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†Graduate School of Engineering, Osaka University

Abstract—The ring variant of learning with errors (Ring-LWE)
problem has provided efficient post-quantum cryptographic
schemes including homomorphic encryption (HE) schemes. Usu-
ally, cyclotomic fields are used as underlying number fields
of Ring-LWE from the viewpoints of efficiency and security.
However, especially in the case of HE schemes, improving the
efficiency and ensuring the security are important tasks even
now. Arita and Handa proposed to use decomposition fields
as underlying number fields of Ring-LWE and successfully
constructed a HE scheme which can encrypt many plaintexts
efficiently at a time. However, there is no enough evidence that
decomposition fields do not provide weak Ring-LWE instances.

In this paper, we give an experimental analysis on lattice
attacks against Ring-LWE over decomposition fields. More pre-
cisely, we conducted lattice attacks against Ring-LWE over
decomposition fields and over the ℓ-th cyclotomic fields with
some prime numbers ℓ, respectively, and compared each of
the running-time, the success rate and the root hermite factor.
We also compared the results of the same attacks on various
decomposition fields to find decomposition fields providing weak
Ring-LWE instances. As a result of our analysis, we expect that
decomposition fields would provide more secure and efficient HE
schemes based on Ring-LWE compared to the ℓ-th cyclotomic
fields.

I. INTRODUCTION

The ring variant of learning with errors (Ring-LWE)-based
cryptography [15], [16] is one of the most attractive research
area in cryptography. The Ring-LWE has provided efficient
and provably secure post-quantum cryptographic protocols
including homomorphic encryption (HE) schemes [4], [5], [9].
Both post-quantum cryptography and HE have been strongly
desired to be developed their efficiency and security. In fact,
the standardization of post-quantum cryptography is underway
by National Institute of Standards and Technology, and HE
schemes which enable us to execute the computation on
encrypted data without decrypting has many applications in
cloud computing area.

The Ring-LWE is characterized by two probabilistic dis-
tributions, modulus parameters and by number fields, see
Section II-C for details. Usually, cyclotomic fields are used
as underlying number fields from the viewpoints of efficiency
and security [17]. However, especially in the case of HE
schemes, improving the efficiency of homomorphic arithmetic
operations on encrypted data and ensuring the security are
important tasks even now.

Arita and Handa proposed to use a decomposition field as
an underlying number field of Ring-LWE to construct a HE
scheme which can encrypt many plaintexts efficiently at a time

[1], see Section III for details of decomposition fields and of
Arita et al.’s idea. Arita et al.’s HE scheme called subring HE
scheme is indistinguishably secure under the chosen plaintext
attack if the decision version of Ring-LWE over decomposition
fields is computationally infeasible. Arita et al.’s experiments
[1, Section 5] showed that the performance of subring HE
scheme is much better than that of FV scheme based on Ring-
LWE over the ℓ-th cyclotomic field with a prime number ℓ,
implemented in HElib [11].

As for the security of subring HE scheme, Arita et al.
remarked that in the case of decomposition fields, some
propeties on the security of Ring-LWE are satisfied as well as
in the case of cyclotomic fields shown in [15], [16]. However,
solving Ring-LWE is reduced to solving a certain problem
on lattices, and the difficulty of problems on lattices depends
heavily on the structure and given bases of underlying lattices.
This means that underlying number fields would affect the
difficulty of lattice problems coming from Ring-LWE. Hence,
to ensure the security of subring HE scheme, one should give
experimental or theoretical analysis on attacks, while the paper
[1] did not provide such an analysis.

In this paper, we give an experimental analysis on the secu-
rity of Ring-LWE over decomposition fields. More precisely,
we compare the security of Ring-LWE over decomposition
fields and of Ring-LWE over the ℓ-th cyclotomic fields with
some prime numbers ℓ. In our experiments, we reduce the
search Ring-LWE to a problem of solving the (approximate)
closest vector problem (CVP) on certain lattices in the same
way as Bonnoron et al.’s analysis [3] because the target
of their analysis is Ring-LWE optimized for HE. We use
Babai’s nearest plane algorithm [2] and Kannan’s embedding
technique [12] to solve CVP, respectively, see Section IV-A
for details of the attacks. We compare each of the running-
time, the success rate and the hermite root factor. (The root
hermite factor [10] is usually used to evaluate the quality of
lattice attacks, see Section II-A for its definition.) We also
compare experimental results on lattice attacks against Ring-
LWE over various decomposition fields to find decomposition
fields providing weak Ring-LWE instances.

