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Abstract

Due to the development of Internet technology, nowadays, our society has entered the

Internet era. People around the world can share their lives on the Internet easily. For

both buyers and sellers in marketing, these contents (such as Weibo, comments, . . . ) are

the worthiest resources for not only satisfying costumers’ requests but also exploring a

new market or exploiting a new product.

However, it is challenging to monitor the enormous numbers of comments on the

Websites manually. Additionally, different experts have different opinions, and that can

easily cause biases in practical work. In recent years, there is a new research direction

in Natural Language Processing (NLP) called Sentiment Analysis (or Opinion Mining),

which can systematically and automatically analyze text with opinions.

This thesis first survey some related knowledge about sentiment analysis and funda-

mental concepts of deep learning models. Secondly, we investigate the word embedding

and some deep learning models, such as Recurrent Neural Network and its variants, Con-

volutional Neural Network, Attention model, and Transformer. Finally, we analyze the

performance of sentiment analysis using those above deep learning models and make our

conclusion.

As the results showed, among these deep learning models, the Transformer-based

sentiment analysis models have achieved the new state-of-the-art accuracy. It also shows

the trends of development of NLP, which could contribute further research in this domain.

Keywords: sentiment analysis - word representation - deep leaning models.
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Chapter 1

Introduction

1.1 Background

With the explosive growth of social media on the Internet, people can share and review

their opinions all over the world. However, it is difficult to find and monitor all opinion

websites and extract valuable information manually to help improving services or making

decisions. Each site normally contains a huge volume of opinionated text. Moreover, it is

also known that different experts have different opinions. There is a saying which goes:

“People only see what they want to see”. As a result, without professional training, it is

hard to ensure the quality of information that refined by human readers. Due to these

reasons, the research of Sentiment Analysis was established.

About “What is Sentiment Analysis ?”, In Sentiment Analysis and Opinion Min-

ing, Authors gave a definition as:

“Sentiment analysis or opinion mining is the computational study of people’s opinions,

appraisals, attitudes, and emotions toward entities, individuals, issues, events, topics and

their attributes [1].”

In short, sentiment analysis can help computers to analyze the positive or negative

opinions expressed in text. The task has important practical significance. For example,

Potential customers want to know the feelings of using service or purchasing products

from other users before, and businesses also aim to receive customers’ feedback about

their products and services.
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According to the investigation of export1, China has become the world’s largest e-

commerce market, and more than 50% of global e-commerce transactions was happening

in China. The online retail transactions of China reached 1.33 trillion in USD, and China’s

digital buyers exceeded 560 million in 2018. The total Gross Merchandise Volume (GMV)

for the Alibaba is CNY 268.4 billion, or 38.4 billion in USD on the past 2019 11.11 Global

Shopping Festival. Under this situation, it is impossible to monitor all customers’ reviews

and comments manually. In finding a way to review such kind of comments and react on

time, we apply sentiment analysis to extract customers’ attitude from feedback. Typically,

From a large amount of customer review data, we apply some deep learning models to

identify customer sentiment opinions expressed in text reviews.

In March 2016, at the Google DeepMind Go Challenge, AlphaGo has beaten the

Korean chess player Lee Sedol 9-dan. After the competition, the discussion of artificial

intelligence and machine learning rapidly heated up, attracting attention from all over the

world. Nowadays, deep learning replaces machine learning as the hottest trend in artificial

intelligence due to the development of deep learning frameworks such as PyTorch and

TensorFlow, and the increasing computational performance. Today, deep learning has

already transformed traditional internet businesses like online advertising. Also, deep

learning is helping society reducing the reliance of human labors. The famous researcher

Andrew Ng said:” AI is the new Electricity.” With AI, we can overcome the physical

limitations of human beings to get better results and avoid duplication work.

1.2 Thesis Outline

From Chapter 2 to Chapter 5 is organized as follows:

• In Chapter 2, we survey sentiment analysis and fundamental concepts of deep learn-

ing models.

• In Chapter 3, we first mainly introduce word embedding, which is related to con-

verting words into vectors. After that, we introduce some deep learning models in

NLP and analyze their structures.

1https://www.export.gov//
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• In Chapter 4, we first introduce Task 4 of SemEval-2014 datasets, which have aspect

categories with polarity (positive, neutral or negative). Then we compare the per-

formance of sentiment analysis in different deep learning models and analyze their

advantages and disadvantages. Finally we implement an experiment to testify the

performance of those deep learning models and get our conclusion,

• In Chapter 5, we summarize the development trend of deep learning models in NLP

and future work for the sentiment analysis.
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Chapter 2

Related Work

2.1 Different levels of Sentiment Analysis

From the previous section, we have known the background of “Sentiment Analysis“. The

most common use of Sentiment Analysis is to classify a text into a class. In this section,

we will introduce the composition of sentiment classification tasks. there are mainly three

different levels of sentiment classification tasks: document level, sentence level and aspect

level.

2.1.1 Document & Sentence Level Sentiment Analysis

Document level sentiment classification classifies an opinionated document, such as a

review of product. It considers the whole document as the entire input and output an

overall opinion of positive or negative. Compared to document level,the range of sentence

level sentiment classification is much “smaller“. It only focuses on individual sentences.

2.1.2 Aspect Level Sentiment Analysis

Different from document level and sentence level, aspect level sentiment classification or

aspect-based sentiment analysis considers both the sentiment and the target infor-

mation. A target is usually an entity or an entity aspect. Both entities and aspects

are usually just called aspects. Aspect-based sentiment classification aims to infer the

sentiment polarity of different target aspects. For example, in the sentence “the screen

is very clear but the battery life is too short.” if the target aspect is “screen” then the

11



sentiment is positive, however if the target aspect is “battery life” then the sentiment is

negative [2].

2.2 Artificial Neural Networks

Deep Learning is a subfield of machine learning that uses multiple layers to extract higher

level features from input, which is inspired by neural circuit of human brain. In this

section, we will briefly introduce Neural Network as shown in Figure 2.1.

Figure 2.1: An example of deep learning neural network.

2.2.1 Neuron

We can consider neural networks as composite functions. We input some data into this

function, and it will output the result. A neural network is made up of many neurons

12



connected. The basic architecture of a single neuron contains three parts as shown in

Figure 2.2:

1. Weight

2. Bias

3. Activation function

Figure 2.2: The architecture of one neuron.

Here is an example of how a neuron works:

1. A neuron has two ends - the input and the output. The data first enters the neuron,

multiplies the weight by the data, and adds a bias to the multiplied data. It is similar to

a liner function as shown in Figure 2.3:

Figure 2.3: Liner function.

2. The output of these functions will be sent to another part in the neuron - activation

function. The activation function is also called a mapping function. It receives data from

previous output and output values over a limited range (in most cases). Mostly, they

13



are used to convert a large output of previous output to a smaller value. The activation

function we choose can significantly affect the result of the neural network output. We can

choose different activation functions for different units. Figure 2.4 shows some common

activation functions:

Figure 2.4: Activation function.

