
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Refined Construction of RC4 Key Setting in WPA

Author(s) Ito, Ryoma; Miyaji, Atsuko

Citation

IEICE Transactions on Fundamentals of

Electronics, Communications and Computer

Sciences, E100.A(1): 138-148

Issue Date 2017-01-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/16282

Rights

Copyright (C)2017 IEICE. Ryoma Ito, Atsuko

Miyaji, IEICE Transactions on Fundamentals of

Electronics, Communications and Computer

Sciences, E100.A(1), 2017, 138-148.

https://www.ieice.org/jpn/trans_online/

Description



138
IEICE TRANS. FUNDAMENTALS, VOL.E100–A, NO.1 JANUARY 2017

PAPER Special Section on Cryptography and Information Security

Refined Construction of RC4 Key Setting in WPA∗∗

Ryoma ITO†∗a), Nonmember and Atsuko MIYAJI††,†††,††††b), Member

SUMMARY The RC4 stream cipher is widely used including WEP and
WPA, which are the security protocols for IEEE 802.11 wireless standard.
WPA improved a construction of the RC4 key setting known as TKIP to
avoid the known WEP attacks. The first 3-byte RC4 keys generated by IV
in WPA are known since IV can be obtained by observing packets. The
weaknesses in TKIP using the known IV were reported by Sen Gupta et al.
at FSE 2014 and by Ito and Miyaji at FSE 2015. Both showed that TKIP
induces many RC4 key correlations including the keystream bytes or the
unknown internal states. Ideally TKIP should be constructed in such a way
that it can keep the security level of generic RC4. In the first part of this
paper, we will provide newly theoretical proofs of 17 correlations remain
unproven in our previous work theoretically. Our theoretical analysis can
make clear how TKIP induces biases of internal states in generic RC4. In
the second part of this paper, we will further provide a refined construction
of the RC4 key setting. As a result, we can reduce the number of correla-
tions in the refined construction by about 70% in comparison with that in
the original setting.
key words: RC4, WPA, TKIP, linear correlations, key setting

1. Introduction

RC4 is the stream cipher designed by Rivest in 1987, and
is widely used in various security protocols such as Secure
Socket Layer/Transport Layer Security (SSL/TLS), Wired
Equivalent Privacy (WEP), Wi-fi Protected Access (WPA).
After the disclosure of RC4 algorithm in 1994, RC4 has
been intensively analyzed over the past two decades. There
are mainly two approaches to the cryptanalysis on RC4.
One is to demonstrate the existence of events with non-
randomness known as bias involving the RC4 key, the inter-
nal state variables, and the output pseudo-random sequence
(keystream) bytes [11], [13], [18]. Now, we refer to the
event with the probability significantly higher or lower than
the probability of random association as the positive bias
or the negative bias, respectively. The other is to attack on
RC4 using biases in order to recover the RC4 key (key re-
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covery attacks) [17], [19], the internal state variables (state
recovery attacks) [1], [10], [14] and the plaintexts (plaintext
recovery attacks) [11], [13]. In addition, many cryptanal-
ysis on the security protocols have been reported such as
the plaintext recovery attacks on SSL/TLS [6], [15], the key
recovery attacks on WEP [3], [9], [20] and the plaintext re-
covery attacks on WPA [4], [16].

1.1 Description of RC4

RC4 consists of two algorithms: the Key Scheduling Al-
gorithm (KSA) and the Pseudo Random Generation Algo-
rithm (PRGA). Both the KSA and the PRGA update a se-
cret internal state S which is a permutation of all N (typ-
ically, N = 28) possible bytes and two 8-bit indices i and
j. The KSA initializes the initial state from a secret key
K of l bytes to become the input of the PRGA. Once the
internal state is initialized in the KSA, the PRGA outputs
a keystream byte Z1,Z2, . . . , Zr in each round, where r is
the number of rounds. The KSA and the PRGA are shown
in Algorithms 1 and 2, respectively, where {S K

i , i, jK
i } and

{S r, ir, jr} are {S , i, j} in the i-th and r-th round of the KSA
and the PRGA, respectively; tr is a 8-bit index of Zr. All
addition used in both the KSA and the PRGA are arithmetic
addition modulo N. Especially, the input of the permutation
S can be considered as the number modulo N. We will be
followed this statement in this paper.

Algorithm 1 KSA
1: for i = 0 to N − 1 do
2: S K

0 [i]← i
3: end for
4: jK

0 ← 0
5: for i = 0 to N − 1 do
6: jK

i+1 ← jKi + S K
i [i] + K[i mod l]

7: Swap(S K
i [i], S K

i [ jK
i+1])

8: end for

Algorithm 2 PRGA
1: r ← 0, i0 ← 0, j0 ← 0
2: loop
3: r ← r + 1, ir ← ir−1 + 1
4: jr ← jr−1 + S r−1[ir]
5: Swap(S r−1[ir], S r−1[ jr])
6: tr ← S r[ir] + S r[ jr]
7: Output: Zr ← S r[tr]
8: end loop

Copyright c⃝ 2017 The Institute of Electronics, Information and Communication Engineers
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1.2 Description of WPA

WPA is the security protocol for IEEE 802.11 wireless net-
works standardized as a substitute for WEP in 2003. It im-
proves a construction of a 16-byte RC4 key setting, which
is known as Temporal Key Integrity Protocol (TKIP), from
that in WEP. TKIP includes a key management scheme, a
temporal key hash function [5], and a message integrity code
function. The key management scheme after the authentica-
tion based on IEEE 802.1X generates a 16-byte Temporal
Key (TK). The TK, a 6-byte Transmitter Address, and a 48-
bit Initialization Vector (IV), which is a sequence counter,
are given as the inputs to the temporal key hash function,
and then, the function outputs a 16-byte RC4 key. In addi-
tion, TKIP uses MICHAEL [2] to ensure integrity of a mes-
sage. One of the remarkable features in TKIP is that the first
3-byte RC4 keys, K[0], K[1] and K[2], are derived from the
last 16-bit IV (IV16) as follows:

K[0] = (IV16 >> 8) & 0xFF, (1)
K[1] = ((IV16 >> 8) | 0x20) & 0x7F, (2)
K[2] = IV16 & 0xFF. (3)

We note that the first 3-byte RC4 key in WPA are known
since IV can be obtained by observing packets.

1.3 Our Motivations and Contributions

In 2014, Sen Gupta et al. demonstrated a probability dis-
tribution of K[0] + K[1] in WPA [4]. They further found
some linear correlations between the keystream byte and the
known RC4 key bytes in WPA such as Z1 = −K[0] − K[1],
Z3 = K[0] + K[1] + K[2] + 3, and so on. Their linear cor-
relations can be applied to a plaintext recovery attack on
WPA in the same way as the existing attack on SSL/TLS
[6], and contribute to reduce the computational complexity
necessary for the attack. In 2015, Ito and Miyaji further ex-
tended the linear correlations by including unknown internal
state variables, which mean S r[ir+1], S r[ir+1], jr+1 and tr+1
for r ≥ 0, in both generic RC4 and WPA [8]. As a result,
more than 150 linear correlations have been found experi-
mentally, although they have proved only the following 6
correlations theoretically: S 0[i1] = K[0], K[0] − K[1] − 3
or K[0] − K[1] − 1; S 255[i256] = K[0] or K[1]; S r[ir+1] =
K[0] + K[1] + 1 (0 ≤ r ≤ N).

