deadline (dk−1)
is assumed to be 0 for no previous aperiodic task, vd′k then results in value of 6. The
expected virtual deadline is checked with this limiting deadline so that if the expected
virtual deadline is earlier than or equal to vd′k, the it is set to vd′k, and the algorithm fin-
ishes. Similarly, the second limiting deadline (vd′′k) is calculated corresponding to the last
empty slot. For this example, vd′′k gets value of 6 due to no empty slot in this situation.

50

The third limiting deadline (vd′′′k) is then calculated corresponding to the lsmaxth slot’s
associated deadline. In this case, vd′′′k is equal to 8 since lsmax = 4 and dl[lsmax] = 8. As
the maximal of the three limiting deadlines, a variable bound presents the check-bounding
deadline of the algorithm, which is of 8 for this example.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9 Slot 10 Slot 11 Slot 12 Slot 13 Slot 14

vr

delayed

k rk
dk

vd’=vd’’k k vd =vd’’’k k

Aperiodic

Request
C = 1
Us = 1/6

τ1
T1 = 3
C1 = 1
U1 = 1/3

τ2
T2 = 4
C2 = 2
U2 = 1/2

ls
max

Figure 5.2: Example of deadline advancing in EVRA

Next, a loop is implemented to advance vdk backward to the past in comparison with
the limit of previously-used maximum deadline for each of the traced S[] elements. The
value of vdk obtained after the loop execution satisfies conditions of bound and max dl
and therefore it is the expected deadline.

Materially in this example, temporary variables for the loop execution are initiated
as: i = 3 for 4 released instances (Z = 4) and max dl = 0. Since condition vdk > bound
is satisfied for 12 > 8, the advancing loop starts to assign vrk = S[3] = 4 (the start time
of the third released instance). Then, the if -state updates max dl to be 8 (dl[4] = 8).
Since vdk > max dl (12 > 8), the algorithm’s execution continues to update vdk to be 10
at line 26. The updated value of vdk remains greater than max dl and the if -state at line
27 is not satisfied. Consequently, the else-state at line 31 is executed to decrease variable
i by 1 and the advancing loop repeats.

For the second repeat of the advancing loop, with the similar procedure, considered
variables result in i = 2, vrk = S[2] = 3, max dl = 8, and vdk = 9. With these values,
the advancing loop continuously repeat for the third time of i = 1. At this time of
iteration, vrk = S[1] = 1, max dl = 8, and vdk = 7. The condition of if -state at line 23
is now passed, then vdk is set to be equal to max dl (or 8) and the advancing loop stops.
After three times of deadline advancing, the algorithm finishes with the tentative virtual
deadline of 8.

Note that if the original VRA is applied for this example, the virtual release time is
moved backward to the past from t = 6 until t = 2. Due to moving slot by slot, the
advancing takes four times of repeat for vkk to reach value of 2, which leads to the virtual
deadline of 8. This example hence shows the effectiveness of EVRA with reduction in the
number of loop count compared with the original VRA.

51

5.2.4 Hardware accelerator for EVRA

The aim of hardware accelerator is to further reduce the runtime overhead spent to exe-
cute the algorithm. Figure 5.3 shows the block diagram of the accelerator hardware that
is integrated into the hardware system to support deadline calculation of EVRA. Con-
nections between the accelerator and CPU are shown as well. In this system, the CPU is
targeted for an ARM Cortex-A9 processor. Connections are implemented using general
input/output ports (GPIO).

ACK_OUTACK_IN DATA_OUTDATA_IN

Calculating

and

Data Control

Register Area

State Control

CPU

CLK

FCLK

GPIO2 GPIO GPIO2_1 GPIO_1

16 16 32 32

Accelerator Hardware

Figure 5.3: Block diagram of the accelerator hardware of EVRA

As shown in the figure, the hardware accelerator consists of four main parts: I/O
registers, Calculating and Data Control unit, Register Area, and State Control unit.
The I/O registers are deployed to connect directly to CPU’s GPIO ports for mutual
communication. The purpose of I/O registers is to temporarily store information of the
communication as follows:

• ACK IN: storing an ACK request which has been sent by the CPU.

• ACK OUT: storing an ACK response which the hardware needs to send to the CPU.

• DATA IN: storing input data which has been sent by the CPU.

• DATA OUT: storing output data which the hardware needs to send to the CPU.

These registers are accessed specifically by the operating system through their fixedly
assigned address in the physical address map.

A main part of the accelerator is the Calculating and Data Control unit, which performs
deadline calculations and is controlled by a State Control unit. Calculating and Data
Control unit is designed to profit from parallel calculations to reduce runtime overhead
compared with software processing. State Control unit is a state machine synchronize by
the FCLK clock the processor.

52

The last component of the hardware accelerator is Register Area which plays a role of
an internal memory. This area is separated into two segments for private data and shared
data. The former segment is composed of registers where private data of the accelerator
are stored. Therefore, only the accelerator can access this segment. On the other hand,
the latter segment consists of indexed registers. This segment is to store data shared
between the accelerator and the CPU. Therefore, both the accelerator and the CPU can
access the global segment. The shared registers are indexed with register IDs which is
described in the following section of communication of the CPU and accelerator.

Communication between CPU and accelerator

The communications between the CPU and accelerator applies a request-response protocol
in which 16-bit request commands and 32-bit data buses are used. As shown in the block
diagram in Figure 5.3, two 16-bit ports, named GPIO and GPIO2, are used for the
CPU to send requests to and receive responses from the accelerator. Similarly, two 32-
bit ports GPIO 1 and GPIO2 1 are utilized for mutual data transmissions. A typical
communication procedure to request the accelerator is as follows:

1. CPU sends a necessary data to the data port (GPIO2 1);

2. CPU sends a corresponding request command to the request port (GPIO2);

3. CPU keeps waiting for a response acknowledging of valid data from the accelerator
at port GPIO;

4. CPU loads needed data at port GPIO 1.

7..0

Reserved SE RS L/S

8910

Register ID (L/S only)

Register IDOperation code

15.............11

Figure 5.4: Structure of a request command

The structure if a request command is depicted in Figure 5.4. A request command
accordingly consists of 16-bit information. The least significant 8 bits form a register ID
used for accessing the shared registers of the Register Area of the accelerator. The other 8
bits are considered as an operation code (op-code) to determine exactly which operation
is requested. The op-code is composed of:

• The 8th bit (L/S) specifies whether it is loading or storing operation. The bit is set
to 1 for loading and clear to 0 for storing.

• The 9th bit (RS) is for reset operation. This activates with value of 1.

• The 10th bit (SE) is for enabling operation. When the bit is set to 1, the accelerator
is enabled for deadline calculation. When one of reset or enabling operations is
active, the least significant 8 bits are regarded as “don’t care”.

53

• The remaining bits (bits from 11 to 15) are preserved for future use.

In respect of the structure of request commands, the accelerator is designed with four
operation: storing, loading, reset, and enabling.

In the scope of this dissertation, EVRA is briefly introduced with enhanced points,
proposed algorithm, and overview of the integrated hardware accelerator. For more de-
tailed analysis and evaluation of EVRA and the accelerator, readers concerning can be
satisfied in [54].

5.3 Scheduling aperiodic tasks on multiprocessors

It is fact that a vast number of algorithms have been proposed for the problem of multipro-
cessor real-time task scheduling. They are in majority focused on predictable workloads
like periodic tasks which have foreseeable release times. Dynamic workloads including
aperiodic tasks, on the other hand, cause difficulties for scheduling due to their uncertain
parameters such as entering time. Effective approaches for hybrid systems of periodic and
aperiodic tasks are hence still in consideration.

Review in Section 5.1 shows that concept of servers is very popular approach used in
the context of uniprocessor systems to deal with aperiodic tasks. CBS server [42] and TBS
server [40] are two of the famous algorithms which optimally schedule hybrid task sets.
There are also a number of techniques introduced to improve such scheduling algorithms.
As preliminary researches to deal with aperiodic tasks, authors of this study have also
conducted several researches related to scheduling aperiodic tasks with server concepts
[54, 55, 56], especially achievements with EVRA algorithm.

However, unfortunately, applying such server approaches to the context of multipro-
cessors is found ineffective. M-CBS [47] and M-TBS [48] are the two representatives of
exploiting CBS and TBS on multiprocessor systems. The obtained schedulability of these
approaches is significantly lower than the system capacity.

There exists another way to apply the concept of servers on multiprocessors. That
is modeling servers like periodic tasks server’s utilization and period. This approach
is to exploit the optimal solutions having been proposed for scheduling periodic tasks.
Such servers are found in implementation of Srinivasan’s research [49] which is targeted
for Pfair scheduling. By this way, servers are scheduled together with periodic tasks
and their schedule is obviously preserved for aperiodic tasks’ execution. This shows an
potential way to deal with dynamic workloads on multiprocessor systems.

Since it seems to be ineffective to extend EVRA to deal with aperiodic tasks on
multiprocessors, the approach of modeled servers like periodic tasks is investigated in
this dissertation. Servers can be integrated into LAA to schedule hybrid task sets on
multiprocessor systems. This is the research of Chapter 6.

54

Chapter 6

Enhanced Local Assignment
Algorithm for Scheduling Hybrid
Task Sets

6.1 Introduction to Enhanced Local Assignment Al-

gorithm - LAA+

As seen during the last decades, real-time embedded systems have been increased quickly
in diversity and complexity. Homogeneous task sets including single type of tasks become
unfashionable in practical real-time applications. Hybrid task sets which are combina-
tions of different types of tasks frequently occur in today’s applications. Mixture task
sets of periodic and aperiodic tasks are the most popular and attractive combination to
researchers in the embedded field. One of the challenging problems due to mixture task
sets is task scheduling. Scheduling algorithms of this context essentially need to provide
the following characteristics:

• Guaranteeing the schedule of periodic tasks so that they meet all their deadlines;

• Improving the responsiveness of aperiodic tasks. Certainly, algorithms which can
produce shorter response times for aperiodic tasks are more preferable.

The occurrence of aperiodic tasks rises difficulties to scheduling algorithms. The re-
lease times of aperiodic tasks are unpredictable; namely, aperiodic tasks can enter the
system at any time. The requested execution times of aperiodic tasks at every instant
presentation are nondeterministic also. An effective scheduling algorithm for mixture task
sets are motivation of the research presented in this chapter.

As seen in Chapter 4, Local Assignment Algorithm (LAA) is an effective solution
to the problem of periodic schedule on multiprocessor systems. LAA is identified as an
optimal algorithm and does not rely on any off-line process. In addition, the algorithm
effectively schedules periodic tasks with fewer scheduler invocation and relatively low
time complexity compared with the existing algorithms. Efficient exploitation of system
capacity is another advantage of LAA scheduling. Therefore, LAA is selected to deal with
aperiodic tasks in our research.

We introduce an enhanced Local Assignment Algorithm for the scheduling context
of mixture task sets. The original LAA is enhanced with the integration of servers for

55

aperiodic tasks’ schedule. The enhanced algorithm for mixture task sets is called LAA+,
which mean LAA plus servers. LAA+ is therefore targeted to the following goals:

• Guaranteeing the schedule of periodic tasks;

• Reducing the response times of aperiodic tasks;

• Not significantly increase the time complexity.

The rest of this chapter is structured in six sections. Section 6.2 introduces about the
integration of servers into the system. Section 6.3 shows definitions of LAA+. In Section
6.4 is the procedure of LAA+ in detail. The proof of schedulability guarantee is provided
in Section 6.5. The evaluation of LAA+ is exhibited in Section 6.6. Finally in Section 6.7
is the conclusion where effectiveness and limitation of LAA+ are discussed.

6.2 Integration of servers

6.2.1 Server establishment

At first, we expected to extend the research of servers in EVRA to the context of multi-
processors. However, it is found that TBS servers are ineffective in multiprocessor systems
due to the low schedulability. Therefore, we decide to use the model of servers in [49].
Namely, servers are modeled equivalently to a periodic task with two parameters: a uti-
lization rate and a period. This approach has a big advantage that LAA can be utilized
to schedule the system of periodic tasks and servers without complicated modification of
the algorithm procedure.

Algorithm 3 shows the procedure to establish from the remaining system capacity
unused by periodic tasks. Let ns and Us denote the number of servers and the total server
utilization, respectively. To the best exploitation of system capacity, Us is considered as
the remaining system capacity unused by periodic tasks; that is, Us = m−Up where m is
the number of processors and Up is the total utilization of periodic tasks. Us is distributed
to servers as their utilization so that each server Sj has a utilization rate Uj ≤ 1 where
0 ≤ j < ns. Materially, there are bUsc servers with utilization of 1 and one server with
utilization of Us − bUsc. If 0 < Up < m, then ns = bUsc+ 1.

The server establishment allows servers to present concurrently in the system. Note
that, conceptually a server Sj can be assigned any utilization rate Uj in range (0, 1].
However, in this scheme of utilization distribution, servers are supposed to gain as high
utilization rate as possible (utilization rate of 1 is desirable). This intention is to lower
the number of servers, which tends to reduce the time complexity of the algorithm. In
addition, servers with higher utilization rate are believed in better service for aperiodic
tasks to improve the responsiveness.

Servers are supposed to have their periods arbitrarily large. Such servers are sched-
uled together with periodic tasks. The schedules of servers are dedicatedly preserved for
aperiodic tasks’ execution at runtime. Obviously, we can see that the servers together
with periodic tasks fill the system capacity. In other words, we have:

np−1∑
i=0

µi +
ns−1∑
j=0

Uj = m (6.1)

56

Algorithm 3: Server Establishment
ns: number of servers
Us: total utilization of servers
j: server index
ns ← 0
Us ← m− Up
j ← 0

(1) Server utilization:

Uj =

{
1, if Us ≥ 1

Us, otherwise

Us ← Us − Uj
(2) Creating server:

create a server Sj with utilization rate Uj
ns ← ns + 1
j ← j + 1

(3) Check the system fullness

Us :

{
Us = 0, stop creating server

Us > 0, repeat (1)

6.2.2 Assignment of aperiodic tasks to servers

Servers are responsible for serving aperiodic tasks in the following manner:

• Each server services at most one aperiodic task at a time. This requirement is
involved to prevent an aperiodic task from concurrent executions on different pro-
cessors.

• Servers without aperiodic tasks are known as empty servers. If an empty server is
selected by the scheduler, the designated processor does nothing or comes into idle
times.

• When a non-empty server is selected by the scheduler, the aperiodic task assigned
to that server is executed on the designated processor.

Algorithm 4 describes procedures how aperiodic tasks are assigned to servers. Ac-
cordingly, two procedures are proposed for two events: aperiodic release and aperiodic
completion. An event of aperiodic release is realized as an aperiodic task enters the sys-
tem. The first procedure, aperiodicRelease, is invoked at this event to look for a server
for the task. If there exists an empty server in the system, the released task is assigned
to the empty server through a process assignTask2Server. The process assignTask2Server
requires two arguments: sid is the identifier of the empty server and Entry is a pointer to
the released task. In case that there is no empty server, the released task is added to the
aperiodic ready queue ARQ in order to wait for serving. Aperiodic tasks are organized in
ARQ in the manner of first-come-first-serve (FCFS).