Our experimental results indicate that the success rates and
the hermite root factors for decomposition fields are the almost
same as those for cyclotomic fields. However, the running-
times for decomposition fields is getting longer as the ranks
of lattices occurring in the above attacks increase. Therefore
we expect that decomposition fields provide secure Ring-LWE
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against the above lattice attacks compared to cyclotomic fields
because the ranks of lattices occurring in our experiments are
very low compared to practically used lattices. This means
that we can use Ring-LWE over decomposition fields with
relatively small parameters compared to Ring-LWE over cy-
clotomic fields to construct HE schemes (or schemes of other
types). Consequently, although we only dealt with low rank
lattices, we expect that Ring-LWE over decomposition fields
would provide more efficient HE schemes.

II. PRELIMINARIES

In this section, we briefly review notions of lattices, number
fields and Ring-LWE. Throughout this paper, let Z, Q and C
be the ring of (rational) integers, the field of rational numbers
and the field of complex numbers, respectively. For a positive
integer m, suppose that any element of Z/mZ is represented
by an integer contained in (−m/2,m/2] ∩ Z.

A. Lattices

An m-dimensional lattice is defined as a discrete additive
subgroup of Rm. It is well-known that for any lattice L ⊂ Rm,
there are R-linearly independent vectors b1, . . . ,bn ∈ Rm

such that L =
∑

1≤i≤n Zbi := {
∑

1≤i≤n aibi | ai ∈ Z }. In
other words, for a matrix B = (b1, . . . ,bn) whose i-th col-
umn vector is bj , we have L = {Bx | x ∈ Zn}. Then, we say
that {b1, . . . ,bn} and B are a lattice basis of L and the basis
matrix of L with respect to {b1, . . . ,bn}, respectively. The
value n is called the rank of L, and it is denoted by rank(L).
An important invariant of L is the determinant defined as
det(L) :=

√
det (BBt). The determinant is independent of

any choice of bases.
There are various computationally hard problems on lattices.

Here, we explain the closest vector problem (CVP) which is
a well-known and basic problem on lattices. Given a lattice
L and a target vector t ∈ Rm ∖ L, CVP on (L, t) is a
problem of finding a vector x ∈ L such that for all vectors
y ∈ L we have ∥t − x∥ ≤ ∥t − y∥. For a real number
γ > 1, the approximate CVP on (L, t, γ) is a problem of
finding a vector x ∈ L such that for all vectors y ∈ L, we
have ∥t − x∥ ≤ γ∥t − y∥. Babai’s nearest plane algorithm
and Kannan’s embedding technique are basic algorithms for
solving the approximate CVP. Almost all known problems
on lattices, which are useful for constructing cryptographic
protocols, are getting more difficult as ranks of underlying
lattices increase, and the quality of two algorithms mentioned
earlier depends on ranks of input lattices.

Breaking some cryptographic protocols are reduced to solv-
ing certain computational problems on lattices, including the
(approximate) CVP [3], [8]. To solve such problems on lat-
tices, we usually use lattice basis reduction algorithms which
transform a given basis of a lattice into a basis of the same
lattice, which consists of nearly orthogonal and relatively short
vectors. In fact, an input of Babai’s nearest plane algorithm
is a (LLL) reduced basis, and Kannan’s embedding technique
outputs an appropriate vector among a reduced basis. In our
experiments, to solve CVP by Babai’s nearest plane algorithm

and by Kannan’s embedding technique, we use the LLL
algorithm [13] and the BKZ algorithm [7], [18] which are
well-known algorithms for computing reduced bases. The
quality of basis reduction algorithms is usually estimated by
the root hermite factor defined as follows: Let b be a shortest
vector among a basis of a lattice L with rank(L) = n, which
is reduced by a basis reduction algorithm A, and then the
root hermite factor δA,L is defined as a constant satisfying
δnA,L := ∥b∥/det(L)1/n. Better basis reduction algorithms
provide smaller hermite root factors.