We focus on the linear correlations that remain un-
proven theoretically. Actually, linear correlations includ-
ing unknown internal state variables could be applied to a
state recovery attack on WPA in the same way as the ex-
isting attacks on generic RC4 [1], [10], [14]. In addition,
theoretical proofs of linear correlations can make clear how
TKIP induces biases as pointed out above. If we demon-
strate how many rounds these biases have been kept in the
internal states, then the RC4 key setting in WPA can be
reconstructed securely while keeping congruity with TKIP.
TKIP should have been constructed in such a way that it can

keep original security level of generic RC4. Our analysis
would be also useful to investigate a generic construction of
key setting including the known IV in such a way that it can
keep security level of original encryption.

In this paper, we will provide theoretical proofs of 17
cases out of our linear correlations remain unproven theoret-
ically. Our contributions of 13 theorems can be summarized
as follows:

• Theorems 1 and 2 show Pr(S 0[i1] = −K[0]− K[1]− 3)
in generic RC4 and WPA, respectively. Theorems 5
and 7 show Pr(S 1[i2] = −K[0] − K[1] + K[2] − 1) and
Pr(S 1[i2] = K[0] − K[1] + K[2] + x) (x ∈ {−3,−1, 1}).
These theorems only in WPA provide about double
probabilities of random association 1

N .
• Theorem 3 shows Pr(S 0[i1] = K[0]+K[1]+K[2]+3) is

less than half of the probability of random association
1
N in both generic RC4 and WPA.

• Theorem 4 shows Pr(S 1[i2] = K[0]+K[1]+K[2]+3) is
pretty high probability in comparison to the probabil-
ity of random association 1

N in both generic RC4 and
WPA. This is induced by Roos’ bias, that is Pr(S 0[2] =
K[0] + K[1] + K[2] + 3) ≈ (1 − 2

N
) · (1 − 1

N
)N+3
+ 1

N .
• Theorem 6 shows Pr(S 1[i2] = K[1]+K[2]+3) is about

double probabilities of random association 1
N .

• Theorem 8 shows Pr(S 1[i2] = K[0] − K[1] + K[2] + 3)
is a positive bias in generic RC4 but a negative bias in
WPA.

• Theorems 9–13 provide theoretical analysis related to
the second round index j2.

Theorems 1, 2 and 9–13 have been refined from our pre-
liminary version [7], whereas Theorems 6 and 8 have been
newly proved.

We will further provide a refined construction of the
RC4 key setting in WPA in such a way that it can keep the
security level of generic RC4. In order to find the refined
construction, we carefully set the 3-byte RC4 key, K[x],
K[y] and K[z], derived from the known IV in the same way
as original setting (Eqs. (1)–(3)) as follows:

K[x] = (IV16 >> 8) & 0xFF,
K[y] = ((IV16 >> 8) | 0x20) & 0x7F,
K[z] = IV16 & 0xFF.

As a result of our experiments, the number of linear corre-
lations in our setting (e.g. x = 9, y = 12 and z = 15) can be
reduced by about 70% in comparison with that in the origi-
nal setting.

1.4 Organization of This Paper

This paper is organized as follows: Section 2 summarizes
the previous works for both theoretical proofs and experi-
ments. Section 3 shows the theoretical proofs of our linear
correlations and the experimental results. Section 4 presents
the refined construction of the RC4 key setting in WPA. Sec-
tion 5 concludes this paper.
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2. Preliminary

Let us summarize some previous results which will be used
in both theoretical proofs and experiments. Proposition 1
shows Roos’ biases [18], correlations between the RC4 key
bytes and S 0, proved by Paul and Maitra [17]. Proposition
2 shows biases of S 0, proved by Mantin [12]. Proposition 3
shows a distribution of K[0] + K[1] in WPA, proved by Sen
Gupta et al. [4]. By combining Proposition 3 with Propo-
sition 1 (Roos’ biases), a characteristic bias on the distribu-
tion of S 0[1] is given as Proposition 4 [4]. Finally, Mantin
and Shamir showed Proposition 5 related to the number of
samples necessary for distinguishing two distributions with
a constant probability of success [13].

Proposition 1 ([17]): In the initial state of the PRGA for
0 ≤ y ≤ N − 1, we have

Pr(S 0[y]= y(y+1)
2 +

∑y
x=0 K[x])≈ (1− yN )·(1− 1

N
)[ y(y+1)

2 +N]
+ 1

N .

Proposition 2 ([12]): In the initial state of the PRGA for
0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1, we have

Pr(S 0[u]=v)=

 1
N
((

1− 1
N
)v
+
(
1−(1− 1

N
)v)(1− 1

N
)N−u−1) if v≤u,

1
N
((

1− 1
N
)N−u−1
+
(
1− 1

N
)v) if v>u.

Proposition 3 ([4]): For 0 ≤ v ≤ N − 1, the distribution of
the sum v of K[0] and K[1] generated by the temporal key
hash function in WPA is given as follows:

Pr(K[0] + K[1] = v) = 0 if v is odd,
Pr(K[0] + K[1] = v) = 0 if v is even and

v ∈ [0, 31] ∪ [128, 159],

Pr(K[0] + K[1] = v) = 2
256 if v is even and

v ∈ [32, 63] ∪ [96, 127]∪
[160, 191] ∪ [224, 255],

Pr(K[0] + K[1] = v) = 4
256 if v is even and

v ∈ [64, 95] ∪ [192, 223].

Proposition 4 ([4]): In the initial state of the PRGA in
WPA for 0 ≤ v ≤ N − 1, we have

Pr(S 0[1] = v)
=α·Pr(K[0]+K[1]=v− 1)
+(1−α)·(1−Pr(K[0]+K[1]=v−1))·Pr(S 0[1]=v)RC4

+
(1−α)
N−1 ·
∑

x,v Pr(K[0]+K[1]= x−1)·Pr(S 0[1]= x)RC4,

where α = 1
N +
(
1 − 1

N
)N+2, and both Pr(S 0[1] = v)RC4 and

Pr(S 0[1] = x)RC4 follow Proposition 2.

Proposition 5 ([13]): Let X and Y be two distributions, and
suppose that the event e occurs in X with a probability p
and Y with a probability p · (1 + q). Then, for small p and
q, O( 1

p·q2 ) samples suffice to distinguish X from Y with a
constant probability of success.

3. Newly Proved Linear Correlations

3.1 Experimental Observations

In 2014, linear correlations including the keystream bytes Zr
were investigated by Sen Gupta et al. [4], and used a general
linear equation

Zr = a · K[0] + b · K[1] + c · K[2] + d, (4)

where a, b, c ∈ {0,±1} and d ∈ {0,±1,±2,±3} for r ≥ 1.
In 2015, Ito and Miyaji further extended the linear

correlations by including unknown internal states variables
Xr ∈ {S r[ir+1], S r[ jr+1], jr+1, tr+1}

Xr = a · Zr+1 + b · K[0] + c · K[1] + d · K[2] + e, (5)

where a, b, c, d ∈ {0,±1}, and e ∈ {0,±1,±2, ±3} for r ≥ 0
[8]. In addition, they examined all 4 · 34 · 7 equations of
Eq. (5) in each round in both generic RC4 and WPA. As
a result, they discovered more than 150 correlations with
positive or negative biases, and proved the following 6 cases
theoretically:

• S 0[i1] = K[0], K[0] − K[1] − 3 or K[0] − K[1] − 1.
• S 255[i256] = K[0] or K[1].
• S r[ir+1] = K[0] + K[1] + 1 for 0 ≤ r ≤ N.

In this paper, we will provide newly theoretical proofs
of 17 linear correlations listed in Table 1. Our linear cor-
relations including unknown internal state variables could
contribute to finding a correct internal state of RC4 in WPA.
Actually, the first state recovery attack proposed by Knud-
sen et al. reconstructs the internal state of RC4 by computing
optimum solutions of four unknown variables in each round
such as S r[ir+1], S r[ jr+1], jr+1 and tr+1 for r ≥ 0 [10].

