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Robot Social Emotional Development through Memory Retrieval*

Ha-Duong Bui'!, Thi Le Quyen Dang', and Nak Young Chong!

Abstract— Robot emotion representation is gaining increas-
ing attention to facilitate long-term human-robot interaction
(HRI) in recent years. In particular, human-like robot emotion
elicited through HRI is of great use in creating trust between
humans and robots. In attempting to represent robot emotions
that lead to gaining social acceptance, psychological studies
of human emotion have been extensively performed. Among
the various factors that affect the way people express their
emotional competencies, we conjecture that two factors, social
interaction and experience, can be considered important to elicit
human emotions, and therefore can be used to represent robot
emotions. We believe that social and developmental interaction
paradigms, such as social sharing and social referencing, can
shape robot emotions toward promoting social acceptance.
Besides, the robot’s previous experience can be a key factor
contributing to robot personality formation and development.
In this paper, we not only focus on the modeling of two
eliciting factors affecting the formation of robot emotion but
also examine the decline of memory retention over time.
Specifically, the relationship between emotion and memory is
investigated to design a filter for the memory consolidation
process and memory forgetting mechanism. The mechanism is
used to enhance robot memory performance based on emotional
salience and time parameters. Experiments were performed
with a humanoid robot Pepper having verbal and non-verbal
interactions with 24 human subjects. Participants rate their
perception of the robot in terms of human-likeness, likeability,
safety, and emotional expressions through a questionnaire.
The results showed that most of the participants enjoyed
interacting with the robot and they wished they could have more
interactions in the future. They perceived safety and responded
favorably toward the robot emotional expressions.

I. INTRODUCTION

Emotion helps reflect how an individual is affected by
and adapted to environmental stimuli or situation during
human-human interaction, thereby it helps create a bond or
trust between humans. When interacting with a social robot,
humans tend to treat the robot as a companion/friend/pet.
Expecting the same effect of emotion in human-human
interaction, artificial emotions of robots have been studied
to boost human-robot interaction (HRI) [1]. Likewise, robot
emotions should be generated and expressed through behav-
iors appropriately to gain human acceptance. Furthermore,
robot emotions have been modeled as a function of cognitive

*This work was supported by the EU-Japan coordinated R&D project
on “Culture Aware Robots and Environmental Sensor Systems for Elderly
Support,” commissioned by the Ministry of Internal Affairs and Communi-
cations of Japan and EC Horizon 2020 Research and Innovation Programme
under grant agreement No. 737858. The authors are also grateful for
financial supports from the Air Force Office of Scientific Research (AFOSR-
AOARD/FA2386-19-1-4015).

1Ha-Duong Bui, Thi Le Quyen Dang, and Nak Young Chong are with
the School of Information Science, Japan Advanced Institute of Science and
Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan {bhduong,
quyen.dang, nakyoung}l@jaist.ac.jp

memory to recall affective experiences when selecting a
specific behavior, inspired by the role of human emotion
in reliving past experiences [2], [3]. However, it should be
noted that human emotions are influenced by past expe-
riences through the retrieval process of stored memories,
which has been neglected in previous literature. Besides,
human emotions are activated and influenced by other factors
known as the social effects which consist of two aspects:
referencing and sharing. On the one hand, social referencing
helps human infants acquire basic interpretation to generate
emotions and imitate their parents’ emotional behaviors. On
the other hand, social sharing helps an individual gain a
more detailed knowledge and drive their emotions based on
personal knowledge and experiences during self-discovery
and exploration of the environment.