B. Number Fields

To describe Ring-LWE and decomposition fields, which
play central roles in this paper, we need some notions from
algebraic number theory.

An (algebraic) number field is a finite extension field of Q.
Let K be a number field with extension degree [K : Q] = n.
An element a ∈ K is called an algebraic integer if there exists
a monic polynomial f ∈ Z[x] satisfying f(a) = 0. The ring
of integers OK of K is defined as a subring of K consisting
of all algebraic integers of K. The ring OK has an integral
basis (Z-basis) {u1, . . . , un}, i.e., for any element u ∈ OK ,
there exist integers a1, . . . , an such that u is uniquely written
as u =

∑
1≤i≤n aiui. It is well-known that any (integral) ideal

I of OK is uniquely factored into the product of some prime
ideals, i.e., there exist prime ideals P1, . . . ,Pm satisfying I =
Pe1
1 · · · Pem

m for ei ≥ 1. If I = pOK for a prime number p and
K is a Galois extension of Q, then we have OK/Pi

∼= Fpd

for some d ∈ N and all ei’s are mutually equal. Moreover,
we have med = n, where e := ei, and if all ei’s are equal to
1 (resp. all ei’s and d are equal to 1), then we say that p is
unramified (resp. splits completely) in K. Any prime ideal of
OK is a maximal ideal in OK , and thus we have Pi + Pj =
OK for any i ̸= j. This induces an isomorphism of rings
OK/P1 · · · Pm

∼= OK/P1 × · · · ×OK/Pm.

C. Ring-LWE Problem

Let K and OK be as above. Let χsecret and χerror be
probabilistic distributions on OK , and p an integer. We de-
note by OK,p the residue ring OK/pOK . For a probabilistic
distribution χ on a set X , we write a ← χ when a ∈ X
is chosen according to χ. We denote by U(X) the uniform
distribution on X . The Ring-LWE distribution on OK,p×OK,p,
denoted by RLWEK,p,χerror,χsec , is defined as a probabilistic
distribution that takes elements of a form (a, as+e) with a←
U(OK,p), s ← χsecret and with e ← χerror. The Ring-LWE
problem has two variants. One is a problem of distinguishing
RLWEK,p,χerror,χsec

from U(OK,p×OK,p), which is called the
decision Ring-LWE problem. The other is a problem that given
arbitrary many samples (ai, ais+ ei) ∈ OK,p ×OK,p chosen
according to RLWEK,p,χerror,χsec , find s ∈ OK,p, which is
called the search Ring-LWE problem.

The Ring-LWE problem has been expected to be com-
putationally difficult even with quantum computers. It was
proved that the decision Ring-LWE is equivalent to the search
one if K is a cyclotomic field, and if p is a prime number
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and (almost) splits completely in K [16]. In addition, this
equivalence is generalized to the cases where K/Q is a Galois
extension, and where p is unramified in K [6]. Moreover, there
is a quantum polynomial-time reduction from the search Ring-
LWE to the shortest vector problem on certain ideal lattices.

III. ARITA ET AL.’S IDEA

In this section, we describe the advantage of using decom-
position fields as underlying number fields of Ring-LWE to
construct efficient HE schemes.

A. Cyclotomic Fields and Decomposition Fields

First, we briefly review cyclotomic fields. For a positive
integer m, let ζm ∈ C be a primitive m-th root of unity and
n = φ(m), where φ(·) denotes Euler’s totient function. Then
K := Q (ζm) is called the m-th cyclotomic field. The ring of
integers of K coincides with R := Z[ζm]. Any prime number
p that does not divide m is unramified in K, and if p ≡
1 (mod. m), then p splits completely in K. The K/Q is a
Galois extension of degree [K : Q] = n, and its Galois group
Gal(K/Q) is isomorphic to (Z/mZ)∗.