Roos’ biases in Proposition 1 are used through proofs,
which are denoted by αy = Pr(S 0[y] = y(y+1)

2 +
∑y

x=0 K[x]).
We assume through proofs that the probability of certain
events, confirmed experimentally that there are no signifi-
cant biases, is that of random association 1

N (e.g. events in-
cluding the internal state). We also assume that the RC4 key
K is generated uniformly at random in both generic RC4 and

Table 1 Newly proved linear correlations in both generic RC4 and WPA.
Xr Linear correlations RC4 WPA Remarks

−K[0] − K[1] − 3 0.005336 0.008437 Theorems 1 and 2
S 0[i1]

K[0] + K[1] + K[2] + 3 0.001492 0.001491 Theorem 3
K[0] + K[1] + K[2] + 3 0.360357 0.361718 Theorem 4
−K[0] − K[1] + K[2] − 1 0.005305 0.008197 Theorem 5
K[1] + K[2] + 3 0.008157 0.008092 Theorem 6
K[0] − K[1] + K[2] − 3 0.005295 0.008163 Theorem 7
K[0] − K[1] + K[2] − 1 0.005290 0.008171 Theorem 7
K[0] − K[1] + K[2] + 1 0.005309 0.008171 Theorem 7

S 1[i2]

K[0] − K[1] + K[2] + 3 0.005310 0.002838 Theorem 8
K[2] 0.004428 0.005571 Theorem 9
−K[0] − K[1] + K[2] − 2 0.003921 0.004574 Theorem 10
−K[0] − K[1] + K[2] 0.003919 0.005573 Theorem 10
−K[0] − K[1] + K[2] + 2 0.003912 0.004545 Theorem 10
−K[0] + K[1] + K[2] 0.003921 0.005501 Theorem 11
−K[1] + K[2] − 2 0.003911 0.005479 Theorem 12
−K[1] + K[2] + 3 0.003899 0.005476 Theorem 12

j2

K[0] − K[1] + K[2] 0.003918 0.005618 Theorem 13
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WPA, except K[0], K[1] and K[2] in WPA generated by IV
using a sequence counter.

3.2 Biases in S 0[i1]

In this section, we prove Theorems 1–3 theoretically. Theo-
rems 1 and 2 show event S 0[i1] = −K[0] − K[1] − 3 yields
a positive bias in generic RC4 and occurs with twice as fre-
quently as the probability of random association 1

N in WPA,
respectively. We note that Theorem 2 means the first round
internal state S 0[i1] can be guessed in a double probability
of random association 1

N by using known K[0] and K[1] in
WPA. Theorem 3 shows event S 0[i1] = K[0]+K[1]+K[2]+3
yields a negative bias in both generic RC4 and WPA. In ad-
dition, Theorems 1 and 2 are revised precisely from our pre-
liminary version [7].

Theorem 1: In the initial state of the PRGA in generic
RC4, we have

Pr(S 0[i1] = −K[0] − K[1] − 3)RC4

≈ 2
N (α1 +

1
N (1 − α1)) + 1

N
(
1 − 2

N
)
(1 − α1).

Proof : The probability of event S 0[i1]=−K[0]−K[1]−3 in
generic RC4 can be decomposed in two paths: K[0]+K[1]=
126, 254 (Path 1) and K[0]+K[1],126, 254 (Path 2). These
paths include all events in order to compute Pr(S 0[i1] =
−K[0] − K[1] − 3)RC4. In the following proof, we use S 0[1]
instead of S 0[i1] (i1 = 1) for simplicity.

Path 1. Since −K[0] − K[1] − 3 = K[0] + K[1] + 1 under
the condition of Path 1, event S 0[1] = −K[0] − K[1] −
3 always occurs when S 0[1] = K[0] + K[1] + 1. In
addition, if S 0[1] , K[0] + K[1] + 1 holds, then we
assume that event S 0[1] = −K[0]−K[1]−3 occurs with
the probability of random association 1

N . Therefore, we
get

Pr(S 0[1]=−K[0]−K[1]−3 |Path 1)=α1+
1
N (1−α1).

Path 2. Since −K[0] − K[1] − 3 , K[0] + K[1] + 1 under
the condition of Path 2, event S 0[1] = −K[0]−K[1]−3
never occurs when S 0[1] = K[0] + K[1] + 1. If
S 0[1] , K[0] + K[1] + 1 holds, then we assume that
event S 0[1] = −K[0] − K[1] − 3 occurs with the prob-
ability of random association 1

N . Therefore, we get

Pr(S 0[1] = −K[0] − K[1] − 3 | Path 2) ≈ 1
N (1 − α1).

In summary, since we assume that K is generated uniformly
at random in generic RC4, we get

Pr(S 0[1] = −K[0] − K[1] − 3)RC4

= Pr(S 0[1] = −K[0] − K[1] − 3 | Path 1) · Pr(Path 1)
+ Pr(S 0[1] = −K[0] − K[1] − 3 | Path 2) · Pr(Path 2)
≈ 2

N (α1+
1
N (1−α1))+ 1

N
(
1− 2

N
)
(1−α1).

□

Before showing Theorem 2, we describe a corollary of

Table 2 The distribution of −K[0] − K[1] in WPA.

K[0] K[1] (depends on K[0]) −K[0] − K[1] (only even)
Range Value Range Value Range

0 − 31 K[0] + 32 32 − 63 −2K[0] − 32 161 − 224
32 − 63 K[0] 32 − 63 −2K[0] 129 − 192
64 − 95 K[0] + 32 96 − 127 −2K[0] − 32 33 − 96
96 − 127 K[0] 96 − 127 −2K[0] 1 − 64
128 − 159 K[0] − 96 32 − 63 −2K[0] + 96 35 − 96
160 − 191 K[0] − 128 32 − 63 −2K[0] + 128 1 − 64
192 − 223 K[0] − 96 96 − 127 −2K[0] + 96 161 − 224
224 − 255 K[0] − 128 96 − 127 −2K[0] + 128 129 − 192

Proposition 3. In the preliminary version [7], the relative
error of event S 0[i1] = −K[0] − K[1] − 3 in WPA is slightly
large such as 2.658 %. This is because we proved the event
in WPA in the same way as the theoretical proof of that in
generic RC4 since we could not treat with a probability dis-
tribution of −K[0]−K[1]. Corollary 1 improves the relative
error of the event in WPA in Theorem 2. Table 2 shows the
probability distribution of −K[0] − K[1] in WPA.

Corollary 1: For 0 ≤ v ≤ N−1, the probability distribution
of the sum of −K[0] and −K[1] generated by the temporal
key hash function in WPA is given as follows:

Pr(−K[0] − K[1] = v) = 0 if v is odd,
Pr(−K[0] − K[1] = v) = 0 if v is even and

v ∈ [97, 128] ∪ [225, 256],

Pr(−K[0] − K[1] = v) = 2
256 if v is even and

v ∈ [1, 32] ∪ [65, 96]∪
[129, 160] ∪ [193, 224],

Pr(−K[0] − K[1] = v) = 4
256 if v is even and

v ∈ [33, 64] ∪ [161, 192].

Theorem 2: In the initial state of the PRGA in generic
RC4 for 0 ≤ x ≤ N − 1, we have

Pr(S 0[i1]=−K[0]−K[1]−3)WPA

≈ 4
N
(
α1+

1
N (1−α1)

)
+ 1

N
∑

x,2,130 Pr(−K[0]−K[1]= x)
(
1− 1

N
)x−5
.