In this paper, we propose a new robot emotion generation
architecture based on robot personal experiences and human
guide reflecting the effects of social referencing and social
sharing. To enable robots to consolidate, maintain, and recall
personal experience, we develop our robot long-term mem-
ory based on the Epigenetic Robot Intelligent System (ERIS)
[4]. In addition, human guides during HRI help direct and
shape robot emotions to promote human acceptance of social
robots. Our robot emotion is represented on the valence-
arousal space [5] which was used in modeling emotions
in cognitive science [6], [7]. Besides, we used emotional
body expressions proposed by our previous work [8], [9] to
enable robots to show their emotional states through their
posture and gestures. In this work, to evaluate the human
understanding and acceptance of robots with the proposed
social emotional development architecture, we employed
a humanoid robot Pepper [10] and performed verbal and
non-verbal interactions between humans and the robot. In
our experiments, human participants were required to help
Pepper acquire interpretation about an object presented to
generate and express emotions toward the object. Then the
Pepper’s responses were evaluated by the participants.

This work makes a contribution to the ongoing Horizon
2020 EU-Japan project “Culture-Aware Robots and Environ-
mental Sensor Systems for Elderly Support” (CARESSES)
[11], [12], which aims to pave the way toward integrating the
use of care robots and smart environments [13], [14] into the
future of societal infrastructure.

This paper is organized as follows: In Section II, we
present our proposed method for representing robot emotions
based on the social effects and robot personal experiences.
Experimental scenarios, procedures, results are described in
Section III. And our conclusions are drawn in Section IV.



II. REPRESENTING ROBOT EMOTION BASED ON SOCIAL
EFFECTS AND PERSONAL EXPERIENCE

To enable natural interactions between a human and a
robot and offer deeper levels of engagement for a long period
of time, we propose a novel robot emotion generation model
incorporating the robot’s personal experience and social
effects for both perspectives of referencing and sharing. The
details of the proposed method are given in the following
sections.

A. ERIS-based Memory Architecture

Cognitive memory plays an important role in the devel-
opment of social robots for active and autonomous learn-
ing responding to environmental stimuli through acquired
experiences and continuous interactions. Among different
memory architectures, ERIS [4] aims at modeling inter-
connections among memory components: Semantic Mem-
ory (SM), Episodic Memory (EM) and Procedural Memory
(PM). This architecture was used to develop a robot long-
term memory (LTM) for robot emotional experiences in our
previous work [7]. Extending the previous work, we now
focus on the filtering process in memory consolidation and
the effect of memory forgetting for removing out-of-date
information and facilitating memory performance. Besides,
we also design a simple PM component to enable robots to
maintain predefined emotional expressions and behaviors.
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Fig. 1. Memory Consolidation Process

1) Memory Consolidation: The memory architecture
helps a robot consolidate its knowledge related to the sur-
rounding environment and objects therein. The consolidation
process is shown in Fig. 1. To extract visual features from
the scene including objects for forming affective appraisals
for future access, we design a functional module called
Sensory Representation (SR) which can perform both global
extraction and local extraction. Global extraction can obtain
scene-based visual features such as the number of objects and
positions of objects in the scene. Local extraction helps get
object-based visual features such as color or SIFT features.
Extracted features from SR are combined with the updated
robot personal emotion responding to the scene to be encoded
as an experience. We use a predefined threshold w indicating
the minimum level of influence that must be exerted to
the memory consolidation process. If the emotion at the

time of consolidating the experience (PFE) is weaker than
w, the current experience will be discarded; otherwise, it
can be consolidated into the robot LTM with a certain
identification. Scene-based visual features combined with
the updated personal emotion can be consolidated as an
episodic memory item. Object-based visual features can form
semantic memory items. One semantic item can represent
features of only one object. One experience is represented
by only one episodic memory item and one or more semantic
memory items. Those memory items are linked to represent
the interconnection among memory components in the robot
LTM. Those links can help the robot relive past experiences
when they are recalled through memory retrieval.