2.2.2 Hyperparameter

A hyperparameter is a parameter whose value is set by humans instead of learned from

input data, such as learning rates, layers of neural networks, Regularization & Regular-

ization rates. These values must be set manually, while parameters we mentioned above

can be learned from training.

When we’re starting constructing a new neural network, it’s almost impossible to

correctly guess all of these hyperparameters at the first time. In fact, deep learning is

a highly iterative process, and we need to try different values such as learning rates,

number of hidden units to achieve better result. After running an experiment and get a

feedback that reflects how well this neural network, then we refine the ideas and change

the configuration and try again in order to compare and get a better neural network.

14



Figure 2.5 shows an example of hyperparameters in Neural Network:

Figure 2.5: Hyperparameters in Neural Networks.

In the Figure above, the number of layers, number of neurons, and learning rates are

hyperparameters. It is obvious that the score changes when we set different hyperparam-

eters. The correct settings will accelerate the learning speed of neural networks.
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Chapter 3

Methodology

3.1 Word Representation

To deal with NLP tasks, we must first solve the problem of word representation. In com-

puter vision, because the image itself is a numerical matrix, the computer can handle

it directly. There is no problem with the representation method in the image. On the

contrary, language, as a tool for the expression of high-level information generated by the

evolution of human society for millions of years. Language is abstract. It is difficult to

portray the connection between them if the two words are literally different. Although

we can clearly understand the meaning of the word, the computer can only do mathe-

matical calculations, and the word needs to be expressed in a form that the computer

can handle. That is the reason why we have to solve this problem in Natural Language

Processing : How to represent words in a digital way so that the computer can

“understand” and “handle”.

3.1.1 TF - IDF

As one of the statistic models for information retrieval and data mining, TF-IDF is used

to reflect the importance of a word to a document in a corpus or collection [3,4]. Because

this algorithm is efficient and easy to understand, it is often used by the industry for the

initial text data cleaning. TF-IDF has two meanings, one is “Term Frequency” (TF), and

the other is “Inverse Document Frequency” (IDF). TF-IDF algorithm is made of these

two algorithms multiplied together:
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1. Term Frequency (TF):

TF is how frequent a word appears in a document.

TFw,Di
=

count(w)

|Di|
(3.1)

The parameters in this equation are explained as follows:

• count(w) is the number of occurrences of the keyword w.

• |Di| is the number of all words in the document Di.

2. Inverse document frequency (IDF):

IDF is how unique a word in a docment.

IDFw = log
N

1 +
∑N

i=1 I (w,Di)
(3.2)

The explanation of parameters in this equation is as follows:

• N is the total number of all documents.

• I (w,Di) indicates whether the document Di contains keywords. If it is included,

I (w,Di) is 1, and if not, it is 0. If the word w does not appear in all documents, the

denominator of IDF formula becomes 0. Therefore, we add 1 to the denominator,

which is called smooth.

Once we get TF (word frequency) and IDF (inverse document frequency), multiply

these two words to get the TF-IDF value of one word.

TF − IDFw,Di
= TFw,Di

∗ IDFw (3.3)

The result of TF-IDF suggest that the larger the TF-IDF of a word in the article, the

higher the importance of the word in this article in general. By computing the TF-IDF

of each word in one article, it is easy to find out the keywords.

The advantages of TF-IDF algorithm are simple, fast, and easy to understand.

However, the disadvantages of TF-IDF are also obvious. The disadvantages are shown as

follows:

17



1. The frequency of a word is not enough to measure the importance of a word in an

article (e.g., sometimes a important word may not appear enough).

2. TF-IDF cannot reflect the position information.

3. TF-IDF cannot reflect the importance of the word in context.

To overcome these difficulties, we will introduce word2vec algorithm in the following

sections.

3.1.2 Language Model

The language model considers the language (the sequence of words) as a random event and

assigns a corresponding probability to describe how possibly it belongs to a collection of

languages. By given a vocabulary set V, for a sequence of words S = 〈w1, · · · , wT 〉 ∈ Vn,

the statistical language model assigns this sequence a probability P(S) to measure the

confidence of S in conforming to the grammatical and semantic rules of natural language.

In short, the language model is the model that computes the probability of a sentence.

The higher the probability of scoring a sentence, the more the sentence conforms to the

natural sentence of human expression.

3.1.3 One-hot Representation

One-hot Representation is the easiest and the most intuitive word representation mothod

in NLP. Elements of each vector is consist of only one “1”, and the remaining elements

are “0”. This dimension represents the current word. Figure 3.1 shows an example:

Each word is consists of a single 1 and all the others 0. This One-hot Representation

is succinct if stored in a sparse way - assign a numeric ID to each word. This simple

representation method with the Maximum entropy, SVM, CRF and other algorithms has

successfully completed various mainstream tasks in the NLP field.

However, one-hot is not perfect. There are two disadvantages of one-hot:

1. The dimension of the vector increases as the number of words in the sentence in-

creases.
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Figure 3.1: One-hot vector.

2. Any two words are isolated and cannot express relevant information between words

at the semantic level.

3.1.4 Word Embedding

A featurized representation with words based on neural networks is generally called as

word embedding or distributed representation. For the two weaknesses of one-hot we men-

tioned above, the distributed representation can solve the one-hot representation problem.

The idea is to map each one -hot word vector to a shorter vector through training, and

all of these word vectors constitute the vector space so that we can study the relationship

between words and words in a common statistical way. We can specify the dimension by

ourselves during training [5]. This process is sometimes referred to as ”feature extraction”

in NLP.

For the one-hot vector we make some improvements like this:

1. Change each element of the vector from integer to floating-point to become the

representation of the entire real range.

2. Embed the original sparsely large dimension into a smaller dimension.

By implementing these, the original one-hot vector will be mapped into low dimension.

The advantage of representing words as vectors is that they are suitable for mathematical
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operators such as add and subtract. Figure 3.2 is a typical example shows the mapped

word vectors.

Figure 3.2: Word embedding.

From Figure above, we can first subtract one meaning (i.e. male) from the king ’s

word vector, then add another meaning (female), and finally the result indicate that the

vector of (king – man + woman) is closest to the queen ’s. The number in the word

vector represents the distribution weight of the word in each dimension. In a simplified

sense, each dimension represents a meaning, and the numerical weight of a word in that

dimension reflects its degree of association with that meaning. Therefore, after using word

embedding, we can use a smaller dimension vector than one-hot to represent words, and

we can also easier understand the relationship between words and words.

Word2Vec [6, 7] is one of the popular methods to train word embedding in Natural

Language Processing. It includes two training approaches as in Figure 3.3 :

• The Continuous Bag of Words (CBOW) Model: Given the source context words

(surrounding words), and predict the current target word (the center word).

