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Abstract Image registration is one of the most fundamental steps in optical mapping
from mobile platforms. Lately, image registration is performed by detecting salient
points in two images and matching their descriptors. Robust methods (such as Ran-
dom Sample Consensus (RANSAC)) are employed to eliminate outliers and compute
the geometric transformation between the coordinate frames of images, typically a
homography when the images contain views of a flat area. However, the image regis-
tration pipeline can sometimes provide a sufficient number of wrong inliers within the
error bounds even when images do not overlap at all. Such mismatches occur espe-
cially when the scene has repetitive texture and shows structural similarity. Such pairs
prevent the trajectory (thus, a mosaic) from being estimated accurately. In this paper,
we propose to utilize closed-loop constraints for identifying mismatches. Cycles ap-
pear when the camera revisits an area that was imaged before, which is a common
practice especially for mapping purposes. The proposed method exploits the fact that
images forming a cycle should have an identity mapping when all the homographies
between images in the cycle are multiplied.Our proposal obtains error statistics for
each matched image pair extracting several cycle bases. Then, by using a previously
trained classifier, it identifies image pairs by comparing error histograms. We present
experimental results with different image sequences.
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1 Introduction

Obtaining image sequences for mapping has become an easier task over the last years,
thanks to the rapid progress on optical sensors and robotic platforms. One of the steps
in the processing pipeline of image sequences (e.g., mosaicing [3, 17] and 3D recon-
struction [8]) is usually 2D image registration, which is the process of stitching two
or more views of the same scene taken from different viewpoints. It is one of the
crucial steps and plays a very important role in a vast amount of computer vision
processes. Image registration is mainly accomplished by using either feature or fea-
tureless methods. Over the last decade, impressive progress (such as Scale Invariant
Feature Transform (SIFT) [10], Speeded Up Robust Features (SURF) [1], etc.) has
been made on detecting and extracting distinctive salient points (also known as fea-
tures) in the image, which leads to foster and promote the usage of feature-based
methods more than the featureless intensity based methods. Feature-based methods
follow a pipeline that is composed of (1) feature detection, (2) feature description
and (3) descriptor matching. The matching of features is commonly done by com-
puting a function that depends on the Euclidean distance between their descriptors.
The initial matching frequently produces some incorrect correspondences, which are
called outliers. Outliers are typically identified and removed with a robust estima-
tion algorithm (e.g., RANSAC [4]). These probabilistic methods might fail when the
scene presents Visual Aliasing, that is highly repetitive textures and structural simi-
larities. This failure often leads to mismatched image pairs (e.g., Figure 1), although
the resulting homography accuracy is within the error bounds handled by RANSAC.
While processing such a sequence of images with repetitive texture, the probability
of occurrence of such cases becomes high and these mismatched image pairs provide
misleading information about the camera trajectory and prevents an accurate final
outcome.

In this paper, we present a method to identify such image pairs, using loop con-
straints. Our method relies on the fact that images forming a loop (a cycle in graph-
based notation) should have identity mapping when all the homographies are multi-
plied (see Figure 3). If there is a mismatched image pair or pairs in a cycle, then the
error (computed as a deviation from identity) will grow drastically. Errors computed
by using a different number of cycles involving the same image pair can be used to
indicate a false match positive for that image pair.

Our algorithm starts by finding cycles (loops) in the sequence. Next, errors are
computed for each pair inside the cycles (see Table 1). To have meaningful descrip-
tive statistics, this process is repeated several times with different cycles. Cycles are
obtained by generating different cycles bases. After obtaining a series of errors for
each image pair, we compute error histograms and try to identify the different ones
using a previously trained classifier. To validate our proposal, we present experi-
mental results with artificially added mismatched image pairs on underwater image
sequences as well as real sequences from panoramic image sequences.
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Fig. 1 An example of mismatched image pair due to visual aliasing. Twenty-eight inliers are detected and
the corresponding homography is computed using DLT [6] with an average error of 3.41 pixels in one
image. Note that the image hardly overlap