On the other hand, an event of aperiodic completion is realized as an aperiodic task
is completed its execution on a server. The second procedure, aperiodicComplete, is in-
voked at this event to seek for another aperiodic task from ARQ. Process seekTaskFrom-
ReadyQueue is introduced for the task seeking in ARQ. If a task is found, it is assigned to

57

the server via process assignTask2Server with input sid is the identifier of the server on
which the completion event happens. When assigned, the aperiodic tasks can be executed
on the designated processor. Otherwise, if ARQ is empty, the server becomes empty and
the designated processor changes to idle time.

By this scheme, we convert the problem of scheduling aperiodic tasks to the problem of
scheduling servers. The schedule of aperiodic tasks is therefore obtained from the schedule
of servers.

Algorithm 4: Rule of assigning aperiodic tasks to servers
1: Aperiodic task release
aperiodicRelease(Entry)
{

if (hasEmptyServer())then
{
sid← getEmptyServerID();
assignTask2Server(sid, Entry);

}
else
addTask2ReadyQueue(ARQ,Entry);

}
2: Aperiodic task completion
aperiodicComplete(sid)
{
task ← seekTaskFromReadyQueue();
if (task! = NULL)then
assignTask2Server(sid, task);

else
setServerEmpty(sid);

}

6.2.3 Consideration of acceptance test for aperiodic tasks

Acceptance test is a quite popular concept in scheduling context of mixture task sets. In
order to assure the system feasible for scheduling, acceptance test is introduced to decide
that an aperiodic task is accepted or rejected to enter the system. The assignment of
aperiodic tasks to servers in Algorithm 4 implicitly implicates that aperiodic tasks are
decided, at their release time, to exist in the system in one of two states:

1. Being assigned to a server or

2. Being waiting in the aperiodic waiting queue.

At runtime, an aperiodic task can be changed from the waiting state to the assigned
state when it is moved to a server. As a result, the acceptance test for aperiodic tasks is
not needed in our scheduling scheme.

58

6.3 Definitions of LAA+

Basically, definitions of LAA+ are similar to those of the original LAA. The difference is
calculations extended for servers.

6.3.1 Time interval

Time interval is defined as the same as that in the original LAA; that is, the time period
between any two consecutive periodic job releases is considered as one time interval. The
starting times of intervals are considered as the scheduling events when the scheduler is
invoked to make scheduling plans for the intervals. Since the end time of an interval
is also the start time of the next one, start and end times of intervals are scheduling
events. Then, a time interval I = [t1, t2) has a length LI = t2 − t1, where t1, t2 ∈ N and
0 ≤ t1 < t2.

6.3.2 Proportionate scheduling

In the context of servers and periodic tasks, the notion of proportionate scheduling is
exploited to calculate the local requested execution times in the following manner: By
every time t as the end of an interval, a task τi and a server Sj must have been scheduled
to receive at least bµi ∗ tc and bUj ∗ tc resources, respectively. In other words, using its
utilization rate, a server is treated like a periodic task in LAA+. Let Si(t) and Ssj(t)
denote resources that periodic task τi and server Sj should be received up to t. Si(t) is
calculated using Equation 4.1. Ssj(t) is obtained using Equation 6.2.

Ssj(t) = bUj ∗ tc (6.2)

6.3.3 Local requested execution time

Local requested execution time (LRET) is amounts of time slots that periodic tasks and
servers receive on an interval. Consider interval I = [t1, t2) with its length LI = t2−t1. The
LRETs of periodic tasks and servers are denoted as Ei(t1, t2) and Esj(t1, t2), respectively.
Figure 6.1 shows the structure of LRETs for periodic tasks and servers. LRETs consists
of two parts: mandatory execution and extra execution. For periodic tasks, mandatory
execution (Mi(t1, t2)) is calculated the same as that in the original LAA using Equation
4.4. The extra execution of periodic tasks (Pi(t1, t2)) is divided into two portions: P ′i is a
unit addition (resulting in 0 or 1) and P ′′i is calculated using Equation 6.3.

P ′′i = min(JREj, slack, LI −Mi − P ′i) (6.3)

For servers, mandatory executions are calculated based-on the proportionate schedul-
ing as Equation 6.4. Extra executions for servers are obtained from the slack times using
Equation 6.5.

Msj(t1, t2) = bUj ∗ t2c − Asj(t1) (6.4)

Psj(t1, t2) = min(slack, LI −Msj) (6.5)

59

In calculation of LRETs, Ai(t1) and Asj(t1) are the already-assigned resources of task
τi and server Sj on the entire period from 0 up to t1. Such already-assigned resources are
easily recorded by the operating system.

Figure 6.1: Local requested execution time of LAA+

Due to the limit of the system capacity on interval I, LRETs of periodic tasks and
servers follows the following constraints:

Mi(t1, t2) + Pi(t1, t2) ≤ LI (6.6)

Msj(t1, t2) + Psj(t1, t2) ≤ LI (6.7)

These constraints guarantee for LRETs to be provided within the interval. The calcu-
lation process of parts of LRETs (also described later in detail in Section 6.4) is as fol-
lows: mandatory execution of periodic tasks (Mi(t1, t2)), mandatory execution of servers
(Msj(t1, t2)), unit addition of periodic tasks (P ′i), extra execution of servers (Psj(t1, t2)),
and remaining extra execution of periodic tasks (P ′′i).

Finally, we can obtain the total local requested execution time on the interval, denoted
as E(t1, t2), using Equation 6.8.

E(t1, t2) =

np−1∑
i=0

Ei(t1, t2) +
ns−1∑
j=0

Esj(t1, t2) (6.8)

6.3.4 Fully-assigned system

Similarly to the definition in the original LAA, fully-assigned system is defined as the
system situation in which all time slots are assigned to periodic tasks and aperiodic
servers for executions. As a result, if a system is considered as fully-assigned up to time
t, the total amount of already-assigned resources up to t is equal to the capacity of the
system. That is,

np−1∑
i=0

Ai(t) +
ns−1∑
j=0

Asj(t) = m ∗ t (6.9)

60

6.4 Procedure of LAA+

6.4.1 LAA+ algorithm

LAA+ is extended from the original LAA to the context of periodic tasks and servers.
Algorithm 5 shows the algorithm of LAA+ for making scheduling plans on intervals.
In this pseudo code, m denotes the number of processors. Periodic tasks and servers are
indexed by i and j, respectively, where 0 ≤ i < np and 0 ≤ j < ns. µi and Uj are the
utilizations of periodic tasks and servers. JREi is the remaining execution time of the
current job of task τi. Related to the interval information, ts and te (0 ≤ ts < te) as
normal indicate the start and end times of the involved interval on which the scheduling
plan is applied. LI is the interval’s length, which is equal to te − ts. LRETs of periodic
tasks and servers on the interval are expressed as Ei(ts, te) and Esj(ts, te), respectively.
Ai(ts) and Asj(ts) are the already-assigned resources of periodic tasks and servers up to
ts (from 0 to ts). Finally, min(a, b) and min(a, b, c) are functions that find the smallest
value from their input arguments.

As shown in Algorithm 5, similar to the original LAA, LAA+ has three main steps:
LRET Estimation, LRET Adjustment and Task Assignment. The first step, LRET Esti-
mation, is to calculate the mandatory executions (Mi and Msj as defined in Section 6.3)
for periodic tasks and servers on the interval. Equation 4.4 and Equation 6.4 are used
for this calculation in which t1 and t2 are correspondingly replaced with ts and te. In
the second step, LRET Adjustment, LRETs are increased to exhaust the system capacity
of the involved interval. To this end, the slack time, denoted as slack, is computed by
subtracting LRETs obtained from the first step from the system capacity. slack is then
distributed to periodic tasks and servers appropriately as their extra execution. First,
LRETs of periodic tasks are increased by one unit execution (P ′i as defined in Section
6.3) if they have execution remaining and their already-assigned LRETs are less than
the interval’s length. Importantly, this unit extra execution guarantees the fairness for
periodic tasks (similar approach is used in BF scheduling [35]).

Then, the extra execution (Psj as defined in Section 6.3) for servers are calculated.
Accordingly, LRETs of servers are incremented by the smaller value between the remaining
slack and the possible increment of the server on the interval defined by LI − Esj(ts, te).
The possible increment implicitly indicates that LRETs of servers do not exceed the
interval’s length. The different ways of adjustment applied to periodic tasks and servers
imply a preference for servers to increase their LRETs more than periodic tasks. This is
aimed at improving the aperiodic responsiveness.

At the end of the adjustment step, the remaining slack is continuously distributed
to periodic tasks. Since the system capacity is fully consumed, the LRET Adjustment
guarantees the fully-assigned system on the interval. Therefore, the following result is
obtained:

np−1∑
i=0

Ei(ts, te) +
ns−1∑
j=0

Esj(ts, te) = m ∗ (te − ts) (6.10)

In the final step, Task Assignment, periodic tasks and servers are arranged on proces-
sors for their execution. A process consecutiveAssignment, which is described in detail
in Algorithm 6, is proposed for this purpose.

61

Algorithm 5: Enhanced Local Assignment Algorithm (LAA+)
i, j : periodic task and server indexes
ts, te : the start and end times of the interval
LI ← te − ts;

1. LRET Estimation
For each task τi and each server Sj:
Ei(ts, te)← bµi ∗ tec − Ai(ts);
Esj(ts, te)← bUj ∗ tec − Asj(ts);
JREi ← JREi − Ei(ts, te);

2. LRET Adjustment
slack ← m ∗ LI −

∑
Ei(ts, te)−

∑
Esj(ts, te);

while slack > 0 do
{

For each task τi:
if (slack > 0 & JREi > 0 & Ei(ts, te) < LI)
{
Ei(ts, te)← Ei(ts, te) + 1;
JREi ← JREi − 1;
slack ← slack − 1;

}
For each server Sj:

if (slack > 0)
{
min← min(slack, LI − Esj(ts, te));
Esj(ts, te)← Esj(ts, te) +min;
slack ← slack −min;

}
For each task τi:

if (slack > 0 & JREi > 0 & Ei(ts, te) < LI)
{
min← min(slack, JREi, LI − Ei(ts, te));
Ei(ts, te)← Ei(ts, te) +min;
JREi ← JREi −min;
slack ← slack −min;

}
}

3. Task Assignment
consecutiveAssignment();

6.4.2 Consecutive assignment of LAA+

A simple model of consecutive assignment was introduced in DP-WRAP to assign peri-
odic tasks to processors [37]. This assignment model actually follows the McNaughton’s
wrap algorithm [53]. In this study, we come up with a more complex procedure of the
consecutive assignment toward improving the aperiodic responsiveness as well as allevi-
ating task preemption and migration. Algorithm 6 shows the procedure of consecutive
assignment of LAA+. The consecutive assignment process is conducted with the following

62

input data: Tasks and Servers are data structures as lists of periodic tasks and servers
existing in the system; E(ts, te) and Es(ts, te) are LRETs of periodic tasks and servers
obtained in the first two steps of Algorithm 5; m is the number of processors; and LI is
the interval’s length. On the other hand, SP is a data structure that is used to store the
expected scheduling plans on the interval. As a result, SP is the output of this process.
Additionally, it is supposed that the record of past schedules on processors is available
for retrieval.

Algorithm 6: Consecutive Assignment of LAA+
Input: Tasks, Servers, E(ts, te), Es(ts, te), m, LI
Output: SP
consecutiveAssignment()
{
UP ← establishUniProcessor(m,LI);
For each segment p from 0 to m-1:

len[p]← LI ;
UP ← assignNonEmptyServer(UP, Servers, Es(ts, te));
p← 0;
while p < m & hasUnassignedTask() do
{

if (len[p] == 0)
p← p+ 1;

else
{
tsk ← seekTaskF it(p, Tasks, E(ts, te));
if (tsk == NULL)
{
tsk ← seekTaskLast(p+ 1, Tasks, E(ts, te));
if (tsk == NULL)
tsk ← seekTaskRandom(Tasks);

}
UP ← assignTask(UP, p, tsk, E(ts, te));

}
}
UP ← assignEmptyServer(UP, Servers, Es(ts, te));
SP ← scheduleConverting(SP, UP);

}

The basic idea of arrangement is as the same as the original LAA algorithm in which
a virtual uniprocessor is used. Modifications include (1) the order of allocating periodic
tasks and servers and (2) the selection of periodic tasks for allocation. Specifically, a
virtual uniprocessor is established first based on the number of processors (m) and the
interval’s length (LI). Actual processors are joined to make a row on the virtual unipro-
cessor and Each of them corresponds to a segment of length LI . The capacity of the
virtual uniprocessor is therefore equal to m ∗ LI . Then, periodic tasks and servers are
consecutively allocated on the virtual uniprocessor by the amounts of their LRETs. Since
the total amount of LRETs is not greater than the system capacity on the interval, the

63

allocation on the virtual uniprocessor is achievable. Finally, the arrangement on each ac-
tual processor is given by converting (or extracting) the allocation on the corresponding
segment on the virtual uniprocessor.

The detail of the consecutive assignment of LAA+ is as follows. The virtual unipro-
cessor, expressed as UP , is first generated using function establishUniProcessor. Each
segment on UP is initiated with length LI . The allocation on the virtual uniprocessor
starts with non-empty servers first followed by periodic tasks and then empty servers.
All non-empty servers, in the descending order of utilization rates, are assigned to the
beginning of segments using function assignNonEmptyServer. Note that since the num-
ber of servers established with Algorithm 3 is less than or equal to m, the allocation of
non-empty servers is possible. Servers are each given spaces equal to their LRET. When
segments take in servers’ requirement, their lengths are decreased by the amount.

Then, a loop is implemented to assign periodic tasks. Periodic tasks are selectively
allocated in the following priority:

1. Task that has its LRET fitting to the remaining space of a segment;

2. Task that was executed on the next segment’s processor at the slot just before the
scheduling event;

3. Task selected randomly.

FLR task selection:

F: task fit the remaining space of the segment

L: task last executed on the processor of the next segment

R: task selected randomly

Figure 6.2: Task selection for processor allocation in LAA+

Figure 6.2 illustrates the priority of task and server selection. The first priority is
suggested with an attempt to reduce the preemption while the second priority is to allevi-
ate the migration. Three functions seekTaskF it, seekTaskLast, and seekTaskRandom
are introduced for the task selections. Function seekTaskF it seeks a task the LRET of
which is non-zero and fits with the remaining space of the specified segment. Function
seekTaskLast seeks a task that has just been executed on the corresponding proces-
sor of the specified segment and has a non-zero LRET. This function is supported with
the schedule history at slot ts − 1, the slot just before the scheduling event. Function
seekTaskRandom arbitrarily seeks a task that has non-zero LRET.

