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Abstract

The development in multimedia technologies has promoted dramatically the rapid growth of music data in
recent years. There are various different applications for people’s demands in music such as information retrieval,
identification and handing. However, singing voice and background music are related to each other in the mixed
music, the mutual interference has brought huge obstacles to music information processing. The problem of how to
extract the audio information from music has become an important research topic. As the part of music information
retrieval, the technologies of singing voice separation are facing unprecedented challenge.

The objective of this research is to deal with the problem of singing voice separation from monaural record-
ings. It is even more difficult than multichannel since the spatial information cannot be applied in the separation
procedure. Singing voice separation is a technique for separating or extracting singing voice from a musical mix-
ture, which has found many applications in the wide areas such as singer identification, singing evaluation and
query by humming. This is a relatively easy separation task of the human auditory system, but it becomes more
difficult when we attempt to simulate this problem in a computational method. To achieve the task of singing voice
separation, this study mainly focuses on robust principal component analysis (RPCA) and its extensions.

RPCA has been recently proposed of popularization and effectiveness way of separation approach that sep-
arates singing voice and accompaniment from a mixture music. It decomposes a given amplitude spectrogram
(matrix) of a mixture signal into the sum of a low-rank matrix (accompaniment) and a sparse matrix (singing
voice). Since musical instruments reproduce nearly the same sounds every time, a given note is played in a given
song, the magnitude spectrogram of these sounds can be considered as a low-rank structure. Singing voice, in
contrast, varies significantly, but has a sparse distribution in the spectrogram domain to its harmonic structure.
Although RPCA is an effective approach to separate singing voice from the mixed audio signal, it fails when there
are significant differences in dynamic range among the different background instruments. Some instruments, such
as drums, correspond to singular values with tremendous dynamic range; because it uses nuclear norm to estimate
the rank of the low-rank matrix, RPCA algorithm over-estimates the rank of a matrix that includes drum sounds.
The accuracy of such separation results thus decreases, as drums may be placed in the sparse subspace instead of
being low-rank. Thus, it motivates us to describe exactly the separated low-rank matrix.

To overcome the disadvantage of RPCA for singing voice separation, two extensions of RPCA algorithm
are proposed in this dissertation. One is called weighted robust principal component analysis (WRPCA). It uses
different weighted values to describe the low-rank matrix for singing voice separation. Additionally, incorporat-
ing the proposed WRPCA with gammatone auditory filterbank for singing voice separation. The significance of
WRPCA can describe different low-rank matrix under the conditions of human’s auditory perceptual properties.
Because the cochleagram is derived from non-uniform time-frequency transform whereas time-frequency units in
low-frequency regions have higher resolutions than in the high-frequency regions, which closely resembles the
functions of the human ear. Therefore, it is promising to separate singing voice via sparse and low-rank decompo-
sition on cochleagram instead of the spectrogram.

Another extension of RPCA with rank-1 constraint called constraint RPCA (CRPCA). It utilizes the rank-1
constraint minimization of singular values in RPCA instead of minimizing the nuclear norm for separating singing
voice from the mixture music. Thus, it not only provides a robust solution to large dynamic range differences
among instruments but also reduces the computation complexity. Then, incorporating the proposed CRPCA with
gammatone auditory filterbank on cochleagram for singing voice separation. In addition, constructing coales-
cent masking and vocal activity detection on CRPCA method to constrain the temporal segments that allowed to
constrain singing voice from the mixed music datum. Finally, combining F0 and non-negative rank-1 constraint
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RPCA, which incorporates F0 and non-negative rank-1 constraint minimization of singular values in RPCA instead
of minimizing the nuclear norm.

In conclusion, this dissertation proposes two extensions of the effective optimization algorithms concentrating
on RPCA for singing voice separation. One is using different weighted value for describing the separated low-rank
matrix. The other is exploring rank-1 constraint minimization of singular value in RPCA. In terms of source-to-
artifact ratio, the previous is better than the later. However, CRPCA obtains better separation quality than WRPCA
in singing voice separation. The outcomes of this research contribute to further improving the technologies related
to music information retrieval. Additionally, the potential contribution of this research is to deal with the problems
of noise reduction and speech enhancement by using the separated low-rank and sparse model. Since the back-
ground noise is assumed as the part of low-rank component and the human speech is regarded as the part of sparse
component.

Keywords: Singing voice separation, robust principal component analysis, weighted, rank-1 constraint, F0.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the development in multimedia technologies has promoted dramatically the

rapid growth of music data. There are various different applications for people’s demands in

music such as information retrieval, identification and handing. However, singing voice and

background music are related to each other in the mixed music, the mutual interference has

brought huge obstacles to music information processing. The problem of how to extract the

audio information from music signal has become an important topic. As the part of music

information retrieval, the technologies of singing voice separation are facing unprecedented

challenge.

Singing voice separation is a technique for separating or extracting singing voice from a

musical mixture, which has found many applications in the wide areas like music information

retrieval [1], singer identification [2], music emotion recognition [3], chord recognition [4],

melody extraction [5], drum extraction [6], Karaoke applications [7], and education for musical

instruments [8].

This is a relatively easy separation task of the human auditory system, but it becomes more

difficult when we attempt to simulate this problem in a computational method. Although there

are many methods for singing voice separation, the separation quality is not well because the

many instruments are coexisting in the background music. The separation results of state-of-

the-art methods are still far behind human hearing capability. The existing problems of singing

voice separation are still facing severe challenging [9] [10]. Therefore, it is an important task

1



for solving the problem of singing voice separation.

Many academic challenges about singing voice separation were also hold in the previous

years. For example, the organizations of Music Information Retrieval Evaluation eXchange

(MIREX) and Signal Separation Evaluation Campaign (SiSEC) are also evaluated for singing

voice separation task. MIREX is an annual challenges, which contains of various tasks related

to the problems of music information retrieval. Since 2014, singing voice separation is included

as a sub-task of MIREX. SiSEC is held one and a half year. It consists of the different problems

about audio source separation task. Music source separation is also included as a sub-task of

SiSEC, which separates singing voice (vocals) from the musical mixture (vocals, drums, bass,

and others).

Motivated by the above considerations, an effective optimization algorithm plays an impor-

tant role in singing voice separation. In particular, the audio information of singing voice can

be described exactly and improve the separation quality from the music. This study mainly fo-

cuses on solving the problem of singing voice separation in monaural recording. It is even more

difficult than multichannel since the spatial information cannot be applied in the separation pro-

cedure. Therefore, research in the field of monaural singing voice separation become very hot

topic. Many methods are focused on unsupervised and supervised learning. As for supervised

method, deep learning is the most popular method in monaural singing voice separation. How-

ever, a large number of training data are needed in advanced. So, the unsupervised learning has

made great progress in singing voice separation.

Therefore, to obtain better separation performance from the observed mixed music, the ef-

fective optimization algorithm is need to be solved by unsupervised learning method in the

singing voice separation task, the main works of the dissertation are focused on different opti-

mization approaches for singing voice separation.

1.2 Methodology

Currently, robust principal component analysis (RPCA) [11] has been recently proposed of

popularization and effectiveness way of separation approach that separates singing voice and

accompaniment from a mixture music in monaural recording. It decomposes a given amplitude

spectrogram (matrix) of a mixture signal into the sum of a low-rank matrix (accompaniment)

and a sparse matrix (singing voice).
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As for the mixture music, since musical instruments reproduce nearly the same sounds

every time, a given note is played in a given song, the magnitude spectrogram of these sounds

can be considered as a low-rank structure. Singing voice, in contrast, varies significantly, but

has a sparse distribution in the spectrogram domain to its harmonic structure. Therefore, RPCA

method can be well-described as the part of singing voice from the mixed music signal by the

separated sparse matrix. The mixture music signal can be described as the low-rank and sparse

model. And the process of RPCA decomposition is very suited to the singing voice separation

task.

Although the model of RPCA has been successfully applied to singing voice separation task,

it fails when there are significant differences in dynamic range between the different background

instruments. Some instruments, such as drums, correspond to singular values with tremendous

dynamic range; because it uses nuclear norm to estimate the rank of the low-rank matrix, RPCA

over-estimates the rank of a matrix that includes drum sounds. The accuracy of such singing

voice separation results thus decreases, as drums may be placed in the sparse subspace instead

of being low-rank.

Therefore, to obtain the better separation performance in singing voice separation, this dis-

sertation mainly focuses on RPCA and its extension for singing voice separation. Two exten-

sions of RPCA were proposed in this dissertation. Figure 1.1 shows the proposed methods

for singing voice separation in this dissertation. The methods are mainly focus on RPCA for

singing voice separation.

The first extension of RPCA called WRPCA method. On the one hand, evaluate the pro-

posed WRPCA for singing voice separation. It utilizes different weighted values to constraint

the separated low-rank matrix. The experimental evaluation is carried out on the ccMixter

dataset and on the DSD100 dataset. On the other hand, combining the proposed WRPCA with

gammatone auditory filterbank on cochleagram for singing voice separation. And the experi-

ments are conducted on the ccMixter and DSD100 datasets. However, WRPCA suffers from

high computational cost due to computing the singular value decomposition at each iteration

during the separation processing. Hence, the running time of WRPCA is slower than RPCA.

Therefore, we propose another deformation instead of WRPCA method for singing voice sepa-

ration.

The another extension of RPCA called CRPCA method, which utilizes the rank-1 constraint
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Figure 1.1: The proposed methods for singing voice separation (SVS) in the dissertation.

minimization of singular values in RPCA instead of minimizing the nuclear norm for separating

singing voice from the mixture music. Thus, it not only provides a robust solution to large

dynamic range differences among instruments but also reduces the computation complexity.

The experiment are conducted by combining other feature to evaluate the proposed methods on

the different databases.

Firstly, we evaluate CRPCA model on the ccMixter and DSD100 datasets. Secondly, we

combine the proposed CRPCA with gammatone auditory filterbank on cochleagram for singing

voice separation. Thirdly, we construct the coalescent masking and vocal activity detection

(VAD) to constrain the temporal segments that allowed to constrain singing voice. The results

on the ccMixter and DSD100 datasets reveal that the proposed method are very effective than

the previous in singing voice separation task. Finally, we introduce a singing voice separation

method by combining the human-labeled F0 and non-negative CRPCA to separated the singing

voice from the mixture music. Experiment evaluation is compared with the previous methods

on the iKala dataset.
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As for the above discussed two extensions of RPCA method, WRPCA and CRPCA, re-

spectively. In terms of source-to-artifact ratio, WRPCA obtains the better results than CRPCA

in singing voice separation. However, CRPCA can get the better separation performance in

source-to-distortion ratio and source-to-interference ratio.

1.3 Research goal

The goal of this research is to deal with the problem of singing voice separation from monaural

recordings. It is even more difficult than multichannel since the spatial information cannot be

applied in the separation procedure.

To achieve the task of singing voice separation, this study mainly focuses on RPCA and

its extensions. Because RPCA is one of the popularization of such separation algorithm. It

decomposes a given amplitude spectrogram of a mixture signal into the sum of a low-rank

matrix (accompaniment) and a sparse matrix (singing voice).

Since the instruments reproduce nearly the same sounds every time, the magnitude spec-

trogram of these sounds can be considered as a low-rank structure. Singing voice, in contrast,

varies significantly, but has a sparse distribution in the spectrogram domain to its harmonic

structure.

Although RPCA algorithm has been successfully applied to singing voice separation, it

fails when one singular value (e.g., drums) is much larger than all others (e.g., bass, guitar or

other accompanying instruments). The accuracy of such separation results thus decreases, as

drums may be placed in the sparse subspace instead of being the low-rank from mixture original

matrix.

With regards to RPCA-based approach, the main method in this dissertation mainly fo-

cuses on solving the disadvantage of RPCA algorithm for singing voice separation in monaural

recordings.

1.4 Organization of the dissertation

Figure 1.2 shows organization of the dissertation and the remainder of the dissertation is struc-

tured as follows:
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• Chapter 2 provides the background about related work of singing voice separation. First,

introduces the previous studies and methods in the task of singing voice separation. Then,

gives some related databases in singing voice separation tasks in this dissertation. Finally,

explains several evaluation metrics to measure the separation performance of the proposed

methods.