Finding such mismatched pairs has been studied in the global alignment literature
by iteratively removing the image pair with the highest residual error [11]. Although
this might be feasible for small and/or sparser datasets, repeating the global alignment
may lead to a high computational cost. The concept of ”Missing correspondences” for
an image pair using a third image was proposed in [18] to identify mismatched image
pairs. A similar solution was proposed using this missing correspondences analysis
and timestamps of images in [14]. This approach is only feasible for sequentially
acquired image sequences due to the use of timestamps. Our method shares some
similarities and builds upon the method proposed by Zach et al. [19]. The main dif-
ferences are that we do not set any limit on the length (number of vertices) of a cycle
and we do not use any empirical values for the parameters of the error distributions
of image pairs. Instead, we employ a machine learning technique, operating on error
histograms to identify mismatched image pairs.

The rest of the paper is structured as follows. The following section provides a
brief background about graph-based topology representation and details our proposal.
Experimental results are illustrated and discussed in Section 3. Finally, we present our
conclusions in the last section.

2 Mismatch Identification using Cycles in Graph-based Topology
Representation

A graph G = (V,E) consists of vertices (nodes) and edges (links) between vertices.
V is the set of vertices while E ⊂ V ×V represents the set of edges. The total number
of vertices n = |V | defines the order of the graph while the total number of edges
m = |E| is the size of the graph [16]. A cycle in a graph is defined as a subgraph
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in which every vertex has even degree, which is defined as the total number of edges
incident to the vertex. A cycle basis is a list of cycles in the graph, with each cycle
expressed as a list of vertices [7]. These cycles define a basis for the cycle space of
the graph so that every other cycle in the graph can be obtained from the cycle basis
using only symmetric differences, which is defined as the set of elements that are in
either of the sets but not in their intersection. Commonly used methods to compute
cycle basis are based on spanning trees. The spanning tree of a connected graph is a
tree that connects all the vertices together [16]. One graph can have various different
spanning trees. The Minimum Spanning Tree (MST) is a spanning tree whose edges
have a total weight less than or equal to the total weight of every other spanning tree of
the graph. The cycle basis obtained by using the MST is called the minimum weight
spanning tree basis, which is computed by adding an edge to the MST and removing
the path connecting the endpoints of the edge. The total number of cycles in the basis
for a connected graph is tc =

(
m− (n− 1)

)
. If the graph is not connected1 then

total number of cycles in the basis is computed as
(
m− (n− 1) + (p− 1)

)
, where

p is the number of connected components. Every cycle that is not in the basis can be
written as a linear combination of two or more cycles in the basis.

We use graph-based topology representation [15] for our problem where images
are denoted as vertices and successfully registered images are connected with edges
as this representation enables us to use some existing graph theory algorithms for
finding cycles. In this work, having at least 20 correspondences after rejecting the
outliers using RANSAC [4] is considered as a “successful registration”. As the out-
come of the image registration process are two sets of coordinates of correspondences
in the images, a planar transformation matrix H (homography) can be computed for
each edge in the graph.

Cycles represent closed-loops in our context. When the relative homographies
for each edge in the cycle are multiplied consecutively, one could expect to obtain the
identity mapping. In practice this does not hold due to error accumulation. For each
edge in the cycle, an equation can be written by applying circular shift operations.
Eq. 1 shows the possible equalities for the example cycle in Figure 3. These equations
allow for computing errors for individual edges. If there is no wrong edge in the cycle,
then all individual errors should be relatively small. However, if there is a wrong
edge in the cycle, the error will increase drastically for all the edges in the cycle. This
might be sufficient to identify cycles with wrong edges but might not be fully suitable
to pinpoint which one of the edges is wrong in the cycle. On the other hand, one edge
can appear in more than one cycle, e.g., the ones in the MST. And also, cycles can
be composed of different number of edges. The longer the cycle, the more error it
accumulates. This might cause some inaccurate interpretations of the magnitude of
the errors on cycles and edges.