E.g. The cat ate . Fill in the blank, in this case, it’s “food”.

• The Skip-gram Model: Given the target word (the center word), and predict the

source context words (surrounding words).

E.g. food. Complete the word’s context. In this case, it’s “The cat ate”

20



Figure 3.3: Illustration of the Skip-gram and CBOW models.

3.2 Deep Learning for NLP

3.2.1 Recurrent Neural Network & Variants

There are many such situations where the sequence information determines the event

itself. For examples:

• The language we are using - the order of the words defines their meaning.

• Time series data - time defines the occurrence of an event.

• Genomic sequence data - each sequence has a different meaning.

If we try to use this type of data to get useful output, we need a network that can

access to some prior knowledge about the data in order to fully understand the data.

Because the RNN has some memory of what happened before in the data sequence. This

helps the system achieve the context. Therefore, for a sequence model, using Recurrent

Neural Network (RNN) is necessary.

Figure 3.4 is the architecture of the Recurrent Neural Network. It contains an input

layer, a hidden layer, and an output layer:

The parameters are explained as follows:
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Figure 3.4: Recurrent Neural Network.

• x is a vector that represents the value of the input layer;

• o is a vector that represents the value of the output layer;

• s is a vector that represents the value of the hidden layer;

• U is the weight matrix from the input layer to the hidden layer;

• V is the weight matrix from the hidden layer to the output layer;

• W is the weight matrix from the previous hidden layer.

If we remove the circle with the arrow near W , it becomes the most common fully

connected neural network. Figure 3.4 suggests that the value s not only depends on the

input x but also on the value s from the last hidden layer. If we unfold the RNN above,

it can also be described as in Figure 3.5:

We can use the following formula as in Equation 3.4 and 3.5 to represent the calculation

method:

◦t = g (VSt) (3.4)

st = f
(
UXt +WSt−1

)
(3.5)

Equation 3.4 is the calculation formula of the output layer. Here g is the activation

function. Equation 3.5 is a calculation formula for the hidden layer. Here f is another

activation function. From the formula above we can see that the recurrent layer has an

extra weight matrix W compared with the fully connected layer.
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Figure 3.5: Unfolded Recurrent Neural Network.

If we repeatedly substitute Equation 3.5 into Equation 3.4, we will get Equation 3.6:

ot = g (V st)

= V f (Uxt +W st−1)

= V f (Uxt +Wf (Uxt−1 +W st−2))

= V f (Uxt +Wf (Uxt−1 +Wf (Uxt−2 +W st−3)))

= V f
(
Uxt +Wf

(
Uxt−1 +Wf

(
Uxt−2 +Wf

(
Uxt−3 + . . .

))))
(3.6)

From the equations above, We can see that the output value ot of the recurrent neural

network is affected by the previous input values Xt, Xt−1, Xt−2, Xt−3 ... That is why the

recurrent neural network can “memory” previous layers’ information.

Bidirectional Recurrent Neural Network

For the language model, it is not enough to only look at the earlier sequence, such as the

following sentence:

My phone is broken, I am planning to a new phone.

If we only look at the words in front of the blank, it is unpredictable to fill in the

blank with repair, buy, etc. But if we also see that the word behind the blank is a new

mobile phone, then the probability of filling the word buy on the blank is much higher.

Figure 3.6 is the architecture of the Bidirectional Recurrent Neural Network(Bi-RNN)

[8]. The hidden layer of the Bi-RNN saves two values: st for forward recurrent layer and
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Figure 3.6: Bidirectional Recurrent Neural Network.

the other s′t for backward recurrent layer. In the forward recurrent layer, the value st of

the hidden layer is related to st−1; in the backward recurrent layer, the value s′t is related

to s′t−1; the final output depends on the sum of the forward and backward recurrent layer

calculations. The calculation methods of Bi-RNN are as follows:

◦t = g (V st + V ′s′t) (3.7)

st = f (Uxt +W st−1) (3.8)

s′t = f
(
U ′xt +W ′s′t+1

)
(3.9)

From the three formulas above, we can see that U and U ′, W and W ′, V and V ′

are different weight matrices. That is to say, the forward and backward recurrent neural

networks do not share the weight.

Vanishing/Exploding gradients with RNNs

Figure 3.7 shows that the output was primarily influenced by the values in the sequence

close to it. On the other hand, there are situations when some sentences have long

dependencies, meaning some words within the sentence are related to other ones much

earlier in the sequence. Here is an example:
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– The cat, which already ate ... , was full.

– The cats, which already ate ... , were full.

Figure 3.7: Backpropagation through time.

Vanishing/exploding gradients with RNNs will cause the problem that it might be

difficult to get a neural network to realize that it needs to memorize the just see a singular

noun or a plural noun. Basic RNNs are not good enough to capture these long-term

information [9].

Here is the mathematical analysis:

1. Now we suppose that our time sequence has only three segments, t1, t2, and t3. Now

we only compute the partial derivate of U , W and V with respect to t = 3. Based on

chain rule we can get:
∂L3

∂V
=
∂L3

∂o3

∂o3
∂V

(3.10)

∂L3

∂W
=
∂L3

∂o3

∂o3
∂s3

∂s3
∂W

+
∂L3

∂o3

∂o3
∂s2

∂s2
∂W

+
∂L3

∂o3

∂o3
∂s3

∂s3
∂s2

∂s2
∂s1

∂s1
∂W

(3.11)

∂L3

∂U
=
∂L3

∂o3

∂o3
∂s3

∂s3
∂U

+
∂L3

∂o3

∂o3
∂s2

∂s2
∂U

+
∂L3

∂o3

∂o3
∂s3

∂s3
∂s2

∂s2
∂s1

∂s1
∂U

(3.12)

∂L3

∂U
=

3∑
k=0

∂L3

∂o3

∂o3
∂s3

∂s3
∂sk

∂sk
∂U

=
3∑

k=0

∂L3

∂o3

∂o3
∂s3

(
3∏

j=k+1

∂sj
∂sj−1

)
∂sk
∂U

(3.13)
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2. Replace 3 with t, it turns to the partial derivation of U with respect to time t. The

partial derivation result of W with respect to time t is similar:

∂L3

∂U
=

3∑
k=0

∂L3

∂o3

∂o3
∂s3

∂s3
∂sk

∂sk
∂U

=
3∑

k=0

∂L3

∂o3

∂o3
∂s3

(
3∏

j=k+1

∂sj
∂sj−1

)
∂sk
∂U

(3.14)

3. Now we have the partial derivate of W. Focus on the part of products (
∏

). The

activation function here usually is Tanh. Therefore:

sj = tanh (WxXj +WsSj−1 + b1) (3.15)

t∏
j=k+1

∂sj
∂sj−1

=
t∏

j=k+1

tanh′W (3.16)

Vanishing gradient:

The functional graph of tanh is shown in Figure 3.8. When the activation function is a

tanh function, it can be seen that the derivative of the tanh function has a maximum value

of 1, and the derivative of tanh is less than 1 for most of the training process. That is to

say, most of the numbers that are less than 1 are doing the multiplication. If t is large,

the above formula will tend to 0. This is why the vanishing gradient happens in the RNN.

