
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Revisited Diffusion Analysis of Salsa and ChaCha

Author(s) MATSUOKA, Yusuke; MIYAJI, Atsuko

Citation
2018 International Symposium on Information

Theory and Its Applications (ISITA): 452-456

Issue Date 2018-10

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/16193

Rights

Copyright (C)2018 IEICE. Yusuke MATSUOKA and

Atsuko MIYAJI, 2018 International Symposium on

Information Theory and Its Applications (ISITA),

2018, pp.452-456.

http://dx.doi.org/10.23919/ISITA.2018.8664391

Description



Revisited Diffusion Analysis of Salsa and ChaCha
Yusuke MATSUOKA and Atsuko MIYAJI

Graduate School of Engineering, Osaka University
2-1 Yamadaoka Suita Osaka, Japan

Abstract—Both ChaCha and AES are standardized as
symmetric ciphers in TLS 1.3; AES is a block cipher,
whereas ChaCha is a stream cipher. The security of
AES has been studied by many researchers. ChaCha,
however, needs more security analysis because it has
been proposed more recently, compared with AES.
Furthermore, ChaCha is improved from Salsa from the
point of view of diffusion and thus, diffusion analysis
of Salsa and ChaCha is important to understand their
security-design criteria. In this study, we revisit dif-
fusion analysis and investigate weak bits and weak
columns of Salsa and ChaCha. To the authors’knowledge,
this is the first detailed diffusion analysis of Salsa and
ChaCha.

I. Introduction
Salsa [2] and ChaCha [1] were proposed by Dan Bern-

stein. Recently, ChaCha has received much attention owing
to the following reasons. ChaCha and AES are standard-
ized as symmetric ciphers in TLS 1.3; AES is a block
cipher, whereas ChaCha is a stream cipher. Furthermore,
Google supports ChaCha because ChaCha can speed up and
strengthen HTTPS connections for Chrome on Android
without AES hardware acceleration [3]. The security of
AES has been studied by many researchers. ChaCha20
was proposed by Dan Bernstein in 2008 after he proposed
Salsa20 [2] in 2005. To date, few studies have analyzed
the security [4], [5], [6], [7]. To attain a reasonable level
of confidence regarding the security of ChaCha20, it is
necessary to perform more security analyses.

Furthermore, ChaCha20 is improved from Salsa [2]
to increase diffusion. Therefore, diffusion analysis of
Salsa20 and ChaCha20 is important for understanding
their security-design criteria. In [6], diffusion analysis on
Salsa and ChaCha is performed. However, the results
obtained did not deal with weak-bit and the 2nd-round
diffusion, that is, bit-dependent and round-dependent dif-
fusion, respectively.

In this study, we re-examine diffusion on Salsa and
ChaCha Core in terms of bit-dependent and round-
dependent diffusion. Our detailed analysis find that weak
bits in the 1st round and weak columns in the 2nd round
of Salsa and ChaCha when given one-bit different inputs.

This paper is organized as follows. Section II sum-
marizes both Salsa20 and ChaCha20 and explains the
previous studies on diffusion analysis [6]. Then, we revisit
diffusion analysis in Section III. Experimental results and
discussion are presented in Section IV. Finally, we present
our conclusions in Section V.

II. Previous Results
In this section, we first describe the stream ciphers

Salsa and ChaCha. Then, we describe the existing security
analysis ([6]).
A. Salsa20 and ChaCha

Salsa20 [2] is a stream cipher that was developed in 2005
by D. J. Bernstein. This cipher generates pseudorandom
numbers for performing operations based on 32-bit addi-
tion, XOR, and rotation. This operation is performed for
20 rounds that are repeated 10 times. The operation is
performed on an input word, specifically, on the rows and
columns of a 4 × 4 matrix. Salsa20/12 and Salsa20/8 are
variants of Salsa20 with a reduced number of rounds; they
use 12 and 8 rounds, respectively, compared to 20 in the
case of Salsa20.