To address all aforementioned issues, we propose to use error statistics on edges.
We generate several MSTs using randomly-generated edge weights. For each MST,
we find the corresponding cycle basis. Then, for each edge in cycles in the basis, the
error is computed by using circular shift as in the Eq. 1. The outcome of this process

1 In an undirected graph G, two vertices u and v are called connected if G contains a path from u to v.
A graph is said to be connected if every pair of vertices in the graph is connected.
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Fig. 2 Pipeline of the proposed mismatched image pairs identification method embedded into a traditional
FIM framework.

is a list of errors for each edge in the graph. We generate an error histogram for each
edge using the list of errors. If there is no wrong edge in a cycle, the error is not likely
to be as high as in the cases where there is a wrong edge. Therefore, correct edges
might have small errors mostly and their errors must be varying in a relatively large
interval due to the appearance of wrong edges. This leads to the conclusion that the
shape of the error histogram for a correct edge might be seen similar to an exponential
distribution. A real example of error histograms can be seen in Figure 5. Since the
wrong edges are the main sources of error, regardless of the properties of the cycles
they are involved in, they are more likely to have bigger errors. This results in the
shape of the histogram being different than that of the exponential distribution. By
comparing the shape of the histograms, wrong edges can be identified.

In order to automate this process, we use supervised classification using the Ad-
aBoostM1 algorithm [5] operating on error histograms. Our pipeline for identifying
mismatched image pairs embedded in FIM framework is illustrated in Figure 2.
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Fig. 3 An illustrative example of a cycle showing a closed-loop. The loop should the following equality:
I = 1H2 · 2H3 · 3H4 · 4H5 · 5H1. However, this equality does not often hold due to error accumulation.
The longer the loop, the more error it accumulates. When there is a wrong edge in a cycle (resulting from
an image matching wrongly accepted as valid), then effect on the error is much large than the effect of
accumulation.

I = 1H2 · 2H3 · 3H4 · 4H5 · 5H1 E(1, 2) = ||2H1 − 2H3 · 3H4 · 4H5 · 5H1||F
I = 2H3 · 3H4 · 4H5 · 5H1 · 1H2 E(2, 3) = ||3H2 − 3H4 · 4H5 · 5H1 · 1H2||F
I = 3H4 · 4H5 · 5H1 · 1H2 · 2H3 E(3, 4) = ||4H3 − 4H5 · 5H1 · 1H2 · 2H3||F
I = 4H5 · 5H1 · 1H2 · 2H3 · 3H4 E(4, 5) = ||5H4 − 5H1 · 1H2 · 2H3 · 3H4||F
I = 5H1 · 1H2 · 2H3 · 3H4 · 4H5 E(5, 1) = ||1H5 − 1H2 · 2H3 · 3H4 · 4H5||F

where ||A||F =
√
trace(ATA)

(1)

3 Experimental Results

To validate our proposal, we present experiments with different datasets from two
main application domains of image mosaicing, namely panoramic imaging and op-
tical mapping with unmanned platforms. For all experiments, we used 4-Degree-
of-Freedom (DOF) similarity type planar transformations as they generally contain
enough DOFs for optical mapping with robotic platforms. SIFT is used for feature
detection and matching while RANSAC is employed for outlier rejection and trans-
formation computation. Although we did some experiments with a different set of
parameters, we used 250 randomly-generated cycle bases and 50 bins for error his-
tograms. As a Global Alignment (GA) method, we use Symmetric Transfer Error
Minimization (STEMin) over absolute homographies. The Symmetric Transfer Er-
ror (STE) is defined in Eq. 2:

ε =
∑
k,t

s∑
j=1

(
‖ kxj − 1H−1

k · 1Ht · txj ‖2 +

‖ txj − 1H−1
t · 1Hk · kxj ‖2

) (2)

where k and t are image indices that were successfully matched, s is the total number
of correspondences between the overlapping image pairs, and (1Hk,

1Ht) are the
absolute transformation parameters for images k and t, respectively. This error term
is minimizing the Euclidean distance between correspondences in each image frame.
The first image frame is chosen as a global frame and fixed. To train a classifier, we
used four different datasets obtained with unmanned underwater vehicles carrying a
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Table 1 Main characteristics of training data.