Figure 3.8: Tanh function.

Exploding gradient:

Apart from tanh′, the parameter W is also required. If the value in parameter W is too

large. As the length of the sequence getting longer, it also has a long-term dependency,
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which will result in an exploding gradient.To solve the vanishing/exploding gradient of

RNN, there are usually two waysto do this:

t∏
j=k+1

∂sj
∂sj−1

=
t∏

j=k+1

tanh′W (3.13)

1. Using other activation functions such as ReLU. The functional graph of ReLU is as in

Figure 3.9:

Figure 3.9: ReLU function.

The derivative of the ReLU function in the domain greater than 0 is always equal to

1, which solves the problem of vanishing gradient. In addition, the computation speed is

fast, and network training can be accelerated. On the other hand, the negative part of

the domain is always equal to 0, which will cause the neurons cannot be activated.

2. Change the internal structure to solve the vanishing/exploding gradient problems,

which is the LSTM and GRU to be discussed next.

Long Short-Term Memory

Due to the vanishing/exploding gradient of RNN, it is difficulties to deal with long-term

dependence. In order to solve this problem, researchers proposed many solutions, such as

ESN (Echo State Network), or add leaky units (Leaky Units). The most popular solution

is the Gated RNN, and LSTM is one of the Gated RNN. Sepp Hochreiter and Jürgen

Schmidhuber first proposed Long-short term memory (LSTM) as a variant of RNN in

1997. The Gated RNN allows the weights to be changed at different times and allows the

network to forget that it has accumulated Information [10].

From Figure 3.10 we can observe, each black line represents the flow of vectors; the

pink circle represents a pointwise operation such as the sum of vectors; the yellow matrices
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Figure 3.10: Long short-term memory.

are learned from the neural network. The standard LSTM model is a special form of RNN.

The core idea of the LSTM model is the “Cell state” as in Figure 3.11. “Cell state”

is similar to a conveyor belt. It runs directly across the chain with only a few linear

interactions. This architecture can easily keep the information flowing on it.

LSTM is able to modify cell state through a structure called “Gate” as in Figure 3.12.

“Gate” is a way to pass selected information. Each “Gate” consist of a sigmoid function

and a pointwise multiplication operation.

Figure 3.11: Cell state in LSTM. Figure 3.12: Gate in LSTM.

The progress of LSTM forward propagation is as follows:

1. Decide what information we will discard from the “Cell”. This operation is imple-

mented by a forget gate layer. This layer loads the input x and the information h from

previous hidden layer , and ft determines the discarded information. Output 1 means
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”completely reserved” and 0 means ”completely discarded”.

ft = σ (Wf · [ht−1, xt] + bf ) (3.17)

2. Determine the new information stored into the “Cell”. This step contains two layers:

The sigmoid layer as the “input gate” layer to determines the value that we will update;

the tanh layer creates a new candidate value vector C̃t that we will add into the “Cell”.

it = σ (Wi · [ht−1, xt] + bi) (3.18)

C̃t = tanh (WC · [ht−1, xt] + bC) (3.19)

3. Update the states of the old “Cell”: update Ct−1 to Ct. We multiply the old state Ct−1

by ft. Then multiply it by C̃t. Lastly we get the sum. This is the new candidate value.

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.20)

4. This is the last step, which is to determine the output. First, we determine which part

of “Cell” will be output by implementing a sigmoid layer. After this step, we input “Cell”

into tanh function and multiply it by the sigmoid from output gate. In the end we will

only output the value and copy the output to next layer.

ot = σ (Wo [ht−1, xt] + bo) (3.21)

ht = ot ∗ tanh (Ct) (3.22)

Gated Recurrent Unit

In 2014, Cho, et al. proposed Gated Recurrent Unit (GRU) as a variant of LSTM. It

combines the forgetgate and the inputgate into a single updategate. Also, the cell state

and the hidden state are mixed into one. As a result, GRU is simpler than the standard

LSTM model and also is a very popular variant [11,12]. Figure 3.13 shows the architecture

of GRU.

The progress of GRU forward propagation is as follows:

1. Here we introduce the two gates of the GRU: “reset gate” rt and “update gate” zt.

The computation method is similar to LSTM:

rt = σ (W rxt + U rht−1) (3.23)
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Figure 3.13: Gated Recurrent Unit.

zt = σ (W zxt + U zht−1) (3.24)

2. Compute the candidate hidden layer h̃t. This candidate hidden layer is similar to C̃t in

LSTM. It can be considered as new information at the current moment, where rt is used

to control how much previous information is needed. For example, if rt is 0, then h̃t only

contains information about the current word:

h̃t = tanh (Wxt + rtUht−1) (3.25)

3. Use zt to control how much information from the hidden layer ht−1 at the previous

moment needed to be forgotten, and how much information from hidden layer h̃t at the

current moment needs to be added. Finally, we get new ht, which is both the last output

and the new hidden layer information. Compared with LSTM, there is no output gate in

the GRU:

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (3.26)

3.2.2 Convolutional Neural Network in NLP

When we hear the convolutional neural network (CNN), mostly it reminds us of its ap-

plication in computer vision, especially CNN makes a huge breakthrough in image clas-

sification. From the automatic images annotation of Facebook to Self-driving cars, CNN

has been used widely. However, researchers also applied CNN to NLP and found some

interesting results. In this section, we will simply review the case where CNN is used for

NLP.
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Convolutional layer

Let’s suppose there is a black and white image shown as in Figure 3.14, each small square

represents a pixel, 0 for black, and 1 for white (usually grayscale images have 0-255 for

pixels). The sliding windows are often called as kernels, filters, or feature detectors. The

size of the above convolution kernel we used above is 3x3, each element is multiplied by

a specific value (e.g. elements in diagonal are 1 and the rest are 0), and then sum all the

values together to get an element value input to a new matrix. In order for all elements

to be convolved, the “window” alsp has to be slid.

Figure 3.14: Convolutional Filter.

Pooling layer

Another prominent feature of convolutional neural networks is the pooling layer, which is

often connected after the convolutional layer. The pooling layer is a subsampling of the

convolutional layer. For example, For each region represented by the filter, we will take

the maximum of that region and create a new output matrix where each element is the

maximum of the region in the original input. This process is called max-pooling as shown

in Figure 3.15.

