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Abstract

Anomaly detection is a task to detect abnormal and normal actions of people
in terms of surveillance videos. Anomaly detection could play an important
role in different areas. For example, it could release the problems of lacking
the labor force in nursing/daycare facilities since it could detect abnormal
actions of the elderly people and/or children to keep their securities and
comfort. It could also detect abnormal actions of people in public space to
keep public space safe. If abnormal actions are detected, the enforcement
agencies will be informed. All of the work can be finished by the anomaly
detection system, so lots of human force will be saved. Therefore, the research
of anomaly detection is essential, necessary and promising.

The concept of anomaly detection has been proposed in the last century.
Due to the limitations of technologies of computer science and sensor, the
development of anomaly detection is slow until entering 21 century. Because
of the development of science, especially the rapid development of computer
science, anomaly detection develops rapidly. More and more attention has
been drawn by researchers to the anomaly detection field, and the obtained
achievements are remarkable. However, it is inescapable that researchers
must define abnormal and normal actions regardless of methods used either
traditional or based on machine learning. That is a subjective task as the
boundary between abnormal and normal actions are not clearly defined, and
it is difficult to define the boundary between them. Another limitation is
data labeling. Labeling data is a task that requires lots of human effort,
especially when supervised learning is applied to detect abnormal actions.
Since the input data consists of image frames, all the frames have to be
labeled before training the model. In order to overcome these two main
limitations, we propose to apply the Multiple Instance Learning (MIL) for
anomaly detection. There are two merits in MIL; Firstly, MIL is a category
of weakly supervised learning. The input of MIL is a video-level label instead
of a frame-level label. That would save lots of human labor. Second, it is
unnecessary for human experts to define the boundary between abnormal
and normal actions. Our input for MIL is a video. There is no need to label
the start-time and end-time of abnormal actions. Thus, the computer learns
to define the boundary between actions by itself.

Moreover, the main contributions of this research are proposing a new
model based on a baseline model (deep MIL ranking model) and improving
the performance of the baseline model. Before changing the inner structure



of the baseline model, we optimized the parameter settings of the Fully Con-
nected Neural Network (FCNN) at the end of the baseline model in order
to obtain a better performance. After optimizing the parameter setting of
FCNN, we apply Bi-directional Long Short-Term Memory (Bi-LSTM) model
between pre-trained C3D model and FCNN in the baseline model to improve
the performance further. In order to avoid overfitting, we optimized pa-
rameter settings of the Bi-directional LSTM module and provided the best
performance in all of the models tested in this thesis.

In order to evaluate performance, ROC, AUC, F1-Measure, and Recall
are used. Comparing to the baseline model, experimental results show that
our model could improve AUC from 73% to 79%. F1-Measure increases from
9.1%. Recall is improved from 0.55 to 0.665. The main reason leading to this
performance improvement is that since the temporal features between adja-
cent video segments provide valuable information for classification in FCNN,
a Bi-LSTM could extract temporal features from adjacent video segments in
more efficient than LSTM. Thus, our model performs better.
Keywords: anomaly detections, abnormal actions, Bi-LSTM, FUCNN
LSTM, multiple instance learning
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Chapter 1