Next, we describe decomposition fields of number fields.
Let L be a number field, and suppose that L/Q is a Galois
extension, and that its Galois group G := Gal(L/Q) is a cyclic
group. Let p be a prime number which is unramified in L and
satisfies pOL = P1 · · · Pg , where Pi’s are prime ideals of OL.
Let GZ be a subgroup of G, which consists of all elements
ρ fixing all Pi, i.e., ρ(Pi) = Pi for 1 ≤ i ≤ g, and Z the
fixed field of GZ . Then we call Z the decomposition field
with respect to p. The field Z is a number field and its ring
of integers of Z is OZ = OL ∩ Z. Suppose pi := OZ ∩ Pi.
Then we have pOZ = p1 · · · pg . A generator σ of GZ acts on
OL/Pi

∼= Fpd as p-th Frobenius map, i.e., σ(x) ≡ xp (mod.
Pi) for all x ∈ OL and for 1 ≤ i ≤ g. Therefore we have
OZ/pi ∼= Fp and [Z : Q] = g, i.e., p splits completely in Z.

B. Cyclotomic Fields v.s. Decomposition Fields

Let K, L and Z be as above and p a prime number which
is unramified in K and splits completely in Z. Assume that
L is the ℓ-th cyclotomic field with a prime number ℓ. As we
mentioned in Section I, cyclotomic fields are usually used as
underlying number fields of Ring-LWE. From the viewpoint
of the efficiency of Ring-LWE based-schemes, there are good
Z-bases of the rings of integers of K and Z [1], [17]. As for
the security of the Ring-LWE, in the cases of K and Z, both
the equivalence and the reduction mentioned in Section II-C
are satisfied since both K/Q and Z/Q are Galois extensions.

The main difference between K and Z is algebraic struc-
tures of their rings of integers modulo p. Since p is unram-
ified in K, we have OK,p

∼= OK/P1 × · · · × OK/Pk and
OK/Pi

∼= Fpd for 1 ≤ i ≤ k and for d ≥ 1, where Pi’s are
prime ideals in OK lying over p, i.e., pOK = P1 · · · Pk. FV
scheme [9], which is a HE scheme based on Ring-LWE, uses
OK,p as its plaintext slots, and thus FV scheme (or any HE
scheme with same plaintext slots) can encrypt and execute
some additions of dk = n = [K : Q] plaintexts in Fp at a

time. However, FV scheme cannot execute a multiplication of
the same number of plaintexts in Fp at a time. To execute a
multiplication of plaintexts in Fp, we can only use Fp×· · ·×Fp

(product of k finite fields) as the plaintext slots.
On the other hand, since p splits completely in Z, we have

OZ,p
∼= OZ/p1 × · · · × OZ/pg and OZ/pi ∼= Fp for any

1 ≤ i ≤ g, where pi’s are prime ideals in OZ lying over p.
This means that one can encrypt g = [Z : Q] plaintexts at a
time. Moreover, one can execute additions and multiplications
of the same number of plaintexts in Fp at a time. Because
the extension degrees g and n are directory related to ranks
of lattices occurring in known lattice attacks, we should set
g ≈ n to compare the security of Ring-LWE over these fields.
Therefore, HE scheme over Z can encrypt and operate d times
as many plaintexts as FV scheme over K at a time.

Remark 1:
1) If p ≡ 1 (mod. m), then p splits completely in K (recall

that K is the m-th cyclotomic field), and then there is no
advantage of using decomposition fields. However, for
some cryptographic applications, we want to use a small
p, e.g., p = 2 [1]. Moreover, to avoid lattice attacks, the
extension degree [K : Q] must be large as we discussed
above. Thus we cannot expect p ≡ 1 (mod. m) for
practical parameters in some application.

2) By Hensel lifting technique, for r > 1 and q := pr, we
have OZ,q

∼= Z/qZ× · · · × Z/qZ.

IV. EXPERIMENTAL ANALYSIS

In this section, we show our experimental results on lattice
attacks against Ring-LWE over decomposition fields and over
cyclotomic fields, respectively. First, we explain lattice attacks
in our experiments.