2) Memory Retrieval: When observing a scene which
contains a single object, robots are able to recall past
experiences based on object-based visual features [6]. They
extracted features of the new object (o,) using the SR
function to compare with the corresponding features of the
previously seen objects (0s) to find the most similar object.
The similarity level of two different objects are defined using
the object color histogram and SIFT features given by Eq. 1

$1M(0n, 05) = €:81Me1(0n, 05)+(1—€)-5iMg; 1 (0n, 05) (1)

where sim. and simg; s are calculated based on the Eu-
clidean distance between the color histograms and SIFT fea-
tures of two objects, respectively. € represents the influence
proportion of different features. We define a threshold 7 and
compare 1 with the similarity scores of all seen objects and
the new object. If sim(o,,0s,) > 7, the i" seen object is
similar to the new object. If multiple similar objects exist, the
object with the highest similarity score is selected as the most
similar previously seen object to the new object. The selected
object has been consolidated as a semantic item which is
linked to a certain episodic memory item. Recalling these
memory items enables the robot to relive the past experience
including visual information and emotion. In our design,
we assume that the memory forgetting mechanism, mood
influence, and memory recollection faults do not hinder the
retrieval of memories.

3) Memory Forgetting Mechanism: In an attempt to de-
sign an effective forgetting mechanism, the time decay-based
forgetting mechanism was applied to a previous memory
architecture as an emotion-based function calculating the
historical component of episodic memory items [15]. The
historical component was combined with a context compo-
nent to decide whether a memory item should be retrieved
by a given object or not. We use this historical component to
identify the active level of each memory item to remove out-
of-date information. Besides, both of semantic and episodic
items contain declarative knowledge which can be forgotten
after a period of time equally. The active level is used to
identify only episodic items, because the emotional informa-
tion of an experience is consolidated in an episodic memory
item and we consider the emotional salience as an important
factor to activate the memory item for the retrieval process.
Semantic items can be erased when all linked episodic items
are deleted. The active level of an episodic item (E) at time



t is calculated by
v+n
M(t)+b

where v and b are set to 1 and 3, respectively, for shaping the
decay curve [15], n is the number of retrieval times, s(t) is
the decay function with emotional salience and M (¢) is the
integral of s(t). Specifically, the decay function is calculated
by

ActiveLevelg(t) = s(t) (2)

s(t) =e @t 3)

where ¢t is the lifetime from the instant the item is created
until the current time measured in minutes and « is the
emotional salience. We apply the arousal value (ayqiue)
of the emotion attached to each episodic memory item,
since arousal can influence the effect of valence on memory
performance [16], to calculate o given by

o= (amar - avalue) (4)
amaz

where a4, s the maximum value of arousal component in a
certain range. If a memory item is consolidated with arousal
component that equals a,,.,, the item is always available
for retrieval. We normalize the active level of each memory
item at the current time ¢, in the range of (0,1) to get the
retrieval likelihood of each memory item as follows:

ActiveLevelg(t.)
Z?Zl ActiveLevelg, (t.)

Likelihoodg(t.) = 5)
where ActiveLevelg(t.) and ActiveLevelg,(t.) are the
history components of the current memory item and the ;"
memory item at the current time, respectively.

After getting the retrieval possibility of an episodic mem-
ory item Likelihoodp, we compare it with a threshold
fGtnresn to decide whether the memory item should be kept
or removed. If Likelihoodg < fgihresh, then the memory
item should be removed. We do not apply the mechanism
for pre-defined behaviors maintained in PM.

B. Robot Emotion Generation Model
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Robot Emotion Generation Model

Our robot emotion model aims at incorporating two main
factors capable of enabling the robot to generate and express
its internal states in an interactive and developmental manner.
The first factor is the social effects modeled as social sharing
and social referencing. The robot’s personal emotion and
interpretation about the environment are learned and affected

by humans during HRI. The second factor is the robot’s
own personal experiences acquired continuously throughout
the robot’s developmental process. These experiences can
help the robot create its evolving personality, as well as
differentiate itself from other robots. Furthermore, we also
consider the decay of the intensity of the emotion over time
and devise a detailed mechanism to optimize the memory
performance. The general diagram of our system is shown
in Fig. 2.