The selected task tsk is then assigned to the current processor’s segment specified by
p using function assignTask. The task is allocated space continuously after the already

64

assigned servers and tasks on the same segment. The given space is equal to the task’s
LRET and may belong to two segments (p and p+ 1). In this case, the already assigned
server on p + 1 is moved to give a fit space to the task. When segments take in task’s
requirement, their lengths are decreased by the amount.

Next, empty servers are continuously allocated to the remaining space on the segments.
Assigning empty servers lastly has a meaning that the empty servers are preserved for the
coming aperiodic tasks. As a result, it has potential to reduce unnecessary idle times of
processors, which effectively improves the system performance.

Finally, the schedule on actual processors is generated by converting the order of
periodic tasks and servers on the virtual uniprocessor using function scheduleConverting.
This function maps the order of periodic tasks and servers on the segments of the virtual
uniprocessor to the execution order on the actual processors. As the arrangement process
is finished, SP is acquired as the expected scheduling plans for the interval. At runtime,
SP is used as instruction for selecting tasks and deciding context switches during the
interval.

6.4.3 Example of scheduling with LAA+

An example of scheduling periodic tasks and servers is displayed in Figure 6.3. In this
example, there are four periodic tasks scheduled on a system of three identical processors.
Periodic tasks have the same utilization of 0.6 and periods of 5, 10, 15, and 10, respectively.
Using the unused capacity from periodic tasks, one server is established with its utilization
of 0.6. Based on periodic tasks’ periods, three job releases are identified at 0, 5, and 10
after the first ten slots. Therefore, two intervals (denoted as I0 and I1) are formed for this
period. For the first interval, the scheduler is invoked at time 0 to make scheduling plans on
processors. Executing Algorithm 5, calculations of LRET Estimation give periodic tasks
and server three slots each as expressed by E0. At the next step of LERT Adjustment,
since slack is calculated equal to 0, no extra execution is added to LRETs. Eventually,
each of periodic tasks and server receives three slots during I0.

Next, at the step of Task Assignment, a virtual uniprocessor is established for I0 with
the capacity of 15. Because there is no non-empty server, the assignment process starts
with periodic tasks. At time 0, no schedule history is available, periodic tasks are therefore
allocated in a row on the virtual uniprocessor. As shown in 6.3, the order of periodic tasks
is: τ0, τ1, τ2, and τ3. Lastly, the empty server is finally allocated at the end of the virtual
uniprocessor.

Finally, based on the segments of processors on the virtual uniprocessor, scheduling
plans of periodic tasks and server on actual processor are obtained. That is, P0 will
execute τ0 for three slots, then execute τ1 for two slots; P1 will execute τ1, τ2 and τ3

for one, three and one slots, respectively; P2 will execute τ3 for two slots and give the
remaining three slots for the empty server. The final scheduling plan of I0 is found in the
figure.

For the second interval, the scheduler is invoked at time 5 to make scheduling plans.
Similarly, calculations of LRETs eventually give periodic tasks and server three slots
each as expressed by E1. These assigned LRETs are used for task assignment. After
establishing virtual uniprocessor for I1, the task assignment starts with periodic tasks
since the server is still empty. τ0 is assigned to P0’ segment first as a fit task to the
segment’s capacity. Then, τ3 is allocated as it has been executed at slot 4 on the second

65

τ0 = (0.6, 5) τ1 = (0.6, 10) τ2 = (0.6, 15) τ3 = (0.6, 10) Server

P0

P1

P2

0 1 2 3 4 5 6 7 8 9 10 Time

Virtual uniprocessor

for I0

Virtual uniprocessor

for I1

Scheduling

plans

I1

1050

E =(3,3,3,3,3)0 E =(3,3,3,3,3)1

0 5 10 15

P0’s segment P1’s segment P2’s segment

0 5 10 15

P0’s segment P1’s segment P2’s segment

r
k

Jk=(r ,)
Aperiodic

 2k

Figure 6.3: Example of scheduling with LAA+

processor (p + 1). τ3 occupies the remaining two slots of P0’s segment and one slot of
P1’s. Then, as a fit task to the remaining space of P1’s segment, τ1 is assigned the space
after τ3. τ2 is allocated space after τ1 on the virtual uniprocessor. Finally, the empty
server is assigned to the end of the virtual uniprocessor. The final scheduling plans of I1

is obtained by the converting process as shown in the figure.
It is supposed that an aperiodic task enters the system at time 6 with its worst-case

execution time of 2. The aperiodic task is assigned to the empty server and then executed
on slot 7 and slot 8 as the server is scheduled. The aperiodic task is finished at time 9
with the response time of 3.

6.4.4 Secondary scheduling event

In the scheduling scheme introduced above, the scheduling events are decided as the
release times of (jobs of) periodic tasks. We call them primary scheduling events (primary
invocations). In this section, we suggest to add secondary scheduling events (secondary
invocations). A secondary scheduling event is decided as the time within an interval when
an aperiodic task is released and there exist empty servers. At that time, the aperiodic
task is assigned to an empty server and the server becomes non-empty. Looking back at the
example in Figure 6.3, time 6 can be considered as a secondary scheduling event since at
that time the aperiodic task is released and the server is empty. The secondary scheduling
event is introduced to reorder the non-empty servers’ execution on the remaining span of
the interval. Since the consecutive assignment in Algorithm 6 tends to assign non-empty
servers ahead of periodic tasks on every processor, the reordering action has potential to
improve the aperiodic responsiveness without violating scheduling constraints for periodic
tasks.

At the secondary invocation, the calculation of LRETs (the first and second steps of

66

Algorithm 5) is not needed because LRETs remaining on the interval can be utilized.
Step 3 of Algorithm 5, Task Assignment, is required only to make up the scheduling plan.
Obviously, the secondary invocations add less runtime overhead than the primary ones in
spite of increasing the number of scheduling points.

τ0= (0.6, 5) τ1= (0.6, 10) τ2= (0.6, 15) τ3= (0.6, 10)

r
k

Jk=(r ,)
Aperiodic

 2k

...
P0

...
P1

5 6 7 8 9
...

10

P2

a) Scheduling without secondary invocation

Server

5 7 8 9
...

10
r

k

Jk=(r ,)
Aperiodic

 2k

...
P0

...
P1

5 6 7 8 9
...

10

P2

b) Scheduling with secondary invocation at time 6

5 7 8 9
...

10

Figure 6.4: Example of scheduling with secondary invocation

Let us observe the example in Figure 6.3. When the aperiodic task is released, it
must wait for execution up to time 7 as the server is scheduled. Now, consider time
6 as a secondary scheduling event, the scheduler is invoked to make up the scheduling
plan for the remaining time span from time 6 to 10. Figure 6.4 shows the results of
the reordered scheduling plan from the secondary invocation. In Figure 6.4(a) without
secondary invocation, the aperiodic task is finished at time 9 with the response time of 3.
In Figure 6.4(b), the scheduling plan is made up at time 6, which arranges the non-empty
server at the beginning of P0. As a result, the aperiodic task can be executed immediately
and then finished at time 8, one slot earlier.

6.5 Schedulability guarantee of LAA+

In this section, we show that LAA+ in Algorithm 5 can guarantee the schedulability of
up to 100%. The theoretical proof is provided concisely with a lemma which presents the
schedulability of an individual interval. Then, the theorem for the schedulability of the
whole system is proven.

Lemma 6.5.1. Given an interval I = [t1, t2) (0 ≤ t1 < t2). If the system is fully assigned
up to t1, the system is then schedulable on I when using Algorithm 5 as the scheduling
algorithm.

Proof. Applying definitions in Section 6.3 and Algorithm 5, the total mandatory execution
of periodic tasks and servers is obtained as follows:

np−1∑
i=0

Mi(t1, t2) +
ns−1∑
j=0

Msj(t1, t2) =

np−1∑
i=0

bµi ∗ t2c −
np−1∑
i=0

Ai(t1) +
ns−1∑
j=0

bUj ∗ t2c −
ns−1∑
j=0

Asj(t1)

(6.11)

67

Since the system is fully assigned up to time t1, the total already assigned resources on
[0, t1) is equal to the system capacity. Namely, Equation 6.9 holds on [0, t1). Then, we
can derive the following result:

np−1∑
i=0

Mi(t1, t2) +
ns−1∑
j=0

Msj(t1, t2) =

np−1∑
i=0

bµi ∗ t2c+
ns−1∑
j=0

bUj ∗ t2c −m ∗ t1 (6.12)

Additionally, using Equation 6.1, we obtain the following result:

np−1∑
i=0

Mi(t1, t2) +
ns−1∑
j=0

Msj(t1, t2) ≤ m ∗ t2 −m ∗ t1 (6.13)

On the other hand, according to Algorithm 5, the total extra execution of periodic
tasks and servers is equal to the slack time on the interval after calculating the mandatory
executions. In the other words, the total extra execution can be calculated as follows:

np−1∑
i=0

Pi(t1, t2) +
ns−1∑
j=0

Psj(t1, t2) = m ∗ (t2 − t1)−
np−1∑
i=0

Mi(t1, t2) +
ns−1∑
j=0

Msj(t1, t2) (6.14)

Combining Equation 6.13 and Equation 6.14, we have:

E(t1, t2) =

np−1∑
i=0

Ei(t1, t2) +
ns−1∑
j=0

Esj(t1, t2) = m ∗ (t2 − t1) (6.15)

Equation 6.15 guarantees that all LRETs are accommodated within time the span of the
time interval. Hence, the schedulability is guaranteed on interval I = [t1, t2). Furthermore,
the system is fully assigned on the interval.

Theorem 6.5.2. Given D = {0, d1, d2, d3, ...} (d1, d2, d3, ... ∈ Z+ and 0 < d1 < d2 <
d3 <) as the set of primary scheduling events. Then, using Algorithm 5 as the scheduling
algorithm guarantees that the whole system is schedulable.

Proof. Let I0 = [0, d1), I1 = [d1, d2), I2 = [d2, d3),... be time intervals generated in the
system based on job releases. Applying Algorithm 5, the total mandatory execution of
periodic tasks and servers on I0 is calculated as follows:

np−1∑
i=0

Mi(0, d1) +
ns−1∑
j=0

Msj(0, d1) =

np−1∑
i=0

bµi ∗ d1c −
np−1∑
i=0

Ai(0) +
ns−1∑
j=0

bUj ∗ d1c −
ns−1∑
j=0

Asj(0)

(6.16)
Conventionally, no resource has been assigned to periodic tasks and servers at time 0.
That is,

np−1∑
i=0

Ai(0) +
ns−1∑
j=0

Asj(0) = 0 (6.17)

Therefore, using Equation 6.1 the total mandatory execution on I0 is derived as follows:

np−1∑
i=0

Mi(0, d1) +
ns−1∑
j=0

Msj(0, d1) ≤ m ∗ d1 (6.18)

68

The total extra execution of periodic tasks and servers on I0 is calculated as:

np−1∑
i=0

Pi(0, d1) +
ns−1∑
j=0

Psj(0, d1) = m ∗ d1 −
np−1∑
i=0

Mi(0, d1) +
ns−1∑
j=0

Msj(0, d1) (6.19)

Combining Equation 6.18 and Equation 6.19, we can obtain the total LRETs on I0 as
follows:

E(0, d1) = m ∗ d1 (6.20)

Equation 6.20 indicates that the system is schedulable and the fully-assigned system
is achievable on I0.

Since the system is fully assigned on I0 (or up to d1), according to Lemma 6.5.1
the system is schedulable on I1 using Algorithm 5. The fully-assigned system is then
maintained up to d2.

This induction is repeated for the successive intervals. The schedulability is therefore
guaranteed for the whole system.

6.6 Evaluation of LAA+

6.6.1 Simulation environment

Evaluation criteria

LAA+ is evaluated by simulation. The targeted evaluation criteria are responsiveness,
time complexity, and scheduler invocation. The calculation methods of these criteria are
the same as those in the original LAA (see Section 4.2 for definitions in detail).

Simulations are observed during a period of 100,000 ticks.

Task set

Similar to the evaluation of the original LAA, the simulation environment of LAA+ is set
up for cases of 4, 8, 16, and 32 identical processors. Task sets are generated as mixture
sets of periodic and aperiodic tasks. The utilization of periodic tasks is from 75% to
95% with increment of 5%. The maximum number of periodic tasks in a task set is 100.
Generation of periodic task sets is similar to that in the evaluation of the original LAA
(see Section 4.6.1).

The utilization of aperiodic tasks is from 2% to 5%. For instance, during the observa-
tion period of 100,000 ticks, the execution of aperiodic tasks on the case of 4 processors
will totally occupy from 8,000 to 20,000 ticks corresponding to the utilizations from 2%
to 5%. The number of aperiodic releases in a task set is at least 3,000 for the observation
period of 100,000 ticks. For each scenario of the periodic task utilization and the number
of processors, for example periodic utilization of 75% and 4 processors, all combinations
of ten periodic task sets and twenty aperiodic task sets (totally 200 combinational sets)
are simulated and the average result is exhibited.

Comparison candidate

The effectiveness of LAA+ is assessed in comparison with the original LAA, Pfair [32],
RUN [38], and semi-partition reservation (SPR) [29, 30]. In order to schedule aperiodic

69

tasks, model of aperiodic servers in [49] is applied for Pfair. On the other hand, the
aperiodic tasks are scheduled in background of periodic tasks in the original LAA, RUN
and SPR so that they are executed at unused slots (or idle times) of processors.

6.6.2 Simulation results of LAA+

Responsiveness

Figure 6.5 shows results of average response times of aperiodic tasks. LAA likely shows
the worst results since it prioritizes periodic tasks to receive seamless executions ahead of
aperiodic tasks (scheduled in background) on every interval. On the case of 4 processors,
LAA+ clearly shows the best results. Specifically, LAA+ reduces the response times of
LAA by about 30% in average. The corresponding reductions are about 10% compared
with PFAIR and about 7% compared with RUN and SPR. LAA+ maintains the similar
reduction rates compared with LAA in the other cases of processors. However, when the
number of processors increases, results of LAA+ become overlapping with that of RUN
while still maintain better than PFAIR and SPR in almost cases. (Additionally as our
observing, numerical results of simulations exhibit that, except cases of 95%, LAA+ is not
worst than RUN in terms of response time.) The improvement gap of LAA+ is decreased
with the increase of processors since the number of empty slots increases together with the
number of processors and empty processors tend to arise more frequently. Exceptionally,
at utilization of 95% on large number of processors, LAA+ tends to be worse than RUN
and SPR. The reason is that schedules of servers (and then the aperiodic tasks’ execution)
become fragmentary at heavy loads due to the proportionate calculation.

Time complexity

Time complexity is assessed through the maximum runtime overhead per tick. Figure 6.6
shows results for the runtime overhead. Due to the complex procedure of task classifica-
tion, Pfair causes significantly higher runtime overhead than the other algorithms in our
all cases of simulation. Therefore, it is not plotted in the figure. Table 6.1 additionally
depicts the average number of operations invoked in algorithms’ execution at Up = 95%
on cases of 4 and 16 processors. Using information in Table 6.1 can figure out how invoked
operations contribute to the runtime overheads.