ChaCha 20 [1] is a variant of Salsa20 that was developed
in 2008 by D. J. Bernstein. It aims to achieve improved
performance by increasing the diffusion in each round.
Corresponding to Salsa20/8, Salsa20/12, and Salsa20,
ChaCha8, ChaCha12, and ChaCha20 have been devel-
oped. Salsa20 and ChaCha20 use different round-to-round
operations and initial states. However, their encryption
structure is the same; both use 32-bit addition, XOR, and
rotation operations. Both of them have an initial state
with 16 4-byte words comprising the secret key, block
number, nonce, and constants. Each round consists of four
quarter rounds of 4 words each.

The encryption is performed on 64 bytes of plaintext m
to produce 64 bytes of ciphertext c.
mn : m0, m1, · · · , mk(m = m0 ∥ m1 ∥ · · · ∥ mk)
cn : c0, c1, · · · , ck(c = c0 ∥ c1 ∥ · · · ∥ ck)
Here, we outline the encryption procedure that is per-
formed for 20 rounds.
Encryption procedure

1) Make the 64-byte initial state X
(0)
n by using con-

stants, a secret key, block number, and nonce.
2) After performing 20 rounds of the operation on the

initial state to obtain the final state, perform 32-bit
addition of the initial state X

(0)
n and final state X

(20)
n

to yield the 64-byte output stream Xout
n .

3) Perform encryption (decryption) for every 64 bytes
by XOR-ing the 64-byte plaintext mn and Xout

n .
4) Obtain the ciphertext c by performing the procedure

1–3 for each n.
Salsa20 and ChaCha20 yield different initial states. In

Salsa and ChaCha, the secret key, block number, nonce,

ISITA2018, Singapore, October 28-31, 2018

Copyright (C) 2018 by IEICE 452



and constants are kj , ij , vj , tj(j = 0, 1, · · · , 7), respectively.
Each kj , ij , vj , tj(j = 0, 1, · · · , 7) has 32-bit size. Salsa20
and ChaCha 20 have the same constant values as men-
tioned above: t0 = 0x6170786e, t1 = 0x3320646e, t2 =
0x79622d32, t3 = 0x6b206574. The block number i is
counted up for each 64-byte encryption. The nonce is also
updated for each 64-byte encryption. Initial state of Salsa:

X(0) =


x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

 =


t0 k0 k1 k2
k3 t1 v0 v1
i0 i1 t2 k4
k5 k6 k7 t3


Next, we describe how to update the state X(r). We

call the operations of Salsa20 and ChaCha20 for every
round of Salsa Core and ChaCha20, respectively. The
round function QuarterRD operation includes four quar-
ter round operations that each process 4 words. The
round function in Salsa20 and ChaCha20 is denoted as
QuarterRDSalsa and QuarterRDChaCha, respectively. Next,
we discuss Salsa Core. By using 4 32-bit words as an
input for the QuarterRDSalsa function, we obtain a 4-
word output. Assuming that the input is x and output
is y, the output yj corresponding to each word xj is
generated by an arithmetic operation (ARX) performed by
combining 32-bit addition, rotation, and XOR operations.
In addition, the order of the input and output words is
fixed. In order, we call the QuarterRDSalsa function for
16 words in the row direction of the 4 × 4 matrix as the
input and output row round and call the QuarterRDSalsa
function for 16 words in the column direction of the 4 × 4
matrix as the input and output column round. The
input word is x = (xa, xb, xc, xd), and the output word is
y = (ya, yb, yc, yd). Then, y = QuarterRDSalsa(x) operates
according to the following formula.