Convolutional Neural Network (CNN) for NLP

A classic Convolutional Neural Network (CNN) usually includes convolutional layers,

pooling layers and fully connected layers. Normally, RELU will be adopted as activation

function. CNN for NLP as shown in Figure 3.16 uses a sentence or a document as an

input matrix typically. Each row of the input matrix represents a token. Token usually
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Figure 3.15: Max-pooling.

is a word, or just a letter. Unlike in Computer Vision, in NLP, we generally use filters to

slide across the entire row of the matrix. The width of the filters is usually equal to the

input matrix, while the height always changes.

Figure 3.16: Convolutional Neural Network in NLP.
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There are several researches that imported CNN in NLP.

1. Kim, Y. (2014) evaluated the CNN architecture on various datasets, mainly about

sentiment analysis and topic classification tasks. CNN has achieved good perfor-

mance on datasets and has reached new levels in some areas [13].

2. Johnson, R., & Zhang, T. (2015) trained CNN from the beginning without using any

pre-trained word vectors such as word2vec or GloVe. It directly applies convolution

to one-hot vectors [14].

3. Zhang, Y.et al. (2015) evaluated the influence of hyperparameters in the CNN

architecture. They examined the performance and variance by selecting different

hyperparameters [15].

3.2.3 Attention Model

The Attention mechanism is a milestone in the history of NLP. Attention model not only

domains NLP, but the idea of Attention-based model has profoundly affected the devel-

opment of NLP. In recent years, more and more research fields of NLP have adopted the

attention mechanism [16], such as image processing or speech recognition. Therefore, it

is essential for NLP researchers to understand the operating principle of attention mech-

anisms.

Attention in Nature

Figure 3.17 shows an example of a heat map. It visualizes how humans efficiently

allocate limited attention resources when seeing an image. The red area indicates the

target of the visual system. It was evident that for the scene shown in this figure, people

will pay more attention to it, especially the human face, the title of the text, and the first

sentence of the article. This heat map demonstrate the attention mechanism in nature.

Attention in Deep Learning

In essence, the attention mechanism of deep learning is similar to the visual attention

mechanism of human beings. The ultimate goal is also to filter out more valuable infor-

mation from the information that is more important to the current targets.
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Figure 3.17: Heat map.

In Attention is all you need, Authors gave a definition of attention as well:

“An attention function can be described as mapping a query and a set of key-value pairs

to an output, where the query, keys, values, and output are all vectors. The output is

computed as a weighted sum of the values, where the weight assigned to each value is

computed by a compatibility function of the query with the corresponding key [17].”

Overview of Attention model

In the previous section, we mentioned that RNN is applied to NLP. For the problem of

the vanishing/exploding gradient of RNN, we imported “Gate” into the standard RNN

to solve long-term dependences (LSTM/GRU) to some extent.

However, we can see the sequence path from the previous LSTM unit to the current

unit still exists. In fact, because this path is constantly added and will forget the informa-

tion, it will become more and more complicated. LSTM, GRU, and its variants can learn

a lot of long-term information, but they still have limitations. For longer sentences, it is

difficult to convert the input sequence into a fixed-length vector and all valid information

can be saved. In short, to LSTM/GRU, the longer the source sentences, the worse the

performance of translation [9, 11].

In order to solve the problem above, the attention mechanism was introduced. In the
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attention model, when we translate the current words, we will look for the corresponding

words in the source sentence, and combine the previous translated parts to make the

corresponding translation. Figure 3.18 shows a Chinese-English translation by using the

Attention mechanism.

As shown in the following figure, when we translate “knowledge”, we just focus on the

“knowledge” part of the original sentence, when we translate “power”, just focus on

“power”. In this way, when the Decoder predicts the target translation, it can see all

the information from Encoder, not like what RNN does.

Figure 3.18: Attention mechanism.

Architecture of attention model is shown as Figure 3.19:

There are two separate LSTMs in this model (see diagram on Figure 3.19). At the

bottom of the picture, there is a “pre-attention” Bi-LSTM, which is a bidirectional LSTM

before the attention mechanism. At the top of the figure, there is a “post-attention”

LSTM, which is the LSTM after the attention mechanism. The pre-attention Bi-LSTM

goes through Tx time steps; the post-attention LSTM goes through Ty time steps.

Similarly, Attention is a mechanism for improving the effects of the RNN (LSTM or

GRU) based on the Encoder-Decoder model. That is why Encoder and Decoder also exist

in the Attention model. Here is the analysis for architecture of attention model.

(1) Encoder

1. The Encoder accepts word embedding of every word and the hidden state at the
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Figure 3.19: Architecture of attention model.

previous moment. The output is the hidden state at the current moment.

at = Bi− LSTMenc (xt, at−1) (3.27)

2. The Encoder accepts word embedding of every word and the hidden state at the

previous moment. The output is the hidden state at the current moment.

st = LSTMdec

(
y∧t−1, st−1

)
(3.28)

(2) Attention,as shown in Figure 3.20.

3. The Encoder accepts word embedding of every word and the hidden state at the

previous moment. The output is the hidden state at the current moment.

a〈t
′〉 =

[
~a〈t〉;←−a 〈t〉

]
(3.29)

4. Concatenate s〈t−1〉 and a〈t
′〉 and train a small neural to compute e〈t,t

′〉.

e〈t,t
′〉 = score

(
s〈t−1〉, a〈t

′〉
)

(3.30)
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Figure 3.20: Architecture of Attention.

5. Pass e〈t,t
′〉 through a softmax to compute α〈t,t

′〉

α<t,t′> =
exp

(
e<t,t′>

)∑Tx
t′=1 exp (e<t,t′>)

(3.31)

6. Output “context” as the weighted sum of the attention weights.

context<t> =
Tx∑
t′=1

α<t,t′>a<t′> (3.32)

(3) Decoder

7. Concatenate context vector and hidden states of Decoder.

ŝt = tanh
(
Wc

[
context〈t〉; s〈t〉

])
(3.33)

8. Compute and output the finial probability.

p (yt|y<t, x) = softmax (Wsŝt) (3.34)

In summary, the Attention mechanism assigns a weight to each element in the sequence,

and the model can be focus on all input information that is important to the next target
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word so that the model effect is significantly improved. Another advantage of the attention

model is that by observing the change of the attention weight matrix, we can better know

which part of the source text corresponds to which part of the translation. It helps us to

better understand the operating mechanism of the model, as shown in Figure 3.21:

Figure 3.21: Attention distribution between input and output sentences.

Attention gives the model the ability to distinguish the importance between different

parts of sentences at different times, making the learning of neural network models softer.

Attention itself can be used as an alignment relationship to explain what the model has

learned and to provide us with a window to explore the black box of deep learning. At the

same time, it will not bring more burden to the computation and storage of the model.

That is the reason why the attention mechanism is so widely used.

Of course, Attention also has some defects. The most obvious shortcoming is that the

attention mechanism is not a ”distance-aware”. It cannot capture the order of the words

(here is the word order, the order of the elements). However, the order of sequence is

essential in NLP, and the natural language word order contains too much information.