Proof : The probability of event S 0[i1] = −K[0]−K[1]−3
in WPA can be decomposed in two paths: −K[0] − K[1] =
2, 130 (Path 1) and −K[0] − K[1] , 2, 130 (Path 2). These
paths include all events in order to compute Pr(S 0[i1] =
−K[0] − K[1] − 3)WPA. Under such conditions, we have

−K[0] − K[1] = x ⇔ K[0] + K[1] = N − x. (6)

In the following proof, we use S 0[1] instead of S 0[i1] (i1 =
1) for simplicity.

Path 1. Since −K[0] − K[1] − 3 = K[0] + K[1] + 1 from
Eq. (6) under the condition of Path 1, event S 0[1] =
−K[0] − K[1] − 3 always occurs when S 0[1] = K[0] +
K[1]+ 1. In addition, if S 0[1] , K[0]+K[1]+ 1 holds,
then we assume that event S 0[1] = −K[0] − K[1] − 3
occurs with the probability of random association 1

N .
Therefore, we get
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Pr(S 0[1]=−K[0]−K[1]−3 |Path 1)=α1+
1
N (1−α1).

Path 2. Let −K[0] − K[1] = x. Since −K[0] − K[1] − 3 ,
K[0] + K[1] + 1 from Eq. (6) under the condition of
Path 2, event S 0[1] = −K[0] − K[1] − 3 (= x − 3)
never occurs when S 0[1] = K[0] + K[1] + 1. Af-
ter the second round of the KSA, we note that both
S K

2 [1] = K[0]+K[1]+1 = N−x+1 and S K
2 [x−3] = x−3

hold from Eq. (6) and Algorithm 1. Thereafter, if
S K

r [x − 3] , S K
2 [x − 3] for 3 ≤ r ≤ x − 3, event

S 0[1] = −K[0] − K[1] − 3 (= x − 3) never occurs.
When S K

r [x−3] = S K
2 [x−3] = x−3 is satisfied, whose

probability is
(
1− 1

N
)x−5 approximately, we assume that

event S 0[1] = −K[0] − K[1] − 3 occurs with the prob-
ability of random association 1

N since S x−2[1] may be
swapped from S x−3[x − 3]. Therefore, we get

Pr(S 0[1]=−K[0]−K[1]−3 |Path 2) ≈ 1
N
(
1− 1

N
)x−5
.

In summary, we get

Pr(S 0[1] = K[0] − K[1] − 3)WPA

=Pr(S 0[1] = K[0] − K[1] − 3 | Path 1) · Pr(Path 1)
+Pr(S 0[1] = K[0] − K[1] − 3 | Path 2) · Pr(Path 2)
≈ 4

N
(
α1+

1
N (1−α1)

)
+ 1

N
∑

x,2,130 Pr(−K[0]−K[1]= x)
(
1− 1

N
)x−5
,

where Pr(−K[0] − K[1] = x) follows Lemma 1. □

Theorem 3: In the initial state of the PRGA, we have

Pr(S 0[i1] = K[0] + K[1] + K[2] +3)
≈ 1

N
(
1 − 2

N
)(

1 − 1
N
)N−2
+ 1

N2

(
3 − 2

N
)
.

Proof : Since both S K
1 [1] = 1 and S K

2 [2] = 2 hold with
high probability from Algorithm 1, we get

jK
1 = K[0], (7)

jK
2 = K[0] + K[1] + S K

1 [1] = K[0] + K[1] + 1, (8)
jK
3 = K[0] + K[1] + K[2] + S K

1 [1] + S K
2 [2] (9)

= K[0] + K[1] + K[2] + 3. (10)

When the above equations hold, S K
3 [2] = K[0] + K[1] +

K[2] + 3 always holds from step 7 in Algorithm 1. Thus,
event S 0[i1] = K[0]+ K[1]+ K[2]+ 3 never occurs because
S K

r [i1] , K[0]+K[1]+K[2]+3 always holds for r ≥ 3. Then,
the probability of event S 0[i1] = K[0]+K[1]+K[2]+ 3 can
be decomposed in two paths: jK

1 = 1, 2 (Path 1) and jK
1 ,

1, 2 (Path 2). Path 2 is further divided into three subpaths:
jK
2 = 2 (Path 2-1), jK

2 , 2∧ K[2] = 254 (Path 2-2) and jK
2 ,

2∧ K[2] , 254 (Path 2-3). These paths include all events in
order to compute Pr(S 0[i1] = K[0] + K[1] + K[2] + 3). In
the following proof, we use S 0[1] instead of S 0[i1] (i1 = 1)
for simplicity.

Path 1. If jK
1 = 1, then S K

1 [1] , 1 from step 7 in Algorithm
1. Thus, S K

3 [2] , K[0] + K[1] + K[2] + 3 always holds
since jK

3 , K[0] + K[1] + K[2] + 3 from Eq. (10) un-
der the condition of Path 1. Similarly, if jK

1 = 2, then
S K

3 [2] , K[0] + K[1] + K[2] + 3 always holds. We

then assume that event S 0[1] = K[0]+ K[1]+ K[2]+ 3
occurs with the probability of random association 1

N .
Therefore, we get

Pr(S 0[1] = K[0] + K[1] + K[2] + 3 | Path 1) ≈ 1
N .

Path 2-1. As with the discussion in Path 1, if jK
2 = 2, then

S K
3 [2] , K[0] + K[1] + K[2] + 3 always holds under

the condition of Path 2-1. We then assume that event
S 0[1] = K[0]+ K[1]+ K[2]+ 3 with the probability of
random association 1

N . Therefore, we get

Pr(S 0[1] = K[0] + K[1] + K[2] + 3 | Path 2-1) ≈ 1
N .

Path 2-2. Except in the above paths, Eqs. (7)–(10) always
hold since we get both S K

1 [1] = 1 and S K
2 [2] = 2. Now,

if K[2] = 254, then jK
2 = jK

3 = K[0] + K[1] + K[2] + 3
holds since K[2] + 3 = 1. Thus, we get both S K

3 [1] =
K[0] + K[1] + K[2] + 3 and S K

3 [2] = 1 from step 7
in Algorithm 1. After the third round of the KSA,
S K

r [1] = S K
3 [1] for 4 ≤ r ≤ N if jK

r , 1 during the sub-
sequent N − 3 rounds, whose probability is

(
1 − 1

N
)N−3

approximately since we assume that jK
r = 1 holds with

the probability of random association 1
N . Therefore, we

get

Pr(S 0[1]=K[0]+K[1]+K[2]+3 |Path 2-2)≈ (1− 1
N
)N−3
.

Path 2-3. As with the discussion in Path 2-2, Eqs. (7)–(10)
always hold, and jK

2 , jK
3 since K[2] , 254 under the

condition of Path 2-3. Therefore, since event S 0[i1] =
K[0] + K[1] + K[2] + 3 never occurs, we get

Pr(S 0[1] = K[0] + K[1] + K[2] + 3 | Path 2-3) = 0.