(ya, yb, yc, yd) = QuarterRDSalsa(xa, xb, xc, xd)

=


yb = xb ⊕ ((xa + xc) <<< 7)
yc = xc ⊕ ((yb + xa) <<< 9)
yd = xd ⊕ ((yc + yb) <<< 13)
ya = xa ⊕ ((yc + yd) <<< 18)

Next, we discuss ChaCha Core. In ChaCha Core, as in
Salsa Core, the 4-word output is generated by ARX using 4
words. The order of the input and output words in ChaCha
Core differs from that in Salsa Core. A diagonal round
is used instead of a row round. The input word is x =
(xa, xb, xc, xd), and the output word is y = (ya, yb, yc, yd).
Then, y = QuarterRDSalsa(x) operates according to the
following formula.

(ya, yb, yc, yd) = QuarterRDChaCha(xa, xb, xc, xd)

=



ua = xa + xb

ud = xd ⊕ ua; ud = ud <<< 16
uc = xc + ud

ub = xb ⊕ uc; ub = uc <<< 12
y0 = u0 + u1
yd = ud ⊕ ya; yd = yd <<< 8
yc = uc + yd

yb = ub ⊕ yc; yb = yb <<< 7

TABLE I: Diffusion of Salsa [6]

IP \OP a b c d
a 12.105 1.955 4.316 6.430
b 7.255 1.0 1.946 4.330
c 4.333 0 1.0 1.958
d 8.784 1.958 2.468 5.649

µ: 5.0992
σ: 3.1887

TABLE II: Diffusion of ChaCha [6]

IP \OP a b c d
a 4.047 11.285 9.331 5.989
b 5.987 13.418 10.825 7.794
c 2.399 6.781 4.803 2.47
d 2.399 8.528 6.751 3.399

µ: 6.6424
σ: 3.2731

For the column and diagonal rounds, see [1].

B. Diffusion Property of Quarter Rounds
In [6], diffusion was used for Salsa Core and ChaCha

Core to evaluate the safety of Salsa and ChaCha, respec-
tively. Diffusion is considered one of the main properties of
the operation of a secure cipher; it refers to the property
of a function to quickly spread a small change in the input
to the maximum possible number of bits in the output. In
[6], diffusion was attributed to differences in one-bit of an
output word and one-bit of an input word. Higher diffusion
implies a better quarter round function. We describe these
experiments [6].
The input word is x = (xa, xb, xc, xd), and the output
word is y = (ya, yb, yc, yd) (each word contains 32 bits).
Then, for all shifts (i, j, k, l), the diffusion matrix D
is computed. (i, j, k, l) represents all shifts of the rota-
tion operation in Salsa Core and ChaCha Core. Because
0 ≤ i, j, k, l ≤ 31, the number of diffusion matrixes in each
Core is 32 × 32 × 32 × 32 = 220. Diffusion matrix D is
the matrix generated by each Dvw; this is the number of
difference bits in the output word yw(w = a, b, c, d) caused
by flipping one bit of an input word xv(v = a, b, c, d).

D =


Daa Dab Dac Dad

Dba Dbb Dbc Dbd

Dca Dcb Dcc Dcd

Dda Ddb Ddc Ddd


Experiments are performed to obtain D for each (i, j, k, l).
In Salsa Core and ChaCha Core, (µ, σ), that is, the mean
and standard deviation , respectively, of the diffusion
matrix D of each (i, j, k, l) are shown in Tables I and II.

III. Detailed Diffusion Analysis

The results of a previous study [6] compute how many
output bits y differ for y′, where y and y′ are outputs
for inputs x and x′, respectively. Here, a one-bit difference
exists between x and x′. However, their results did not deal
with bit-dependent and round-dependent diffusion. In this
research, we re-examine diffusion on Salsa and ChaCha
Core in terms of bit-dependent and round-dependent diffu-
sion, which implies weak-bit and the 2nd-round diffusion,
respectively.