If this information is confirmed, the results will often be discounted. In the end, the

attention mechanism is a bag-of-words (BoW) model. Transformer and BERT added

a new concept called position-embedding (location vector), we will explain in the next
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section.

3.2.4 Transformer

Attention is all you need is a paper published by Google that extremely developed the

potential of Attention mechanism. This paper proposed a brand new model called Trans-

former, which completely abandons the CNN and RNN used in deep learning tasks. In

this article, Google has proposed many innovative architectures, such as Self-Attention,

Multi-Head Attention, which brings new ideas to the NLP industry [17]. Figure 3.22 is

the full architecture of Transformer:

Figure 3.22: The transformer model architecture.
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Self-attention

Suppose that there are 4 inputs, now we are going to illustrate how Self-attention work.

1. From x1 to x4 is an input sequence. By multiply a matrix, we create the input vectors

of the encoder (the embedding of each word) from a1 to a4.

ai = Wxi (3.35)

2. Each ai is multiplied by 3 different weight matrices (WQ, WK , and W V ) to create three

vectors. Q (Query) refers to matching with other Keys, K (Key) refers to be matched,

and V (Value) refers to the extracted information. The dimensions of the three vectors

are the same.

Qi = WQai (3.36)

Ki = WKai (3.37)

V i = W V ai (3.38)

3. Match Query of each word with Keys of other words to get the “attention” score,

then divide each attention by
√
dk. In self-attention layer, here we adopt the method

from the original paper, the algorithm we use to calculate attention score is “scaled dot-

product attention”. As shown in Figure 3.23, the first word’s attention is the result of Q1

dot-product all Ks.

α1,i = Q1 ·Ki/
√
d (3.39)

Figure 3.23: Compute self-attention score.
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4. Apply a Softmax function to obtain the weights on the values.

α̂1,i = exp (α1,i) /
∑

exp (α1,i) (3.40)

5. Multiply V 1 to V 4 by α1,1 to α1,4 respectively as in Figure 3.24, so we get the first

output vector of the sequence.

b1 =
∑
i

α̂1,iV
i (3.41)

Figure 3.24: Multiply weight and self-attention score to get output.

Conclusively, we compute the matrix of outputs as:

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V (3.42)

Multi-head self-attention

Figure 3.25 shows the architecture of the Multi-head self-attention. The reason why

we need multi-head is that we have to use the attention mechanism to extract the mul-

tiple semantics.Compared to one-head, the computation of multi-head is mostly the same.

1. Each ai generates Qi, Ki and V i. In the case of 2 heads, Qi will be further split into

Qi,1 and Qi,2, we also implement the same computation to Ki and V i:

head i = Attention
(
QWQ

i , KW
K
i , V W

V
i

)
(3.43)
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2. Do self-attention, only use Qi,1 to do dot product for Ki,1 and Kj,1, then we get bi,1;

Similarly, we repeat the same computing of Qi,2 with Ki,2, Kj,2 to calculate bi,2; Finally

we concatenate bi,1 and bi,2 together and multiply by a WO matrix to output the final

result:

MultiHead (Q,K, V ) = Concat i ( head i)W
O (3.44)

Figure 3.25: Multi-head Self-attention.

Positional encoding

So far, there is a lack of a method to indicate the order of words from the input sequence in

the Transformer. To solve this problem, the Transformer adds an additional vector called

Positional Encoding to the input of Encoder and Decoder layers. The dimensions are

setting the same with the embedding dimensions. Each location has a unique positional

encoding, but not learned from training. The calculation method is as follows:

PE(pos, 2i) = sin
(
pos/100002i/dmodel

)
(3.45)

PE(pos, 2i+ 1) = cos
(
pos/100002i/dnodal

)
(3.46)

Where pos is the position of the current word in the sentence, i is the index of each

value in the vector. It can be seen that in the even position, sinusoidalcoding is used,

and in odd positions, cosinecoding is used.
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Add & Normalize

Figure 3.26 shows a sub-layer (self-attention, feed-forward neural network) in encoder and

decoder that has a residual connection, and it is followed by a layer-normalization step.

Figure 3.26: A sub-layer of Encoder in Transformer.

Residual connection (Add):

In the previous step, we obtained the V that has been weighted by the attention matrix,

which is Attention (Q, K, V ). In the residual layer, we add the output of self-attention

with input together to gain Xembedding.

Xattention = A+ Attention(Q,K, V ) (3.47)

Layer Norm:

The purpose of Layer Norm is to normalize the hidden layers in the neural network into

the standard normal distribution so that speeding up the training and accelerating the

convergence:

1. For Xattention,calculate the mean of matrix per row:

µi =
1

m

m∑
i=1

xij (3.48)
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2. For Xattention,calculate the variance of matrix per row:

σ2
j =

1

m

m∑
i=1

(xij − µj)
2 (3.49)

3. Subtract out the mean per rows, then divide by the standard deviation of this row to

get the normalized value:

LayerNorm (x) = α ∗ xij − µi√
σ2
i + ε

+ β (3.50)

ε here is added for numerical stability (prevent divided by 0). α and β, these two

parameters are used to compensate for the information loss during the normalization pro-

cessing [18].

Architecture analysis of Transformer

Figure 3.27: Illustration of Transformer model.

Figure 3.27 shows the illustration of Transformer model. This model consists of two

parts, an Encoder and a Decoder. Further analysis of this model reveals that each Encoder

consists of six encoders (same with the original paper). Each Decoder is also composed

of six decoders.
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Transformer Encoders:

For each Encoder in Encoders, their structures are the same, but they do not share

weights. If we expand each sub layers in the encoders, we can get Figure 3.28:

Figure 3.28: Encoder of Transformer.

• sub-layer-1: Multi-head self-attention mechanism: To implement self-attention.

• sub-layer-2: Feed forward Networks: A simple fully connected neural network,

using ReLU as activation function:

FFN(x) = max (0, xW1 + b1)W2 + b2 (3.51)

LayerNorm (X + sublayer (X)) (3.52)

Transformer Decoder:

For each Decoder in Decoders, except the first sublayer, the rest of their structures are

the same, also they do not share weights. Multi-head Self Attention of the first sublayer is

changed into Mask multi-head self-attention. We will illustrate in the following contents.

If we expand each sub layers in the encoders, we can get Figure 3.29:

• sub-layer-1: Masked multi-head self-attention mechanism: To implement self-

attention. The first multi-head attention sub-layer is modified to prevent positions

from attending to subsequent positions, which means decoder only implement self-

attention to the generated sequence.
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Figure 3.29: Decoder of Transformer.

• sub-layer-2: Multi-head self-attention mechanism: same with Encoder.