Overall, as a semi-partitioned scheduling, SPR shows the lowest runtime overhead. Ex-
cept case of periodic utilizations of 80% and 85% on 4 processors, LAA+ exhibits lower
runtime overheads than RUN. Accordingly, LAA+ has about 14% of runtime overhead
lower than RUN for heavy task sets at utilizations of 90% and 95% on 4 processors; the
average reduction rates for cases of 8, 16 and 32 processors are 12%, 16% and 20%, respec-
tively. Obviously, including servers the calculation of LAA+ becomes more complexed
than LAA, which results in higher runtime overhead for most of the cases. Exceptionally,
at Up = 80% and Up = 95% on 32 processors, LAA+ show lower runtime overheads than
LAA. This exception can be reasoned that the calculation of servers’ LRETs at step 1
in Algorithm 5 may occasionally decrease slack time on step 2 and therefore reduce the
calculation complexity at step 2. The results indicate that LAA+ can maintain the opti-
mality and improve the aperiodic responsiveness of LAA without significantly increasing
the time complexity.

70

2

2.5

3

3.5

4

4.5

75% 80% 85% 90% 95%

A
v

e
ra

g
e
 R

e
sp

o
n

se
 T

im
e

Periodic Utilization (Up)

4 processors

 PFAIR SPR RUN LAA LAA+

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

75% 80% 85% 90% 95%

A
v

e
ra

g
e
 R

e
sp

o
n

se
 T

im
e

Periodic Utilization (Up)

8 processors

 PFAIR SPR RUN LAA LAA+

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

75% 80% 85% 90% 95%

A
v

e
ra

g
e
 R

e
sp

o
n

se
 T

im
e

Periodic Utilization (Up)

16 processors

 PFAIR SPR RUN LAA LAA+

6.5

7

7.5

8

8.5

9

75% 80% 85% 90% 95%

A
v

e
ra

g
e
 R

e
sp

o
n

se
 T

im
e

Periodic Utilization (Up)

32 processors

 PFAIR SPR RUN LAA LAA+

Figure 6.5: Response time of LAA+

Scheduler invocation

Figure 6.7 displays results for the number of scheduler invocations. With introduction of
secondary invocations, LAA+ causes a bit larger number of scheduling points than the
original LAA. Overall, LAA and LAA+ outperform the other candidates in this criterion
by over 50%. Combining with lower runtime overheads, fewer scheduler invocations also
unveil efficiency of our solution in terms of improving the accumulative runtime overhead.
This can improve the system performance since processors are preferably utilized for tasks’
execution rather than executing the scheduling algorithm.

6.7 Conclusion: Effectiveness and Limitation of LAA+

6.7.1 Effectiveness of LAA+

In this chapter, we presented an effective solution called LAA+ for the problem of schedul-
ing hybrid task sets of periodic and aperiodic tasks. The proposed solution exploited the
Local Assignment Algorithm with the integration of aperiodic servers.

Aperiodic servers are inserted into the system with their characteristics alike periodic
tasks. This approach allows Local Assignment Algorithm to be utilized effectively to
schedule the context of periodic tasks and servers. The aperiodic tasks then get scheduled
through the preservation of servers. LAA+ still maintains the optimality of the Local

71

0

100

200

300

400

500

600

700

800

75% 80% 85% 90% 95%

M
a
x

im
u

m
 o

v
e
rh

e
a
d

/t
ic

k

Periodic Utilization (Up)

4 processors

 SPR RUN LAA LAA+

0

200

400

600

800

1000

1200

1400

1600

1800

75% 80% 85% 90% 95%

M
a
x

im
u

m
 o

v
e
rh

e
a
d

/t
ic

k

Periodic Utilization (Up)

8 processors

 SPR RUN LAA LAA+

0

500

1000

1500

2000

2500

3000

3500

75% 80% 85% 90% 95%

M
a
x

im
u
m

 o
v

e
rh

e
a
d

/t
ic

k

Periodic Utilization (Up)

16 processors

 SPR RUN LAA LAA+

0

1000

2000

3000

4000

5000

6000

7000

75% 80% 85% 90% 95%

M
a
x

im
u

m
 o

v
e
rh

e
a
d

/t
ic

k

Periodic Utilization (Up)

32 processors

 SPR RUN LAA LAA+

Figure 6.6: Runtime overhead of LAA+

Assignment Algorithm without significantly increasing the time complexity.
LAA+ introduces secondary scheduling events and a selective model of consecutive

task assignment. These techniques effectively reduce the response times of aperiodic tasks
while still guaranteeing the schedule of periodic tasks. As shown in simulation results,
LAA+ achieves responsiveness equivalent to the existing algorithms with extremely less
number of scheduling points.

6.7.2 Limitation of LAA+

LAA+ has the same limitations with the original LAA. That is, the system is actually not
work-conserving within intervals. The processor times preserved for periodic tasks and
servers based on scheduling plans are unusable by the other tasks with work remaining.

Like the original LAA, LAA+ is introduced to schedule task sets of periodic and
aperiodic tasks. Future works are considered to extend LAA+ to deal with other type of
tasks such as sporadic one.

72

Table 6.1: Number of operations in execution of LAA+

4 processors

PFAIR SPR RUN LAA LAA+

Overhead 2994.3 250.7 675.2 472.4 568.3

IADD 430.2 14.1 42.4 55.6 32.76

IMUL 0 0 0 1 1

FMUL 340 0 8.5 7.9 8.8

COMP 429.1 162.5 341.8 201.7 250.5

ASSIGN 283.9 74.1 248.5 166.3 231.2

FLOOR 151.1 0 0 6.9 7.8

16 processors

PFAIR SPR RUN LAA LAA+

Overhead 24029.9 1061.6 3271.5 2416.2 2971.3

IADD 5615.2 52.54 211.9 133.9 115.3

IMUL 0 0 0 1 1

FMUL 512.8 0 29.4 29.2 36.9

COMP 8885 1061.6 1757.8 1456.9 1614.6

ASSIGN 5017.8 360.6 1153.7 605.9 1020.5

FLOOR 151.1 0 0 6.9 7.8

73

0

20000

40000

60000

80000

100000

120000

75% 80% 85% 90% 95%

#
 o

f
S

c
h
e
d
u
le

r
In

v
o
c
a
ti

o
n

Periodic Utilization (Up)

4 processors

 PFAIR SPR RUN LAA LAA+

0

20000

40000

60000

80000

100000

120000

75% 80% 85% 90% 95%

#
 o

f
S

c
h
e
d
u
le

r
In

v
o
c
a
ti

o
n

Periodic Utilization (Up)

16 processors

 PFAIR SPR RUN LAA LAA+

0

20000

40000

60000

80000

100000

120000

75% 80% 85% 90% 95%

#
 o

f
S

c
h
e
d
u
le

r
In

v
o
c
a
ti

o
n

Periodic Utilization (Up)

32 processors

 PFAIR SPR RUN LAA LAA+

0

20000

40000

60000

80000

100000

120000

75% 80% 85% 90% 95%

#
 o

f
S

c
h
e
d
u
le

r
In

v
o
c
a
ti

o
n

Periodic Utilization (Up)

8 processors

 PFAIR SPR RUN LAA LAA+

Figure 6.7: Scheduler invocation of LAA+

74

Chapter 7

Implementation of multiprocessor
real-time operating system

7.1 Introduction of multiprocessor real-time operat-

ing system

In the last decades, together with the dramatic increase in quantity and diversity of
real-time embedded applications, hardware platforms designed for such applications have
been numerously introduced. Multiprocessors systems have become dominant in this
trend. Systems with multiple processors allows diverse and complicated applications to
be executed concurrently. As a essential element of real-time embedded systems, real-time
operating system becomes attractive to researchers and engineers. A multiprocessors real-
time operating system (M-RTOS) respected a scheduling algorithm importantly needs to
handle different types of tasks and manage multiple shared resource, especially shared pro-
cessors. Local Assignment Algorithm is introduced as an effective scheduling algorithm
for real-time task scheduling on multiprocessors. Effectiveness of the algorithm was as-
sessed by simulation; however, the applicability on practical environment is also desired.
Implementation of M-RTOS which applies Local Assignment Algorithm as scheduling
algorithm is therefore the goal of this chapter.

Savana Real-time Operating System [50] is a compact and reliable operating system
kernel introduced for uniprocessor system. The operating system kernel is basically devel-
oped in C language and provides flexible mechanisms as system calls for task and system
managements. Significant functions are listed in Table 7.1. The Savana operating sys-
tem kernel is selected to extend to the multiprocessor context with focus on developing
scheduling mechanism using Local Assignment Algorithm and integrating synchronization
mechanism among processors.

The embedded system architecture is targeted to a symmetric multiprocessor system
(SMP). Accordingly, a single version of the implemented M-RTOS is commonly accessed
by all processors available in the system. Application tasks involved in the system are
also common so that they can executed on any processor.

The remaining of this chapter is structured in five sections as follows. Section 7.2
introduces the hardware platform on which the M-RTOS is implemented. Section 7.3
determines requirements and functions that the implemented M-RTOS needs to achieve.
Besides, difficulties of implementation are explained in this section. Section 7.4 describes

75

Table 7.1: Basic system calls provided in Savana RTOS

Group Functions provided

Task
management

Register task

Activate task

Cancel task activation

Terminate invoking task

Change task’s priority

Task
synchronization

Change a task to sleep state

Wake a task up from sleep state

Cancel a task wakeup

Delay a task

Time
management

Set system time

Reference to system time

Register a cyclic handler

Start a cyclic handler

System
management

Schedule task

Dispatch task

Reference to CPU state

Change CPU state

design models of important parts of the implemented M-RTOS. In Section 7.5 is the actual
system implementation including the hardware platform design and M-RTOS deployment.
In Section 7.6 shows a test conducted to evaluate the M-RTOS. Finally, Section 7.7 is the
conclusion of the chapter.

7.2 Hardware platform

7.2.1 Xilinx Zedboard Evaluation Kit

The Zedboard Evaluation Kit [9] is used as the targeted hardware platform for the im-
plementation. Zedboard is a development board based on the Xilinx Zynq-7000 All Pro-
grammable SoC [59]. Zynq-7000 system is integrated with an ARM Cortex-A9 dual-core
processors which can be set for running in SMP mode. Figure 7.1 shows an overview of
the Zedboard board. Together with Xilinx Zynq-7000 All Programmable SoC, the board
also provides Jtag connection, two USB connections, DDR3 memory, eight LEDs and
eight switches which are useful for implementing and testing.

In addition, different from the traditional systems where hardware platform includ-

76

VGA

Jtag/Debug
Power

Zynq-7000 SoC

USB UART

LEDs and Slide switches

USB OTG

DDR3

Figure 7.1: Overview of Zedboard Evaluation Kit

ing processors and built-in peripherals is predefined by manufacturers, Zynq-7000 All
Programmable SoC is designed on field programmable gate array (FPGA) which allows
flexible designs. In order work, Using Zynq-7000 All Programmable SoC, engineers can
define their own system flexibly according to the design purposes.

7.2.2 ARM Cortex-A9 processor

ARM Cortex-A9 processor based on ARMv7 architecture is a low power and high per-
formance processor which is widely encountered in embedded systems. Actually, the
Cortex-A9 processor integrated in Zynq-7000 All Programmable SoC consists of two cores
although the original Cortex-A9 can be configured with up to 4 cores.

Figure 7.2 shows an overview of the Cortex-A9 MPCore processor. The processor
provides the following features:

• Two of ARMv7 32bit CPU (processor);

• Each processor has two separated 32KB L1-caches for instruction and data;

• Each processor also supports floating-point unit and NEON data engine;

• Each processor has its own private peripherals including private timer, watchdog
timer, and interrupt interface, which are excluded on the figure;

• Two processors share snoop control unit (SCU), cache-to-cache transfer mechanism,
one global timer, generic interrupt control (GIC), interrupt distributor, and accel-
erator coherence port (ACP).

• A shared dual 64 bit AMBA-3 bus.

77

ARM Coresight MulticoreDebug and Trace
TM

ARMv7 32bit CPU

TM
NEON FPU

32KB

I-Cache

32KB

D-Cache

Accelerator

Coherence

Port (ACP)

Generic

Interrupt Control

and Distributor

Dual 64-bit AMBA-3 AXI

Cache-to-Cache

transfers
Timers

Snoop Control Unit (SCU)

ARMv7 32bit CPU

TM
NEON FPU

32KB

I-Cache

32KB

D-Cache

Figure 7.2: Arm Cortex-A9 MPCore processor

In addition, the system also supports a shared 512 KB level-two (L2) cache for instruc-
tion and data in parallel with a 256KB on-chip-memory (OCM) module. OCM allows
low-latency memory accesses [57].

7.2.3 Operation mode and banked register in ARM Cortex-A9

ARM Cortex-A9 processor provides eight main modes of operation. Based on operation
modes, the limitation of resource access is decided. There are two group of operation
modes: privileged mode and non-privileged mode. The unprivileged modes have more
restricted access to the system resources than the privileged modes. Table 7.2 lists main
operation modes available in ARM Cortex-A9 processor with defined mode bits and priv-
ilege.

The operation modes are decide by the lowest five bits of the current processor status
register (CPSR) [57]. Accordingly, user mode is the only non-privileged mode. This is
the basic mode on which application programs are executed. IRQ and FIQ modes are
corresponding interrupt and fast interrupt requests, respectively. Supervisor mode is often
entered when system setting is required. The operating system is run in this mode. Abort
and undefined modes are introduced to processor for abnormal events; that is, abort mode
is used when processor requests to access an unreachable memory location and undefined
mode is invoked when an undefined instruction is executed. System mode has permission
to access full system resources. This mode can be entered from the other modes except
the user one.

In ARM Cortex-A9 processor, banked registers are introduced as different registers
shared the same address. There are two main types of banked registers: banked per mode
and banked per processor. Banked registers are accessed using the address coordinated
with operation mode or processor property. For example, figure 7.3 shows the general

78

Table 7.2: Operation modes in ARM Cortex-A9 processors

Mode Mode bits Privilege

User (USR) Ox10 Non-privileged

FIQ 0x11 Privileged

IRQ Ox12 Privileged

Supervisor (SVC) Ox13 Privileged

Abort Ox17 Privileged

Undefined Ox1C Privileged

System Ox1F Privileged

purpose registers in ARM Cortex-A9 processor respect to operation modes. As shown
in the figure, R0-R12, R15 and CPSR are common among all operation modes, except
FIQ; namely, these registers are accessed normally using the register address. R13 (stack
pointer), R14 (link register), and SPSR (saved processor status register) are banked reg-
isters; based on the operation mode, the corresponding registers will be accessed. In FIQ
mode, R8-R14 and SPSR are banked registers.