• Chapter 3 proposes an extension of RPCA called WRPCA, which describes the different

weighted values to constraint the separated low-rank matrix. The experimental evalu-

ation is carried out on the ccMixter dataset and on the DSD100 dataset. In addition,

combines the proposed WRPCA with gammatone auditory filterbank on cochleagram for

singing voice separation. All the experiments are conducted on the ccMixter and DSD100

datasets.

• Chapter 4 describes another extension of RPCA called CRPCA, which constraints the

low-rank matrix in RPCA to have rank greater than or equal to one, thereby describing the

sensitively of RPCA to dynamic range variation. Then, combines the proposed CRPCA

with gammatone auditory filterbank on cochleagram for singing voice separation. Finally,

constructs coalescent masking and incorporates vocal activity detection to constrain the

temporal segments that allowed to constrain singing voice. The experiments are evaluated

on the ccMixter and DSD100 datasets.

• Chapter 5 proposes a singing voice separation method by combining F0 and non-negative

CRPCA, which incorporates F0 and non-negative rank-1 constraint minimization of sin-

gular values in RPCA instead of minimizing the nuclear norm. Experimental evaluation

are conducted on the iKala dataset.

• Chapter 6 first summarizes all of this work in this dissertation. Then, draws the con-

clusions focuses on the proposed methods for singing voice separation. And the future

works are discussed in the end.
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Figure 1.2: Organization of the dissertation.
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Chapter 2

Background

Mixture music signal is very popular in our daily life, which is the main research target in

this dissertation. It contains the singing voice and various instruments (e.g., piano, drums,

guitar and others). Singing voice separation is a technique for separating singing voice from a

musical mixture and has been intensively studied in recent years. This technique can be used

for many applications including music information retrieval [1], Karaoke applications [7], chord

recognition [4], music auto-tagging [12], singing lyric recognizer [13] [14], melody extraction

[5], and fundamental frequency (F0) estimation [15].

However, the results on state-of-the-art methods are still far behind human hearing capa-

bility. The existing problems of singing voice separation are still faced with serious chal-

lenges [9] [10] [16] due to the musical instruments involved and time-varying spectral overlap

between singing voice and background music.

Figure 2.1 illustrates the system of singing voice separation. This figure shows that after

separating the singing voice from mixture system by the separation algorithm, the separated

singing voice and accompaniment can be obtained from the musical mixture. Therefore, it

is obvious that effective optimization algorithms play a significant role in the process of the

separation task.

Until recently, there have been many approaches proposed to solve the difficult in singing

voice separation tasks. It can be divided into two categories: unsupervised and supervised

learning methods.
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Figure 2.1: Illustrate the system of singing voice separation.

2.1 Related work

According to the previous studies, the separation approaches are mainly divided into two cate-

gories: unsupervised and supervised methods, respectively. In terms of unsupervised methods

for singing voice separation, sparse or low-rank approximation assumption is typical methods

for singing voice separation, for example, Non-negative Matrix Factorization (NMF) and RPCA

methods. Additionally, another popular approach for singing voice separation is based on the

repetitive nature of background music (REPET). As for the supervised method, deep learning-

based methods are very poplar for singing voice separation.

2.1.1 Non-negative matrix factorization

NMF [17] [18] [19] [20] [21] [22] is a specially sparse representation algorithm model for

singing voice separation, which is a type of dimensionality reduction that decomposes a non-

negative matrix into a non-negative basis matrix and a non-negative activation matrix using an

iterative cost-minimization algorithm with multiplicative update rules. The matrix decomposi-

tion model can be defined as follows:

V ≈ WH, (2.1)

where V(V∈Rm×n) is an observed non-negative matrix that represents an amplitude spectrogram

of sound source signals, W(W∈Rm×k) is a non-negative basis matrix of a sound signal as column

vectors, H(H∈Rk×n) is a non-negative activation matrix that corresponds to the activation of each
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Figure 2.2: The decomposition model of NMF, which uses KL divergence and K = 3 on Mery
Had a Little Lamb. V is the mixture matrix, W is the basic matrix and H is the activation matrix
which describes the time-varying gains for each basis vector.

basis vector of W, m and n are the rows and columns of observed sound signals, respectively.

And k is the number of supervised signal basis vectors. Usually, we choose m × k + k × n

<< m × n; hence reducing the dimensions of the input data. Figure 2.2 gives an example of

NMF decomposition. And the basic vector is set as k = 3 with KL divigence on Mery Had

a Little Lamb. The basic matrix shows representative spectral patterns, while the activation

matrix illustrates time-varying gains for each basis vector.

The β-divergence [23] [24] is a family of cost functions parameterized by a signal shape

parameter β and can be defined as

Dβ(y|x) =



yβ + (β − 1)xβ − βyxβ−1

β(β − 1)
, β ∈ R \ {0, 1}

y

x
− log

y

x
− 1, (β = 0)

ylog
y

x
+ x − y. (β = 1)

(2.2)

Generally, the cost functions in NMF can be calculated by the following three distances:

Itakura-Saito divergence (β = 0), Kullback-Leibler divergence (β = 1), and Euclidean distance
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(β = 2). The corresponding formulas are given as

Dβ(y|x) =



y

x
− log

y

x
− 1, (β = 0)

ylog
y

x
+ x − y, (β = 1)

1
2

(y − x)2. (β = 2)

(2.3)

In NMF, the multiplicative update rules for W and H have been derived to minimize each

of the three divergences and without the need for constraints to enforce non-negativity. In order

to reduce dimension, commonly, set to a small number, which results in NMF being a low-rank

matrix approximation method. Therefore, the multiplicative update rules are derived as follows

for the Euclidean distance (EUC),

W ← W ⊗
VHT

WHHT . (2.4)

H ← H ⊗
WT V

WT WH
. (2.5)

Kullback-Leibler divergence (KL),

W ← W ⊗
V

WH HT

1HT . (2.6)

H ← H ⊗
WT V

WH

WT 1
. (2.7)

and Itakura-Saito divergence (IS)

W ← W ⊗
V

(WH)2 HT

1
WH HT

. (2.8)

H ← H ⊗
WT V

(WH)2

WT 1
WH

. (2.9)

where the operator ⊗ denotes element-wise multiplication of two matrices (Hadamard product),
V

WH denotes element-wise division, (WH)2 denotes element-wise exponentiation, and 1 denotes

a matrix of ones of appropriate dimension.

Owing to the non-negative assumption can be suited for the non-negative values of music

spectrogram and also be approximated as the combination of the non-negative audio source
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Figure 2.3: Overview of the REPET method for singing voice separation. Stage 1: calculate the
beat of mixed music and then estimate the time length of repetition according to the calculation
values on the beat. Stage 2: slice the mixture spectrogram and calculate the repeating accompa-
niment by taking median operation. Stage 3: extract the residual parts in the spectrogram that
cannot be represented and separate it as singing voice part [26].

spectrogram, therefore, NMF can be also applied to singing voice separation. Although NMF

has shown impressive results in monaural audio source separation, it is difficult to determine

the appropriate number of nonnegative basis vectors.

2.1.2 REPET-based approach

REPET-based approaches are also popular for singing voice separation, which is according to

the feature of background repetition characteristics [25] [26]. This methodology is based on the

observation that the different individual sources tend to repeat over time, depending on its beat

or speech.

Rafii et al. [25] [26] used the REPET algorithm for separating the repeating music part of

the non-repeating singing voice in a musical mixture signal. The basic idea was to identify the

periodically repeating segments in the mixture audio, then compared them to a repeating seg-
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ment model derived from them, and finally extracted the repeating patterns via time-frequency

masking.

Figure 2.3 illustrates the overview of REPET method for singing voice separation. In the

first stage, calculate the beat of mixed music and then estimate the time length of repetition

according to the calculation values on the beat. In the second stage, slice the mixture spec-

trogram and calculate the repeating accompaniment by taking median operation. In the third

stage, extract the residual parts in the spectrogram that cannot be represented and separate it

as singing voice part. Additionally, there are some methods that extend the original REPET

method, including adaptive REPET by using the moving-median [27], or by using the similar-

ity matrix [28].

2.1.3 Robust principle component analysis

Candés et al. [29] proposed a convex RPCA model, which decomposed an input matrix X ∈

Rm×n into the sum of a low-rank matrix L ∈ Rm×n and a sparse matrix S ∈ Rm×n. The model can

be defined as follows:

minimize |L|∗ + λ|S |1,

subject to X = L + S .
(2.10)

where | · |1 is the L1-norm, which is the sum of absolute values of matrix entries, | · |∗ denotes

the nuclear norm (sum of singular values), and λ > 0 is a positive constant parameter between

the parts of sparsity matrix S and low-rank matrix L. Moreover, this convex model can be

solved by accelerated proximal gradient (APG) or augmented Lagrange multiplier (ALM) [30].

According to the previous study [11], an inexact version of ALM (iALM) was used as a baseline

for comparison in the dissertation.

Huang et al. [11] proposed a method on RPCA for singing voice separation, which is an

effective approach because the singing voice can be well modeled as a sparse matrix, while the

accompaniment as well modeled as a low-rank matrix. RPCA has been extensively and succes-

sively applied in other signal processing applications like speech enhancement [31] [32] [33],

SAR imaging [34] [35], direction of arrivals tracking [36] and also in computer vision applica-

tions [37] [38] [39]. Inspired by this sparse and low-rank model, a new RPCA-based method

that incorporates harmonicity priors and a back-end drum removal procedure was proposed [40]
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Figure 2.4: Example of system of singing voice separation by using RPCA [11]. (a) is the
original matrix X (musical mixture), (b) is the separated low-rank matrix L (accompaniment),
and (c) is the separated sparse matrix S (singing voice).

for singing voice separation. Figure 2.4 shows an example of the singing voice separation by

using RPCA, the top spectrogram is the original matrix (musical mixture), the left bottom is

separated low-rank matrix (accompaniment) and the right bottom is the separated sparse matrix

(singing voice), respectively.

In a similar vein, Yang [41] proposed multiple low-rank representations (MLRR) to decom-

pose a magnitude spectrogram into two low-rank matrices. Sprechmann et al. [42] proposed

a real-time online singing voice separation by robust low-rank modeling. Fourer et al. [43]

proposed a novel unsupervised singing voice detection method which uses single-channel blind

source separation algorithm as a preliminary step. Chan et al. [44] proposed using informed

group-sparse representation with the idea of pitch annotations separation. Pu et al. [45] pro-

posed an approach in audio separation with the assistance of visual information. In addition,

he [46] also proposed a non-linear generalization of RPCA, which uses two autoencoder net-

work to realize the low-rank and sparse matrix decomposition. One autoencoder for low-rank

part and the other one for the sparse part.

As stated above, RPCA is an effective algorithm to separate singing voice from the mixture
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music signal, which can be well-described as the part of singing voice from the mixed music

signal by the separated sparse matrix. And the mixture music signal can be described as the

low-rank and sparse model. So, the process of RPCA decomposition is suited to the singing

voice separation task. Additionally, many previous studies have shown that such decomposition

is very effective in singing voice separation applications. It decomposes a given amplitude

spectrogram (matrix) of a mixture signal into the sum of a low-rank matrix (accompaniment)

and a sparse matrix (singing voice). Since musical instruments reproduce nearly the same

sounds every time, a given note is played in a given song, the magnitude spectrogram of these

sounds can be considered as a low-rank structure. Singing voice, in contrast, varies significantly,

but has a sparse distribution in the spectrogram domain to its harmonic structure.

2.1.4 Deep learning

Recently, deep learning has been received much attention for singing voice separation. Convo-

lutional Network Network (CNN) architecture has been successful in audio source separation,

especially in singing voice separation [47] [48] [49].

Chandna et al. [47] utilized the convolutional filters specifically designed for audio database

and allowed a significant gain in processing time over a simple multi-layer perception, in the

fully connected layer, dimensional reduction allows the model to learn a more compact rep-

resentation of the input data from which the source can be separated. Takahashi et al. [48]

extended DenseNet to tackle the music source separation with the proposed MDenseNet archi-

tecture.