Dataset Image Size Total Number of
Images Overlapping Pairs

Dataset I 512× 384 81 262

Dataset II 1344× 752 413 1, 153

Dataset III 512× 384 1, 077 3, 676

Dataset IV 384× 287 286 812

Fig. 4 Identified mismatched image pair for the Memorial Church Dataset. [Left] Figure shows the final
trajectory and footprints of images 28 and 35 as rectangles. [Right] Images and correspondences. Since
the scene has repetitive textures and high structural similarity, the image matching algorithm has produced
a list of correspondences.

down-looking camera during typical seafloor surveys. The main characteristics of the
datasets are summarized in Table 1.

We added wrong edges between randomly selected nodes while the total number
of wrong edges are controlled and gradually increased starting from 1 to max 15-
20% of the total number of overlapping image pairs in the dataset. Summing up all
4 datasets, the final data for training a classifier is composed of 683, 606 correct and
53, 774 wrong edges.

The first dataset we used for testing is from a video of the Memorial Church in
Stanford University Campus. This image sequence 2 corresponds to the dataset used
in [2]. The total number of images of 192× 200 pixels is 145 and the total number of
overlapping image pairs is 2997.

We run STEMin using all overlapping image pairs and computed STE using all
261, 804 correspondences. Mean STE is computed as 2.97 pixels, standard devia-
tion is 1.89 while the maximum error is 344.37 pixels. These numbers suggest that

2 Dataset was obtained from http://www.soe.ucsc.edu/˜davis/panorama/
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Fig. 5 Sample Normalized Error Histogram Curves for Memorial Church Dataset. [Left] Error Histogram
Curve for the edge between images 28 and 35. From the curve, it can be said that this pair is mistmatched
as its error histogram is mostly composed of large errors. This means error for this edge was large for all
the cycles it involved in. [Right] Error Histogram Curve for the edge between images 1 and 2. From the
curve, it can be concluded that this pair is a correct edge as it has mostly smaller errors.

there might be some mismatched image pairs and/or some outliers among the cor-
respondences. We run our proposal and four image pairs were identified as wrong
edges. After removing these image pairs, we run STEMin again and mean error is
2.89, standard deviation is 1.08 and maximum error is found as 25.34 computed us-
ing 261, 678 correspondences. Furthermore, we examined these 4 image pairs; one
of them is a mismatched pair (illustrated in Figure 4) and the others have an over-
lapping area but they contain some outliers. The second dataset was acquired with a
camera translating over a close range of a scene mostly composed of high color and
texture containing books and boxes. The trajectory is a single loop-closing, drawing
a smoothed rectangular shape. The dataset has 108 images of 640 × 480 pixels with
1, 827 overlapping image pairs. Mean STE computed over 638, 357 is 8.14 pixels.
Standard deviation is 4.55 while the maximum error is 1, 263.67 pixels. Again such
high maximum error suggests some outliers and/or mismatched image pairs. We run
our proposal and eight overlapping image pairs were identified as mismatched. After
removing those image pairs, we run STEMin. Mean STE computed over 638, 093
was 8.10 pixels. Standard deviation has reduced to 3.67 pixels while maximum er-
ror was reduced to 69.46 pixels. We can infer that our proposal was able to remove
the mismatched pairs and/or image pairs with outliers. For this dataset, we examined
the removed 8 overlapping image pairs and there were no mismatched pairs but they
were all containing some outlier(s). One of the removed image pairs is illustrated in
Figure 6.

The third dataset is a video of the S. Zeno Cathedral in Verona3 [12], similar to the
first dataset. It is composed of 33 images of 240×282 pixels having 368 overlapping
image pairs. We run STEMin and mean error, standard deviation and maximum error
are computed as 1.83, 0.71 and 7.08 respectively. We run our method to see whether
there was any problematic image pairs or not. The classifier returned an empty set,
which could be predicted by looking at the error values. Then we randomly added a
few wrong edges to the dataset and run again our proposal. We repeated this proce-
dure 100 times. Although we have seen from the previous experiments that the total
number of problematic image pairs is usually low considering the total number of
overlapping image pairs, we added wrong edges up to 8-10% of the total number of

3 The dataset is obtained from www.diegm.uniud.it/fusiello/demo/hrm/
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Fig. 6 One of the identified image pair for the second dataset.[Left] Figure shows the final trajectory
and footprints of images 101 and 91 as rectangles. [Right] Images and correspondences. There is a single
outlier in this case.