A. Lattice Attacks in Our Experiments

In our experiments, we reduce the search Ring-LWE to CVP
(or approximate CVP) in the same way as Bonnoron et al.’s
analysis [3] because the target of Bonnoron et al.’s analysis is
Ring-LWE optimized for HE. We describe it briefly in the case
of decomposition fields. Let OZ and p be as in Section III-A.
Set q := pr for r > 1. Let {µ1, . . . , µg} be a Z-basis of OZ ,
which is a good basis shown in [1, Lemma 3]. Sample vectors
a = (a1, . . . , ag), s = (s1, . . . , sg) and e = (e1, . . . , eg)
from U(Zg), DZg,σs and DZg,σe , respectively, where DZg,σ

denotes the discrete Gaussian distribution with mean 0 and
with variance σ2.

Put a :=
∑

1≤i≤g aiµi, s :=
∑

1≤i≤g siµi, e :=∑
1≤i≤g eiµi and b := as+ e =

∑
1≤i≤g biµi (mod. q). Then

(a, b) is a Ring-LWE instance over Z. Note that in order to
use Ring-LWE to construct HE schemes, the value σs should
be sufficiently small as well as σe because ℓ∞-norm ∥s∥∞
directory affects the growth of noises after multiplication. In
our experiments, we set σs = 1 and σe = 8 according to
[14]. By comparing all coefficients of both sides, we have
As + e = (b1, . . . , bg)

t = b (mod. q), where A is a matrix.
(For any vector v, vt means its transpose.) If we set A′ as
(A I), then we have A′(s e)t = b (mod. q), where I denotes
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TABLE I
EXPERIMENTAL RESULTS ON BABAI’S NEAREST PLANE ALGORITHM FOR p = 2.

ℓ 59 16183 73 2089 83 4051 131 5419 173 14449 227 9719
g - 58 - 72 - 81 - 129 - 172 - 226

Rank of lattice 118 116 146 144 166 162 262 258 346 344 454 452
r′ 20 20 20 20 20 20 30 30 30 30 30 30

Number of samples 93 100 100 100 100 100 100 100 40 37 15 14
Success rate [%] 100 100 100 100 100 100 100 100 100 89 0 0

Average of root hermite factor 1.014 1.014 1.014 1.014 1.014 1.014 1.020 1.020 1.020 1.020 1.021 1.021
Average of running-time [sec] 72.22 88.97 218.4 238.2 443.3 456.1 12790.5 11744.6 54763.0 57862.3 231816.1 237846.9

Ratio of running-time [%] - 123.2 - 109.0 - 102.9 - 91.8 - 105.7 - 102.6

The columns which the values g are indicated show the results for decomposition fields, and other columns show the results for cyclotomic fields. The “Ratio of
running-time” means the ratio “average of running-times for a decomposition field/average of running-times for a cyclotomic field” for each g.

TABLE II
EXPERIMENTAL RESULTS ON KANNAN’S EMBEDDING TECHNIQUE FOR p = 2.

ℓ 59 161831 73 2089 83 4051 131 5419 173 14449 227 9719
g - 58 - 72 - 81 - 129 - 172 - 226

Rank of lattice 119 117 147 145 167 163 263 259 347 345 455 453
r′ 20 20 20 20 20 20 30 30 30 30 40 40

Number of samples 100 100 100 100 100 100 100 100 100 100 23 21
Success rate [%] 100 100 100 100 100 100 100 100 100 100 100 100

Average of running-time [sec] 10.4 10.7 36.7 41.4 92.3 97.6 4714.6 5556.7 19387.5 25138.7 136978.2 159772.6
Ratio of running-time [%] - 103.5 - 112.7 - 105.7 - 117.9 - 129.7 - 116.6

We computed the root hermite factor for reduced bases, but we omitted to show them because the results of the success rate below are 100.

Fig. 1. The average of running-times of Kannan’s embedding technique for cyclotomic fields and for decomposition fields with respect to p = 2, 3, 5, 7, 11.
The “p = 2 cyclotomic” means the results of cyclotomic fields shown in Table II, and others mean the results of decomposition fields with respect to
corresponding prime numbers p. We set modulus parameters q = pr

′
so that these moduluses have the almost same bit sizes. We only show the average

results on at least 10 samples.

the g× g identity matrix. From the choice of si’s and of ei’s,
our target vector (s e)t is a very short vector among all
solutions to A′y = b (mod. q), and thus we can expect that
our target vector can be found by solving (approximate) CVP
on the lattice L = {x ∈ Z2g | A′x = 0 (mod. q)} and on
w := (0 b)t which is a solution to A′y = b (mod. q).