In addition, he [49] proposed MMDenseLSTM framework for audio source separation,

which is a variant of CNN architecture. It integrates long short-term memory (LSTM) in

multiple scales with skip connection to efficiently model long-term structures within an au-

dio context. There are also many new neural network based on extension of CNN archi-

tecture [50] [51] [52] [53] [54] [55] [56] [57], including the U-Net architecture and its vari-

ant [58] [59] [60] [61] [62] [63].

Deep neural network (DNN)-based models [7] [58] [64] [65] [66] [67] are perhaps the most

widely used supervised learning models for singing voice separation. Figure 2.5 gives an ex-

ample of musical source separation by using DNN architecture. Although they have proven

effective for separating singing voice, a large number of training data are needed in advance,
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Figure 2.5: DNN architecture for musical source separation. The mixture magnitude spectro-
grams are set as inputs, and source magnitude spectrograms of the desired source S j are set as
the targets [68].

which makes these models difficult to apply in case of small audio data. In addition, when there

is a mismatch between training and testing samples [69], separation quality decreases due to

overfitting.

2.2 Experiment databases

In this dissertation, to evaluate the proposed optimization algorithm on the task of singing voice

separation, a reasonable and feasible dataset is contributed to confirm the effectiveness of the

proposed algorithm. In this chapter, several public databases are introduced that are commonly

used in singing voice separation task. The general description of all the experiment databases

are showed in Table 2.1.

2.2.1 MIR-1K dataset

MIR-1K dataset [70]1 contains 1000 Chinese pop songs recorded at 16 kHz sampling rate with

16 bit resolution. The duration of each song slip ranges from 4 to 13 seconds. The length of

all datasets are 133 minutes. These song clips were extracted from 110 Chinese karaoke pop

songs. The singing voice and the clean music accompaniment were recorded at the right and

left channels, respectively. And the singing voice sung by amateur singers (8 females and 11

1https://sites.google.com/site/unvoicedsoundseparation/mir-1k
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Table 2.1: All the experiment databases

Name Clips Duration (s) Sampling rate (kHz)

MIR-1K 1000 4 ∼ 13 16

ccMixter 50 77 ∼ 456 44.1

DSD100 100 141 ∼ 435 44.1

iKala 252 30 44.1

males), and the music accompaniment retrieved from the popular Chinese songs. This is the

first dataset for singing voice separation task that released in public.

2.2.2 ccMixter dataset

ccMixter dataset [71]2 contains 50 full songs with duration rang from 1 minute 17 seconds to 7

minutes 36 seconds. Each audio music data contains the following three parts: singing voice,

background music, and a mixture music, respectively. These audio dataset is extracted from 110

karaoke songs which contain a mixture track and a music accompaniment track. And the songs

are freely selected from the 5000 Chinese popular music songs and sung by their lab-mates of

8 females and 11 males. Most of the singers are amateur and do not have professional music

training.

2.2.3 DSD100 dataset

DSD100 dataset contains 100 full stereo songs of different audio data was recorded as the

Demixing Secrets Dataset (DSD100). It ranges from 2 minutes 21 seconds to 7 minutes 15

seconds, as also used for the 2016 Signal Separation Evaluation Campaign (SiSEC) [9]3, which

is split into 50 train (Dev) and 50 test (Test) songs. Each datum consists of bass, drums, other,

and singing voice, respectively.

2https://members.loria.fr/ALiutkus/kam/
3http://liutkus.net/DSD100.zip
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2.2.4 iKala dataset

iKala dataset [72]4 contains 252 song clips with duration 30 seconds. Each song clip in this

database is recorded sampled with 44.1 kHz. And there is two channels in a wave file. The right

channel is the ground truth singing voice, and the left channel is the ground truth background

music. This dataset also contain the human-labeled fundamental frequency estimation of each

audio data.

2.3 Evaluation metrics

In this dissertation, to evaluate the separation performance of the proposed method on audio

source separation (e.g., singing voice separation), assess its separation performance in terms

of source-to-distortion ratio (SDR), source-to-interference ratio (SIR), source-to-artifact ratio

(SAR), and normalized SDR (NSDR) by using the BSS-EVAL evaluation toolbox 3.0 metrics

[73] [74]5. The estimated signal Ŝ (t) is defined as

Ŝ (t) = S target(t) + S inter f (t) + S arti f (t), (2.11)

where S target(t) denotes the allowable deformation of the target sound, S inter f (t) denotes the al-

lowable deformation of the sources that account for the interferences of the undesired sources,

and S arti f (t) denotes the artifact term that may correspond to the artifact of the separation

method.

The formulas for SDR, SIR, SAR, and NSDR are respectively defined as

S DR = 10 log10

∑
t S target(t)2∑

t

(
S inter f (t) + S arti f (t)

)2 , (2.12)

S IR = 10 log10

∑
t S target(t)2∑
t S inter f (t)2 , (2.13)

S AR = 10 log10

∑
t (S target(t) + einter f (t))2∑

t earti f (t)2 , (2.14)

4http://mac.citi.sinica.edu.tw/ikala/
5http://bass-db.gforge.inria.fr/bss eval/
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and

NS DR(v̂, v, x) = S DR(v̂, v) − S DR(x, v), (2.15)

where v̂ is the separated voice part, v is the original singing voice signal, and x is the original

mixture value. The NSDR is used to estimate the overall improvement in SDR between x and

v̂.

Higher values of SDR, SIR, SAR, and NSDR mean that the corresponding separation algo-

rithm exhibits better separation performance in terms of the separation tasks. More specifically,

the value of SDR indicates the overall quality of the separated target sound signals, while the

value of SIR reflects the suppression of the interfering source. All the metrics are expressed in

dB.

In addition, report the global of SDR, SIR, SAR, and NSDR in the experiment. In other

words, the separation results in GSDR, GSIR, GSAR, and GNSDR are performed, respectively.

The equations are defined as follows

GS DR =

∑n
i=1 S DRi

n
, (2.16)

GS IR =

∑n
i=1 GS IRi

n
, (2.17)

GS AR =

∑n
i=1 NS ARi

n
, (2.18)

and

GNS DR =

∑n
i=1 NS DRi

n
. (2.19)

In a similar vein, the higher values of GSDR, GSIR, GSAR, and GNSDR represent better

quality of the separation approach. Noticeable, especially in the GNSDR, which is the most

important measure metric for the overall improve the separation performance in the singing

voice separation task.

The subjective evaluation is also important for evaluating the separation quality. Accord-

ing the previous research on subjective evaluation, asking many different people to listen the

separated singing voice and accompaniment from the mixture music signal, and than giving a

reasonable scores according the evaluation standards. So, the related work will be done in the

future work.
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In a conclusion, in terms of human use of the separated results (separated singing voice),

the subjective evaluation quality of singing voice separation becomes very important than the

objective evaluation.
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Chapter 3

WRPCA-based singing voice separation

In this chapter, an effective strategy is to deal with the problem of singing voice separation

by using weighted robust principal component analysis (WRPCA). It constraints the value of

separated low-rank matrix by utilizing the different weighted values. According to previous

study [11], RPCA-based method is an effective strategy for singing voice separation because

singing voice can be well modeled as a low-rank matrix. However, it fails when there are

significant differences in dynamic range among the different background instruments. Some

instruments, such as drums, correspond to singular values with tremendous dynamic range;

because it uses nuclear norm to estimate the rank of the low-rank matrix, RPCA over-estimates

the rank of a matrix that includes drum sounds. The accuracy of such separation results thus

decreases, as drums may be placed in the sparse subspace instead of being low-rank. Therefore,

WRPCA can solve this problem by using the different weighted values to describe the separated

low-rank matrix. So the separation quality can be improved due to the drums are described as

low-rank matrix.

Therefore, in this chapter, there are two experiments to evaluate the proposed WRPCA

method for singing voice separation. On the first experiment, we evaluate the proposed WRPCA

for singing voice separation on the spectrogram with the ccMixter and DSD100 datasets. On

the second experiment, we combine the proposed WRPCA method with gammatone auditory

filterbank on the cochleagram for singing voice separation. To confirm the effectiveness of this

proposed method, the experimental evaluation is also carried out on the ccMixter and DSD100

datasets.
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3.1 WRPCA for singing voice separation

According to the previous studies, RPCA is an effective method to separate singing voice from

the mixed music signal, which decomposes a given amplitude spectrogram (matrix) of a music

signal into the sum of a low-rank matrix (music accompaniment) and a sparse matrix (singing

voice). Since music accompaniment tends to have a similar phase, resulting in a spectrogram

with the low-rank structure part. While singing voice varies significantly and continuously over

time, resulting that a spectrogram has a sparse structure part. Although RPCA has been suc-

cessfully applied to singing voice separation, it has a strong assumption. For example, drums

may lie in the sparse subspace instead of being low-rank, which lead that the separation perfor-

mance is decreased in many real world applications, especially for the drums existing in music

signal. To copy with this problem, in this section, a weighted value method to make sure differ-

ent scale values to describe sparse and low-rank matrices called WRPCA was proposed, which

is choosing different weighted values between low-rank and sparse matrices.

3.1.1 Principal of WRPCA

WRPCA is an extension of RPCA model that has different scale values between the separated

low-rank and sparse matrices model. The corresponding convex WRPCA model can be defined

as

minimize |L|w,∗ + λ|S |1,

subject to X = L + S ,
(3.1)

where w is a vector of weights and |L|w,∗ is the low-rank matrix computed using weighted sin-

gular value minimization, S is the sparse matrix, X ∈ Rm×n is an input matrix, and λ > 0

is a trade-off constant parameter between the sparse matrix S and the low-rank matrix L.

λ = 1/
√

max(m, n) was used as suggested by Candés et al. [29]. I also adopted an efficient

inexact ALM [30] to solve this convex model. The corresponding augmented Lagrange func-

tion is defined as

J(X, L, S , µ) = |L|w, ∗ + λ|S |1+ < J, X − L − S > +
µ

2
|X − L − S |2F ,

where J is the Lagrange multiplier and µ is a positive scalar.
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In RPCA, nuclear norm minimization and L1-norm affect not only the sparsity and low-

rankness of the two decomposed matrices but also their relative scale values. In order to better

balance their scale values, WRPCA uses different weighted value strategies to trim the low-rank

matrix during each stage of the singing voice separation processing.

Set X = UΣVT , X ∈ Rm×n, where

Σ =


diag(δ1(X), δ2(X), ..., δn(X))

0

 , (3.2)

and δi(X) denotes the i-th singular value of X. If the positive regularization parameter C exists

and the positive value ε < min(
√

C, C
δ1(X) ), by using the reweighting formula wl

i = C
δi(Ll)+ε

[75],

the weighted values will converge to

L∗ = UΣ′VT , (3.3)

where

Σ′ =


diag(δ1(L∗), δ2(L∗), ..., δn(L∗))

0

 , (3.4)

and

δi(L∗) =


0

c1 +
√

c2

2

(3.5)

where c1 = (δi(X) − ε) and c2 = ((δi(X) + ε)2 − 4C) [76]. In this study, set the regulariza-

tion parameter C as the maximum matrix size, which enables us to obtain the best separation

performance results on the audio data, e.g., C = max(m, n) [77].

The specific process for separating singing voice from the mixed music signal is outlined

in Algorithm 1, where the value of X is a mixed music signal from the observed audio datum.

After separation by WRPCA, finally, obtain a low-rank matrix L (accompaniment) and a sparse
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Algorithm 1 WRPCA for singing voice separation

Input: Mixture signal X ∈ Rm×n, weight vector w.

1: Initialize: ρ, µ0, L0 = X, J0 = 0, k = 0.

2: While not converge,

3: do :

4:

∣∣∣∣∣∣ S k+1 = arg min |S |1 +
µk
2 |X + µ−1

k Jk − Lk − S |2F .

5:

∣∣∣∣∣∣ Lk+1 = arg min |L|w,∗ +
µk
2 |X + µ−1

k Jk − S k+1 − L|2F .

6:

∣∣∣∣∣∣ Jk+1 = Jk + µk(X − Lk+1 − S k+1).

7:

∣∣∣∣∣∣ µk+1 = ρ ∗ µk.

8:

∣∣∣∣∣∣ k = k + 1.