During interactions with a human, the robot receives visual
stimuli from the environment and captures scenes. The robot
is endowed with the Sensory Representation (SR) function
capable of extracting visual features from the scene to be
ready for memory processes. Affective appraisals, which
are created based on object-based visual features extracted
through SR, are used to search for the most similar pre-
viously seen object through the memory retrieval process in
Section II-A.2. The experience that contains the most similar
object is recalled from the robot LTM. Successfully recalling
the most similar experience which contains the seen object,
the robot can relive the experience including all sensory
information and emotion. This experience can influence the
robot personal emotion. Based on the assumption made
in [7], only experienced emotion can influence the robot
personal emotion. Furthermore, we ignore the application of
forgetting mechanisms on decaying the experienced emotion
based on the assumption in Section II-A.3.

In addition, the human may inject his/her emotion into the
robot. This is what we call the guided emotion component
directing and influencing the robot personal emotion. In this
work, we enable the robot to interact with humans through
spoken natural language as the same way a human interacts
with others. Guidance from humans can be given through
utterances which describe their emotions and abstract thought
about the given object such as It looks scary or I am afraid
of it. Since we focus on modeling and representing robot
emotions, we ignore complicated natural language processing
techniques. In our implementation, we use a maximum of
three sentences to describe the user’s guided emotion directed
to an object. The robot is equipped with the Hint Extraction
function which can convert speech to text, split the sentence
into words and obtain guided emotion based on split words.
In order to get guided emotions from words, we consider
the word frequency to choose the most suitable word for
describing human emotions. Low-frequency words require
higher brain effort to recognize [17], while emotions and
emotional effects decay over time [18]. Thus, high-frequency
words can be used to express emotions without changing
the emotions through time effects. The Twister Data Server
and an extensive list of English words with affective ratings
[19] are used as a frequency dictionary and an emotional
dictionary, respectively. On the one hand, the frequency
dictionary contains multiple words with different popularity
in daily use. On the other hand, the emotion dictionary
contains 13,915 words, each of which was rated by human
subjects to have values of valence and arousal with a standard
mean and deviation. Referring to the frequency dictionary,



the robot can acquire most popular words split from human
guide. Each word gives the robot different values of valence
and arousal through a searching mechanism applied on the
emotion dictionary. Words with no values of valence and
arousal will not influence the robot, thus we assign frequency
values of these words as 0. We calculate the guided emotion
based on the rated emotional values of selected words and
the word frequency as follows:

Yot Cword; - freg;
Z;n freg;
where m is the number of the most important and popular
words, Cword; represents the emotional value of the i'"
word taken from the emotion dictionary and freg; is the
number of times of occurrence of the i word in the

frequency dictionary.
Now the robot’s personal emotion that consists of the

human guided emotion and the experienced emotion is
updated as follows [7]:

Cpg,, = \M-Cer,, +22-Crg, +(1-A1—X2)-Cpg, (7)

(6)

Cee =

where Cpp,, describes the current emotion of the robot.
C’GE“, C’EEH, and C’pE,/1 represent the guided emotion,
the experienced emotion, and the robot emotion at the
previous time step, respectively. A; and A are percentage
weights for Cg B, and Cg E,,» Tespectively, based on their
relative importance. Since valence and arousal act differently
on directing robot attentions toward humans and memory
performance enhancement, the parameter p is used as the
least influence of each component to calculate A; and )\ as
follows:
|Cer,, — u

AL = 3
|Cer,, — pl +|CrE,, — pl +|CpE,, —

ICrE,, —u

Ay =
|Cer,, — pul+|CeR,, —pul+|Cpr,, — pl

€))

High arousal can influence the human tendency to share
with others and enhance memory performance. Negative and
positive valences do the similar effects. Therefore, we set p
to 1 and 5, respectively, to update the valence and arousal
components of the robot personal emotion [7].