For the register banked per processor, the processor identifier is used to refer to the
specific register. Comparator registers of global timer are example of registers banked per
processor. Two processors have their own comparator registers which can be accessed by
one address [59].

Being banked is also introduce to bits of some registers in ARM Cortex-A9. The
status bit (the first bit) of the global timer interrupt status register is for example banked
per processor. Banked registers and banked bits support rapid switching when processing
processor exceptions in privileged modes. Moreover, this approach are also helpful to save
the address field when one address can be used to refer to different registers.

7.2.4 Software tools

In order to design the hardware platform, Vivado Design Suite (version 2014.2) provided
by Xilinx is used. Vivado allows users to quickly initialize the hardware systems, customize
involved IP cores, and configure all peripherals. Using Vivado, users can also conveniently
generate a wrap of hardware design for software development with Xilinx SDK.

Xilinx SDK is provided with integrated tools for use to develop softwares with Zed-
board Evaluation Kit. It is compatible with several high level programming languages
including C and C++ for software development. Besides, SDK also supports a debugger
which is helpful for debugging and testing.

79

User/

System
Supervisor Abort Undefined IRQ FRQ

LR

SP

PC

Figure 7.3: General-purpose registers corresponding to operation modes [60]

7.3 Requirements and difficulties of the implementa-

tion

7.3.1 Requirements of the implementation

The principle goal of this work is to implement a version of M-RTOS so as to evalu-
ate the applicability of the proposed scheduling algorithm. Therefore, the compulsory
requirement is that Local Assignment Algorithm is used for task scheduling.

The implemented M-RTOS is need to be embedded into a system involving multiple
processors (at least two ones) for evaluation. The system has to allow different tasks to be
executed concurrently among processors with guarantee of timing constraints including
deadline meets.

Since the M-RTOS is common among processors in SMP architecture, synchroniza-
tion mechanisms are required to synchronize processors’ works when requesting system
services, especially task scheduling and dispatching.

7.3.2 Difficulties of the implementation

Cache coherence

It is normal that each processor in the system has their own cache level 1 (L1-cache). Pro-
cessors are manipulating on data available on L1-caches only. When multiple processors
request for shared data, multiple copy of the data can exist on processors’ L1-caches as
a result. Therefore, it is important to maintain caches in coherent state for data consis-

80

tency. Cache coherence guarantees that shared data is updated throughout all processors’
L1-caches when a modification is done on the data.

There are several approaches to manage cache coherence: setting access permission
for share data and using snooping system. On the first approach, shared data is stored in
a common directory on the primary memory which is coherent among L1-caches. When
a processor requests to load shared data from the primary memory to its own L1-cache,
it must acquire a permission. When the shared data is changed, the directory updates
the content and invalidates L1-caches with the updated content.

On the second approach, all L1-caches snoop the bus to check the validation of the
copy of the shared data which is requested on the bus. This approach is supported in
many multiprocessor architectures such as ARM Cortex-A9 processor [57].

Consistency of task execution

In SMP system, application tasks are common among processors. In other words, ap-
plication tasks can be considered as a kind of shared data. Since application tasks are
allowed to migrate from a processor to one another, the execution of tasks needs to be
guaranteed for consistency.

In multiprocessor systems, task migrations happen at scheduling points only. Store
and restore procedures are therefore required to save the execution status of application
tasks at the scheduling points. These procedures actually cause runtime overhead to the
system performance.

7.4 System design of M-RTOS

7.4.1 Booting sequences

In multiprocessor system, the booting sequence is designed for dual booting on the two
processors. In our implementation, the purpose of booting is to enable private memory
management units (MMU), initialize the common memory for the synchronization be-
tween the two processors, and configure the UART connection. In the dual boot sequence,
processor 0 is assigned as primary one which will be automatically started as power is
turned on. The other processor serves as a secondary one. Besides initializing its private
components, the primary processor is in charge of performing hardware initialization and
executing initialization code for common settings, like UART connection, which need to
be performed once only. In addition, the primary processor importantly also performs
needed procedure to wake the secondary one up from the (default) idle state. Whereas,
the secondary processor just executes initialization code for its private components after
woken up. The secondary processor then sends a notification signal back to the primary
one when all needed initialization are done. After receiving the signal that the secondary
processor is woken up successfully, the primary processor can continue to prepare for the
M-RTOS.

Figure 7.4 shows a flow of boot sequences on two processors.
Accordingly, the primary processor will process the following sequence:

1. Start at the designated address, 0x01000000 as designed in this implementation;

81

Booting on Processor 0 Booting on Processor 1

Starting

at the designated address

(automatically)

Initializing

hardware platform

and common components

Sending

wake-up signal

to processor 1

Waiting

for the wake-up signal

from processor 0

Waiting

for the notification signal

from processor 1

Sending

the notification signal

to processor 0

Initializing

private components

Initializing

private components

Waiting for

M-RTOS control

Preparing

for M-RTOS

Figure 7.4: Dual boot sequence on two processors

2. Initialize the hardware platform including cache transfer mechanism, UART con-
nection;

3. Initialize its private components including MMU, OCM, Cache L1;

4. Send wake-up signal to the secondary processor;

5. Wait for the notification signal from the secondary processor;

6. Prepare for downloading M-RTOS from computer to the main memory.

The secondary processor will process the following sequence:

1. At power on, the primary processor is in idle mode and waiting for wake-up signal
at the designated address, 0xFFFFFFF0 as default;

2. Start by wake-up signal from the primary processor;

3. Initialize its private components including MMU, OCM, Cache L1;

4. Send notification signal to the primary processor that it is woken up successfully;

5. Wait for the control signal from the operating system.

82

7.4.2 Memory mapping

For the implementation of SMP architecture, the memory is divided into seven seg-
ments with the address map showed in Figure 7.5. The lowest address area from 0 to
0x00FFFFFF is preserved for first stage boot loader (FSBL) program and BootROM. As
showed in the figure, These two segments are mapped to the OCM low address. Consec-
utively, the memory area from 0x01000000 to 0x02FFFFFF is used to store the booting
program of processor 0 (P0) and the memory area from 0x03FFFFFF to 0x0FFFFFFF
is for the booting program of processor 1 (P1).

Low address

High address

0xFFFF0000

0x10120000

0x10000000

0

0x01000000

0x03000000

OCM RAM

OCM RAM

DDR RAM

DDR RAM

OCM ROM

192KB FSBL

62KB BootROM

P0’s booting code

P1’s booting code

M-RTOS code

Heap for

stacks

and

dynamic allocation

Processor

synchronization

Figure 7.5: Memory address mapping

The executable code of M-RTOS is stored in the segment from address 0x10000000
to address 0x1011FFFF. The next segment from address 0x10120000 to address 0xFFF-
EFFFF is preserved for heap memory. This area is used for implementation of stacks and
dynamic allocations. The two segments for M-RTOS and heap as showed are mapped to
DDR RAM, which is the primary memory in the system. The remaining address field
from 0xFFFF0000 is used for synchronization data between two processors. This area is
mapped to the OCM high address.

Figure 7.6 shows a address plan for the top of stack pointers in the heap segment.
Stack pointers are designed respect to operation modes for each processor. Stacks are
implemented for supervisor, FIQ, IRQ and user modes. Abort and undefined modes are
not implemented in this research while system mode shares stacks with user mode. A
stack entry is preserved to save the status of system registers when dealing with processor
exceptions and interrupts. Registers considered to save include R0-R3, SP and LR, which
leads the entry size of 24 words.

83

Low address

High address

0x1BFFFE8

0x1AFFFE8

0x1BFFEF8

0x1AFFEF8

0x19FFEF8

0x17FFEF8

0x17FFFE8

0x19FFFE8

...

...

P0’s SVC Stack

P1’s SVC Stack

P0’s FIQ Stack

P0’s IRQ Stack

P0’s USR Stack

P1’s IRQ Stack

P1’s USR Stack

P1’s FIQ Stack

Figure 7.6: Stack pointers planned for operation modes

7.4.3 Organization of ready queue

The system is designed with 16 priorities from 0 to 15 for tasks. The priority of tasks
decreases in the increase of priority index. The task indexed as priority 0 has the highest
priority while the task indexed as priority 15 has the lowest priority. Priorities 0 and 1 are
preserved for kernel tasks including initial task for processor 0, initial task for processor
1, timer task All application tasks are assigned the same priority of 2. Priorities 3 to 13
are preserved for future tasks. The remaining priorities of 14 and 15 are used for idle
tasks of processor 0 and processor 1, respectively.

The system ready queue is decided based on task priorities. Therefore, 16 ready queues
are established for tasks, which is depicted in Figure 7.7. Accordingly, ready queue 0 is
queue of the initial task of processor 0’s kernel and timer task, and ready queue 0 is queue
of the initial task of processor 1’s kernel. Application tasks are queued on ready queue
2 when they are released. Ready queues 3 to 13 are preserved for future tasks. The
remaining two ready queue are utilized by idle tasks of processor 0 and processor 1. After
initialization finished, processors will executed idle tasks when there exists no timer task
and application tasks to be executed.

7.4.4 Dual initialization for M-RTOS

After the boot stage, M-RTOS is downloaded from computer to the primary memory at
address 0x10000000 as designated above and then started. This work is done by processor
0 as the primary processor. M-RTOS starts execution with a dual initialization which
initializes system environment required for the operating system. Figure 7.8 shows the
steps of the dual initialization on two processors.

84

ready_queue[0]

ready_queue[1]

ready_queue[2]

ready_queue[3]

ready_queue[13]

to

ready_queue[14]

ready_queue[15]

Kernel tasks of P0: kernel 0 init, timer

Kernel task of P1: kernel 1 init

Application tasks

Kernel task of P1 in idle state

Kernel task of P0 in idle state

Preserved

Figure 7.7: Organization of ready queues

In the dual initialization, the primary processor P0 will do the following works:

1. Start at the designated address 0x10000000;

2. Initialize stack pointers for the processor;

3. Set vector base address (VBAR) and enable performance monitor unit (PMU),
snoop control unit (SCU);

4. Initialize global elements including global variables, system queues;

5. Initialize private elements including kernel initial task, timer task (intentionally,
timer task is executed on processor 0 only), and private peripherals and interrupt
(PPI). This initialization step includes configurations to the generic interrupt control
(GIC) and interrupt distributor;

6. Send a signal to processor 1 to start its own initialization. Before sending the signal,
processor 0 needs preparing the starting address for processor 1 in the common
synchronization area;

7. Wait for the notification signal that processor 1 finished its initialization successfully;

8. Start scheduler for task execution.

In its initialization, the secondary processor P1 will do the following works:

1. Wait for the signal to start the initialization needed from the primary processor.
Processor 1 goes into this waiting state as finishing its own boot sequence;

2. Start the initialization program at the designated address (prepared by the primary
processor);

3. Initialize stack pointers for the processor;

4. Set its own VBAR and PMU;

85

Initializing on Processor 0 Initializing on Processor 1

Starting M-RTOS

at address 0x10000000

Initializing

stack pointers for P0

Signal P1

for initialization

Initialize

private elements and

interrupts (PPI)

Wait for

M-RTOS control

Wait

for the notification signal

from P1

Initialize

stack poiters for P1

Set

VBAR, PMU, SCU,

and global elements

Set

VBAR, PMU

Start initialization

at address 0x100000A0

Wait

for scheduler

Start

scheduler

Initialize

private elements and

interrupts (PPI)

Signal P0

for being ready

Figure 7.8: Dual initialization for M-RTOS on two processors

5. Initialize private elements including its own kernel initial task, and private periph-
erals and interrupt (PPI).

6. Send a signal to the primary processor to notify that the initialization is done;

7. Wait for the scheduler to fetch task.

7.4.5 Synchronization required for two processors

As described in the dual boot sequence and M-RTOS dual initialization, several commu-
nications and data are needed between two processors:

• Mutual communication to wake a processor up from the idle state at the boot stage;

• Mutual communication to start the initialization on a processor;

• Data as starting address for the secondary processor.

In addition, later the mutual communications are also required between the two processors
for interrupt handling and task scheduling.

In order to support such synchronizations between the two processors, a common
structure of data is used. Figure 7.9 shows the structure of the common block data,

86

which is allocated on the segment of processor synchronization (OCM high) of memory
(see Section 7.4.2). The data structure includes seven elements as follows:

• isP1Start: used at the boot stage. The primary processor will clear this data to
0 before sending the wake-up signal to the secondary one. Then, it is waiting for
this data to be set. By setting this data to 1, the secondary processor notifies the
primary one that it is started successfully.

• isP1Ready: used at the initialization of M-RTOS in the similar manner to isP1Start.
That is, it is used by the secondary processor to confirm that it finished initialization
and is ready for task execution.

• start add: the start address of the secondary processor which is prepared by the
primary one.

• it sche done: used for the scheduler.

• The other elements are preserved for future usage.

/∗ Common Block definitions ∗/
typedef struct {
volatile BOOL isP1Start ;
volatile BOOL isP1Ready;
volatile FP start add ;
volatile INT sche done;
volatile INT data1;
volatile INT data2;
volatile INT data3;
} cpuComBlock;

Figure 7.9: Structure of the common block data for processor synchronization

7.5 Implementation

7.5.1 Hardware platform design

The hardware platform is designed using Xilinx Vidado Suite which provides flexible con-
figurations for Zynq-7000 All Programmable SoC. Figure 7.10 exhibits the block diagram
of the hardware system. The block diagram is generated using Xilinx Vivado. There are
four main blocks:

• Zynq7 Processing system integrated with ARM Cortex-A9 dual core processor.

• Processor system reset to generate a global reset signal for the whole system.

• AXI Interconnection to synchronize the connections between the main processing
system (Zynq7) and input/output ports.

87

• AXI GPIO to provide direct connection to input and output port.

The system is configured in symmetric multiprocessor mode (SMP) with two proces-
sors. SCU is enable for cache coherence and data transfers. GIC is activated for interrupt
control and distributor. Global timer is used for implementation of system time (tick).
AXI GPIO is set as dual 8-bit port in which one input 8-bit port is connected to slide
switches and the other output 8-bit port is connected LEDs. UART protocol is used for
UART connection at bound rate of 11500. Clocks of 666 MHz and 333 MHz are used for
processor and peripherals (including global timer), respectively.

Figure 7.10: Block diagram of the hardware platform generated by Xilinx Vivado

Using Vivado, the system is implemented and the bit stream of hardware design is
generated for FPGA programming. Xilinx SDK is used to create a first stage boot loader
for two processors of the system. Boot programs and bit stream of hardware design are
then programmed to FPGA on Zedboard Evaluation Kit.

7.5.2 Basic components of M-RTOS

Vector table and exception handling

In the ARM architecture, vector table provides entries of exception handling that are
executed by processor to handle events. Exceptions can be caused by internal or external
sources. When an exception occurs, the execution on the processor is forced from a
predefined memory address of the corresponding exception handling. There are eight
types of exceptions defined in the ARM architecture including reset, undefined instruction,
software interrupt, abort instruction, abort data, IRQ, FIQ, and one preserved type [61].
The address of the exception handling is decided in reference to the base address stored
in VBAR. Exception handlings and base addresses for two processors can be designed
differently.