• sub-layer-3: Feedforward Networks: same with Encoder.
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Chapter 4

Analysis & Experiments

In the previous sections, we have analyzed the architecture of RNN, CNN and Trans-

former. This chapter reports the comparison of three feature extractors based on analysis

and literature review. Moreover, we adopt published models to reimplement experiments,

and the result supports our conclusion of comparison in Section 4.2. About the exper-

iment, We first introduce the baseline dataset for testing the performance of sentiment

analysis in Section 4.1. Secondly, we show some experimental settings and configurations

of deep learning models on Section 4.3. Lastly in Section 4.4 shows the empirical results of

two deep learning models we choose from Table 4.4. Additionally, we use a extra dataset

to evaluate their performance.

4.1 Baseline Dataset

1. Task 4 of SemEval-2014 datasets 1 [19] are distributed for Aspect Based Sentiment

Analysis (ABSA), which including Laptops and Restaurants two parts:

• Restaurant dataset consists of 4728 English sentences from the restaurant re-

views of Ganu et al. (2009) [20].

• Laptop dataset consists of 2996 English sentences extracted from customer

reviews of laptops.

2. ACL 14 Twitter dataset gathered by Dong et al. (2014) [21]. They are annotated

1http://alt.qcri.org/semeval2014/task4/
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with the negative, neutral, positive classes account for 25%, 50%, 25%, respectively.

Training data consists of 6,248 tweets, and testing data has 692 tweets.

All these datasets above were labeled the aspect terms and polarities by experienced

human annotators. Table 4.1 shows the statistics of the datasets all we use in the exper-

iments.

Dataset
Positive Neural Negative

Train Test Train Test Train Test

Restaurant 2164 728 637 196 807 196

Laptop 994 341 464 169 870 128

Twitter 1561 173 3127 346 1560 173

Table 4.1: Statistics of the datasets.

4.2 Comparison of three feature extractors

4.2.1 Empirical evidence

Semantic extraction capabilities

Model
DE→EN DE→FR

PPL 2014 2017 Acc(%) PPL 2012 Acc(%)

RNNS2S 5.7 29.1 30.1 84.0 7.06 16.4 72.2

ConvS2S 6.3 29.1 30.4 82.3 7.93 16.8 72.7

Transformer 4.3 32.7 33.7 90.3 4.9 18.7 76.7

uedin-wmt17 – – 35.1 87.9 – – –

TransRNN 5.2 30.5 31.9 86.1 6.3 17.6 74.2

Table 4.2: The results of different architectures on newstest sets and ContraWSD. Acc

means accuracy on the test set.

Table 4.2 compares the accuracy of machine translation in different models. From the

perspective of semantic feature extraction capabilities, the current experiment supports
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the following conclusions: Transformer’s performance significantly better than RNN and

CNN, and RNN and CNN are not much different [22].

Long-term feature capture capabilities

Model 2014 2017 PPL Acc(%)

RNNS2S 23.3 25.1 6.1 95.1

ConvS2S 23.9 25.2 7.0 84.9

Transformer 26.7 27.5 4.5 97.1

RNN-bideep 24.7 26.1 5.7 96.3

Table 4.3: The results of different NMT models, including the accuracy of long-range

dependencies.

Table 4.3 compares the Long-term feature capture capabilities in a specific subject-

verb agreement task (such as I...am..., we...are...). The experiment supports the fol-

lowing conclusion: The native CNN feature extractor is significantly weaker than RNN

and Transformer. The transformer is slightly better than the RNN model (especially

when the subject-predicate distance is less than 13); but at a relatively long distance

(The subject-predicate distance is greater than 13), RNN is weaker than Transformer.

Comprehensively, it can be considered that the Transformer and RNN are not too weak

in this respect, while CNN is significantly weaker than the first two [22].

Parallel computing capabilities

We have discussed three models in the previous chapters, and now we only summarize

them here. The conclusion is as follows:

The linear sequence dependency of RNN is very suitable for solving NLP tasks, but it is

this linear sequence dependency that also limit the parallel computing capability of RNN.

It seems difficult. For CNN and Transformer, because they do not have dependencies on

the input of different time steps in the intermediate state of the network, they can be

very convenient and free to do parallel computing transformation.
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4.2.2 Previous research in Sentiment Analysis

We have collected some of the representative models for aspect-based sentiment analysis

task used the same dataset from 2015-2019.

Authors Year Models Laptop(Acc%) Restaurant(Acc%)

RNN

Tang et al. 2015 TD-LSTM 68.13 75.63

Wang et al. 2016 ATAE-LSTM 68.70 77.20

Ma et al. 2017 IAN 72.10 78.60

Peng et al. 2017 RAM 74.49 80.23

Binh et al. 2018 BBLSTM-SL 74.90 81.30

CNN

Huang et al. 2018 PF-CNN 72.43 75.73

Xue et al. 2018 GCAE 69.14 77.28

Transformer

Song et al. 2019 AEN-BERT 79.93 83.12

Song et al. 2019 BERT-SPC 78.99 84.46

Cheng et al. 2018 ASVAET 75.34 81.10

Table 4.4: The result of different models in Task 4 of SemEval-2014 datasets.

Table 4.4 shows some neural network models for aspect-based sentiment analysis task

from 2015 to 2019. All these models are tested in Task 4 of SemEval-2014 datasets.

So far, we could not search any standard RNN, CNN or Transformer model, and all of

these models are one kind of variant of standard RNN/CNN and Transformer. Here we

conclude LSTM/GRU as RNN-based models. Similarly, Gated CNN as CNN-based and

BERT or other variants of Transformer Transformer-based models.

From the table above, it suggests show that Transformer-based models have state-

of-the-art performance in aspect-based sentiment analysis. Also, we notice that most of

the models above adopt Attention mechanism [16] to enhance their capability to capture

information from input. Moreover, no matter Attention on RNN/CNN, or Self-Attention,

it is obviously that Attention mechanism has significantly affected the development of

Natural Language Processing.
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4.3 Experiment settings & Configuration

Additionally, we implement the experiment to testify the performance of the BERT-based

model. The models we used are AEN-BERT 2 and BERT-SPC [23] above.

We use Python3 3.7.5, PyTorch4 1.3.0, PyTorch-Transformers5 1.2.0 and some build-in

libraries for NLP, such as Sklearn, Numpy... as the environment for coding and running

the experiments.The configurations of these two models are same and shown as below:

• optimizer: Adam

• learning rate: 2e-05

• dropout: 0.1

• L2 regression: 0.01

• epochs: 10

• batch size: 16

• embed dimension: 300

• pretrained bertname: bert-base-uncased

• max sequence length: 80

4.4 Experiment Results

Table 4.5 and Table 4.6 show our experiment results of Accuracy and F1 score respectively.

The values are somewhat lower compared with Table 4.4 above which indicates that

we need to extensively test with more hyperparameter settings. However, this confirm

the state-of-the-art performance on BERT-based model compared with other non-BERT

models.