ISITA2018, Singapore, October 28-31, 2018

Copyright (C) 2018 by IEICE 453



A. Bit-Dependent Diffusion
　When we compute the diffusion for 1 word, there are

32 one-bit differences. Diffusion is exactly dependent on an
address where a one-bit difference exists. This is because
both Salsa and ChaCha are ARX-based ciphers and thus
non linearity introduced by a modular addition would
cause differences in diffusion. Unfortunately, diffusions are
evaluated over a random one-bit difference of a 4-word
input (xa, xb, xc, xd) in [6]. It is important to compute
diffusions on each 32 one-bit differences for 4 columns.
However, a straightforward exhaustive examination would
require a large number of trials. Therefore, we evaluate dif-
fusion for each one-bit difference of input by the following
two procedures:

1) weak-bit search For a given i-th bit difference
of each 4-word input (xa, xb, xc, xd), compute the
average of each diffusion matrix, and determine a set
of weak bits SW = {i} that have a diffusion smaller
than that of other bits.

2) column-dependent weak-bit diffusions In the
previous procedure, the average of diffusions of each
4-word input with the same i-th bit difference is
computed. In other words, we have investigated con-
ditions dependent to column-dependent differences.
In this procedure, for each weak bit i ∈ SW , compute
a diffusion matrix Dv,w(v, w = a, b, c, d) individually
and analyze behaviors dependent on each column for
each weak bit.

B. Round-Dependent Diffusion
It is reported that positions of input and output such as

{(b, b), (c, b), (c, c)} and {(c, a), (c, d), (d, a)} shows rather
small diffusions in the first round for Salsa and ChaCha,
respectively [6], as seen from Tables I and II. Furthermore,
it is necessary to compute the second-round diffusion to
estimate the minimum round to achieve enough diffusion.
However, it is not clear whether the same position of
output word in the second-round as that in the first
round showss the low diffusion or not. The previous work
evaluates only the first round diffusion. In fact, it is easy
to compute the first-round diffusion because we need to
focus on only 1 column, that is, an input and an output of
1 QuarterRD-function. However, it is rather complicated
to compute the second-round diffusion: Salsa and ChaCha
consist of 4 columns, A, B, C, and D, containing 4 words
each, and every 4 columns are permutated each other after
execution of QuarterRD-functions.

Considering the above issues, we evaluate the second-
round diffusion as follows.

1) Set an input (xA, xB .xC , xD) for 4 QuarterRD.
2) Flip one bit for the first-column input xA and set

the 1-bit difference input to (xA, xB .xC , xD)
3) Execute QuarterRD-functions until the second

round.
4) Evaluate diffusions for each 4-column output. Note

that the outputs in the 4 columns of (xA, xB .xC , xD)

are different from each other. Thus, we need to
evaluate each 4-column input and output.

From the above 4), we compute each diffusion matrix
for every 4-column input. As a result, this examination
aims to search for weak columns which show low diffusion
compared with other columns.

IV. Experiments and Security Analysis
A. Experimental Conditions and Algorithms

In this chapter, we begin by explaining the experi-
mental conditions and then show Algorithms 1 and 2,
which correspond to Sections III-A and III-B. All the
experiments were executed on an Intel(R) Core(TM) i3-
4160 CPU@3.60GHz. Algorithms 1 and 2 compute the
diffusion for only the original rotations of (7, 9, 13, 18) and
(16, 12, 8, 7) for both Salsa and ChaCha, respectively. The
number of trials was 106 and thus the diffusion matrix
was computed as the average of 106 trials. Experimental
times for Algorithms 1 over Salsa (resp. Chacha) and 2
over Salsa (resp. ChaCha) are 210.53 (resp. 213.70) and
63.94 (resp. 65.74) seconds.

Let us present experimental Algorithm 1 in the below.
Algorithm 1 Bit Dependency Examination

1: Let an M -sequence input be x=(xa, xb, xc, xd).
2: Compute y =(ya, yb, yc, yd)=QuarterRD(x).
3: for all v ∈ {0, 1, 2, · · · , 31} do
4: Set the v-th bit complement of xa to xa.
5: Execute y′ =(y′

a, y′
b, y′

c, y′
d)=QuarterRD(xa, xb, xc, xd).

6: Compute Da = (Daa, Dab, Dac, Dad) = (HW(ya ⊕
y′

a), HW(yb⊕y′
b), HW(yc⊕y′

c), HW(yd⊕y′
d)).