9: end while.

Output: S m×n, Lm×n.

matrix S (singing voice). Therefore, WRPCA method decomposed an input matrix into a low-

rank matrix part and a sparse matrix part. The separation results outperform the RPCA method

in different audio data. However, it suffers from high computational cost due to computing

a singular value decomposition (SVD) at each iteration, which in turns leads to slow running

time.

3.1.2 Experimental evaluation

In this section, the proposed WRPCA is evaluated on two different databases.

Experiment settings

One is the ccMixter dataset, to reduce the computations in the experiment, 30 seconds clip

(from 0’30” to 1’00”) was used at the same time of each song, which is the maximum period of

all songs containing singing voice, but there are still exist 2 songs with no singing voice during

this period, adopt to another period (from 1’30” to 2’00”) in this 2 songs.

The other is DSD100 dataset. I also use only 30 seconds clip (from 1’45” to 2’15”), which
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Figure 3.1: Comparison of singing voice separation results using RPCA and the proposed WR-
PCA on the ccMixter dataset. Note that SDR for the original dataset is -5.19 dB.

is the only period where all 100 full stereo songs contain singing voice. Because there are 4

sources (bass, drums, vocals and others) for each track, considering the sum of bass, drums and

others as music accompaniment part.

In this chapter, the experiment mainly focuses on monaural source separation. It is even

more difficult than multichannel source separation since only one single channel information

was available. The two-channel stereo mixtures were downmixted into a single channel and

obtained an average value of each channel. All experimental data are sampled at 44.1 kHz. The

input feature is calculated using short-time Fourier transform (STFT) and inverse short-time

Fourier transform (ISTFT). A window size of 1024 samples and a hop size of 256 samples for

the STFT. And FFT size is 1024.

To confirm the effectiveness of our proposed method, the quality of separation is assessed

in terms of SDR, SIR, and NSDR using the BSS-EVAL evaluation toolbox 3.0 metrics. All the

metrics are expressed in dB.

3.1.3 Result and conclusion

Figure 3.1 shows the experiment results of SDR, SIR and NSDR between WRPCA and RPCA

on the ccMixter dataset. The experiment results show that the proposed method gets better

results on the ccMixter dataset.
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(a)

(b)

Figure 3.2: Comparison of singing voice separation results using conventional RPCA and the
proposed WRPCA on the DSD100 dataset. (a) is the set of DSD100/dev data; (b) is the set of
DSD100/test data. Note that SDRs for the original datasets, dev and test, are -5.98 dB and -5.18
dB, respectively.
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In addition, the experiment results are compared with the conventional RPCA on the DSD100

dataset. Figure 3.2(a) is the separation results of SDR, SIR and NSDR on dev data (top); Figure

3.2(b) is the separation results of SDR, SIR and NSDR on test data (bottom). The above two

figures show that the proposed WRPCA method also yields promising experimental results than

the conventional RPCA method on the DSD100 dataset.

In this chapter, an extension of RPCA with different weighted values for singing voice

separation was proposed. The experimental results on the ccMixter and DSD100 datasets show

clearly that the proposed method outperforms the conventional RPCA for the singing voice

separation on the two databases.

3.2 WRPCA with gammatone auditory filterbank for singing

voice separation

Even if the previous proposed WRPCA method can obtain acceptable separation results from

mixture music signals, they ignore the features of the human auditory system, which plays a

vital role in improving the quality of separation results. Recently a study was published hinting

that cochleagram, as an alternative time-frequency (T-F) analysis based on gammatone filter-

bank, is more suitable than spectrogram for source separation [78]. This is because, cochlea-

gram is derived from non-uniform T-F transform whereas T-F units in low-frequency regions

have higher resolutions than in the high frequency regions, which closely resembles the func-

tions of the human ear. Similarly, singing voice performances are quite different from music

accompaniment on cochleagram. The spectral energy centralizes in a few T-F units for singing

voice and thus can be assumed to be sparse. On the other hand, music accompaniment on the

cochleagram has similar spectral patterns and structures that can be captured by a few basis

vectors, so it can be hypothesized as a low-rank subspace. Therefore, it is promising to separate

singing voice via sparse and low-rank decomposition on cochleagram instead of spectrogram.

To overcome the above-mentioned problems and imitate the human auditory system, adopt

gammatone auditory filterbank as the first stage of WRPCA in cochleagram processing. Finally,

apply ideal binary mask (IBM) or ideal ratio mask (IRM) [79] to enforce the constraints between

an input mixture signal and the output results.
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Figure 3.3: Block diagram of the proposed singing voice separation

3.2.1 Application to mask estimation

After obtaining the separation results of sparse S and low-rank matrices L by using WRPCA,

applied IBM and IRM estimations to further improve the separation performance. A block

diagram of the singing voice separation system is illustrated in Figure 3.3. It consists of two

stages: WRPCA on cochleagram and singing voice separation based on IBM and IRM esti-

mations. The first stage performs the cochlear analysis with gammatone filter, calculates the

cochleagram of the mixture music signal, and then decomposes matrixes into sparse and low-

rank matrices by using WRPCA. The second stage applies IBM/IRM estimation to improve the

separation results. The IBM and IRM are defined as [79]

Mibm =


1 S i j ≥ Li j

0 S i j < Li j

(3.6)

and

Mirm =
S i j

S i j + Li j
(3.7)

where Mibm and Mirm are the values of IBM estimation and IRM estimation, respectively. S i j

and Li j are the values of the sparse and low-rank matrices. The separated matrices can be

synthesized as described by Wang et al. [69].
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3.2.2 Experimental evaluation

In this section, we introduce how evaluated WRPCA by using two different databases: ccMixter

and DSD100 datasets, and how compared it with the conventional RPCA.

Experiment settings

In this chapter, to evaluate WRPCA, two different databases are used in this experiment. The

first was the ccMixter dataset, for which I chose 43 full stereo songs with only 30 seconds clip

(from 0’30” to 1’00”) at the same time of each song, which is the maximum period of all songs

containing singing voice. Each audio contains three parts: singing voice, music accompani-

ment, and a mixture of them.

The second was the DSD100 dataset. To reduce computations, 30 seconds clip were adopted

(from 1’45” to 2’15”) at the same time for all audio data, which comprised 36 development

songs and 46 test songs. Each track consists of four sources, for example, bass, drums, vocals

and others. In the experiment, two-channel stereo mixtures were downmixted into a single mono

channel and obtained an average value for each channel. All experiment data were sampled at

44.1 kHz. Setting parameters for cochleagram analysis: 128 channels, 40∼11025 Hz frequency

range, and 256 frequency length. To compare the results with those obtained with WRPCA,

calculated the input feature by using STFT and ISTFT, which is a part of contrast experiments

that have been performed on spectrogram for conventional RPCA and WRPCA. The window

size of 1024 samples was used, a hop size of 256 samples for the STFT and an FFT size of

1024.

3.2.3 Result and conclusion

To evaluate WRPCA algorithm, the first experiment was evaluated on the ccMixter dataset.

Figure 3.4 and 3.5 indicate the comparison results of conventional RPCA, RPCA with IRM,

RPCA with IBM, WRPCA, WRPCA with IRM, and WRPCA with IBM, respectively. The

methods of RPCA, RPCA with IRM, RPCA with IBM and WRPCA) are calculated on spec-

trogram (without gammatone filterbank), while WRPCA with IRM and WRPCA with IBM are

calculated on cochleagram (with gammatone filterbank). The experiment results obtained with

the SDR and SAR show that WRPCA gets better results on the ccMixter dataset, especially

for the IBM estimation (with gammatone filterbank). In contrast, the conventional RPCA got
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Figure 3.4: Comparison of singing voice separation results on the ccMixter dataset among
conventional RPCA, RPCA with IRM, RPCA with IBM, WRPCA, WRPCA with IRM, and
WRPCA with IBM, respectively.

30



Figure 3.5: Comparison of singing voice separation results on the ccMixter dataset among
conventional RPCA, RPCA with IRM, RPCA with IBM, WRPCA, WRPCA with IRM, and
WRPCA with IBM, respectively. Note that SDR for the original datasets, ccMixter is -5.16 dB.

worse results than the others. The second experiment was evaluated on the DSD100 dataset.

Figure 3.6 and 3.7 show the comparison results obtained with the conventional RPCA, RPCA

with IRM, RPCA with IBM, WRPCA, WRPCA with IRM, and WRPCA with IBM, respec-

tively. The results clearly show that WRPCA obtains better separation results on the DSD100

dataset, especially for the IBM estimation (with gammatone filterbank). However, the opposite

results were obtained with the conventional RPCA. In terms of the SAR in the experiment, WR-

PCA with IBM on cochleagram (with gammatone filterbank) attained higher values than others,

while the RPCA with IBM (without gammatone filterbank) had the worst values among them.

The NSDR provides overall improvement in the SDR; in other words, it provides better sep-

aration performance in singing voice separation. Figure 3.5 and 3.7 show the NSDR results with

WRPCA on the ccMixter and DSD100 datasets. The results indicate that the best performance

was achieved by WRPCA with IBM (with gammatone filterbank).

According to the results of Figures 3.4, 3.5 and 3.6, the proposed WRPCA on cochlea-

gram provides better separation performance than RPCA on spectrogram with or without IBM
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Figure 3.6: Comparison of singing voice separation results on the DSD100 dataset among con-
ventional RPCA, RPCA with IRM, RPCA with IBM, WRPCA, WRPCA with IRM, and WR-
PCA with IBM, respectively.
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Figure 3.7: Comparison of singing voice separation results on the DSD100 dataset among con-
ventional RPCA, RPCA with IRM, RPCA with IBM, WRPCA, WRPCA with IRM, and WR-
PCA with IBM, respectively. Note that SDR for the original datasets, DSD100 is -5.11 dB.

or IRM. Moreover, WRPCA provided better results than RPCA without gammatone filterbank

and IBM or IRM estimations. Additionally, WRPCA on cochleagram with IBM (with gamma-

tone filterbank) provides better separation results in all evaluation standard methods. However,

RPCA with IBM does not provide values as good as those provided by RPCA with IRM.

In this work, an extension of RPCA with weighting on cochleagram (WRPCA). It is based

on gammatone auditory filterbank and application to IBM/IRM estimation for singing voice

separation. The cochleagram of the mixture signal was decomposed into sparse (singing voice)

and low-rank matrices (music accompaniment) by using WRPCA, then IBM/IRM estimation

was utilized to improve the separation results. Experimental results obtained on the ccMixter

and DSD100 datasets confirmed that WRPCA outperforms the conventional RPCA method in

singing voice separation tasks, especially for WRPCA on cochleagram based on gammatone

auditory filterbank with IBM estimation.
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3.3 Discussion and summary

This chapter proposes a different weighted value in the low-rank and sparse decomposition

model for singing voice separation. In addition, utilize the proposed WRPCA algorithm with

gammatone filterbank on cochleagram instead of spectrogram for singing voice separation. The

experiment results show that the cochleagram is better than spectrogram, Owing to the cochlea-

gram is derived from non-uniform T-F transform whereas T-F units in low-frequency regions

have higher resolutions than the high frequency regions, which closely resembles the functions

of the human ear. In addition, by utilizing different weighted values to describe the separated

low-rank matrix is better to the conventional RPCA. This is because the drums can be described

by the separated sparse matrix.
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Chapter 4

CRPCA-based singing voice separation

In this chapter, the main task is studied on another extension of RPCA, which uses a rank-

1 constraint robust principal component analysis called Constraint RPCA (CRPCA) and its

application to singing voice separation.

Firstly, describing CRPCA for singing voice separation, which uses rank-1 constraint min-

imization of singular values in RPCA instead of minimizing the nuclear norm, which not only

provides a robust solution to large dynamic range differences among instruments but also re-

duces the computation complexity.

Secondly, utilizing the proposed CRPCA on cochleagram based on gammatone auditory

filterbank for singing voice separation.

Thirdly, combining F0 and non-negative constraint RPCA for singing voice separation. In

addition, to minimize the reconstruction error when synthesizing the singing voice, using the

original phase recovery in estimating the spectral components of the separated singing voice of

the musical mixture.