In this implementation, the base address for processor 0 is decided at 0x10000000. Fig-
ure 7.11 shows defined addresses of exceptions with the corresponding exception handling

88

for processor 0. Three important exceptions involved in this implementation are reset,
software interrupt and IRQ. Reset exception is forced at system reset, software interrupt is
used for task dispatching, and IRQ is used to handle the global timer interrupt. The cor-
responding handling for the three exceptions are kernel set sp, kernel swi entry, and
kernel irq entry, respectively. The address of these handlings are found in the figure

referred to the processor 0’s base address.

kernel vector :
b kernel set sp @ 0x10000000 SP setting
b kernel undef inst entry @ 0x10000004 Undefined instruction entry
b kernel swi entry @ 0x10000008 SWI entry
b kernel inst abort entry @ 0x1000000C Abort instruction entry
b kernel data abort entry @ 0x10000010 Abort data entry
nop @ 0x10000014
b kernel irq entry @ 0x10000018 IRQ entry
b kernel fiq entry @ 0x1000001C FIQ entry

Figure 7.11: Vector table for processor 0

Similarly, in Figure 7.12, the exception handlings and predefined addresses of excep-
tions for processor 1 are shown. Address 0x100000A0 is decided as the base address of
processor 1, which is stored in processor 1’s VBAR. Corresponding to three involved ex-
ceptions, exception handlings for processor 1 are kernel set sp p1, kernel swi entry p1,
and kernel irq entry p1.

kernel vector p1 :
b kernel set sp p1 @ 0x100000A0 SP setting
b kernel undef inst entry @ 0x100000A4 Undefined instruction entry
b kernel swi entry p1 @ 0x100000A8 SWI entry
b kernel inst abort entry @ 0x100000AC Abort instruction entry
b kernel data abort entry @ 0x100000B0 Abort data entry
nop @ 0x100000B4
b kernel irq entry p1 @ 0x100000B8 IRQ entry
b kernel fiq entry @ 0x100000BC FIQ entry

Figure 7.12: Vector table for processor 1

Kernel stack pointers

Figure 7.13 describes the program to set the stack pointers for processor 0, which is fol-
lowing the stack pointer plan in Figure 7.6. As showed, stack pointers are set in the
exception handling of reset in the initialization of processor 0 (see Figure 7.8). In the
program, KERNEL STK PTR is predefined as 0x1C000000. Notably, at the setting
for supervisor mode stack, a routine kernel init proc is executed for the processor initial-
ization. The routine is to configure VBAR, MMU, SCU and global elements for processor
0. At the setting for user mode stack, a routine kernelmain is invoked to enter the kernel
main task on processor 0.

89

kernel set sp :
mrs r0, cpsr @ 0x10000020 Starting SP setting
bic r0, r0, #0x1F @ 0x10000024
orr r0, r0, #0x11 @ 0x10000028
msr cpsr, r0 @ 0x1000002C move to fiq mode
mov r1, # KERNEL STK PTR−0x1000000 @ 0x10000030 prepare sp(fiq)
mov sp, r1 @ 0x10000034 write sp(fiq)
mrs r0, cpsr @ 0x10000038
bic r0, r0, #0x1F @ 0x1000003C
orr r0, r0, #0x12 @ 0x10000040
msr cpsr, r0 @ 0x10000044 move to irq mode
mov r1, # KERNEL STK PTR−0x2000000 @ 0x10000048 prepare sp(irq)
mov sp, r1 @ 0x1000004C write sp(irq)
mrs r0, cpsr @ 0x10000050
bic r0, r0, #0x1F @ 0x10000054
orr r0, r0, #0x13 @ 0x10000058
msr cpsr, r0 @ 0x1000005C move to svc mode
mov r1, # KERNEL STK PTR @ 0x10000060 prepare sp(svc)
mov sp, r1 @ 0x10000064 write sp(svc)
bl kernel init proc @ 0x10000068 P0 Initialization
nop @ 0x1000006C
mrs r0, cpsr @ 0x10000070
bic r0, r0, #0x1F @ 0x10000074
orr r0, r0, #0x10 @ 0x10000078
msr cpsr, r0 @ 0x1000007C move to usr mode
mov r1, # KERNEL STK PTR−0x4000000 @ 0x10000080 prepare sp(usr)
mov sp, r1 @ 0x10000084 write sp(usr)
bl kernel main @ 0x10000088 P0 kernel main
nop @ 0x1000008C

Figure 7.13: Setting stack pointers for processor 0

Similarly, Figure 7.14 shows the setting program for stack pointers of processor 1. As
showed, each stack pointer of processor 1 is distinguished by 240 words lower than the
corresponding stack pointers of processor 0. It means that, ten stack entries size of which
is 24 words are kept for processor 0. At settings of stack pointers for supervisor and user
modes, needed routines are executed to initialize the private elements for processor 1.

Interrupt routines

As mentioned above, interrupt routines are designed for processors to handle the global
timer interrupt which is used to implement the system time. To handle the global timer
interrupt, processor 0 will do the following things:

• Read interrupt acknowledge register (ICCIAR) to get information about the received
interrupt;

• Clear the pending interrupt in the interrupt interface by writing the interrupt ID
to the end of interrupt register (ICCEOIR);

90

kernel set sp p1 :
mrs r0, cpsr @ 0x100000C0 Starting SP setting
bic r0, r0, #0x1F @ 0x100000C4
orr r0, r0, #0x11 @ 0x100000C8
msr cpsr, r0 @ 0x100000CC move to fiq mode
mov r1, # KERNEL STK PTR−0x1000000 @ 0x100000D0 prepare sp(fiq)
sub r1,r1,#240 @ 0x100000D4
mov sp, r1 @ 0x100000D8 write sp(fiq)
mrs r0, cpsr @ 0x100000DC
bic r0, r0, #0x1F @ 0x100000E0
orr r0, r0, #0x12 @ 0x100000E4
msr cpsr, r0 @ 0x100000E8 move to irq mode
mov r1, # KERNEL STK PTR−0x2000000 @ 0x100000EC prepare sp(irq)
sub r1,r1,#240 @ 0x100000F0
mov sp, r1 @ 0x100000F4 write sp(irq)
mrs r0, cpsr @ 0x100000F8
bic r0, r0, #0x1F @ 0x100000FC
orr r0, r0, #0x13 @ 0x10000100
msr cpsr, r0 @ 0x10000104 move to svc mode
mov r1, # KERNEL STK PTR @ 0x10000108 prepare sp(svc)
sub r1,r1,#240 @ 0x1000010C
mov sp, r1 @ 0x10000110 write sp(svc)
bl kernel init proc p1 @ 0x10000114 P1 Initialization
nop @ 0x10000118
mrs r0, cpsr @ 0x1000011C
bic r0, r0, #0x1F @ 0x10000120
orr r0, r0, #0x10 @ 0x10000124
msr cpsr, r0 @ 0x10000128 move to usr mode
mov r1, # KERNEL STK PTR−0x4000000 @ 0x1000012C prepare sp(usr)
sub r1,r1,#240 @ 0x10000130
mov sp, r1 @ 0x10000134 write sp(usr)
bl kernel main p1 @ 0x10000138 P1 kernel main
nop @ 0x1000013C

Figure 7.14: Setting stack pointers for processor 1

91

• Wake up timer task which is designed to manage system time and task release;

• Clear the status bit in the global timer status register.

Figure 7.15 describes the interrupt routine of global timer interrupt for processor 0 in
detail.

void kernel intr (void)
{

unsigned long ∗ICCIAR = (unsigned long ∗)0xF8F0010C;
unsigned long ∗ICCEOIR = (unsigned long ∗)0xF8F00110;
unsigned long icciar ;

icciar = ∗ICCIAR; // [12:10] CPUID, [9:0] Int ID
∗ICCEOIR = icciar; // Clear pending interrupt

kernel int = 1;

INT int ID;
int ID = icciar & 0x3FF;

switch (int ID) {
case 27: // ID27: global timer

iwup tsk (KERNEL TIM);
break ;

default :
a9 usr printf (”int ID = ”, int ID);
outstr (” is not implemented\r\n”);
break ;

}

kernel int = 0;
∗GT Status Reg = 1;

return;
}

Figure 7.15: Timer interrupt routine for processor 0

Compared to processor 0, processor 1 has to do a lighter work to handle the global
timer interrupt. Processor 1 will do the following things:

• Read register ICCIAR to get information about the received interrupt;

• Clear the pending interrupt in the interrupt interface by writing the interrupt ID
to register ICCEOIR;

• Wait for the confirmation of scheduling from processor 0;

• Clear synchronization data;

• Clear the status bit in the global timer status register;

92

• Check for task dispatching.

Figure 7.16 shows details of the interrupt routine of global timer interrupt for processor
1.

void kernel intr p1 (void)
{

unsigned long ∗ICCIAR = (unsigned long ∗)0xF8F0010C;
unsigned long ∗ICCEOIR = (unsigned long ∗)0xF8F00110;
unsigned long icciar ;

icciar = ∗ICCIAR; // [12:10] CPUID, [9:0] Int ID
∗ICCEOIR = icciar; // Clear pending interrupt

while(cpuComBlockPtr −> sche done == 0);

cpuComBlockPtr −> sche done = 0;
∗GT Status Reg = 1;

if (kernel schtsk p1 != kernel schtsk p1)
kernel dispatch () ;

return;
}

Figure 7.16: Timer interrupt routine for processor 1

System time

The system time (tick) is decided to be interval of 1 ms. The global timer is configured
to release an interrupt signal for every 1 ms. Figure 7.17 displays the configuration of
global timer registers for this purpose. Reminding that global timer in ARM Cortex-A9
processor consists of five registers:

• A 32-bit global timer control register (GT Cntrl Reg);

• A 64-bit comparator which is divided into two 32-bit registers (GT Comp Reg Low
and GT Comp Reg High);

• A 64-bit counter which is divided into two 32-bit registers (GT Count Reg Low
and GT Count Reg High);

• A 32-bit Auto-increment register (GT AutoInc Reg);

• A 32-bit status register (GT Status Reg).

A global timer interrupt is released whenever the timer counter reaches the value in
the comparator register. The global timer can be configured for single shot interrupt
or multiple interrupts with auto-increment mode. In the auto-increment mode, as the

93

outstr (”==−− Resetting Global Timer”); outstr(”\r\n”);
∗GT Cntrl Reg = 0;
∗GT Comp Reg Low = GT AutoInc Val;
∗GT Comp Reg High = 0;
∗GT AutoInc Reg = GT AutoInc Val;
∗GT Count Reg Low = 0;
∗GT Count Reg High = 0;
∗GT Status Reg = 1;

Figure 7.17: Configuration of global timer for system time

interrupt is sent the comparator register is automatically increased by the value in the
auto-increment register for the next interrupt event.

Respect to the operation of global timer, the auto-increment value for comparator is
decided equal to 0x00028A00 for the interval of 1 ms. The calculation of interval can be
obtained using Equation 7.1 where prescale value is the value in the prescaler field (bits
15-8) of the global timer control register [62], increment value is the value of register
GT AutoInc Reg, and GT CLK is the clock of 333 MHz for global timer.

interval =
(prescale value+ 1) ∗ (increment value+ 1)

GT CLK
(7.1)

Scheduling process

Overall, the scheduling rule is designed based on the system priority. Accordingly, when
the scheduler is invoked, the highest prioritized task existing in the system is selected
for execution. Except application tasks which all have priority of 2, tasks with the same
priority are selected using the first-come-first-serve strategy. As the purpose of this im-
plementation, Local Assignment Algorithm is applied as the main strategy for scheduling
application tasks.

Figure 7.18 shows the main segment of codes implemented the selection strategy of
the scheduler. A loop is encountered to traverse the system ready queues from the lowest
indexed ready queue tasks on which have the highest priority to the highest indexed ready
queue tasks on which have the lowest priority. When a non-empty ready queue is reached,
tasks on the queue are assigned to processors for execution and the traversing is stopped.
Since all ready queues are initialized with the first element pointing to the queue itself, a
non-empty queue is detected by expression queue− > next! = queue.

As showed in the figure, when application tasks on ready queue 2 are assigned to pro-
cessors, the scheduling plan of Local Assignment Algorithm is referred to. laa pHead[0]
and laa pHead[1] are the head of two scheduling plans corresponding to the two proces-
sors, which provide the identifier of scheduled tasks. kernel schtsk and kernel schtsk p1
indicate the selected tasks for processor 0 and processor 1 respectively. If the head of
scheduling plan of processor is non empty (NULL), the scheduled task is assigned to pro-
cessor through procedure getTask. Otherwise, the processor is assigned the predefined
idle task through procedure idleTask.

When the other ready queues (rather than ready queue 2) are involved to select task,
the first task on the queue is assigned to processor 0 while processor 1 is assigned the
predefine idle task. This is because processor 0 as the primary processor will be in charge

94

...
/∗ Select tasks from ready queues ∗/
for (i = 0; i <= TMAX TPRI − 1; i++)
{

queue = (KERNEL QUEUE ∗)& kernel ready q[i];
if (queue−>next != queue) // exist task in the queue
{

if (i == 2) // selecting application tasks
{

// select task for processor 0
if (laa pHead[0] != NULL)

kernel schtsk = getTask(laa pHead[0] −> tid);
else

kernel schtsk = idleTask(0);

// select task for processor 1
if (laa pHead[1] != NULL)

kernel schtsk p1 = getTask(laa pHead[1] −> tid);
else

kernel schtsk p1 = idleTask(1);
}
else // selecting another prioritized tasks
{

kernel schtsk = queue −> next −> self;
kernel schtsk p1 = idleTask(1);

}
break ;

}
}
...
// Signal Processor 1 for its dispatching
cpuComBlockPtr −> sche done = 1;
...

Figure 7.18: Schedule tasks using scheduling plan of LAA algorithm

95

of executing system tasks besides application tasks while processor 1 as the secondary one
will be in charge of executing application tasks only. As mentioned before, this intentional
assignment scheme is for the simplicity.

When the scheduling process is completed, the scheduler need to notify processor 1 so
that it can process for dispatching task. This work is done by setting the synchronization
value cpuComBlockPtr− > sche done to 1.