7: Repeat steps 3 to 6 for xb, xc, and xd, and get D =
(Da, Db, Dc, Dd)t

8: Go to step 1 for the next x (106 trials).
9: Compute an average of D = (Da, Db, Dc, Dd)t for v.

10: end for

In Algorithms 2, we need to compute diffusion matrixes
for each columns from A to D, which is represented by
DA, DB , DC , DD, where:

DA =


DA

aa DA
ab DA

ac DA
ad

DA
ba DA

bb DA
bc DA

bd

DA
ca DA

cb DA
cc DA

cd

DA
da DA

db DA
dc DA

dd

 .

DB , DC , and DD are defined in the same way as DA.
Algorithms 2 is given as follows.

B. Security Analysis
In this chapter, we describe the experimental results

obtained with Algorithms 1 and 2 and revisit diffusion
analysis. Figures 1 and 2 show the results obtained for
Salsa and ChaCha with Algorithms 1, respectively. The
vertical axis shows the average for Dvw (25 × 106), while
the horizontal axis shows the address bit with a one-bit
difference from MSB= 31 to LSB= 0. Each line shows
the average for all the diffusion matrixes, that being 2.195
and 3.452 in Figures 1 and 2, respectively. From these
results, we can determine each set of weak bits, SSalsa

W =
{21, 22, 29, 30, 31} and SChaCha

W = {14, 15, 29, 30, 31}.

ISITA2018, Singapore, October 28-31, 2018

Copyright (C) 2018 by IEICE 454



Algorithm 2 2nd-Round Examination
1: Let an M -sequence input be x=(xa, xb, xc, xd).
2: Compute y =(ya, yb, yc, yd)=QuarterRD(x).
3: Set a random one-bit complement of xa to xa.
4: Execute y′ =(y′

a, y′
b, y′

c, y′
d)=QuarterRD(xa, xb, xc, xd).

5: Set (Daa, Dab, Dac, Dad) = (HW(ya ⊕ y′
a), HW(yb ⊕

y′
b), HW(yc⊕y′

c), HW(yd⊕y′
d)).

6: Execute z =(za, zb, zc, zd)=QuarterRD(ya, yb, yc, yd),
zA =(zA

a , zA
b , zA

c , zA
d )=QuarterRD(y‘

a, yd, yc, yb),
zB =(zB

a , zB
b , zB

c , zB
d )=QuarterRD(ya, yd, yc, y‘

b),
zC =(zC

a , zC
b , zC

c , zC
d )=QuarterRD(ya, yd, y‘

c, yb),
zD =(zD

a , zD
b , zD

c , zD
d )=QuarterRD(ya, y‘

d, yc, yb)).
7: Compute ((DA

aa, DA
ab, DA

ac, DA
ad) = (HW(za ⊕zA

a ), HW(zb ⊕
zA

b ), HW(zc⊕zA
c ), HW(zd⊕zA

d ))).
8: Repeat steps 3 to 6 for xb, xc, and xd, and

get Db, (DA
b , DB

b , DC
b , DD

b ), Dc, (DA
c , DB

c , DC
c , DD

c ),
Dd, (DA

d , DB
d , DC

d , DD
d ).

9: Go to step 1 for the next x (106 trials).
10: Compute an average of DA, DB , DD, and DD.

We went on to analyze the behaviors of SSalsa
W in detail.

For SChaCha
W , we will show the results obtained with our

final version due to space restrictions. Figure 3 shows
the diffusion average for SSalsa

W for each input a, b, c, d.
Figures 4 and 5 show the diffusion averages in SSalsa

W

for outputs a, b, c, d for a 1-bit difference in input b and
input c, respectively. From these results, we acquired the
31st bit difference for each input a, b, c, and d outputs a
significantly small diffusion as would be expected from the
features of addition. In particular, there are major differ-
ences between the 31st bit and other weak bits in the case
of (input, output)= (b, c), (c, d), that is Dbc = Dcd = 1,
while the bits of outputs 21, 22, 29, and 30 are greater
than 1. We should note that, in addition to 29, 30, and
31, bits 21 and 22 are also weak bits.