Fourthly, incorporating CRPCA with vocal activity detection for singing voice separation.

The proposed CRPCA method utilizes rank-1 constraint minimization of singular values in

RPCA instead of minimizing the nuclear norm. Further quality improvement is achieved by

converting CRPCA to an ideal binary masking, combining it with harmonic masking to create

a coalescent masking, and finally, combining with a vocal activity detection.
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4.1 CRPCA for singing voice separation

As mentioned the above chapter, RPCA can be used as an efficient strategy to separate singing

voice in a mixture music signal, which decomposes the given amplitude spectrogram (matrix)

of a mixture music signal into the sum of a sparse matrix (singing voice) and a low-rank matrix

(music accompaniment). Owing to the part of background music can reproduce the same signal

in the same song, the magnitude spectrogram therefore can be considered as a part of low-

rank matrix. Singing voice, on the other hand, varies significantly and has a sparse distribution

since its harmonic structure part in the spectrogram domain, resulting in a spectrogram with a

sparse matrix part. Although RPCA has been successfully applied to singing voice separation,

it ignores the different characteristic values of SVD and computational complexity to minimize

the nuclear norm for separating singing voice. Thus the separation performance decreases due

to drums may lie in the sparse subspace instead of being low-rank. In another work, WRPCA

[77] [80], which chose the different weighted values to describe the low-rank matrix for singing

voice separation. However, it suffers from high computational cost, as it requires an SVD at

each iteration. Hence the running time of WRPCA method is slower than the conventional

RPCA method. Recently a partial sum minimization of singular values instead of minimizing

the nuclear norm in RPCA [81] was published, which used the minimized rank way to solve the

different values of SVD in image processing, especially for background subtraction under the

condition of rank-1 constraint.

To solve these problems, the partial sum minimization of SVD and computation complexity

are significant for separating singing voice from the mixture music signal. In this chapter, com-

bining the idea in [81] and propose a novel extension of RPCA exploiting rank-1 constraint,

which utilizes the rank-1 constraint minimization singular values in RPCA instead of minimiz-

ing the nuclear norm for singing voice separation. Owing to rank-1 constraint in the background

music, which is very similar to background subtraction, as the background music has a larger

variation in richness than singing voice among different songs. In addition, rank-1 constraint

can utilize a prior target rank to separate background music and singing voice from the mixture

music signal, which leads to a reduction in computation complexity. Therefore, the proposed

CRPCA can not only describe the different values of SVD under the rank-1 constraint informa-

tion, but also the computation complexity is reduced. Finally, apply time-frequency masking to

further improve the separation results.
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In previous studies [77], [80], WRPCA was used to separate singing voice from mixture

music signal. On account of the part of background music can reproduce the same signal in the

same song, although it has different values, the magnitude spectrogram can still be considered

as a part of low-rank matrix. Singing voice signal, on the other hand, varies significantly and

has a sparse distribution since its harmonic structure part in the spectrogram domain, resulting

in a spectrogram with a sparse matrix part. So utilizing WRPCA method to decompose an input

matrix structure part into a low-rank matrix part and a sparse matrix part. The separated results

outperform RPCA in the different audio data. However, it suffers from high computational

cost during computing an SVD at each iteration, which leads to the running time to be slow. To

overcome the disadvantages of both RPCA and WRPCA, a partial sum minimization of singular

value based on rank-1 constraint called CRPCA was proposed. The aim is to fully utilize a prior

rank-1 constraint to minimize the partial sum of singular values in RPCA.

4.1.1 Principal of CRPCA

CRPCA is a novel extension of RPCA, which exploiting rank-1 constraint for singing voice

separation. The model is defined as follows:

minimize
min(m,n)∑

i=2

δi(L) + λ|S |1,

subject to X = L + S .

(4.1)

where L is the value of low-rank matrix, S is the value of sparse matrix. X ∈ Rm×n is the value

of an input matrix, which consists of L ∈ Rm×n and S ∈ Rm×n, and λ > 0 is a positive constant

parameter between the sparse matrix S and the low-rank matrix L. And δi(L) is the i-th singular

value of L. λ = 1/
√

max(m, n) was used as suggested in [29]. I also used an efficient iALM [30]

method to solve this convex model in this work. The augmented Lagrangian function can be

defined as follows:

J(X, L, S , µ) = min
min(m,n)∑

i=2

δi(L) + λ|S |1 + 〈J, X − L − S 〉 +
µ

2
|X − L − S |2F .

where J is the Lagrange multiplier and µ is a positive scalar. The process of separating singing

voice from the mixture music signal can be seen in Algorithm 2 CRPCA for singing voice
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Figure 4.1: Block diagram of the proposed singing voice separation system.

separation. The value of X is a mixture music signal from the observed audio data. After

separated by using CRPCA, finally, obtain a low-rank matrix L (music accompaniment) and a

sparse matrix S (singing voice).

From the augmented Lagrangian function, the following two sub-problems about L and S

are solved as follows

Lk+1 = min
L

min(m,n)∑
i=2

δi(L) + 〈Jk, X − L − S k〉 +
µk

2
|X − L − S k|

2
F . (4.2)

S k+1 = min
S

λ|S |1 + 〈Jk, X − Lk − S 〉 +
µk

2
|X − Lk − S |2F . (4.3)

As suggested by Oh et al. [81], the update rules of L and S are equivalent to solve the above

two sub-problems as the following two equations:

Lk+1 = P1,µ−1
k

(X − S k + µ−1
k Jk) (4.4)

S k+1 = Qλµ−1
k

(X − Lk+1 + µ−1
k Jk) (4.5)

P1,µ−1
k

(·) can be defined as follows:

P1,µ−1
k

(Y) = UY(DY1 + Qµ−1
k

(DY2))V
T
Y (4.6)

where Y = Y1+Y2 (Y ∈ Rm×n), DY1 = diag(δ1, 0, ..., 0), Qµ−1
k

(DY2) = sign(DY2)·max(|DY2 |−µ
−1
k , 0)
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Algorithm 2 CRPCA for singing voice separation

Input: Mixture signal X ∈ Rm×n.

1: Initialize: ρ > 1, µ0 > 0, k = 0, L0 = S 0 = 0.

2: While not converge,

3: do :

4:

∣∣∣∣∣∣ Lk+1 = P1,µ−1
k

(X − S k + µ−1
k Jk).

5:

∣∣∣∣∣∣ S k+1 = Qλµ−1
k

(X − Lk+1 + µ−1
k Jk).

6:

∣∣∣∣∣∣ Jk+1 = Jk + µk(X − Lk+1 − S k+1).

7:

∣∣∣∣∣∣ µk+1 = ρ ∗ µk.

8:

∣∣∣∣∣∣ k = k + 1.

9: end while.

Output: Lm×n, S m×n.

is the soft-thresholding operator [82], DY2 = diag(0, δ2, ..., δmin(m,n)), δ1 and δ2 are the first and

second singular values. In order to improve the separation performance, after separated by using

CRPCA, adopt ideal binary time frequency masking (IBM) estimation to further improve the

separation results. The masking Mibm is defined as follows:

Mibm =


1 S i j ≥ Li j

0 S i j < Li j

(4.7)

where S i j and Li j are the values of sparse and low-rank matrices.

A block diagram of the proposed singing voice separation system can be seen in Figure 4.1.

For each mixture audio in the test dataset, apply a STFT and ISTFT based on being separated by

using CRPCA. Furthermore, utilize IBM method to further improve the separation results. And

finally, obtain low-rank matrix L (music accompaniment) and sparse matrix S (singing voice),

respectively.
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Figure 4.2: Comparison of singing voice separation results on the ccMixter dataset among
RPCA, WRPCA, CRPCA and CRPCA with IBM on SDR, SIR, and NSDR, respectively.

4.1.2 Experimental evaluation

In this chapter, the proposed CRPCA and CRPCA with IBM are evaluated by using two dif-

ferent datasets: ccMixter and DSD100 datasets, respectively. And compare it with RPCA and

WRPCA methods.

Experiment settings

In the experiments, to evaluate the performance of the proposed CRPCA method, two different

datasets are used to compare with RPCA, WRPCA, CRPCA and CRPCA with IBM methods.

The first one was the ccMixter dataset, which contains 50 full songs with durations ranging from

1’17” to 7’36”. Each audio data contains three parts: music accompaniment, singing voice, and

a mixture of them, respectively. The other one was the DSD100 dataset. I considered the sum of

drums, bass and other as music accompaniment part. The target was to separate singing voice

from the music accompaniment in the mixture music signal.

In the experiment, evaluated the proposed CRPCA and CRPCA with IBM methods mainly

concentrate on monaural source separation tasks. It was even more difficult than multichannel

source separation due to only one single channel was available. The two-channel stereo mixture

datasets were downmixed into a single channel and obtained an average value of each channel.

All data were sampled at 44.1 kHz. The input feature was calculated using STFT and ISTFT.
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Figure 4.3: Comparison of singing voice separation results on the DSD100 dataset among
RPCA, WRPCA, CRPCA and CRPCA with IBM on SDR, SIR, and NSDR, respectively.

A window size of 1024 samples and a hop size of 256 samples. All the experiments were run

by using MATLAB R2015a, on a PC win10, X64-based processor, RAM32GB with i7-6700K

CPU@4.00 GHz.

4.1.3 Result and conclusion

To confirm CRPCA and CRPCA with IBM methods, the experiment is evaluated the proposed

method on the ccMixter dataset. Figure 4.2 shows the comparison of singing voice separation

results on RPCA, WRPCA, CRPCA and CRPCA with IBM (CRPCA IBM). The experiment

results are obtained with SDR, SIR and NSDR show that CRPCA obtains better separation

results than RPCA and WRPCA, especially for using IBM estimation on the ccMixter dataset.

With regard to SIR, CRPCA with IBM has a significant improved result among them. The

degree of separation result values of SIR, RPCA and CRPCA with IBM, are -2.64 dB and 5.33

dB, respectively.

CRPCA and CRPCA with IBM methods were evaluated on the DSD100 dataset. Figure

4.3 shows the comparison results with RPCA, WRPCA, CRPCA and CRPCA with IBM. The

experiment results clearly reveal that CRPCA with IBM also obtains better separation perfor-

mance on the DSD100 dataset. These two result figures indicate that rank-1 constraint mini-

mization can improve the separation performance than minimizing the nuclear norm in RPCA,
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Table 4.1: Running time (hh:mm:ss)

Dataset RPCA WRPCA CRPCA

ccMixter 02:04:40 03:03:31 00:52:10

DSD100 04:34:30 06:49:28 01:54:17

even exceed the previous proposed WRPCA method. In addition, after using IBM estimation

by CRPCA, especially with regard to SIR values among them. RPCA and CRPCA with IBM,

are -3.58 dB and 3.39 dB, respectively.

As the above results shown, although WRPCA can get better separation results, the running

time is longer than RPCA on two datasets. Owing to CRPCA can utilize a prior target rank

to separate singing voice from the mixture music signal, no matter separation performance

or running time, the rank-1 constraint minimization singular values in RPCA is better than

the nuclear norm for separating singing voice. Furthermore, applied IBM method to improve

the separation performance. In terms of running time, CRPCA is preferable under the same

conditions on two datasets.

Compared the running time of the proposed method with those of the previous methods

of the above-mentioned two datasets. Table 4.1 lists the running time of each method on the

ccMixter and DSD100 datasets. The running time on CRPCA was much shorter than on RPCA

or WRPCA, while WRPCA had the worst results.

In this work, a novel unsupervised approach that extends RPCA exploiting rank-1 con-

straint for singing voice separation task was proposed. The experiment evaluation results on

the ccMixter and DSD100 datasets indicated that CRPCA outperforms the conventional RPCA

and WRPCA, especially for using time frequency masking. In addition, with regard to the run-

ning time, CRPCA is shorter than others under the same conditions while WRPCA is the worst

among them.

42



Figure 4.4: Block diagram of the proposed singing voice separation system.