2https://github.com/songyouwei/ABSA-PyTorch
3https://www.python.org/
4https://www.pytorch.org
5https://pytorch.org/hub/huggingface pytorchtransformers/
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Models Laptop(Acc%) Restaurant(Acc%)

AEN-BERT 78.68 81.79

BERT-SPC 77.74 83.93

Table 4.5: Accuracy of AEN-BERT and BERT-SPC

Models Laptop(F1%) Restaurant(F1%)

AEN-BERT 73.59 70.94

BERT-SPC 73.33 76.93

Table 4.6: F1 Score of AEN-BERT and BERT-SPC

We further trained these two BERT-based models with the Twitter data, with target-

dependent twitter sentiment classification. This is a difficult dataset to deal with not

only because the irregularities in human tweets but also the tweets themselves are very

short. Figure 4.1 and 4.2 shows the Loss and Accuracy on AEN-BERT and BERT-SPC

respectively.

Figure 4.1: Loss and Accuracy of AEN-BERT on Twitter dataset.

The results are shown as in Table 4.7. The BERT-based models present a very strong

performance compared with the state-of-the-art for this task such as Dong et al., 2014

(71.1% Acc, 69.9% F1) [21] or Tang et al., 2016 (68.5% Acc, 66.9% F1) [24]:
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Figure 4.2: Loss and Accuracy of BERT-SPC on Twitter dataset.

Models Twitter(Acc%) Twitter(F1%)

AEN-BERT 72.69 70.23

BERT-SPC 73.27 70.77

Table 4.7: Performance of AEN-BERT and BERT-SPC on Twitter dataset

4.5 Conclusion of comparison

We compare the RNN / CNN / Transformer from several different angles and quoted the

experimental data in detail. Here is the conclusions:

1. Theoretically, In terms of the comprehensive performance, Transformer is signifi-

cantly better than CNN, and CNN is slightly better than RNN. In terms of speed,

Both Transformer and CNN are is better than RNN. In summary, the Transformer

is the best feature extractor among the three models.

2. Practically, we have investigated the effect on aspect-based sentiment classification

task. The result also corresponds with our theoretical analysis. Moreover, no matter

Attention on RNN/CNN, or Self-Attention, it is obviously that the Attention mech-

anism has significantly affected the development of Natural Language Processing.
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Chapter 5

Conclusions

5.1 Summary

Natural language processing (NLP) is an area cover computer science, artificial intel-

ligence, and linguistics. It focuses on the interaction between computers and human

language. Therefore, research of NLP always involves natural language.

The input to NLP is often a sentence or an article, so it has several features:

1. The input is a one-dimensional linear sequence.

2. The length of the input is not stable, maybe short or long.

3. The order of sequence is essential. Sometimes, the interchange of the two words can

lead to completely different meanings.

Therefore, the performance in NLP tasks mostly depends on whether the feature

extractor can effectively extract features from an input sequence. The evolutionary history

of natural language processing also is the evolution of feature extraction techniques.

In this research project, we have surveyed the development of deep learning models

in aspect-based sentiment analysis. The survey is done by two parts, the methods to

implement DNNs and the DNNs in aspect level sentiment classification. From this survey,

we can know in recent years, as the development of the neural network,the performance of

deep neural networks are getting better and better than before, it means that the computer

can have a better performance on understanding and extracting valuable information from

input sequences.
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Based on this survey, as a feature extractor, the Transformer is significantly better

than RNN and CNN. Recently, the BERT model based on Transformer architecture has

profoundly affected the research and application mode of future NLP because of its ex-

cellent effect and versatility [25].

In the era of post-BERT, the new approach to solve NLP tasks has become a two-step

process:

1. Train language models on large unlabeled text corpora (unsupervised or semi-

supervised).

2. Fine-tune this large model to a specific NLP task and train the model (supervised).

From the perspective of model or method, BERT quotes from ELMO, CBOW and

other ideas, mainly proposed masked language model and Next Sentence Prediction.

However, the most valuable achievement in BERT is that it developed the idea of Pre-

training/Fine-tuning training steps in NLP. BERT model itself didn’t propose any signifi-

cant innovation of NLP architecture. It is more similar to the fusion of major achievements

of NLP in recent years. Even so, BERT model proved that the effect is good and versa-

tility is high. Most NLP tasks can benefit from a two-step solution, and the effect should

be significantly improved. It is foreseeable that Transformer will dominate in the NLP

applications in the near future

5.2 Future Work

In our future research in the doctor course, we would like to try to deepen our research

on aspect-based sentiment analysis, especially on aspect term extraction. Meanwhile, we

will try to apply BERT model to appropriate for unsupervised learning.
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[11] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the proper-

ties of neural machine translation: Encoder-decoder approaches,” arXiv preprint

arXiv:1409.1259, 2014.

[12] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated

recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555,

2014.

[13] Y. Kim, “Convolutional neural networks for sentence classification,” arXiv preprint

arXiv:1408.5882, 2014.

[14] R. Johnson and T. Zhang, “Effective use of word order for text categorization with

convolutional neural networks,” arXiv preprint arXiv:1412.1058, 2014.

[15] Y. Zhang and B. Wallace, “A sensitivity analysis of (and practitioners’ guide

to) convolutional neural networks for sentence classification,” arXiv preprint

arXiv:1510.03820, 2015.

[16] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning

to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Advances in neural information

processing systems, pp. 5998–6008, 2017.

[18] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint

arXiv:1607.06450, 2016.

[19] M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Manandhar, M. Al-

Smadi, M. Al-Ayyoub, Y. Zhao, B. Qin, O. De Clercq, et al., “Semeval-2016 task

5: Aspect based sentiment analysis,” in 10th International Workshop on Semantic

Evaluation (SemEval 2016), 2016.

[20] G. Ganu, N. Elhadad, and A. Marian, “Beyond the stars: improving rating predic-

tions using review text content.,” in WebDB, vol. 9, pp. 1–6, Citeseer, 2009.

57



[21] L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, and K. Xu, “Adaptive recursive neural

network for target-dependent twitter sentiment classification,” in Proceedings of the

52nd annual meeting of the association for computational linguistics (volume 2: Short

papers), pp. 49–54, 2014.

[22] G. Tang, M. Müller, A. Rios, and R. Sennrich, “Why self-attention? a targeted evalu-

ation of neural machine translation architectures,” arXiv preprint arXiv:1808.08946,

2018.

[23] Y. Song, J. Wang, T. Jiang, Z. Liu, and Y. Rao, “Attentional encoder network for

targeted sentiment classification,” arXiv preprint arXiv:1902.09314, 2019.

[24] D. Tang, B. Qin, and T. Liu, “Aspect level sentiment classification with deep memory

network,” arXiv preprint arXiv:1605.08900, 2016.

[25] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

58