Informatively, the idle task of processor 0 is simply designed as a infinite loop the
content of which is empty. In other words, processor 0 executes nothing in its predefined
idle task. Whereas, the idle task of processor 1 is designed so that it is waiting for the
synchronization signal of scheduling from processor 0. Figure 7.19 shows the source code
of the predefined idle task for processor 1.

void idleP1()
{

extern cpuComBlock ∗cpuComBlockPtr asm (”cpuComBlockPtr”);
while(cpuComBlockPtr −> sche done == 0)
{

if (cpuComBlockPtr −> sche done == 1)
{

cpuComBlockPtr −> sche done = 0;
if (kernel schtsk c1 != kernel schtsk c1)

kernel dispatch () ;
}

}
return;

}

Figure 7.19: Idle task for processor 1

7.6 M-RTOS evaluation

7.6.1 Test scenario

In order to evaluate the implemented M-RTOS, a simple test scenario is established. The
purpose of testing is task scheduling of M-RTOS with Local Assignment Algorithm. The
test scenario is supposed to involve four periodic tasks identified as TSK A, TSK B,
TSK C, and TSK D. Tasks’ periods are equal to 15; that is all tasks are set to regu-
larly release their jobs for every 15 ticks. The execution time of tasks are managed to
approximately equal to 5 ticks. In other words, periodic tasks have identical utilizations
of 1/3. The total utilization of tasks is approximately 1.3 so that the system is feasible to
be scheduled on two processors. All periodic tasks start releasing their jobs at time 15.

Figure 7.20 shows an example program of application task involved in the test. When
task is scheduled to execute on a processor, the program is executed. The program
requests exinf as the input argument. The input argument is utilized as the loop bound
in the program, which mainly decides the execution span of the task. For the execution
time of 5 ticks, input argument exinf is assigned value equal to 3,500,000.

96

void task a (VP INT exinf)
{

SYSTIM stim, ftim;
volatile INT i, j , x;

get tim (&stim);
a9 usr printf (”TSK A starts ”, stim);
for (i=0, x=0; i<exinf; i++)

x += i;
get tim (&ftim);

a9 usr printf (”, finish ”, ftim);
a9 usr printf (”, spends ”, ftim − stim); outstr (”\r\n”);
return;

}

Figure 7.20: Example of application task involved in the system

7.6.2 Testing results

Tera Term emulator [63] is installed for communication with Zedboard Evaluation Kit
via USB UART port. Since in the test, the executions of tasks on two processor may
concurrently request to use USB UART, a simple synchronization was implemented using
a shared value of the common block data (Section 7.4.5).

∗∗
∗ Dual boot program for Zedboard Zynq7000 ∗
∗ By Doan Duy, May 2019 ∗
∗∗
P0: Platform initialization is done.
P0: Common Block configuration is done.
P0: Starting Core 1...
P1 is started .
P1: Platform initialization is done.
P1: Common Block configuration is done.
P1: Going to STANDBY.
P0: Preparing for downloading RTOS...
>

Figure 7.21: Result of dual boot on two processor

Figure 7.21 displays the screen capture of the dual boot on two processors. The
displayed results follows the dual boot sequence designed in 7.4. The boot step is finished
with processor 1 put into standby mode, waiting for the M-RTOS control, and processor
0 ready for downloading M-RTOS. Downloading M-RTOS means the compiled M-RTOS
on computer is downloaded to the primary memory of the board. After downloading,
M-RTOS is started at the designated address (0x10000000).

Figure 7.22 shows the results of schedule of four periodic tasks. At time 15 (0x0f

97

PPI STATUS:
ppi status = 00000000
([1] and [4] is active LOW, [0], [2], [3] are active HIGH
([0] corresponds to the global timer)

P1 is initialized sucessfully .
Start scheduler ...
TSK A starts 0000000f, finish 00000014, spends 00000005
TSK B starts 0000000f, finish 00000014, spends 00000005
TSK D starts 00000014, finish 00000019, spends 00000005
TSK C starts 00000014, finish 00000019, spends 00000005
TSK A starts 0000001e, finish 00000023, spends 00000005
TSK B starts 0000001e, finish 00000023, spends 00000005
TSK D starts 00000023, finish 00000028, spends 00000005
TSK C starts 00000023, finish 00000028, spends 00000005
TSK A starts 0000002d, finish 00000032, spends 00000005
TSK B starts 0000002d, finish 00000032, spends 00000005
TSK D starts 00000032, finish 00000037, spends 00000005
TSK C starts 00000032, finish 00000037, spends 00000005

Figure 7.22: Results of schedule multiple tasks on multiple processor

in hexadecimal) when tasks are first released, TSK A and TSK B are scheduled to be
executed the two processors. They are finished their execution at time 20 (0x14) for 5-tick
executions. Then, TSK C and TSK D start their executions up to time 25 (0x19). The
task executions are repeated for the successive periods.

7.7 Conclusion

In this chapter, a compact M-RTOS has been presented. Local Assignment Algorithm
(LAA) is employed as the scheduling strategy for periodic tasks. This is to evaluate
the applicability of LAA algorithm in a practical real-time system. The targeted system
environment is Xilinx Zynq-7000 All Programmable SoC which is built in FPGA. A dual-
core ARM Cortex-A9 processor is involved as the targeted processor. The M-RTOS is
therefore designed with comparability to symmetric multiprocessor system.

Important parts of the M-RTOS are presented including dual system initialization,
memory map, stack plan, ready queue structure, and task selection strategy (scheduling).
In addition, we also show how the global timer is used to implement system time. Different
interrupt routines are introduced to two processors to handle the global timer interrupt.
Together with the M-RTOS structure, a dual boot sequence for two processors are also
designed.

The implemented M-RTOS is booted and run successfully on the targeted system
on Zedboard Evaluation Kit. A simple test scenario is used for testing the scheduling
algorithm. Although the system consists of two processors only, testing results confirm
that LAA algorithm has potential to be applied to practical system.

98

Chapter 8

Conclusion of dissertation

8.1 Summary of the dissertation

It is fact that multiprocessor architectures have become popular in real-time computing
systems. This trend allows real-time applications to be developed increasingly in diversity
and complexity. Hybrid task sets which combine of different types of tasks frequently occur
in embedded systems and cause challenges to researchers of the field. Scheduling mixture
systems of periodic and aperiodic tasks on multiprocessors is the motivation of the work
in this dissertation.

This work first focuses on the problem of periodic schedule on multiprocessors. Based
on investigation of the introduced methods and existing problems, an enhanced schedul-
ing algorithm called Local Assignment Algorithm (LAA) was proposed. LAA exploits
the notion of fairness and interval-based scheduling to pursue the optimality. LAA sug-
gests a calculation method to achieve fully-assigned systems on time intervals so that the
system capacity is entirely spent for task execution. This has potential to improve the
system performance when reducing unnecessary idle times of processors. In addition, for
assigning tasks to processors, the consecutive task assignment scheme of McNaughton’s
algorithm is expanded with improvements that tasks are distributed selectively using the
schedule history and the remaining slack times of processors. It is found that LAA can
effectively schedule periodic tasks with fewest scheduler invocation and relatively low
time complexity while still keeping task preemption and task migration comparable to
the existing algorithm.

In success of scheduling periodic tasks, LAA is then enhanced to adapt with the
mixture context of periodic and aperiodic tasks. In the new context, the scheduling goal
is to improve the responsiveness of aperiodic tasks while guaranteeing valid schedules for
periodic tasks. To this end, concept of servers is employed. Servers are modeled like a
periodic task with utilization rate and period. The remaining system capacity unused
from periodic tasks are distributed to servers’ utilization rates and servers’ periods are
arbitrarily large. The integration of servers are considered as a preservation for aperiodic
tasks’ execution. The enhanced Local Assignment Algorithm is called LAA+. With the
integration of servers, LAA+ is applied effectively to schedule periodic and aperiodic
tasks altogether. Furthermore, several techniques are introduced intentionally to improve
aperiodic responsiveness. First, allocation of servers and periodic tasks on processors
is decided in order of servers associated with aperiodic task, periodic tasks and empty
servers. This has potential to execute aperiodic tasks (already assigned to servers) are

99

executed ahead periodic ones on a time interval and preserve empty servers for coming
aperiodic tasks. Second, introduction of secondary scheduling event gives just-coming
aperiodic tasks a benefit of being executed ahead periodic ones. Simulation results show
that LAA+ can effective improve response times of aperiodic tasks while not significantly
increasing the time complexity.

In addition to the propose of scheduling algorithm, a compact multiprocessor real-time
operating system (M-RTOS) is developed for the applicability of the proposed algorithm
on practical system. M-RTOS is implemented for a symmetric multiprocessor system of
two processors. Xilinx Zynq-7000 All Programmable SoC with an integrated dual-core
ARM Cortex-A9 processors is selected as the system environment. M-RTOS successfully
using LAA to schedule periodic tasks in a simple scenario.

Overall, it is found that the proposed scheduling algorithm is more effective than the
other existing optimal algorithms in terms of scheduler invocation and time complexity.
It also has potential to be applied to practical real-time system.

8.2 Future work

It is fact that time intervals of LAA are decided using release times of periodic tasks only.
Since release times are predictable, the information of intervals including interval length,
involved tasks is obtainable in advance. This leads possibility of predicting scheduling
plan of an interval in advance before the starting time of the interval actually occurs.

Another observation is risen from the implementation of M-RTOS. That is, during
the scheduling time, only the primary processor is utilized while the secondary processor
is free. The longer the scheduling time is spent, the more wasted the system capacity
is. If the scheduling time is reduced, the system is exploited more effectively. Since
the advanced scheduling plan is possible, an hardware accelerator which is in charge of
calculating the scheduling plan for the next interval during the span of the current interval
is promising.

I0 ...I1

0 5 10 15 Time

Execution

on processors Task execution

Predicting scheduling plan for I1 Predicting scheduling plan for I2 Predicting scheduling plan for I3

Task execution Task execution

Execution

on accelerator

0 5 10 15 Time

I2 I3

Figure 8.1: Making scheduling plans in advance with hardware accelerator

Figure 8.1 illustrates the idea of advanced scheduling plan with hardware accelerator.
In the original system without hardware accelerator, scheduling events are decided at time
0, 5, 10 and 15 and the scheduling algorithm is executed at these points of time to make
scheduling plans. Therefore, the issued runtime overhead tends to reduce the system
performance. Now, if a hardware accelerator is integrated to be in charge of predicting
scheduling plans, the scheduling plan of an interval can be made in advance. For example,
the scheduling plan for interval I1 can be predicted by the accelerator during the period
of interval I0 when processors are executing tasks. At the scheduling point at time 5, the

100

scheduler can use the predicted scheduling plan to make the schedule on interval I1. This
approach tends to reduce the runtime overhead of scheduling.

Hardware accelerator for LAA scheduling is therefore considered as future work of this
dissertation.

101

References

[1] B. Ackland, A. Anesko, D. Brinthaupt, S. J. Daubert, A. Kalavade, J. Knobloch, E.
Micca, M. Moturi, C. J. Nicol, J. H. O’Neill, J. Othmer, E. Sackinger, K. J. Singh,
J. Sweet, C. J. Terman, and J. Williams, “A single-chip, 1.6-billion, 16-b MAC/s
multiprocessor DSP,” IEEE J. SolidState Circuits, Vol. 35, No. 3, Mar. 2000, pp.
412-424.

[2] “C-5 Network Processor Architecture Guide,” C-Port Corp.,
North Andover, MA, May 31, 2001. Online available:
http://www.freescale.com/files/netcomm/doc/ref manual/C5NPD0-
AG.pdf?fsrch=1

[3] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A multiprocessor SOC for advanced
set-top box and digital TV systems,” IEEE Des. Test. Comput., vol. 18, no. 5,
Sep./Oct. 2001, pp. 21-31.

[4] A. Artieri, V. D’Alto, R. Chesson, M. Hopkins, and M. C. Rossi, “Nomadik:Open
Multimedia Platform for Next Generation Mobile Devices,” Technical article TA305,
2003. Online available: http://www.st.com

[5] “OMAP5912 Multimedia Processor Device Overview and Architecture Refer-
ence Guide,” Texas Instruments Inc., Dallas, TX, Mar. 2004. Online available:
http://www.ti.com

[6] J. Goodacre and A. N. Sloss, “Parallelism and the ARM instruction set architecture,”
Computer, Vol. 38, No. 7, July, 2005, pp. 42-50.

[7] “Intel IXP2855 Network Processor,” Intel Corp., Santa Clara, CA, 2005. Online
available: http://www.intel.com

[8] W. Eatherton, “The push of network processing to the top of the pyramid,” Proc. of
Symp. Architectures Netw. Commun. Syst., Princeton, NJ, October, 2005.

[9] Zedboard Reference Manual. Online retrieved at
http://zedboard.org/product/zedboard

[10] Intel R©StratixTM10 TX Signal Integrity Development Kit
https://www.intel.com/content/www/us/en/programmable/products/boards and kits/dev-
kits/altera/kits-s10-tx-si.html

[11] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” Proc. of AFIPS’67 Conference, New Jersey, US, April 1967,
pp. 483-485.

102

[12] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment,” Journal of the Association for Computing Machinery,
Vol. 20, No. 1, 1973, pp. 46-61.

[13] M.L. Dertouzos, “Control Robotics: the Procedural Control of Physical Processes,”
Information Processing 74, North-Holland Publishing Company, 1974.

[14] B. B. Brandenburg, J. M. Calandrino, and J. H. Anderson, “On the Scalability
of Real-time Scheduling Algorithms on Multicore Platform: A Case Study,” IEEE
Real-time Systems Symposium, 2008, pp. 157-169.

[15] J. Goossens, S. Funk, and S. Baruah, “Priority-driven Scheduling of Periodic Task
Systems on Multiprocessors,” Real-Time Systems, Vol. 25, 2003, pp. 187-205.

[16] A. Srinivasan and S. K. Baruah, “Deadline-based Scheduling of Peroidic Task Sys-
tems on Multiprocessors,” Information Processing Letters, Vol.84, No.2, pp. 93-98.

[17] T. P. Baker, “An Analysis of EDF Schedulability on a Multiprocessor. IEEE Trans.
on Parallel and Distributed Systems, Vol.16, 2005, pp. 760-768.

[18] S. Cho, S. K. Lee, A. Han, and K. J. Lin, “Efficient Real-Time Scheduling Algorithms
for Multiprocessor Systems,” IEICE Trans. on Communications, E85-B(12), 2002,
pp. 2859-2867.

[19] M. Cirinei and T. P. Baker (2007) “EDZL Scheduling Analysis,” Proc. of the Eu-
romicro Conference on Real-Time Systems, 2007, pp. 9-18.

[20] S. Kato and N. Yamasaki, “Global EDF-Based Scheduling with Efficient Priority
Promotion,” Proc. of the 14th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, Kaohsiung, 2008, pp. 197-206.

[21] Daeyoung Kim and Yann-Hang Lee, “Periodic and Aperiodic Task Scheduling in
Strongly Partitioned Integrated Real-time Systems,” The Computer Journal, Volume
45, Issue 4, Jan. 2002, pp. 395-409.

[22] A. Burns, R. Davis, P. Wang, and F. Zhang, “Partitioned EDF Scheduling for Mul-
tiprocessors using C=D task Splitting Scheme,” Real Time Systems, Vol. 48, Iss. 1,
2012, pp. 3-33.