For the 2nd-round diffusion in Algorithm III-B, we need
to analyze the four columns A, B, C, and D independently.
Here we focus on Salsa. A detailed analysis of ChaCha
in our final version is given by showing only the average
diffusion for all the columns in Table VII, given the
space restrictions. Figures III，IV，V，and VI show each
diffusion of 1st-/2nd-round and increasing ratio in each
column A, B, C, and D, respectively.

Table IV shows that (DB
ca, DB

cb, DB
cc, DB

cd) = (0, 0, 0, 0).
This means that the 2nd-round diffusion in column B
for the 1st-round one-bit difference c has disappeared.
We investigated why the 2nd-round diffusion disappears.
By using the result obtained for the 1st-round diffusion
(Table I), we get Dcb = 0. By combining the fact that
an input to column B in the 2nd round is equal to
(ya, yd, yc, y′

b) to Dcb = 0, we get y′
b = yb. Therefore,

both inputs become equal to each other. Thus, we can
get (DB

ca, DB
cb, DB

cc, DB
cd) = (0, 0, 0, 0). In fact, our results

reflect the previous result that stated that high bias exists
in output yb in [5].

Table V shows that (DC
ab, DC

bb, DC
cb, DC

db) = (0, 0, 0, 0).
This implies that, for the 2nd-round diffusion in column
C on output b, any 1st-round one-bit difference disappears.

We considered why this had happened. The input of the
column C is (ya, yd, y′

c, yb) and, thus, Dc depends only on
(Dac, Dbc, Dcc, Ddc) as induced by differences in yc and y′

c.
Table I shows that Dab, Dbb, Dcb, Ddb varies from 1 to 4.3
on average. From this fact, we deduce that output zb of
column C in the 2nd round is independent of the input
difference in the 1st round.

In summary, Salsa still has a high bias on some columns
even in the 2nd round, that is column-dependent bias
exists for given one-bit difference inputs.

Fig. 1: Input-dependency diffusion (Salsa)

Fig. 2: Input-dependency diffusion (ChaCha)

Fig. 3: Diffusion average for inputs a, b, c, d (SSalsa
W )

TABLE III: 1/2-round Diffusions in Column A (Salsa)
IP\OP a b c d

a 12.324/15.917 2.018/13.134 4.414/15.617 6.417/15.831
(1.292) (6.508) (3.538) (2.467)

b 7.208/15.882 1/8.089 1.969/13.381 4.422/14.367
(2.203) (8.089) (6.796) (3.249)

c 4.453/15.958 0/5.282 1/10.799 1.982/13.271
(3.584) (-) (10.799) (6.696)

d 8.937/16.007 1.988/9.435 2.424/14.707 5.691/15.370
(1.791) (4.746) (6.067) (2.701)

ISITA2018, Singapore, October 28-31, 2018

Copyright (C) 2018 by IEICE 455



Fig. 4: Diffusion on outputs a, b, c, d for 1-bit-difference input
b

Fig. 5: Diffusion on outputs a, b, c, d for 1-bit-difference input
c

TABLE IV: 1/2-round Diffusions in Column B (Salsa)
IP\OP a b c d

a 12.324/9.498 2.018/2.433 4.414/2.865 6.417/6.578
(0.771) (1.206) (0.649) (1.025)

b 7.208/8.727 1/1.956 1.969/2.435 4.422/5.636
(1.211) (1.956) (1.237) (1.275)

c 4.453/0 0/0 1/0 1.982/0
(0) (-) (0) (0)

d 8.937/9.502 1.988/2.433 2.424/2.867 5.691/6.580
(1.063) (1.224) (1.1829) (1.156)