In summary, event S 0[i1] = K[0] + K[1] + K[2] + 3 occurs
only in Paths 1, 2-1 and 2-2. Therefore, we get

Pr(S 0[1]=K[0]+K[1]+K[2]+3)
=Pr(S 0[1]=K[0]+K[1]+K[2]+3 |Path 1)·Pr(Path 1)
+Pr(S 0[1]=K[0]+K[1]+K[2]+3 |Path 2-1)·Pr(Path 2-1)
+Pr(S 0[1]=K[0]+K[1]+K[2]+3 |Path 2-2)·Pr(Path 2-2)
≈ 1

N ·
2
N +

1
N ·

1
N
(
1 − 2

N
)
+
(
1 − 1

N
)N−3 · 1

N
(
1 − 1

N
)(

1 − 2
N
)

= 1
N
(
1 − 2

N
)(

1 − 1
N
)N−2
+ 1

N2

(
3 − 2

N
)
,

where we assume that 4 events, jK
1 = 1, jK

1 = 2, jK
2 = 2 and

K[2] = 254, occur with the probability of random associa-
tion 1

N , respectively. □

3.3 Biases in S 1[i2]

In this section, we prove Theorems 4–8 theoretically. The-
orem 4 shows event S 1[i2] = K[0] + K[1] + K[2] + 3 oc-
curs with pretty high probability in both generic RC4 and
WPA. It is induced by Roos’ bias, that is α2 = Pr(S 0[2] =
K[0]+K[1]+K[2]+3). Theorems 5 and 7 show 4 events on
S 1[i2] yield a positive bias in both generic RC4 and WPA. In
addition, Theorems 6 and 8 are newly proved here after we
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presented in our preliminary version [7]. Theorem 6 shows
event S 1[i2] = K[1]+K[2]+3 occurs with a double probabil-
ity of random association 1

N in both generic RC4 and WPA.
Theorem 8 shows event S 1[i2] = K[0] − K[1] + K[2] + 3
yields a positive bias in generic RC4 but a negative bias in
WPA. We note that Theorems 4–7 mean the second round
internal state S 1[i2] can be guessed in high probability by
using known K[0], K[1] and K[2] in WPA. In order to prove
the following theorems, let us denote the results of Theo-
rems 3 and 4 as β = Pr(S 0[1] = K[0]+K[1]+K[2]+ 3) and
γ = Pr(S 1[2] = K[0] + K[1] + K[2] + 3), respectively.

Theorem 4: After the first round of the PRGA, we have

Pr(S 1[i2] = K[0] + K[1] + K[2] + 3)
≈ β · Pr(S 0[1] = 2) + α2 ·

(
1 − Pr(S 0[1] = 2)

)
.

Proof : The probability of event S 1[i2] = K[0] + K[1] +
K[2] + 3 can be decomposed in two paths: j1 = 2 (Path 1)
and j1 , 2 (Path 2). These paths include all events in order
to compute Pr(S 1[i2] = K[0] + K[1] + K[2] + 3). We note
that j1 = S 0[1] from step 4 in Algorithm 2. In the following
proof, we use S 1[2] instead of S 1[i2] (i2 = 2) for simplicity.

Path 1. In the condition of Path 1, event S 1[2] = K[0] +
K[1] + K[2] + 3 always occurs if and only if S 0[1] =
K[0]+K[1]+K[2]+ 3 from step 5 in Algorithm 2. We
assume that both events j1 = 2 and S 0[1] = K[0] +
K[1] + K[2] + 3 are mutually independent. Therefore,
we get

Pr(S 1[2] = K[0] + K[1] + K[2] + 3 | Path 1) = β.

Path 2. In the condition of Path 2, event S 1[2] = K[0] +
K[1] + K[2] + 3 always occurs if and only if S 0[2] =
K[0]+K[1]+K[2]+ 3 from step 5 in Algorithm 2. We
assume that both events j1 , 2 and S 0[2] = K[0] +
K[1] + K[2] + 3 are mutually independent. Therefore,
we get

Pr(S 1[2] = K[0] + K[1] + K[2] + 3 | Path 2) = α2.

In summary, we get

Pr(S 1[2]=K[0]+K[1]+K[2]+3)
= Pr(S 1[2]=K[0]+K[1]+ K[2]+3 |Path 1)·Pr(Path 1)
+ Pr(S 1[2]=K[0]+K[1]+K[2]+3 |Path 2)·Pr(Path 2)
≈ β · Pr( j1 = 2) + α2 ·

(
1 − Pr( j1 = 2)

)
= β · Pr(S 0[1] = 2) + α2 ·

(
1 − Pr(S 0[1] = 2)

)
,

where Pr(S 0[1] = 2) follows Propositions 2 and 4 in generic
RC4 and WPA, respectively. □

Theorem 5: After the first round of the PRGA, we have

Pr(S 1[i2] = −K[0] − K[1] + K[2] − 1)

≈
 2

N
(
γ + 1

N (1 − γ)) + 1
N
(
1 − 2

N
)
(1 − γ) for RC4,

4
N
(
γ + 1

N (1 − γ)) + 1
N
(
1 − 4

N
)
(1 − γ) for WPA.

Proof : The probability of event S 1[i2] = −K[0] − K[1] +

K[2] − 1 can be decomposed in two paths: K[0] + K[1] =
126, 254 (Path 1) and K[0]+K[1] , 126, 254 (Path 2). These
paths include all events in order to compute Pr(S 1[i2] =
−K[0] − K[1] + K[2] − 1). In the following proof, we use
S 1[2] instead of S 1[i2] (i2 = 2) for simplicity.

Path 1. Since −K[0]−K[1]+K[2]−1 = K[0]+K[1]+K[2]+
3 under the condition of Path 1, event S 1[2] = −K[0]−
K[1] + K[2] − 1 always occurs when S 1[2] = K[0] +
K[1] + K[2] + 3. In addition, if S 0[1] , K[0] + K[1] +
1 holds, then we assume that event S 1[2] = −K[0] −
K[1] + K[2] − 1 occurs with the probability of random
association 1

N . Therefore, we get

Pr(S 1[2]=−K[0]−K[1]+K[2]−1 |Path 1)=γ+ 1
N (1−γ).

Path 2. Since −K[0]−K[1]+K[2]−1 , K[0]+K[1]+K[2]+
3 under the condition of Path 2, event S 1[2] = −K[0]−
K[1]+K[2]−1 never occurs when S 1[2] = K[0]+K[1]+
K[2] + 3. If S 1[2] , K[0] + K[1] + K[2] + 3, then we
assume that event S 1[2] = −K[0] − K[1] + K[2] − 1
occurs with the probability of random association 1

N .
Therefore, we get

Pr(S 1[2]=−K[0]−K[1]+K[2]−1 |Path 2)= 1
N (1−γ).

The probability of K[0] + K[1] = 126 and 254 in WPA is 2
N

from Proposition 3, respectively. On the other hand, that in
generic RC4 is 1

N since K is generated uniformly at random.
By substituting each Pr(K[0] + K[1] = 126, 254) in both
generic RC4 and WPA, we get

Pr(S 1[2]=−K[0]−K[1]+K[2]−1)
= Pr(S 1[2]=−K[0]−K[1]+K[2]−1 |Path 1)·Pr(Path 1)
+ Pr(S 1[2]=−K[0]−K[1]+K[2]−1 |Path 2)·Pr(Path 2)

≈
 2

N
(
γ + 1

N (1 − γ)) + 1
N
(
1 − 2

N
)
(1 − γ) for RC4,

4
N
(
γ + 1

N (1 − γ)) + 1
N
(
1 − 4

N
)
(1 − γ) for WPA.

□

Before showing Theorem 6, we prove Lemma 1. Lemma
1 shows event S 0[2] = K[1] + K[2] + 3 yields a positive
bias in both generic RC4 and WPA. In order to prove the
following theorems, let us denote the result of Lemma 1 as
η = Pr(S 0[2] = K[1] + K[2] + 3).

Lemma 1: After the first round of the PRGA, we have

Pr(S 0[2] = K[1] + K[2] + 3)
≈ 3

N
(
1 − 1

N
)N−2
+ 1

N
(
1 − 2

N
)(

1 − 3
N
)
+ 3

N3

(
1 − 2

N
)
.