The robot personal emotion is used not only as a filter
for the memory consolidation process, but also as a decisive
factor in selecting emotional behaviors. We enable the robot
to express emotions through its posture and gesture, thereby
humans can understand how the robot is affected by and
adapted to a variety of environmental stimuli. Emotional
expressions can help increase the human comfort level when
interacting with robots. A basic behavioral repertoire using
eight emotional labels as shown in Fig. 3 is implemented
on the Pepper robot [8], with three different movement
speeds: fast, medium, and slow. Different combinations of
valence and arousal values are shown in Fig. 4. Incorporating
different movement speeds into a basic repertoire, we can
endow the Pepper robot with 24 different emotional body
expressions.

III. EXPERIMENTS
A. Farticipants

A total of 24 participants (12 males, 12 females) ranging
in age from 22 to 35 (M = 26.42,5D = 3.8) took part
in the experiment. They are from Vietnam, China, Thailand,
Malaysia, Japan, Mongolia, Taiwan, Syria, and Indonesia and
recruited at Japan Advanced Institute of Science and Tech-
nology (JAIST). All participants are students in JAIST who
are enrolled in a Master’s or Doctoral program in English.
Before starting the actual experiments, all participants were
given a written instruction about the experimental protocol.
They could ask any questions until they can comprehend the
protocol.

B. Experiment Scenario

We have designed an experimental scenario where the Pep-
per robot interacts with each of the participants to develop
its social emotion and behavioral expressions. The scenario
employs two phases of processing: training and testing.

The two phase experiment investigated that the robot can
create object affective appraisals based on the visual features
underlying object recognition such as color and shape, recall
past experiences, and generate personal emotions and ex-
pressions given each interaction with the participant. During
interactions, the environmental scene and a single object
therein were captured by the robot’s RGB camera. The
robot emotion was initialized by a neutral non-arousing state
before starting both phases. The robot LTM is empty at the
beginning of the training phase. In addition, we prohibited
the robot from interacting with objects and/or the participants
between the two phases to let the robot emotion return to a
neutral non-arousing state.

The objective of the first phase (training phase) is to
enable the robot to acquire knowledge and shape emotions
to increase acceptance to the participant. In this phase, the
robot is directed and influenced by the human participant’s
emotional guide. The guide is given to the robot through
the utterances of participants. By doing so, each of the
participants’ emotion is injected to the robot. The injected
or guided emotion is then used as one of the factors con-
tributing to the robot personal emotion update. Besides, the
visual features of the objects are extracted to form affective
appraisals. These appraisals are used to recall the robot’s past
experiences through the memory retrieval process, thereby
the experienced emotion is retrieved. The robot personal
emotion is updated based on the human-guided emotion and
the experienced emotion to select a behavioral expression. Fi-
nally, the participant feedback survey is administered through
a questionnaire.

The second phase (testing phase) aims to test whether
the robot can develop and express its emotion using the
human guides injected in the first phase. There are no hints
given to the robot in this phase. The robot acquires the
human knowledge, forms affective appraisals, and performs
reasoning to recall its past experiences. The experienced
emotions are used as the only factor contributing to the
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robot’s personal emotion update responding to the visual
stimuli. As was the case with the first phase, the robot
behavioral expressions are observed and evaluated by the
participant.

At the end of each phase, participants were asked to
fill out questionnaires written specifically for their percep-
tion and acceptance of the robot. We evaluate three main
characteristics of the robot such as human-likeness [20],
likeability, and safety [21], as well as the robot emotional
body expressions with 5-point Likert type scales (strongly
disagree = 1; strongly agree = 5). The survey items are shown
in Table 1.