TABLE V: 1/2-round Diffusions in Column C (Salsa)
IP\OP a b c d

a 12.324/10.811 2.018/0 4.414/4.362 6.417/5.215
(0.877) (0) (0.988) (0.8123)

b 7.208/5.302 1/0 1.969/1.957 4.422/2.436
(0.736) (0) (0.994) (0.551)

c 4.453/4.386 0/0 1/1 1.982/1.955
(0.985) (-) (1) (0.987)

d 8.937/6.147 1.988/0 2.424/2.435 5.691/2.868
(0.688) (0) (1.005) (0.504)

TABLE VI: 1/2-round Diffusions in Column D (Salsa)
IP\OP a b c d

a 12.324/14.398 2.018/6.427 4.414/7.047 6.417/10.607
(1.168) (3.185) (1.597) (0.911)

b 7.208/13.004 1/4.384 1.969/5.274 4.422/7.941
(1.804) (4.385) (2.679) (1.796)

c 4.453/8.133 0/1.957 1/2.433 1.982/5.280
(1.826) (-) (2.433) (2.664)

d 8.937/14.856 1.988/5.634 2.424/6.679 5.691/9.942
(1.662) (2.834) (2.756) (1.747)

TABLE VII: 2-round diffusion (ChaCha)

IP \OP a b c d
a 15.814 15.980 16.031 15.907
b 15.996 15.970 15.975 16.004
c 15.60 16.091 15.764 15.356
d 15.578 15.928 15.941 14.935

V. Conclusion
. This study has reanalyzed the diffusion of Salsa and

ChaCha from the viewpoint of bit dependency and round
dependency. Our experiments clarified each set of weak
bits, namely, SSalsa

W = {21, 22, 29, 30, 31} and SChaCha
W =

{14, 15, 29, 30, 31} for Salsa and ChaCha, respectively. For
second-round diffusion, we found strong biases in that the
second-round diffusion for column B for the first-round
one-bit difference c disappeared; and the second-round
diffusion in column C on input b for any first-round one-bit
difference disappeared. Furthermore, we have theoretically
shown that the second-round diffusion in column B for the
1st-round one-bit difference c disappeared.

Acknowledgment
This work is partially supported by JSPS KAK-

ENHI Grant (C)(JP15K00183), Microsoft Research Asia,
CREST(JPMJCR1404) at Japan Science and Technol-
ogy Agency, the Japan-Taiwan Collaborative Research
Program at Japan Science and Technology Agency, and
Project for Establishing a Nationwide Practical Education
Network for IT Human Resources Development, Educa-
tion Network for Practical Information Technologies.

References
[1] Daniel J. Bernstein. Chacha, a variant of salsa20, 2008.
[2] Daniel J. Bernstein. The salsa20 family of stream ciphers. In New

Stream Cipher Designs: The eSTREAM Finalists, pages 84–97,
2008.

[3] Bursztein. E.: Speeding up and strengthening https
connections for chrome on anddroid . tech. rep. (april 2014).
https://security.googleblog.com/2014/04/speeding-up-and-
strengthening-https.html.

[4] Arka Rai Choudhuri and Subhamoy Maitra. Differential crypt-
analysis of salsa and chacha – an evaluation with a hybrid
model. Cryptology ePrint Archive, Report 2016/377, 2016.
https://eprint.iacr.org/2016/377.

[5] Subhamoy Maitra. Chosen iv cryptanalysis on reduced round
chacha and salsa. In IACR Cryptology ePrint Archive, 2015.
http://eprint.iacr.org/2015/698.

[6] Rajeev Sobti and Geetha Ganesan. Analysis of quarter rounds
of salsa and chacha core and proposal of an alternative design to
maximize diffusion. In Indian Journal of Science and Technology,
volume 9(3), jan 2016.

[7] Rajeev Sobti and G. Geetha. A comparison of diffusion properties
of salsa, chacha, and mcc core.

ISITA2018, Singapore, October 28-31, 2018

Copyright (C) 2018 by IEICE 456