[23] X. Piao, S. Han, H. Kim, M. Park, Y. Cho, and S. Cho, “Predictability of Earliest
Deadline Zero Laxity Algorithm for Multiprocessor Real-time Systems,” Proc. Of
the IEEE International Symposium on Object and Component-Oriented Real-time
Distributed Computing, 2006, pp. 359-364.

[24] J. Anderson, V. Bud, and U. C. Devi, “An EDF-based Scheduling Algorithm for
MUltiprocessor Soft Real-time Systems,” Proc. of the Euromicro Conference on Real-
time Systems, Balearic Islands, Spain, July 2005, pp. 199-208.

[25] B. Andersson and E. Tovar, “Multiprocessor Scheduling with Few Preemptions,”
Proc. of the 12th IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications, Sydney, Australia, 2006, pp. 322-334.

103

[26] B. Andersson and K. Bletsas, “Sporadic Multiprocessor Scheduling with Few Preemp-
tions,” Proc. of the 8th Euromicro Conference of Real-time Systems, IEEE, Prague,
Czech Republic, July 2008, pp. 243-252.

[27] S. Kato, N. Yamasaki, and Y. Ishikawa, “Semi-Partitioned Scheduling of Sporadic
Tasks on Multiprocessors,” Proc. of the 21st Euromicro Conference of Real-time
Systems, IEEE, Dublin, Ireland, July 2009, pp. 249-258.

[28] J. A. Santos, G. Lima, K. Bletsasa, and S. Katoc, “Multiprocessor real-time schedul-
ing with a few migrating tasks,” Proc. of the 34th Real-Time Systems Symposium,
2013, pp. 170-181.

[29] B. Brandenburg, and M. Gul, “Global Scheduling Not Required: Simple, Near-
Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations,”
Proc. of the 37th IEEE Real-Time Systems Symposium (RTSS 2016), Porto, Portu-
gal, 2016, pp. 99-110.

[30] A. Burns, R. Davis, P. Wang, F. Zhang, “Partitioned EDF scheduling for multipro-
cessors using a C=D task splitting scheme,” Real-Time Systems, Vol. 48, 2012, pp.
3-33.

[31] M. L. Dertouzos and A. K. Mok, “Multiprocessor On-line Scheduling of Hard-Real-
time Tasks,” IEEE Trans. on Software Engineering, Vol. 15, No. 12, 1989, pp. 1497-
1506.

[32] S.K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportionate Progress:
a Notion of Fairness in Resource Allocation,” Algorithmica, Vol. 15, Issue 6, June
1996, pp. 600-625.

[33] S.K. Baruah, J. E. Gehrke, and C. G. Plaxton, “Fast Scheduling of Periodic Tasks on
Multiple Resources,” Proc. of the 9th International Parallel Processing Symposium,
April 1995, pp. 280-288.

[34] J. H. Anderson and A. Srinivasan, “Early-release fair scheduling,” Proc. of 12th Eu-
romicro Conference on Real-Time Systems, Euromicro RTS 2000, Stockholm, 2000,
pp. 35-43.

[35] Dakai Zhu, D. Mosse, and Rami Melhem, “Multiple-Resource Periodic Scheduling
Problem: How Much Fairness is Necessary?,” Proc. of the 24 IEEE Real-time Systems
Symposium, Mexico, 2003, pp. 142-151.

[36] H. Cho, B. Ravindran, and E. Jensen, “An Optimal Real-Time Scheduling Algo-
rithm of EDF on Multiprocessor Platform,” Proc. of the IEEE Real-Time Systems
Symposium, 2006, pp. 101-110.

[37] G. Levin, S. Funk, C. Sadowski, I. Pye and S. Brandt, “DP-FAIR: A Simple Model
for Understanding Optimal Multiprocessor Scheduling,” Proc. of the 22nd Euromicro
Conference on Real-Time Systems, Brussels, 2010, pp. 3-13.

[38] P. Regnier, G. Lima, E. Massa, G. Levin and S. Brandt, “RUN: Optimal Multi-
processor Real-Time Scheduling via Reduction to Uniprocessor,” 2011 IEEE 32nd
Real-Time Systems Symposium, Vienna, 2011, pp. 104-115.

104

[39] E. Massa, G. Lima, P. Regnier, G. Levin, and S. Brandt, “OUTSTANDING PAPER:
Optimal and adaptive multiprocessor real-time scheduling:The quasi-partitioning ap-
proach,” Proc. of ECRTS 2014, Madrid, Spain, 2014, pp. 291-300.

[40] M. Spuri and G. C. Buttazzo, “Efficient Aperiodic Service under Earliest Deadline
First Scheduling,” Proc. of Real-Time Systems Symposium, Puerto Rico, USA, De-
cember, 1994, pp.2-11.

[41] M. Spuri and G. Buttazzo, “Scheduling aperiodic tasks in dynamic priority systems,”
Real-Time Systems, Vol. 10, Iss. 2, March 1996, pp 179-210.

[42] L. Abeni and G. C. Buttazzo, “Integrating Multimedia Application in Hard Real-
Time Systems,” Proc. of Real-Time Systems Symposium, December 1998, pp. 4-13.

[43] Tanaka, K., “Virtual Release Advancing for Earlier Deadlines,” ACM SIGBED Re-
view, Vol.12, Iss. 3, pp 28-31.

[44] G. C. Buttazzo and M. Caccamo, “Minimizing Aperiodic Response Times in a Firm
Real-Time Environment,” IEEE Trans. on Software Engineering, February 1999, pp.
22-32.

[45] G. C. Buttazzo and F. Sensini, “Optimal Deadline Assignment for Scheduling Soft
Aperiodic Tasks in Hard Real-Time Environment,” IEEE Trans. on Computer, Oc-
tober 1999, pp. 39-48.

[46] K. Tanaka, “Adaptive Total Bandwidth Server: Using Predictive Execution Time,”
Proc. of International Embedded Systems Symposium (IESS), Springer, 2013,
pp.250-261.

[47] S. Baruah, J. Gossens, and G. Lipari, “Implementing Constant-Bandwidth Servers
upon Multiprocessor Platforms,” Proc. of the 8th IEEE Real-Time and Embedded
Technology and Application Symposium (RTAS’02), IEEE Computer Society Press,
California, US, Sep. 2002, pp. 154-163.

[48] S. Baruah, and G. Lipari, “A Multiprocessor Implementation of the Total Band-
width Server,” Proc. of the 8th International Parallel and Distributed Processing
Symposium (IPDPS’04), New Mexico, US, 2004, pp. 541-550.

[49] A. Srinivasan, P. Holman and J. H. Anderson, “Integrating a periodic and recurrent
tasks on fair-scheduled multiprocessors,” Proc. of the 14th Euromicro Conference on
Real-Time Systems (Euromicro RTS 2002), Vienna, Austria, 2002, pp. 17-26.

[50] ITRON4.0 Speciation. ITRON Committee, TRON ASSOCIATION(Japan). Version
4.00.00. Tanaka, K., “Real-Time Operating System Kernel for Multithreaded Pro-
cessor,” Proc. of IEEE International Workshop on Innovative Architecture for Future
Generation High-Performance Processors and Systems (IWIA), pp. 91-99.

[51] C. L. Liu, “Scheduling Algorithms for Multiprocessors in a Hard-Real-Time Environ-
ment,” JPS Space Programs Summary 37-60, Vol. II, Jet Propulsion Lab., California
Institute of Technology, CA, US, November, 1969, pp. 28-37.

105

[52] P. Holman and J. H. Anderson, “Adapting Pfair scheduling for symmetric multipro-
cessors,” Journal of Embedded Computing, Vol. 1, Vo. 4, 2005, pp. 543-564.

[53] R. McNaughton, “Scheduling with Deadlines and Loss Functions,” Management Sci-
ence, Vol. 6, No. 1, October 1959, pp. 1-12.

[54] Duy D. and Tanaka K., “Enhanced virtual release advancing algorithm for real-time
task scheduling,” Journal of Information and Telecommunication, Taylor&Francis,
Vol.1, Jan. 2018.

[55] Duy D. and Tanaka K., “An Effective Approach for Improving Responsiveness of
Total Bandwidth Server,” Proc. of the 8th International Conference on Information
and Communication Technology for Embedded Systems (IC-ICTES 2017), Chonburi,
Thailand, May 2017, pp. 1-6.

[56] [3] Duy D. and Tanaka K., “A Hardware Implementation of the Enhanced Virtual Re-
lease Advancing Algorithm for Real-Time Task Scheduling,” Proc. of the 18th IEEE
International Conference on Industrial Technology (ICIT2017) ,Toronto, Canada,
March 2017, pp. 953-958.

[57] Cortex-A9 Technical Reference Manual. ARM. Retrieved from
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388f.

[58] Cortex-A9 Floating-Point Unit Technical Reference Manual. ARM. Retrieved from
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0408i

[59] Zynq-7000 SoC Technical Reference Manual, Zilinx, Ver. 1.12.2, July, 2018.

[60] Using the ARM Generic Interrupt Controller, Altera Corporation, April 2014.

[61] ARM Architecture Reference Manual, ARM Limited, 2005.

[62] Cortex-A9 MPCore Technical Reference, ARM, Revision: r3p0, 2011.

[63] T. Teranishi, Tera Term, Version 4.9, Mar 1998. Online source:
svn.osdn.jp/svnroot/ttssh2/trunk/

106

Publications

[1] Duy. D and Tanaka K., “Enhanced virtual release advancing algorithm for real-time
task scheduling”, Journal of Information and Telecommunication, Taylor&Francis,
Vol.1, January 2018, pp. 246-264.
DOI: 10.1080/24751839.2018.1423789

[2] Duy D. and Tanaka K., “Adaptive Local Assignment Algorithm for Scheduling Soft-
Aperiodic Tasks on Multiprocessors,” The 25th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, Hangzhou, China,
August 2019. To appear.

[3] Duy D. and Tanaka K., “A Novel Task-to-Processor Assignment Approach for Opti-
mal Multiprocessor Real-Time Scheduling,” Proc. of 2018 IEEE 12th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), Viet-
nam, September 2018, pp. 101-108.
DOI: 10.1109/MCSoC2018.2018.00028

[4] Duy D. and Tanaka K., “An Effective Approach for Improving Responsiveness of
Total Bandwidth Server,” Proc. of the 8th International Conference on Information
and Communication Technology for Embedded Systems (IC-ICTES 2017), Chon-
buri, Thailand, May 2017, pp. 1-6.
DOI: 10.1109/ICTEmSys.2017.7958777

[5] Duy D. and Tanaka K., “Hardware Implementation of Enhanced Virtual Release
Advancing Algorithm for Real-Time Task Scheduling,” Proc. of the 18th IEEE
International Conference on Industrial Technology (ICIT2017), Toronto, Canada,
March 2017, pp. 953-958.
DOI:10.1109/ICIT.2017.7915489

[6] Duy D., Tanaka, K., “Enhanced Virtual Release Advancing for EDF-based Schedul-
ing on Precise Real-Time Systems,” Proc. of the Eighth International Conference
on Knowledge and Systems Engineering (KSE2016), Hanoi, Vietnam, Oct. 6, 2016,
pp. 43-48.
DOI: 10.1109/KSE.2016.7758027

107

Awards

[1] Best Paper Award for a conference paper:
Duy D. and Tanaka K., “A Novel Task-to-Processor Assignment Approach for Op-
timal Multiprocessor Real-Time Scheduling,” the IEEE 12th International Sympo-
sium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), September
2018, Hanoi, Vietnam.

[2] Best Paper Award for a conference:
Duy D. and Tanaka K., “An Effective Approach for Improving Responsiveness of
Total Bandwidth Server,” the 8th International Conference on Information and
Communication Technology for Embedded Systems (IC-ICTES 2017), May 2017,
Chonburi, Thailand.

108

	Abstract
	Acknowledgments
	Introduction
	Trend of multiprocessor embedded system
	Challenges of multiprocessor scheduling
	Exploitation of system capacity of multiprocessors
	Time complexity of multiprocessor scheduling
	Dealing with diverse workloads

	Contribution of dissertation
	Research objectives
	Research process

	Outline of dissertation

	System model
	Multiprocessor architecture
	Task characteristics
	Periodic tasks
	Aperiodic tasks

	Criteria of multiprocessor real-time task scheduling
	Optimality
	Time complexity and runtime overhead
	Scheduler invocation
	Task preemption
	Task migration
	Response time

	Periodic Task Scheduling
	Fluid scheduling
	Proportionate scheduling on time-quanta
	Proportionate scheduling on time interval
	Boundary Fairness Scheduling
	Largest Local Remaining Execution Time First
	DP-WRAP

	Reduction to Uniprocessor

	Local Assignment Algorithm for Periodic Task Scheduling
	Introduction of Local Assignment Algorithm
	Definition of LAA
	Time interval
	Proportionate scheduling
	Local requested execution time
	Fully-assigned system
	Scheduling plan

	Procedure of LAA
	Example of scheduling with LAA
	Schedulability guarantee of LAA
	Evaluation of LAA
	Simulation environment
	Simulation results of LAA

	Conclusion: Effectiveness and Limitation of LAA
	Effectiveness of LAA
	Limitation of LAA

	Aperiodic Task Scheduling
	Aperiodic task scheduling with concept of servers
	Enhanced Virtual Release Advancing Algorithm for Aperiodic Servers
	Limitations causing runtime overhead in VRA
	Enhancement of the EVRA algorithm
	Proposed algorithm of EVRA
	Hardware accelerator for EVRA

	Scheduling aperiodic tasks on multiprocessors

	Enhanced Local Assignment Algorithm for Scheduling Hybrid Task Sets
	Introduction to Enhanced Local Assignment Algorithm - LAA+
	Integration of servers
	Server establishment
	Assignment of aperiodic tasks to servers
	Consideration of acceptance test for aperiodic tasks

	Definitions of LAA+
	Time interval
	Proportionate scheduling
	Local requested execution time
	Fully-assigned system

	Procedure of LAA+
	LAA+ algorithm
	Consecutive assignment of LAA+
	Example of scheduling with LAA+
	Secondary scheduling event

	Schedulability guarantee of LAA+
	Evaluation of LAA+
	Simulation environment
	Simulation results of LAA+

	Conclusion: Effectiveness and Limitation of LAA+
	Effectiveness of LAA+
	Limitation of LAA+

	Implementation of multiprocessor real-time operating system
	Introduction of multiprocessor real-time operating system
	Hardware platform
	Xilinx Zedboard Evaluation Kit
	ARM Cortex-A9 processor
	Operation mode and banked register in ARM Cortex-A9
	Software tools

	Requirements and difficulties of the implementation
	Requirements of the implementation
	Difficulties of the implementation

	System design of M-RTOS
	Booting sequences
	Memory mapping
	Organization of ready queue
	Dual initialization for M-RTOS
	Synchronization required for two processors

	Implementation
	Hardware platform design
	Basic components of M-RTOS

	M-RTOS evaluation
	Test scenario
	Testing results

	Conclusion

	Conclusion of dissertation
	Summary of the dissertation
	Future work

	References
	Publications
	Awards