Fig. 7 Overlapping image pair per image for the Szeno dataset. Please note that overlapping image pairs
are counted for both images (e.g., The overlapping pair between image a and b is counted for both images.).

overlapping image pairs during random trials. Table 2 summarizes the obtained re-
sults in a confusion matrix form. The total number of added wrong edges is 1, 365
while the total number of correct edges is 100×368. The total number of overlapping
image pairs per image is illustrated in Figure 7.

From the confusion matrix, it can be seen that only one wrong edge was classified
as correct by our proposal and 99 correct edges were also identified as wrong. In
order to see the effects of this classification errors on trajectory, we run STEMin on
the remaining image pairs after removing the ones identified as wrong and computed
STE on final trajectories obtained. The results are summarized in Table 3. Wrong
edges were completely removed in the 99 trials out of 100. From the numbers in the
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Table 2 Confusion matrix for 100 random trials on the tested datasets.

Dataset
Predicted

Wrong Correct Total

Szeno
Real

Wrong 1,364 1 1,365

33 Images Correct 99 36,701 36,800

368 Overlapping pairs Total 1,463 36,702 38,165
Predicted

Wrong Correct Total

Underwater I
Real

Wrong 5,376 15 5,391

215 Images Correct 245 129,455 129,700

1, 297 Overlapping pairs Total 5,621 129,470 135,091
Predicted

Wrong Correct Total

Underwater II
Real

Wrong 12,487 15 12,502

486 Images Correct 2,157 320,343 322,500

3, 225 Overlapping pairs Total 14,644 320,358 335,002

table, it can be inferred that removing a small amount of correct edges did not have
much impact, as opposed to not removing the wrong edge(s). This is also related
with the dataset as it can be regarded as pretty ”dense”, taking into account the total
number of overlapping image pairs and images. Removing some correct edges did
not have a notable effect. Our approach did not remove any correct edges on 45 trials
out of 100, It removed only one correct edge on 32 trials, two edges on 9 trials, three
edges on 10 trials, four edges on 2 trials, five and six edges on 1 trial.

Table 3 Error measures (in pixels) on final trajectories over 100 trials for the tested datasets. Numbers
given in the second and the third row are statistically computed over all trials.

Dataset Mean Err. Std. Dev. Max.Err.

Szeno Initial Dataset 1.83 0.71 7.08

(33 images) Wrong Edges Added 40.41 15.06 192.58

(37, 976 correspondences) Wrong Edges Removed 2.02 0.81 25.67

Underwater I Initial Dataset 6.69 2.78 31.06

(215 images) Wrong Edges Added 44.35 27.73 2, 302.02

(208, 346 correspondences) Wrong Edges Removed 6.84 3.61 1, 724.44

Underwater II Initial Dataset 8.05 3.21 41.84

(486 images) Wrong Edges Added 68.24 37.94 975.87

(360, 262 correspondences) Wrong Edges Removed 8.08 3.44 387.34

The fourth dataset (named as Underwater I) is a subset of an image sequence
gathered by the ICTINEUAUV [13] underwater robot. The dataset is composed of
215 images (384 × 288 pixels) and covers approximately 400m2. Time-consecutive
images have overlap and the total number of registered overlapping image pairs num-
ber is 1, 297. This dataset is sparser and has low overlap between image pairs, when
comparing to the Szeno Dataset. The confusion matrix is summarized for 100 ran-
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Fig. 8 Overlapping image pair per image in the Underwater I dataset. Please note that overlapping image
pairs are counted for both images (e.g., the overlapping pair between image a and b is counted for both
images.). Some of the images have very few overlapping image pairs. This reduces the total number of
cycles in which they could be involved. Depending on the wrong edges, these images might always be in
the cycles along with wrong edges. This could lead them to be identified as wrong edges.

dom trials in Table 2 while the errors on the obtained trajectories are given in Table 3.
Since the time-consecutive images have overlap in this dataset, we did not remove
them even if our proposal suggested to do so. The approach proposed in this paper
successfully removed the wrong edges in 92 out of 100 trials. The total number of
wrong edges added for the remaining 8 cases (where our proposal was not able to
identify all wrong edges) is 543, and 523 of them were successfully removed.