Proof : The probability of event S 0[2] = K[1] + K[2] + 3
can be decomposed in four paths: jK

1 = 0 (Path 1), jK
1 = 1

(Path 2), jK
1 = 2 (Path 3) and jK

1 , 0, 1, 2 (Path 4). Paths 1-3
are further divided into two subpaths: jK

2 = 2 (Paths 1-1, 2-1
and 3-1) and jK

2 , 2 (Paths 1-2, 2-2 and 3-2). These paths
include all events in order to compute Pr(S 1[i2] = −K[0] −
K[1] + K[2] − 1). In the following proof, we assume that
the values of index jK are distributed with the probability of
random association 1

N .
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Path 1-1. Since K[0] = 0, S K
1 [1] = 1 and S K

2 [2] = 1 under
the condition of Path 1-1, jK

3 = K[1] + K[2] + 2 holds
from Eq. (9). Then, S K

3 [0] = 0, S K
3 [1] = 2 and S K

3 [2] =
K[1] + K[2] + 2 from step 7 in Algorithm 1. If K[1] +
K[2] + 3 = 0 or 2, event S 0[2] = K[1] + K[2] + 3
never occurs. When K[1] + K[2] + 3 , 0 and 2 are
satisfied, we assume that event S 0[2] = K[1]+K[2]+3
occurs with the probability of random association 1

N .
Therefore, we get

Pr(S 0[2] = K[1] + K[2] + 3 | Path 1-1) ≈ 1
N
(
1 − 2

N
)
.

Similarly, the probability of event S 0[2]=K[1]+K[2]+
3 under the conditions of Paths 2-1, 3-1 and 4 can be
computed.

Path 1-2. Since K[0] = 0, S K
1 [1] = 1 and S K

2 [2] = 2 under
the condition of Path 1-2, jK

3 = K[1] + K[2] + 3 holds
from Eq. (9). Then, S K

3 [2] = K[1]+K[2]+ 2 from step
7 in Algorithm 1. After the third round of the KSA,
S K

r [2] = S K
3 [2] for 4 ≤ r ≤ N if jK

r , 2 during the sub-
sequent N − 3 rounds, whose probability is

(
1 − 1

N
)N−3

approximately. Therefore, we get

Pr(S 0[2] = K[1] + K[2] + 3 | Path 1-2) ≈ (1 − 1
N
)N−3
.

Similarly, the probability of event S 0[2]=K[1]+K[2]+
3 under the conditions of Paths 2-2 and 3-2 can be com-
puted.

In summary, we get

Pr(S 0[2]=K[1]+K[2]+3)
= Pr(S 0[2]=K[1]+K[2]+3 |Path 1-1)·Pr(Path 1-1)
+ Pr(S 0[2]=K[1]+K[2]+3 |Path 1-2)·Pr(Path 1-2)
+ Pr(S 0[2]=K[1]+K[2]+3 |Path 2-1)·Pr(Path 2-1)
+ Pr(S 0[2]=K[1]+K[2]+3 |Path 2-2)·Pr(Path 2-2)
+ Pr(S 0[2]=K[1]+K[2]+3 |Path 3-1)·Pr(Path 3-1)
+ Pr(S 0[2]=K[1]+K[2]+3 |Path 3-2)·Pr(Path 3-2)
+ Pr(S 0[2]=K[1]+K[2]+3 |Path 4)·Pr(Path 4)
≈ 3

N
(
1 − 1

N
)N−2
+ 1

N
(
1 − 2

N
)(

1 − 3
N
)
+ 3

N3

(
1 − 2

N
)
.

□

Theorem 6: After the first round of the PRGA, we have

Pr(S 1[i2] = K[1] + K[2] + 3) ≈ η(1 − 1
N
)
+ 1

N2 .

Proof : The probability of event S 1[i2] = K[1] + K[2] + 3
can be decomposed in two paths: j1 = 2 (Path 1) and j1 , 2
(Path 2). These paths include all events in order to compute
Pr(S 1[i2] = K[1]+K[2]+3). In the following proof, we use
S 1[2] instead of S 1[i2] (i2 = 2) for simplicity.

Path 1. Since S 1[2] = S 0[1] from step 5 in Algorithm 2
under the condition of Path 1, event S 1[i2] = K[1] +
K[2] + 3 always occurs if and only if S 0[1] = K[1] +
K[2]+3. We then assume that K[1]+K[2]+3 = 2 ( j1 =
S 0[1]) holds with the probability of random association
1
N . Therefore, we get

Pr(S 1[2] = K[1] + K[2] + 3 | Path 1) ≈ 1
N .

Path 2. Since S 1[2] = S 0[2] from step 5 in Algorithm 2 un-
der the condition of Path 2, event S 1[i2] = K[1]+K[2]+
3 always occurs if and only if S 0[2] = K[1]+K[2]+ 3.
We then assume that both j1 , 2 and S 0[2] = K[1] +
K[2] + 3 are mutually independent events. Therefore,
we get

Pr(S 1[2] = K[1] + K[2] + 3 | Path 2) ≈ η.

In summary, we get

Pr(S 1[2] = K[1] + K[2] + 3)
= Pr(S 1[2] = K[1] + K[2] + 3 | Path 1) · Pr(Path 1)
+ Pr(S 1[2] = K[1] + K[2] + 3 | Path 2) · Pr(Path 2)
≈ η(1 − 1

N
)
+ 1

N2 .

□

Theorem 7: After the first round of the PRGA for x ∈
{−3,−1, 1}, we have

Pr(S 1[i2] = K[0] − K[1] + K[2] + x)

≈
 2

N
(
γ + 1

N (1 − γ)) + 1
N
(
1 − 2

N
)
(1 − γ) for RC4,

4
N
(
γ + 1

N (1 − γ)) + 1
N
(
1 − 4

N
)
(1 − γ) for WPA.

We can prove Theorem 7 in the same way as Theorem 5.

Theorem 8: After the first round of the PRGA, we have

Pr(S 1[i2] = K[0] − K[1] + K[2] + 3)

≈
 2

N
(
γ + 1

N (1 − γ)) + 1
N
(
1 − 2

N
)
(1 − γ) for RC4,

1
4N
((

1 − 1
N
)N−2
+ (4 − 1

N )(1 − γ)) for WPA.

Proof : The probability of event S 1[i2]=K[0]−K[1]+K[2]+
3 in generic RC4 are proved in the same way as Theorem 5.
The probability of event S 1[i2] = K[0]−K[1]+K[2] + 3 in
WPA can be decomposed in two paths: K[0] = K[1] (Path
1) and K[0] , K[1] (Path 2). Path 1 is further divided into
two subpaths: K[2] = 254 (Path 1-1) and K[2] , 254 (Path
1-2). These paths include all events in order to compute
Pr(S 1[i2] = K[0]−K[1]+K[2]+ 3). In the following proof,
we use S 1[2] instead of S 1[i2] (i2 = 2) for simplicity.

Path 1-1. K[0] − K[1] + K[2] + 3 = 1 and Eqs. (7), (8)
and (10) always hold under the condition of Path 1-1.
Then, S K

3 [2] = S K
2 [ jK

3 ] = S K
2 [ jK

2 ] = S K
1 [i1] = S K

1 [1] =
S K

0 [1] = 1 (= K[0]−K[1]+K[2]+3) from Algorithm 1
since jK

3 = jK
2 = K[0]+K[1]+1 (note that K[2] = 254).

After the third round of the KSA, S 1[2] = S K
3 [2] if the

values of index j are not equal to 2 during the subse-
quent N − 2 rounds, whose probability is

(
1 − 1

N
)N−2.

Therefore, we get

Pr(S 1[2]=K[0]−K[1]+K[2]+3 |Path 1-1)≈ (1− 1
N
)N−2
.