4.2 CRPCA with gammatone auditory filterbank for singing

voice separation

According to the previous studies, inspired by a sparse and low-rank model, the proposed an

effective extension of RPCA with rank-1 constraint (CRPCA) [83]. Although it can get bet-

ter separation results than RPCA in singing voice separation task, there is still exists a lot of

room for improvement. Recently a study was published hinting that cochleagram, as an alterna-

tive time-frequency analysis based on gammatone filterbank, is more suitable than spectrogram

for source separation [78] [80]. This is because, cochleagram is derived from non-uniform

time-frequency transform whereas time-frequency units in low-frequency regions have higher

resolutions than the high-frequency regions, which closely resembles the functions of the hu-

man ear. Similarly, singing voice performances are quite different from music accompaniment

on cochleagram. The spectral energy centralizes in a few time-frequency units for singing voice

and thus can be assumed to be sparse. On the other hand, music accompaniment on the cochlea-

gram has similar spectral patterns and structures that can be captured by a few basis vectors, so

it can be hypothesized as a low-rank subspace. Therefore, it is promising to separate singing

voice via sparse and low-rank decomposition on cochleagram instead of the spectrogram.

To improve the separation performance, combine gammatone auditory filterbank with cochlea-

gram by using CRPCA algorithm. In addition, further apply time-frequency masking estima-

tion [79] to enforce the constraints between an input mixture music signal and the output re-

sults [84].
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4.2.1 Gammatone filterbank and cochleagram

The Gammatone filterbank [85] is a cochlear filtering representation which decomposes an input

signal into the time-frequency domain using a lot of gammatone filters. The impulse response

of a gammatone filter centered at frequency w is obtained as follows:

g(w, t) =


th−1e−2πvtcos(2πwt), t > 0

0, others
(4.8)

where h represents the order of filter, v stands for the rectangular bandwidth which increases as

the center frequency w increases. The filter output response r(c, t) can be expressed as follows:

r(c, t) = x(t) ∗ g(wc, t) (4.9)

where ‘*’ indicates the convolution in time domain, c is a particular filter channel and the center

frequency is wc. So this function can be shifted backwards by using (h-1)/(2πv) to compensate

for the filter delay. The output of each filter channel is cut into time-frequency with half of

overlap between the consecutive frames. And finally, the time-frequency spectra of all the filter

outputs are constructed to form the cochleagram.

4.2.2 CRPCA using time-frequency masking

After separated by using CRPCA, in order to improve the separation performance, apply binary

time-frequency masking estimation to further improve the separation results. The masking bm

is defined as follows:

bm =


1 S i j ≥ Li j

0 S i j < Li j

(4.10)

where S i j and Li j are the values of sparse and low-rank matrices.

A block diagram of the proposed unsupervised singing voice separation system can be illus-

trated in Figure 4.4. For each mixture music audio in the test dataset, calculate the cochleagram

of the mixture music audio under the condition of gammatone filterbank, after that decompose

the matrix into low-rank matrix L (music accompaniment) and sparse matrix S (singing voice)
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by using CRPCA method, and then, deal with the separated sparse and low-rank matrices by

using time-frequency masking. Finally, the separated matrices can be synthesized as described

in [69].

4.2.3 Experimental evaluation

In the experiments, firstly, evaluated the proposed method on the MIR-1K dataset, which con-

tains 1000 song clips with durations ranging from 4 to 13 seconds. The data were extracted

from 110 Chinese karaoke pop songs.

Experiment settings

All experiment data were sampled at 16 kHz. The parameters for cochleagram analysis: 128

channels, 40∼8000 Hz frequency range, and 256 frequency length. To compare the results with

those obtained with CRPCA, and calculated the input feature by using STFT and ISTFT, which

is a part of baseline experiments that have been performed on spectrogram for the conventional

RPCA method. The window size of 1024 samples was used, a hop size of 256 samples for the

STFT and an FFT size of 1024.

4.2.4 Result and conclusion

To examine the proposed method, the experiment was evaluated on the MIR-1K dataset. Figure

4.5 shows the comparison results of conventional RPCA, CRPCA and CRPCA on cochleagram,

respectively. All methods were run by using binary time-frequency masking estimation. The

experiment results show that the proposed method can improve the separation performance

between singing voice and music. In terms of singing voice, the separation performance is

worse than the part of music in SDR. On the contrary, the SAR of the proposed method has

the highest value among them. In addition, the SAR obtains a significant improvement on

cochleagram between the parts of singing voice and music.

In this work, a novel unsupervised method to deal with the singing voice separation task

has been proposed. The experimental results on the MIR-1K dataset show that the proposed

method outperforms the conventional RPCA method.
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(a)

(b)

Figure 4.5: Comparison of unsupervised singing voice separation results on the MIR-1K dataset
among of the conventional RPCA, CRPCA and CRPCA on cochleagram, respectively.

4.3 CRPCA with vocal activity detection for singing voice

separation

As stated above, inspired by this melody extraction, which plays a vital role in separating

singing voice [86] [87] [88] [89], convert the CRPCA output to an ideal binary masking, in-
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corporate it with a harmonic masking to create a coalescent masking, and apply the coalescent

masking to extract the singing voice. In addition, adopt a vocal activity detection (VAD) algo-

rithm to constrain the temporal segments in which singing voice may occur.

4.3.1 Proposed method

In this chapter, combining the proposed CRPCA with IBM estimation to further improve the

singing voice separation results from mixed music signal, we define the function Mibm is defined

as

Mibm(i, j) =


1 S i j ≥ Li j

0 S i j < Li j

(4.11)

where S i j and Li j are the values of the sparse and low-rank matrices.

Owing to the vocal F0 estimation can significantly improve the separation performance of

singing voice [86], so the F0 contour properly plays a crucial role in the process of separa-

tion. Subharmonic summation is an efficient technique for this calculation [88] [90]. In the

experiment, adopt the salience function H(t, s), which is formulated as

H(t, s) =

N∑
n=1

hnP(t, s + 1200 log2 (n)), (4.12)

where t and s indicate frame index and logarithmic frequency, respectively. P(t, s) represents

the power at frame t and frequency s, N is the number of harmonic parts, and hn is a decaying

factor, 0.84n−1 in this chapter. Log frequency s is measured in cents (1200 cents per octave),

and P(t, s) is computed with a frequency resolution of 200 bins per octave (6 cents per bin).

The optimal melody contour C can be solved by using an optimal path problem formulated

as

C = argmax
T−1∑
t=1

(
log atH(t, st) + log T (st, st+1)

)
, (4.13)

where T (st, st+1) is a transition probability that indicates the likelihood of the current F0 moving

to the next F0 in the consecutive frame, and at is a normalization factor that makes the salience

values sum to one within the range of the F0 search. The Viterbi search algorithm [91] is used
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Figure 4.6: Block diagram of the proposed singing voice separation system.

to optimize the melody contour C value.

In accordance with the previous research, I define the harmonic masking Mh by the above-

mentioned obtained vocal F0 as

Mh(t, f ) =


1 nFt −

w

2
< f < nFt +

w

2

0 others
(4.14)

where Ft is the vocal F0 estimated at frame t, n is the index of a harmonic part, and w is a

frequency width for extracting the energy around each harmonic part.

Combining the harmonic masking Mh with ideal binary time frequency masking Mibm to

construct the coalescent masking. The corresponding formulation Mc can be described as

Mc = Mibm � Mh (4.15)

where Mibm and Mh are the time frequency masking and harmonic masking, respectively, and �

denotes the element-wise multiplication operator.

To obtain better separation performance and optimize the value of coalescent masking, apply

a VAD algorithm to constrain the temporal segments in which singing voice. Singing voice only

be detected in frames t such that Ω(t) > k, where k is a threshold. The cost function Ω(t) can be

defined as

Ω(t) =
∑

f

 1
H f

H f∑
n=1

P(t, s + 1200 log2 (n))


1.8

, (4.16)

where H f = (Fs/2 f ) is the number of harmonics of the frequency f that exist at frequencies

below the Nyquist rate Fs/2. P(t, s) stands for the power at frame t and log frequency s.
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A block diagram of the proposed singing voice separation system is given in Figure 4.6. For

each mixture music in the test dataset, first, apply a magnitude STFT [92] to obtain X, therefore

the separate X into the corresponding low-rank matrix L and sparse matrix S by using the

CRPCA method. Second, utilize coalescent masking to constrain the time-frequency masking

to only those times and frequencies that constrain harmonics. The value of VAD is adopted to

improve the separation performance by discriminating the vocal and non-vocal frames. Finally,

utilize an ISTFT [93] to obtain the music accompaniment and singing voice parts.

In this work, randomly excerpted example 30 seconds clip from the ccMixter dataset (Alex

Beroza - To Be Sensitive (with mindmapthat). Figures 4.7 and 4.8 show the spectrograms of

separated singing voice parts and separated accompaniment parts from the mixed music signal.

Different separation methods are used to compare the original spectrograms, singing voice, and

accompaniment.

As shown in the figures, the spectrogram of Figure 4.7 contains the greatest amount of in-

terference from background music signal (accompaniment) in the recovered singing, while in

Figure 4.7(f) contains the least. As for the comparison with accompaniment in Figure 4.8, the

proposed CRPCA using coalescent masking and VAD has the best value of separation perfor-

mance among them.

4.3.2 Experimental evaluation

In this work, two databases are evaluated for evaluating the proposed algorithm, the first is the

ccMixter dataset, which contains 50 full songs. Each audio datum contains three parts: singing

voice, accompaniment, and a mixture of the two, respectively. The second dataset is DSD100

dataset. Each datum consists of bass, drums, other, and singing voice, respectively. In the

experiments, all the data are used as test data, consider the sum of drums, bass, and other as the

accompaniment part. The objective is to separate the singing voice from the accompaniment in

a mixed music signal.

Experiment settings

All experiments main focus on the monaural source separation task. Therefore, the two-channel

stereo mixture databases were downmixed into a single channel. I evaluated the whole audio
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Example of spectrograms are excerpted from the ccMixter dataset: (a) spectrogram
of original singing voice, (b) spectrogram of separated singing voice by RPCA, (c) spectrogram
of separated singing voice by WRPCA, (d) spectrogram of separated singing voice by CR-
PCA (Proposed 1), (e) spectrogram of separated singing voice by CRPCA with IBM (Proposed
2), (f) spectrogram of separated singing voice by CRPCA using coalescent masking and VAD
(Proposed 3), respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Example of spectrograms are excerpted from the ccMixter dataset: (a) spectro-
gram of original accompaniment, (b) spectrogram of separated accompaniment by RPCA, (c)
spectrogram of separated accompaniment by WRPCA, (d) spectrogram of separated accompa-
niment by CRPCA (Proposed 1), (e) spectrogram of separated accompaniment by CRPCA with
IBM (Proposed 2), (f) spectrogram of separated accompaniment by CRPCA using coalescent
masking and VAD (Proposed 3), respectively.
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Figure 4.9: Comparison of the separation results on the ccMixter dataset for conventional
RPCA, WRPCA, CRPCA, CRPCA with IBM, and CRPCA using coalescent masking and VAD
in terms of SDR, SIR, and NSDR, respectively.

datum rather than just partial lengths on both databases. All experiment data were sampled at

44.1 kHz. STFT and ISTFT with a window size of 1024 samples and a hop size of 256 samples

were used. All experiments were run using MATLAB R2015a on a PC win10, X64-based

processor, RAM 32GB with i7-6700K CPU@4.00 GHz.

4.3.3 Result and conclusion

For the ccMixter dataset, all comparisons of singing voice separation results with the conven-

tional RPCA, WRPCA, and the proposed methods (e.g., CRPCA only, CRPCA with IBM and

CRPCA using coalescent masking and VAD) are shown in Figure 4.9. From the experimental

results obtained with the SDR, SIR, and NSDR indicate that CRPCA using coalescent masking

and VAD gets better separation results than others. On the contrary, the conventional RPCA

was the worse in the separation task on the ccMixter dataset.

Figure 4.10 shows the results with the conventional RPCA, WRPCA, and the proposed

methods on the DSD100 dataset. From the experimental results obtained with SDR, SIR, and
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Figure 4.10: Comparison of the separation results on the DSD100 dataset for conventional
RPCA, WRPCA, CRPCA, CRPCA with IBM, and CRPCA using coalescent masking and VAD
in terms of SDR, SIR, and NSDR, respectively.