C. Results and Discussion

We perform the ANOVA test to get the confident interval
for pairwise comparisons between the mean values of each
testing item. The mean values and standard deviation of item
details and the p-value of all items are shown in Table I.
Participants confirm that the robot emotional expressions and
appearance influence their evaluation on the robot’s human-
likeness. This reflects their attribution of human nature traits
to the robot (F(2.70) = 4.21, p = 0.008). In addition, those
expressions and the robot appearance also affect participants’

(e) somewhat happy

(f) happy (g) somewhat afraid (h) afraid

Robot behavioral repertoire based on eight basic emotion labels [8]

perception of the robot’s likeability (F(3.13) = 3.9, p =
0.024). According to the data, the participants’ perception
of human-likeness depends highly on the “friendly” item
compared to other items. They positively think that the robot
has human-likeness characteristics especially in terms of
“friendly” and “high cognitive ability” items. Furthermore, in
the likeability index, emotional responses of the robot during
HRI pleased the participants. Most participants wished to
have future interactions with the robot (M = 4.3,5D =
0.73), since they enjoyed interacting with the robot (M =
4,5SD = 0.83). Regarding the perception of safety, most
participants do not feel “anxious” (M = 2.14,5D = 1.02)
or “scary” (M = 2.08,SD = 0.92) toward the robot. They
show their favor when having interactions with the robot
not only based on the robot human-likeness but also for the
responses of the robot toward given objects and human guide.
Thus, the likeability characteristics got a higher rating (M =
3.94,SD = 0.71) compared to human-likeness. Besides,
they also do not feel that the robot is “aggressive” (M =
1.85,5D = 0.99). Participants also show their satisfaction
in response to the robot movement (M = 3.46,SD = 0.61)
and emotional body expressions (M = 3.62,SD = 0.78).
The low rating of factors (M = 1.94, 5D = 0.91) used to
measure the participants’ perception of safety implied that

they did not feel “anxious”, “scary” or “aggressive”.

IV. CONCLUSION

In this paper, we have proposed a new developmental
approach to the construction and use of robot emotion
generation architecture to fulfill the user expectations and
acceptance of social robots. The architecture fully incorpo-
rated two main factors contributing to the enhancement of
robot emotions: (1) social effects such as social referencing
and social sharing and (2) robot personal experiences. We
have designed the robot long-term memory by extending the
developmental memory architecture ERIS whereby the robot
could acquire knowledge, obtain emotional experiences, and
form affective appraisals for future access. A memory forget-
ting mechanism was developed based on emotional salience
and time parameters to remove out-of-date information and
improve the memory performance. Furthermore, the robot
personal emotion was modeled based on a decay function



TABLE I
QUESTIONNAIRE ITEMS FOR EVALUATING PARTICIPANTS’ PERCEPTION OF THE ROBOT (5 - STRONGLY AGREE; | - STRONGLY DISAGREE)

AND DESCRIPTIVE STATISTICS OF PARTICIPANTS’ RATING (°

p < 0.01 AND “p < 0.05)

Evaluation point Details Mean SD p-value
Human-likeness
1. Friendly 4.08 0.67
2. Believable 3.46 0.68 .
3. Sociable 340 071 0008
4. High cognitive ability 3.65 0.84
Likeability
1. Robot expressions in response to given stimuli are understandable  3.70 0.79
2. Enjoyed during interactions with the robot 4.00 0.83  0.024%**
3. Want to have more interactions with the robot in the future 4.30 0.73
Safety
1. Anxious 2.14 1.02
2. Scary 2.08 092 0.570
3. Aggressive 1.85 0.99
Robot expressions
1. Movement (i.e., slow, fast) 3.46 0.61 0424
2. Emotion-based expressions (i.e., happy, sad) 3.62 0.78 ’

similar to human emotions.
The proposed architecture was evaluated by a two-phase
experiment that consisted of a training phase and a test-

ing

off-

phase. Specifically, human subjects interacted with an
the-shelf robot Pepper through a speech interface. In

summary, participants enjoyed teaching the robot through
interactions. Robot responses are understandable to partic-
ipants. Moreover, participants showed positive feedback for

the

robot “cognitive ability” and other human-likeness char-

acteristics. They also presented a highly positive intention

for

future interactions. Almost all participants perceived the

lowest level of unsafe conditions and they positively agree
with the movement and expressions of the robot.
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