We take

B =

(
I 0g,g

−A qI

)
as a basis matrix of L, where 0g,g denotes the g × g zero
matrix. We reduce the basis matrix B by the LLL algorithm
and the BKZ algorithm with block size β = 10. (In practice,
the β should be 10 or 20.) Let Bred be a reduced basis of
B. We input Bred and w to Babai’s nearest plane algorithm.

The quality of Babai’s nearest plane algorithm depends on the
quality of basis reduction algorithms used to compute input
reduced bases, and thus we compute the root hermite factor
for Bred.

On the other hand, Kannan’s embedding technique takes a
basis matrix

C =

(
B −w

01×2g M

)
as an input, and we set M = 1 according to a result of
an experimental study on Kannan’s embedding technique for
LWE [19]. We also use the LLL algorithm and the BKZ
algorithm with β = 10 to reduce the above basis matrix.

Remark 2: In the case of the ℓ-cyclotomic fields with prime
numbers ℓ, we use {1, ζℓ, . . . , ζℓ−2

ℓ } as a Z-basis, which is
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also a good basis [17].
Remark 3: For 1 ≤ r′ < r and q′ := pr

′
, we can

obtain samples of RLWEK,q′,χerror,χsec from samples of
RLWEK,q,χerror,χsec by a natural projection OZ,q → OZ,q′

via a 7→ a (mod. q′). In our experiments, we use small r′ to
reduce running-times and only show r′ in experimental results.

B. Experimental Results

We used a computer with 2.00GHz CPUs (Intel(R)Xeon(R)
CPU E7-4830 v4 (2.00GHz) × 111) and 3TB memory. The
OS is Ubuntu 16.04.4. We implemented a code for sampling
Ring-LWE instances in SageMath version 7.5.1. We also used
Magma V2.23-1 to execute lattice attacks. We sampled 100
samples and conducted lattice attacks for them.

We show our experimental results in Tables I and II for
p = 2. Table I shows that there is no large difference between
experimental results of cyclotomic fields and of decomposition
fields. On the other hand, Table II shows that Kannan’s
embedding technique is much faster than Babai’s nearest plane
algorithm. This implies that the behaviors of basis reduction
algorithms depend heavily on the structure of input lattices.
This is a reason why experimental analyses are necessary
for ensuring the security of lattice (or other problems) based
schemes. Table II also shows that the running-times for de-
composition fields are getting longer than those for cyclotomic
fields as g (or ℓ− 1) increases. Therefore we can expect that
decomposition fields would provide more secure Ring-LWE
against the lattice attacks described in Section IV-A compared
to ℓ-th cyclotomic fields because the ranks of lattices occurring
in our experiments are very low compared to practically used
lattices. This means that we can use decomposition fields
of relatively low extension degrees compared to the ℓ-th
cyclotomic fields, and the use of such number fields makes
Ring-LWE-based schemes efficient. Consequently, although
we only dealt with low rank lattices, we expect that Ring-
LWE over decomposition fields would provide more efficient
HE schemes.

We also conducted experiments for decomposition fields
with respect to p = 3, 5, 7, 11 to find decomposition fields
providing weak Ring-LWE instances, and Fig. 1 shows the
experimental results. In this experiments, we cannot find
decomposition fields providing weak Ring-LWE instances.

V. CONCLUSION

In this paper, we gave an experimental analysis on the se-
curity against lattice attacks of Ring-LWE over decomposition
fields which can provide more efficient homomorphic encryp-
tion (HE) schemes. We compared the security against lattice
attacks of Ring-LWE over decomposition fields with that
of Ring-LWE over the ℓ-cyclotomic fields with some prime
numbers ℓ, which are usually used as underlying number fields
of Ring-LWE. Although we only conducted experiments for
low rank lattices, we expect that decomposition fields would
provide more efficient and secure HE schemes compared to
cyclotomic fields. We believe that our work will provide an
opportunity for investigating new number fields that provide

better cryptographic schemes based Ring-LWE compared to
cyclotomic fields.
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