NSDR values, again, it clearly shows that the proposed CRPCA using coalescent masking and

VAD delivered the best separation results. Moreover, the value of SIR was improved by more

than 10 dB in comparison with the conventional RPCA.

As the above-mentioned experimental results demonstrate, although WRPCA obtained bet-

ter separation results than the conventional RPCA, the running time was much longer than

RPCA on both databases. CRPCA can utilize a prior target rank to separate audio source from

the mixture signals, regardless of separation performance or running time, which leads to the

superiority of CRPCA to RPCA and WRPCA. In the case of running time, WRPCA had the

worst performance. As for the separation performance in terms of NSDR, the proposed method

delivered improvements by +2.56 dB and +2.95 dB on the ccMixter and DSD100 datasets,

respectively. Indeed, as for the value of SIR, the proposed method yielded estimates with sig-

nificantly less interference, +10.29 dB and +11.45 dB, respectively.

In this chapter, a blind monaural singing voice separation based on an extension of RPCA

53



was proposed, which exploiting the constraint that the accompaniment spectrogram must have

rank greater than or equal to one, and permitting its first singular values to be arbitrarily large

without penalty. Time-frequency masking and harmonic masking are combined to construct

coalescent masking, and VAD is utilized to constrain the singing voice and accompaniment val-

ues. Experimental results on the ccMixter and DSD100 datasets demonstrate that the proposed

method outperforms the conventional RPCA and WRPCA methods. As for running time, CR-

PCA is faster than RPCA and WRPCA under the same conditions, while WRPCA is the slowest

among them.

4.4 Discussion and summary

This chapter proposes a novel extension of RPCA by exploring rank-1 constraint called CRPCA

for singing voice separation. CRPCA utilizes rank-1 constraint minimization of singular values

in RPCA instead of minimizing the nuclear norm, which not only describes the different values

of singular values decomposition, but also reduces the computation complexity, especially better

than the previous proposed WRPCA algorithm in the task of singing voice separation on the

different datasets.

In addition, utilizing the proposed CRPCA algorithm with the different feature to improve

the separation performance from the mixed music. One is using gammatone filterbank on

cochleagram instead of spectrogram for singing voice separation. Another is evaluating the

proposed CRPCA with VAD method for singing voice separation. All the experiment are eval-

uated on the same database, the results indicate that the proposed CRPCA is better than con-

ventional RPCA and WRPCA methods. Noticeable, the proposed CRPCA with VAD is better

than without it.

Finally, we give an example by comparison with the different separation methods. Figure

4.11 is the spectrogram of the mixed music by combining singing voice with the background

music (drums). The red box reflects the different of drums in the mixture music.

Figure 4.12 gives the corresponding parts of singing voice and drums by using different

separation methods. The separation result is described as the following spectrograms. The

mixture music is mixed by singing voice and drums. The left are the singing voice and the

right are the background music (drums). (a) and (b) are the clean singing voice and drums. (c)

and (d) are the separated results by using CRPCA, (e) and (f) are the separated results by using
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WRPCA, (g) and (h) are the separated results by using RPCA. As shown in the left figures,

the spectrograms of singing voice by separated with CRPCA and WRPCA contains the less

amount of interference from the background music, especially for the part of the red box in the

left spectrograms. In other words, WRPCA and CRPCA can separated drums well than RPCA

in the mixed music.

Figure 4.11: Spectrogram of the mixed music by combining singing voice with drums.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.12: Separation results by using different separation methods.
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Chapter 5

Informed NCRPCA for singing voice

separation

Separating singing voice from a musical mixture remains an important task in the field of mu-

sic information retrieval. Recent studies on singing voice separation have shown that RPCA

with rank-1 constraint approach can improve separation quality. However, the performance

of separation is limited because the vocal part can not be described well by separated matrix.

Therefore, prior information such as fundamental frequency (F0) should be considered. F0

can significantly improve separation performance by removing the spectral components of non-

repeating instruments (e.g., bass and guitar).

In this chapter, a novel singing voice separation algorithm was proposed by combining prior

information and non-negative constraint RPCA, which incorporates F0 and non-negative rank-1

constraint minimization of singular values in RPCA instead of minimizing the nuclear norm.

In addition, use the original phase recovery in estimating the spectral components of separated

singing voice.

Inspired by this sparse and low-rank model for singing voice separation, Yang [41] proposed

the multiple low-rank representations to decompose a magnitude spectrogram into two low-

rank matrices. In a similar vein, a new RPCA-based method that incorporates harmonicity

priors and a back-end drum removal procedure was proposed by [40]. Sprechmann et al. [42]

proposed a real-time online singing voice separation by the robust low-rank modeling. Yu et

al. [94] proposed sparse and low-rank representation with pre-learned dictionaries under the

alternating direction method of multiplier framework for singing voice separation. Jeong et
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al. [95] proposed an extension of RPCA by generalizing the nuclear norm and the l1-norm to

Schatten-p norm and lp-norm, respectively.

To deal with these problems, Mikami et al. [96] proposed a residual drum sound estima-

tion method for singing voice separation. Jeong et al. [97] proposed an extension of RPCA

with weighted l1-norm minimization for singing voice separation but only studied the different

weighted values of a sparse matrix without including the low-rank matrix. In another work,

Li et al. [80] proposed an extension of the RPCA algorithm called weighted robust principal

component analysis, which utilizes different weighted values to describe the low-rank matrix

for singing voice separation. However, it suffers from high computational cost due to comput-

ing the singular value decomposition at each iteration. Therefore, Li et al. [83] proposed an

extension of RPCA with rank-1 constraint that can improve both the separation performance

and running time. But the quality of singing voice separation is limited because the vocal part

can not be described well by the separated matrix. A separation algorithm with additional prior

information such as fundamental frequency (F0) can enhance the effectiveness of separation re-

sults [86]. Because F0 varies over time and is a property of the parts played by various singing

voice and accompaniment, it can greatly improve separation quality by removing the spectral

components of non-repeating instruments (e.g., bass and guitar).

Motivated by the above considerations, in this chapter, a novel singing voice separation al-

gorithm was proposed by combining the prior information and non-negative rank-1 constraint

RPCA (NCRPCA) called informed non-negative rank-1 constraint RPCA (NCRPCAi), which

incorporates the human-labeled F0 and non-negative rank-1 constraint minimization of singular

values in RPCA for separating the singing voice from the mixture music. Furthermore, to min-

imize the reconstruction error when synthesizing the singing voice, the original phase recovery

is used in estimating the spectral components of the separated singing voice of the musical

mixture.
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5.1 Informed NCRPCA

Informed NCRPCA is an extension of RPCA, which incorporates F0 and non-negative rank-1

constraint minimization of singular values in RPCA. The NCRPCAi model can be defined as

minimize
min(m,n)∑

i=2

δi(L) + λ|S |1 +
γ

2
|S − E0|,

subject to X = L + S , L ≥ 0, S ≥ 0.

(5.1)

where E0 denotes the reconstructed voice spectrogram from F0. In section 3, we describe the

value of E0 in detail. The L is a low-rank matrix, X ∈ Rm×n is an input matrix, and λ > 0 is a

trade-off constant parameter between the sparse matrix S and the low-rank matrix L. The δi(L)

is the i-th singular value of L. γ > 0 is a parameter. The same value λ = γ = 1/
√

max(m, n)

as suggested by [44] [29]. We adopt an inexact augmented Lagrange multiplier (iALM) [30] to

solve this convex model. The corresponding augmented Lagrange function is defined as

J(X, L, S , µ) = min
min(m,n)∑

i=2

δi(L) + λ|S |1

+ < J, X − L − S > +
µ

2
|X − L − S |2F +

γ

2
|S − E0|, (5.2)

where J is the Lagrange multiplier, µ is a positive value, and < J, X − L − S > denotes Jk+1 =

Jk + µk(X − Lk+1 − S k+1).

From the above Lagrangian function, we can obtain the non-negative values of L and S ,

Lk+1 = min
L

min(m,n)∑
i=2

δi(L) + 〈Jk, X − L − S k〉

+
µk

2
|X − L − S k|

2
F +

γ

2
|S k − E0|, (5.3)

S k+1 = min
S

λ|S |1 + 〈Jk, X − Lk − S 〉

+
µk

2
|X − Lk − S |2F +

γ

2
|S − E0|, (5.4)
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5.1.1 Update rules based on rank-1 constraint

As suggested by Oh et al. [81], the update rules of L and S are obtained as

Lk+1 = P1,µ−1
k

(X − S k + µ−1
k Jk), (5.5)

S k+1 = Qλµ−1
k

(X − Lk+1 + µ−1
k Jk + γE0), (5.6)

and P1,µ−1
k

(·) can be defined as

P1,µ−1
k

(Y) = UY(DY1 + Qµ−1
k

(DY2))V
T
Y , (5.7)

where the soft-thresholding operator [82] can be defined as

Qµ−1
k

(DY2) = sign(DY2) · max(|DY2 | − µ
−1
k , 0), (5.8)

where Y = Y1+Y2 (Y ∈ Rm×n), DY1 = diag(δ1, 0, ..., 0), DY2 = diag(0, δ2, ..., δmin(m,n)), and δ1 and

δ2 are the first and second singular values.

The specific process for separating singing voice from a mixed music signal is outlined in

Algorithm 1. The input value of X is a musical mixture signal and F0 is the human-labeled from

the observed audio data. E0 can be obtained from the values of F0. After the separation using

the NCRPCAi algorithm, we can obtain a low-rank matrix L (accompaniment) and a sparse

matrix S (singing voice).

5.2 Reconstructed voice spectrogram

To obtain the aforementioned reconstructed voice spectrogram E0 from F0, the harmonic mask-

ing Mh by the human-labeled F0 can be defined as the following equation:

Mh(t, f ) =


1 nFt −

w

2
< f < nFt +

w

2

0 others,
(5.9)
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Algorithm 3 NCRPCAi for singing voice separation

Input: Mixture signal X (X ∈ Rm×n), F0

1: Initialize: ρ > 1, µ0 > 0, λ = γ > 0, k = 0, J0 = L0 = S 0 = 0.

2: While not converge, do :

3:
∣∣∣∣∣ Lk+1 = P1,µ−1

k
(X − S k + µ−1

k Jk).

4:
∣∣∣∣∣ Lk+1= max (Lk+1, 0).

5:
∣∣∣∣∣ S k+1 = Qλµ−1

k
(X − Lk+1 + µ−1

k Jk + γE0).

6:
∣∣∣∣∣ S k+1= max (S k+1, 0).

7:
∣∣∣∣∣ Jk+1 = Jk + µk(X − Lk+1 − S k+1).

8:
∣∣∣∣∣ µk+1 = ρ ∗ µk.

9:
∣∣∣∣∣ k = k + 1.

10: end while.

Output: Lm×n ≥ 0, S m×n ≥ 0.

where Ft is F0 estimated at frame t, n is the index of a harmonic part, and w is a frequency

width for extracting the energy around each harmonic part, which set to w = 80 Hz as suggested

by [86] [98]. Therefore, define the reconstructed vocal spectrogram from the vocal annotations

as

E0 = X � Mh(t, f ), (5.10)

where � denotes the element-wise multiplication operator (Hadamard product).

5.3 Phase recovery

We calculate the magnitude spectrogram (X) by STFT in a musical mixture. Additionally, we

estimate the magnitude and the phase of each source to resynthesize the singing voice in the

time domain. The original phase P [100] as can be defined

P = angle(X); (5.11)
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Therefore, the recovered spectrogram X̃ with the original phase in the complex coordinate can

be obtained as

X̃ = S � cos(P) + i(S � sin(P)), (5.12)

where S is the value of the sparse matrix separated by NCRPCAi algorithm, � denotes the

element-wise multiplication operator (Hadamard product).

Figures 5.1, 5.2, and 5.3 show an example of the waveform and spectrogram comparison

of the clean and separated results using the proposed NCRPCAi and NCRPCA algorithms on

the iKala dataset (71716 chorus). The left parts are for singing voice and the right parts are for

the accompaniment. (a) is clean audio, (b) and (c) are the singing voice and accompaniment

separated by NCRPCAi and NCRPCA, respectively. As shown in this figure, Figure 5.1(b)

contains the least amount of interference from the background music (accompaniment), in other

words, NCRPCAi performs much better than NCRPCA. And the value of SDR in Figure 5.1(b)

is 12.30 dB.