Path 1-2. Since K[0] − K[1] + K[2] + 3 , K[0] + K[1] +
K[2] + 3 under the condition of Path 1-2 (note that
K[1] , 0, 128 in WPA from Proposition 3), event



ITO and MIYAJI: REFINED CONSTRUCTION OF RC4 KEY SETTING IN WPA
145

S 1[2] = K[0] − K[1] + K[2] + 3 never occurs when
S 1[2] = K[0] + K[1] + K[2] + 3. If S 1[2] , K[0] +
K[1] + K[2] + 3, we then assume that event S 1[2] =
K[0] − K[1] + K[2] + 3 occurs with the probability of
random association 1

N . Therefore, we get

Pr(S 1[2]=K[0]−K[1]+K[2]+3 |Path 1-2)≈ 1
N (1−γ).

Similarly, the probability of event S 1[2]=K[0]−K[1]+
K[2]+3 under the condition of Path 2 can be computed.

The probability of K[0] = K[1] in WPA is 1
4 from Proposi-

tion 3. Therefore, we get

Pr(S 1[2]=K[0]−K[1]+K[2]+3)WPA

=Pr(S 1[2]=K[0]−K[1]+K[2]+3 |Path 1-1)·Pr(Path 1-1)
+Pr(S 1[2]=K[0]−K[1]+K[2]+3 |Path 1-2)·Pr(Path 1-2)
+Pr(S 1[2]=K[0]−K[1]+K[2]+3 |Path 2)·Pr(Path 2)
≈ 1

4N
((

1 − 1
N
)N−2
+ (4 − 1

N )(1 − γ)).
□

3.4 Biases in j2

In this section, we prove Theorems 9–13 theoretically. The-
orem 9 shows event j2 = K[2] yields a positive bias in
both generic RC4 and WPA. By contrast, Theorems 10–
13 show 7 events on j2 yield positive biases only in WPA
but those are not biases in generic RC4. Now, we present
only the proof of Theorem 9 since Theorems 10–13 are
proved in the same way as Theorem 9. Theorems 9–13
are refined precisely by further analyzing a condition that
an event occurs (see Path 1 in the proof of Theorem 9)
from our preliminary version [7]. In order to prove the fol-
lowing theorems, let us denote the result of Theorem 4 as
γ = Pr(S 1[2] = K[0] + K[1] + K[2] + 3).

Theorem 9: After the second round of the PRGA, we have

Pr( j2 = K[2]) ≈
 1

N +
1
Nα1γ for RC4,

1
N +

3
Nα1γ for WPA.

Proof : The probability of event j2 = K[2] can be decom-
posed in two paths: K[0] + K[1] = 126, 254 (Path 1) and
K[0] + K[1] , 126, 254 (Path 2). These paths include all
events in order to compute Pr( j2 = K[2]). We note that
j2 = S 0[1] + S 1[2] from step 4 in Algorithm 2.

Path 1. Assuming that both S 0[1] = K[0] + K[1] + 1 and
S 1[2] = K[0] + K[1] + K[2] + 3 occur simultaneously,
we get

j2 = S 0[1] + S 1[2]
= (K[0] + K[1] + 1) + (K[0] + K[1] + K[2] + 3)
= 2K[0] + 2K[1] + K[2] + 4.

When the above condition is satisfied, event j2 = K[2]
always occurs since K[2] = 2K[0] + 2K[1] + K[2] + 4
under the condition of Path 1. By contrast, if the

above condition is not satisfied, then we assume that
event j2 = K[2] occurs with the probability of ran-
dom association 1

N . We also assume that both S 0[1] =
K[0] + K[1] + 1 and S 1[2] = K[0] + K[1] + K[2] + 3
are mutually independent events. Therefore, we get

Pr( j2 = K[2] | path 1) = α1γ +
1
N (1 − α1γ).

Path 2. Since K[2] , 2K[0] + 2K[1] + K[2] + 4 under the
condition of Path 2, event j2 = K[2] never occurs when
both S 0[1] = K[0] + K[1] + 1 and S 1[2] = K[0] +
K[1]+K[2]+3 occur simultaneously. If either S 0[1] ,
K[0]+K[1]+1 or S 1[2] , K[0]+K[1]+K[2]+3 hold,
then we assume that event j2 = K[2] occurs with the
probability of random association 1

N . Therefore, we get

Pr( j2 = K[2] | Path 2) = 1
N (1 − α1γ).

The probability of K[0] + K[1] = 126 and 254 in WPA is 2
N

from Proposition 3, respectively. On the other hand, that in
generic RC4 is 1

N since K is generated uniformly at random.
By substituting each Pr(K[0] + K[1] = 126, 254) in both
generic RC4 and WPA, we get

Pr( j2 = K[2]) = Pr( j2 = K[2] | Path 1) · Pr(Path 1)
+ Pr( j2 = K[2] | Path 2) · Pr(Path 2)

≈
 2

N
(
α1γ+

1
N (1−α1γ)

)
+ 1

N
(
1− 2

N
)
(1−α1γ) for RC4,

4
N
(
α1γ+

1
N (1−α1γ)

)
+ 1

N
(
1− 4

N
)
(1−α1γ) for WPA

=

 1
N +

1
Nα1γ for RC4,

1
N +

3
Nα1γ for WPA.

□

Theorem 10: After the second round of the PRGA for x ∈
{−2, 0, 2}, we have

Pr( j2=−K[0]−K[1]+K[2]+x)≈


1
N for RC4,
1
N +

1
Nα1γ if x=±2 for WPA,

1
N +

3
Nα1γ if x=0 for WPA.

Theorem 11: After the second round of the PRGA, we
have

Pr( j2 = −K[0] + K[1] + K[2]) ≈
 1

N for RC4,
1
N +

3
Nα1γ for WPA.

Theorem 12: After the second round of the PRGA for x ∈
{−2, 3}, we have

Pr( j2 = −K[1] + K[2] + x) ≈
 1

N for RC4,
1
N +

3
Nα1γ for WPA.

Theorem 13: After the second round of the PRGA, we
have

Pr( j2 = K[0] − K[1] + K[2]) ≈
 1

N for RC4,
1
N +

3
Nα1γ for WPA.
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3.5 Experimental Results

We have conducted experiments on Theorems 1–13 in the
following environment in order to confirm the accuracy of
theorems: Intel(R) Core(TM) i3-3220M CPU with 3.30
GHz, 3.8 GiB memory, gcc 4.8.2 compiler and C language.
The number of samples necessary for our experiments is at
least O(N3) according to Proposition 5. This is why each
correlation has a relative bias with the probability of at least
O( 1

N ). Then, we have used N5 randomly generated RC4
keys in both generic RC4 and WPA. The number of these
samples satisfies a condition to distinguish each correlation
from random distribution with constant probability of suc-
cess. We also evaluate the percentage of the relative error
ϵ of the experimental values compared with the theoretical
values in the same way as our preliminary version [7]:

ϵ =
|experimental value − theoretical value|

experimental value
× 100(%).

Tables 3 and 4 show the experimental and the theoret-
ical values and the percentage of the relative error ϵ in both
generic RC4 and WPA, respectively.

We see that ϵ is small enough in each case in generic
RC4 such as ϵ ≤ 0.730 (%). Therefore, we have convinced
that the theoretical values closely reflect the experimental

Table 3 Comparison between the experimental and the theoretical val-
ues for generic RC4.