Our proposal relies on having cycles with and without wrong edges so that the
different error histograms can be observed between correct and wrong edges. In other
words, if a correct edge always involves cycles where there is at least one wrong edge,
then this correct edge is most likely to be classified as wrong since its histogram
will be very similar to those of wrong edges. This may not be a problem for dense
datasets as the number of overlapping image pairs per image is relatively high (e.g.,
Szeno dataset, Figure 7) and this increases the probability of having cycles without
wrong edges. In the case of sparse datasets, this assumption of having cycles without
wrong edges may not be realistic. In such cases, the use of additional information
on image positions coming from different sensors could be useful. Increasing the
total number of cycle bases could also be a solution, as it increases the probability of
having cycles without wrong edges. However, the data characteristics may still not
allow this assumption to be hold. For the Underwater I dataset, the total number of
overlapping image pairs per image is illustrated in Figure 8. As it can be seen, some
images overlap with a reduced number of neighboring images. This may rule out the
initial assumption depending on the randomly added wrong edges.
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Fig. 9 Overlapping image pair per image in the Underwater II Dataset. Please note that overlapping image
pairs are counted for both images (e.g., the overlapping pair between image a and b is counted for both
images.).

The fifth dataset (named as Underwater II) was obtained using a digital camera
carried by a Phantom XTL Unmanned Underwater Vehicle (UUV) during a survey
of a patch of reef located in the Florida Reef Tract [9]. It consists of 486 images of
512× 384 pixels. The total number of overlapping image pairs is 3, 225. There are 6
time-consecutive image pairs that do not have any overlap. We kept the overlapping
time-consecutive images even if they were identified as a wrong edge.

The confusion matrix is summarized for 100 random trials in Table 2 while the
errors on the obtained trajectories are given in Table 3. The proposed method was
not able to successfully identify all wrong edges in 5 trials out of 100. The total
number of wrong edges added for those 5 trials were 898 and the proposed method
was able to remove 890. From the confusion matrix, it can be seen that the total
number of correct edges identified as wrong by our proposal can be considered as
relatively high. This is mainly due to the way in which the classifier is trained. We
opt to put high penalization for classifying wrong edges as correct since even one
of them is usually enough to disturb the final result. To illustrate the performance of
the method, the final mosaics and trajectories for one of the random trials (with the
maximum STE error of 387.34) are illustrated in Figure 10. In this case our proposal
was not able to remove all wrong edges. The total number of overlapping image pairs
per image is illustrated in Figure 9.

4 Conclusions

Image registration is generally done by extracting and matching some salient points
(features) in the images. Although some robust methods are employed, some mis-
matched image pairs can occur due to the repeated textures and high structural simi-
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Mosaic with wrong edges added Mosaic after removal Mosaic without any wrong edge

Fig. 10 [Top] Final Mosaics for Underwater II dataset rendered using last-on-top strategy. [Bottom] Final
Trajectories: Solid line denotes the trajectory without any wrong edge while the dashed one shows the
trajectory after removing wrong edges. A total number of 214 wrong edges were added and 212 of them
were successfully removed. The remaining two (between images 201− 168 and 202− 131) of them has
caused some degradation on the trajectory and mosaic, respectively.

larity in images. These mismatched pairs can cause significant degradation on the fi-
nal result (e.g., trajectory, mosaic, 3D Reconstruction, etc.). In this paper, we propose
a method to identify mismatched image pairs using close-loop constraints (cycles) in
camera trajectory. When the motion between images in a closed-loop is accumulated,
the combined motion should be close to identity.

Our proposal relies on generating different cycles and computing error histograms
for each overlapping image pairs. Mismatched image pairs have different error his-
togram compared to the those of correct edges. To identify mismatched image pairs,
we employ a machine learning technique operating on error histograms. We presented
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experimental results with both real and synthetic datasets under different scenarios.
Our proposal was able to remove wrong edges successfully and also able to identify
edges not fully mismatched but including some outliers. Our method can be embed-
ded in any application that requires processing of image sequence.
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