5.4 Experimental evaluation

This section will focus on evaluating the proposed method and comparing it with the previous

ones at the different evaluation metrics.

5.4.1 Experiment settings

To confirm the effectiveness of the proposed algorithm for singing voice separation, our evalu-

ation is carried out on the iKala dataset. This dataset contains 252 clips, each 30 sec long. Each

song in the database is recorded in a wave file, sampled with 44.1 kHz, and has two channels.

One channel is a ground truth singing voice, and the other is a ground truth music accompa-

niment. To reduce memory usage, I downsampled all the audio from 44.1 kHz to 22.05 kHz

and computed its STFT by sliding a hamming window of 1411 samples with a 75% overlap

to obtain the spectrogram. The mixture was of the singing voice and accompaniment at 0 dB

signal-to-noise ratio (S NR = 0). In order to evaluate the proposed method with the previous

ones, 208 clips was used for the testing in the supervised method. The rest 44 clips for the

training the codebooks in the comparison methods.
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(a)

(b)

(c)

Figure 5.1: Example of waveform and spectrogram comparison of the clean and separated audio
using NCRPCAi and NCRPCA methods on the iKala dataset (71716 chorus). Left are singing
voice and the right are accompaniment. (a) is the clean audio (Top), (b) and (c) are the separated
audio by NCRPCAi (Middle: SDR is 12.30 dB) and NCRPCA (Bottom: SDR is 6.82 dB), re-
spectively.
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(a)

(b)

(c)

Figure 5.2: Example of waveform and spectrogram comparison of the separation re-
sults by using RPCA, RPCAi, and LRR methods on the iKala dataset (71716 chorus).
Left are singing voice and the right are accompaniment. (a) is the separated au-
dio by RPCA (Top: SDR is 5.62 dB), (b) and (c) are the separated audio by RPCAi
(Middle: SDR is 12.28 dB) and LRR (Bottom: SDR is 8.05 dB), respectively.

64



(a)

(b)

(c)

Figure 5.3: Example of waveform and spectrogram comparison of the separation results
by using LRRi, GSR, and GSRi methods on the iKala dataset (71716 chorus). Left
are singing voice and the right are accompaniment. (a) is the separated audio by LRRi
(Top: SDR is 12.18 dB), (b) and (c) are the separated audio by GSR (Middle: SDR is 5.89 dB)
and GSRi (Bottom: SDR is 12.18 dB) methods, respectively.
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Table 5.1: Singing Voice Separation Results on the iKala Dataset in dB (252)

Method GSDR GSIR GSAR GNSDR

RPCA 6.41 8.37 12.65 2.46

RPCAi 11.91 18.09 13.46 7.96

NCRPCA 6.75 9.73 11.19 2.8

NCRPCAi 12.03 18.31 13.54 8.08

5.4.2 Evaluation metrics

To evaluate the performance of the proposed method, assessed its separation performance in

terms of SDR, SIR, SAR, and NSDR. Higher values of SDR, SIR, SAR, and NSDR mean

that the method exhibits better separation performance in terms of the singing voice separation

tasks. More specifically, the value of SDR indicates the overall quality of the separated target

sound signals, the value of SIR reflects the suppression of the interfering source, and the value

of SAR represents the absence of artificial distortion. This work reports the metrics of global

values of SDR, SIR, SAR, and NSDR, respectively. In other words, the separation results are

described with GSDR, GSIR, GSAR, and GNSDR, respectively. In a similar vein, higher values

of GSDR, GSIR, GSAR, and GNSDR represent better quality of separation, especially the value

of GNSDR, which is the most important metric in the aspect of overall performance evaluation.

All the metrics are expressed in decibels.

5.4.3 Result and conclusion

This section evaluates the proposed algorithm on the iKala dataset and compares it with unsu-

pervised and supervised methods.

Comparison with RPCA method

Table 5.1 shows the experimental results of the proposed algorithm and RPCA method on the

iKala dataset. The results in this table confirm that NCRPCA shows better separation perfor-

mance than RPCA. Meanwhile, with the corresponding algorithms of using F0, NCRPCAi also

shows much better results than RPCAi in all evaluation metrics on the iKala dataset (252).
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Table 5.2: Singing Voice Separation Results on the iKala Dataset in dB (208)

Method GSDR GSIR GSAR GNSDR

LRR 7.73 11.41 11.17 3.93

LRRi 11.55 16.92 13.38 7.75

GSR 6.30 7.63 14.80 2.50

GSRi 11.51 16.34 13.63 7.71

RPCA 6.21 8.14 12.53 2.41

RPCAi 11.74 17.82 13.31 7.93

NCRPCA 6.55 9.49 11.05 2.74

NCRPCAi 11.85 18.04 13.39 8.05

• RPCA: [11]

• RPCAi: Informed RPCA [14]

• NCRPCA: Non-negative Constraint RPCA (Proposed 1)

• NCRPCAi: Informed NCRPCAi (Proposed 2)

Comparison with state-of-the-art methods

In order to properly comparison with state-of-the-art supervised methods, in this experiment,

208 clips was used for testing in the experiment. The other 44 clips for obtaining codebooks

in the training process. The supervised methods mainly utilized the online dictionary learning

[101]. The SPAMS toolbox1 is used to learn codebooks on the 44 clips, the dictionary size is

100 atoms, and the remaining 208 clips for testing.

• LRR: Low-Rank Representation [102]

• LRRi: Informed LRR [44]

• GSR: Group-Sparse Representation [44]

• GSRi: Informed GSR [44]
1http://spams-devel.gforge.inria.fr/

67



Table 5.2 shows the experimental results of the proposed NCRPCAi and state-of-the-art

methods on the iKala dataset (208). These results were obtained with the supervised (LRR,

LRRi, GSR, and GSRi) and unsupervised (RPCA, RPCAi, NCRPCA, and NCRPCAi) methods,

respectively.

The results in this table indicate that all methods (LRR, GSR, and NCRPCA) performed

better when using F0 than without it. The proposed NCRPCAi showed even better results than

the supervised methods which use online dictionary learning (LRR, LRRi, GSR, and GSRi).

As for the most important separation performance metric, the GNSDR, the proposed NCRPCAi

method shows the best results among all methods with the value of 8.05 dB.
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Chapter 6

Conclusion

In this chapter, first, overall of this research is summarized. Then, discuss the contributions.

Finally, future work is introduced.

6.1 Summary

This research mainly focuses on solving the singing voice separation problem. To achieve the

better separation performance, the main approaches are proposed by extending RPCA method.

Since RPCA has been a recently proposed of the popularization on singing voice separation

algorithm that separates singing voice and musical accompaniment from the monaural record-

ings. Although RPCA is an effective approach to the separate singing voice from the mixed

audio signal, it fails when one singular value (e.g., drum) is much larger than all others (e.g.,

other accompanying instruments).

Therefore, to overcome this disadvantage, the original topics in this dissertation are mainly

research on two different deformations of RPCA and the related effective optimization algo-

rithms with the auditory feature.

The first deformation is called WRPCA, which uses the different weighted values to de-

scribe the separated matrix. WRPCA can accurately estimate the rank of a observed matrix

that include drums sounds by separated low-rank matrix. Then, combining the proposed WR-

PCA with gammatone auditory filterbank for singing voice separation. The significance of

WRPCA can describe different low-rank matrix under the conditions of human’s auditory per-

ceptual properties. The experimental results show that the proposed method are effective for the
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separated singing voice than the previous method on the ccMixter and DSD100 datasets.

The second deformation is called CRPCA, which utilizes rank-1 constraint minimization

of singular values in RPCA instead of minimizing the nuclear norm. CRPCA not only pro-

vides a robust solution to large dynamic range differences among instruments but also reduces

the computation complexity. Evaluation results show that the proposed CRPCA method can

achieve better separation performance than the previous methods on the ccMixter and DSD100

datasets. The running time on CRPCA is shorter than the previous proposed methods under the

same conditions. Second, combining the proposed CRPCA with gammatone auditory filterbank

on cochleagram, which uses an alternative time-frequency representation method to imitate hu-

man auditory system for singing voice separation. And applying the time-frequency masking

estimation to improve the separation results. Evaluation results show that CRPCA with gam-

matone auditory filterbank achieves better separation performance than the conventional RPCA,

especially for the time-frequency masking estimation method on the MIR-1K dataset. Third,

further quality improvement is achieved by converting CRPCA to an ideal binary masking, in-

corporating it with harmonic masking to create a coalescent masking, and combining with a

vocal activity detection. Evaluation results on the ccMixter and DSD100 datasets show that the

proposed method achieves better separation performance than the previous methods. Finally,

proposing a singing voice separation method by combining F0 and non-negative CRPCA. Ex-

perimental evaluation show that the proposed method obtain better results than others on the

iKala dataset.

In a conclusion, the goal of this research is to solve the problem of singing voice separation.

More specifically, two extensions of RPCA-based were proposed for separating the singing

voice from the mixed music in the dissertation. One is called WRPCA, which uses the different

weighted values to describe the separated low-rank matrix. The other is called CRPCA, which

adopts the rank-1 constraint minimization of singular values in RPCA instead of minimizing the

nuclear norm. This is because the separated matrix by RPCA has the same weighted singular

values which cannot suitable for complex audio mixtures, especially for the drums. In addition,

utilizing the cochleagram on gammatone filterbank instead of spectrogram for singing voice

separation. Because the cochleagram is derived from non-uniform time-frequency transform

whereas time-frequency units in low-frequency regions have higher resolutions than the high-

frequency regions, which closely resembles the functions of the human ear. Therefore, it is
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promising to separate singing voice via the proposed extension methods on cochleagram instead

of the spectrogram.

With respect to WRPCA and CRPCA method on the same datasets. WRPCA obtains the

better results than CRPCA in SAR for singing voice separation. However, CRPCA can get the

better separation performance than WRPCA in SIR and SDR.

6.2 Contributions

The contributions of this dissertation are to present a set of optimization algorithms focus on

extensions of RPCA for singing voice separation that have the capability to separate the singing

voice from the mixed music signal in monaural recordings. The other applications can be used

by this sparse and low-rank model. More specifically, they contributions of this research can be

summarized as follows:

• The main contribution of this study solved the problem of singing voice separation by

the extensions of RPCA algorithm, WRPCA and CRPCA, respectively. After obtains

singing voice from the mixed music, as the pre-processing, the outcomes can be used to

improve the performance like singer identification, music emotion recognition, singing

voice synthesis, etc.

• The potential contribution of this research is to deal with the problems of noise reduction

and speech enhancement by using the separated low-rank and sparse model. Since the

background noise is assumed as the part of low-rank component and the human speech is

regarded as the part of sparse component.

6.3 Future works

This study concentrates on solving the problem of singing voice separation using RPCA and its

extensions. For the future works, the remain work in this dissertation could be further studied

to improve the quality of singing voice from the mixed audio signal. The specific information

can be roughly described as follows:

• As for the proposed evaluation methods, sound distortions of the separated singing voice

in WRPCA and CRPCA need to be further improved in singing voice separation task.
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• In order to reduce the influence of noise in the process of separation, investigating robust

graph embedding/learning approaches [103] [104] [105] to optimize the separation per-

formance of the mixed audio signal. In addition, combining the time-frequency masking

and F0 to improve the separation performance.

• Although the proposed methods are effective in the objective evaluation, this objective

evaluation criteria cannot meet the whole singing problem and using BSS evaluation

(e.g., SDR, SIR, SAR, and NSDR) is also limited to actual application. It is because

of the difference between the energy of error and how the listeners perceived it. More

specifically, when the application provides the separated sources to users for being played

(e.g., Kalaoke), the subjective quality of singing voice can be more important than the nu-

merical one. For future work, we will do some subjective evaluation experiments on the

singing voice separation problem. According to the different listeners, evaluate the qual-

ity in terms of preservation of the target source in each test signal. In addition, evaluate

the global quality compared to the reference for each test signal.
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