Linear correlation Experimental value Theoretical value ϵ (%)

−K[0] − K[1] − 3 0.005333309 0.005344544 0.211
S 0[i1]

K[0] + K[1] + K[2] + 3 0.001490745 0.001479853 0.730
K[0] + K[1] + K[2] + 3 0.360360690 0.362016405 0.459
−K[0] − K[1] + K[2] − 1 0.005305673 0.005320377 0.277
K[1] + K[2] + 3 0.008158548 0.008150313 0.101
K[0] − K[1] + K[2] − 3 0.005295155 0.005320377 0.476
K[0] − K[1] + K[2] − 1 0.005289180 0.005320377 0.590
K[0] − K[1] + K[2] + 1 0.005309594 0.005320377 0.203

S 1[i2]

K[0] − K[1] + K[2] + 3 0.005310594 0.005302926 0.144
K[2] 0.004430372 0.004426926 0.078
−K[0] − K[1] + K[2] − 2 0.003920799 0.003906250 0.371
−K[0] − K[1] + K[2] 0.003919381 0.003906250 0.335
−K[0] − K[1] + K[2] + 2 0.003910929 0.003906250 0.120
−K[0] + K[1] + K[2] 0.003920399 0.003906250 0.361
−K[1] + K[2] − 2 0.003910053 0.003906250 0.097
−K[1] + K[2] + 3 0.003897939 0.003906250 0.213

j2

K[0] − K[1] + K[2] 0.003917895 0.003906250 0.297

Table 4 Comparison between the experimental and the theoretical val-
ues for WPA.

Linear correlation Experimental value Theoretical value ϵ (%)

−K[0] − K[1] − 3 0.008408305 0.008375244 0.393
S 0[i1]

K[0] + K[1] + K[2] + 3 0.001491090 0.001479853 0.754
K[0] + K[1] + K[2] + 3 0.361751935 0.362723221 0.268
−K[0] − K[1] + K[2] − 1 0.008174625 0.008148630 0.318
K[1] + K[2] + 3 0.008173397 0.008150313 0.282
K[0] − K[1] + K[2] − 3 0.008140906 0.008148630 0.095
K[0] − K[1] + K[2] − 1 0.008147205 0.008148630 0.017
K[0] − K[1] + K[2] + 1 0.008150390 0.008148630 0.022

S 1[i2]

K[0] − K[1] + K[2] + 3 0.002835497 0.002849060 0.478
K[2] 0.005560613 0.005471358 1.605
−K[0] − K[1] + K[2] − 2 0.004573276 0.004427953 3.178
−K[0] − K[1] + K[2] 0.005562336 0.005471358 1.636
−K[0] − K[1] + K[2] + 2 0.004543826 0.004427953 2.550
−K[0] + K[1] + K[2] 0.005490766 0.005471358 0.353
−K[1] + K[2] − 2 0.005468425 0.005471358 0.054
−K[1] + K[2] + 3 0.005468472 0.005471358 0.053

j2

K[0] − K[1] + K[2] 0.005607004 0.005471358 2.419

values in generic RC4.
We also see that ϵ is small enough in S 0[i1] and S 1[i2]

in WPA such as ϵ ≤ 0.754 (%). ϵ in Theorem 1 is refined
from 2.658 (%) to 0.393 (%). Therefore, we have convinced
that the theoretical values closely reflect the experimental
values in S 0[i1] and S 1[i2] in WPA. The theoretical values
in j2 in WPA produce slightly large ϵ such as 3.178 (%). We
will continue to refine the theoretical values in j2 in WPA.

4. Refined RC4 Key Setting

Many key recovery attacks on WEP using specific IVs have
been proposed over past 15 years [3], [9], [20]. One of the
greatest factors to enable the attacks is that the first 3-byte
RC4 key, K[0], K[1] and K[2], are derived from the known
IV. Actually, IV can be obtained easily by observing pack-
ets. For example, Fluhrer, Mantin and Shamir pointed out
that the information on the remaining RC4 key (K[3], . . . ,
K[15]) is derived from the keystream bytes when specific IV
is used, and showed the RC4 key recovery attack by observ-
ing about 4, 000, 000–6, 000, 000 packets [3].

WPA improved a construction of the RC4 key setting
known as TKIP to avoid the known WEP attacks. However,
the weaknesses in TKIP using the known IV were reported
by Sen Gupta et al. [4] and by us [8]. Both showed that TKIP
induces many linear correlations including the keystream
bytes or the internal state variables. Ideally TKIP should
be constructed in such a way that it can keep the security
level of generic RC4.

In this section, let us investigate a construction of the
RC4 key setting in such a way that it can keep the secu-
rity level of generic RC4. If the construction was refined,
it would be hard to induce the linear correlations. In order
to find the refined construction, we use the following linear
equations

Zr+1 = b · K[x] + c · K[y] + d · K[z] + e, (11)
Xr = a · Zr+1 + b · K[x] + c · K[y] + d · K[z] + e, (12)

where Xr ∈ {S r[ir+1], S r[ jr+1], jr+1, tr+1}, a, b, c, d ∈ {0,±1},
e ∈ {0,±1,±2, ±3}, and x, y, z ∈ {0, 1, 2, . . . , 15} for r ≥ 0.
Namely, we carefully need to set the 3-byte RC4 key, K[x],
K[y] and K[z], derived from the known IV as follows:

K[x] = (IV16 >> 8) & 0xFF, (13)
K[y] = ((IV16 >> 8) | 0x20) & 0x7F, (14)
K[z] = IV16 & 0xFF. (15)

We have examined all equations defined by Eqs. (11)
and (12) in each round with 232 randomly generated 16-byte
RC4 keys in the constructions with the following cases of x,
y and z.

Case 1. x = 9, y = 12 and z = 15.
Case 2. x = 11, y = 12 and z = 13.
Case 3. x = 11, y = 13 and z = 15.
Case 4. x = 13, y = 14 and z = 15.

The reason why we set the above 4 cases is that the con-
structions using the first half of the RC4 key bytes may be
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Table 5 The number of linear correlations including the keystream bytes
and the unknown internal state variables by the RC4 key setting in TKIP
and Cases 1–4.

Linear correlation TKIP Case 1 Case 2 Case 3 Case 4

Zr+1 22 3 3 3 3
S r[ir+1] 362 104 103 104 103
S r[ jr+1] 12 2 2 2 2

jr+1 26 5 5 5 5
tr+1 462 160 161 161 161

sum 884 274 274 275 274

easy to induce many linear correlations in the same way as
TKIP.

Table 5 presents the number of linear correlations
which are induced by the RC4 key setting in TKIP and
Cases 1–4. We have summarized the correlations including
the keystream bytes Zr or unknown internal state variables
Xr with more than 0.00395 and 0.0048 (positive biases) or
less than 0.00385 and 0.0020 (negative biases), respectively.
From the table, we can confirm that the number of linear cor-
relations in Cases 1–4 can be reduced by about 70% in com-
parison with that in TKIP. Therefore, we have refined the
construction of the RC4 key setting in WPA. In this study,
we investigated it only in four cases. We will continue to
investigate the refined construction in more cases, which re-
mains an open problem.

5. Conclusion

This paper has provided newly theoretical proofs of 17 lin-
ear correlations including unknown internal states: S 0[i1],
S 1[i2] and j2. Our theoretical analysis can make clear how
TKIP induces biases of internal states in generic RC4. We
have further provided the refined construction of the RC4
key setting in WPA. As a result of our investigations, we
can reduce the number of linear correlations in the refined
construction by about 70% in comparison with that in the
original setting.

Our analysis are expected to contribute from the fol-
lowing two viewpoints. One is to contribute to recover a
correct internal state of RC4 by using our linear correlations
in WPA. The other is to contribute to securely operate WPA
in such a way that it can keep the security level of generic
RC4.
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