Introduction

Surveillance cameras are equipment that is used to monitoring behaviors,
accidents, activities in order to observe an area. In general, surveillance cam-
eras are connected to recording equipment or an IP network and watched by
officials e.g., policemen, security guards, law enforcement officers and related
others in order to keep the security of the area being observed. [1]. From the
systematic review in [38], meta-analytic techniques were used to poll aver-
age effect of Closed Circuit Television (CCTV) on crime across 41 different
studies. However, creating a big network of surveillance cameras and record-
ing devices are costly. Therefore, it is usually used by state departments or
companies in order to keep public spaces safe. As of 2016, it was reported
that 360 million surveillance cameras in the world [39]. It is common to
see surveillance in shopping malls, companies, roads, and many other places
[1]. But, utilizing surveillance cameras to keep public space safe and secure
in real-time is not possible due to lacking enough officers and/or security
guards. Thus, building a system or model which could detect abnormal ac-
tions or events in terms of using real-time surveillance cameras is an essential
and meaningful issue [3]. Indeed, from the 1990s, some researchers started
applying machine learning to computer vision to design a model which could
detect abnormal or normal actions of human being [27]. Especially in recent
years, more and more methods for detecting abnormal and normal actions
have been proposed [27]. Seki et al.[4] proposed a method that combining
the Self-Organizing Map (SOM) with the Parametric Eigenspace Method
(PEM) to detect abnormal actions of the elderly by learning typical actions
of the old persons. In the learning stage, SOM was used to extract typical
actions (normal actions). In detecting stage, a 2-step eigenspace method
is utilized to classify actions. The most important contribution is that the
2-step eigenspace method provides a drastic advantage in compression of im-
age data and calculation of correlation among images. However, there is a
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limitation of defining the boundary of abnormal actions and normal actions.
Even though the Turing test was conducted before defining the boundary of
abnormal actions and normal actions, the boundary still may remain sub-
jective. In 2014, Sang-Hyun and Kang proposed a hybrid agent method to
detect abnormal behaviors in a crowded scene [5]. The anomalies of hu-
mans are divided into two parts: individual anomalies and group interactive
anomalies [5]. In the paper, the authors proposed a hybrid-agent method
to detect abnormal actions of a group. A merit of this method is that the
method includes static and dynamic agents. Static is assigned to a specific
spot and analyzes motion information near that spot. The moving object re-
ceives a dynamic agent and the motion information will be analyzed by the
dynamic agent in terms of following the object’s movement [5]. In the final,
authors integrate static and dynamic agent information to detect anomalies
in a crowd behavior [5]. The disadvantage of this method is that before train-
ing the model, all of the samples in the training dataset have to be labeled by
a human expert. And it is evident that labeling samples require lots of hu-
man resources, time and energy. With the rapid development of science and
technology, especially computer science, it is a fact that automatic anomaly
detection will play a more and more critical role in protecting the security
of public space. Although several methods have been proposed, there are
still three severe problems with anomaly detection to be dealt with. Firstly,
applying supervised learning to detect abnormal action is not feasible due
to the requirement of exhaustive manual data labeling. On the other hand,
the performance of unsupervised learning to detect anomaly is rather low.
Thirdly, the boundary between abnormal actions and normal actions is dif-
ficult to be defined. These three problems were firstly addressed in the deep
Multiple Instance Learning (MIL) ranking model proposed by Sultani et al.
in 2018 [1, 23]. In the deep MIL model, the learner obtains a series of labeled
bags instead of a series of individually labeled instances. Since there is only
labeled bags (video-level labels), the model has to determine that star-time
and end-time of abnormal actions by itself. This removes the necessity of
experts defining the boundary of abnormal actions and normal actions. The
MIL model could define/learn that by itself. Besides, the MIL model could
not only save lots of human efforts but also improve model performance com-
paring to unsupervised learning since the instance-level label is unnecessary
for the MIL model [23]. However, the Receiver operating characteristic curve
(ROC) and Area Under Curve (AUC) measures used for model evaluations
is relatively low comparing to their counterparts. Improving performance is
indispensable as the output of such models has a direct effect on human lives
and security. Therefore, we use the MIL model as our baseline model and
the goal of this research is to improve the performance of the baseline model.
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In this thesis, a new model based on the MIL model [1, 23] is proposed.
Experimental results are presented to show the performance improvement
through comparative analysis. The details of the proposed model are given
in Chapter 3, and the comparative performance evaluations are presented in
Chapter 4. Besides, in Section 5 and 6, not only Accuracy, ROC and AUC,
other metrics will also be used to evaluate my model in order to obtain a
model with better performance in many aspects.
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Chapter 2

Related Works

This chapter is composed of two parts detailing anomaly detection and rank-
ing frameworks.

2.1 Anomaly Detection

Anomaly detection, which helps to keep citizens safe, is an important and
challenging issue in the field of computer vision [1, 24, 25, 26, 27, 28, 29]. In
1987, Denning proposed a model to detect abnormal actions [6]. From that,
more and more researchers have focused on the issue of anomaly detection.
At the beginning of 21 century, with the rapid development of computer
science (e.g., the Graphics Processing Units (GPUs)), detecting abnormal
actions in surveillance videos has become available.

2.1.1 Anomaly Detection in Supervised Learning

In the work of Weixin et al. [7], they presented a method to detect abnormal
actions by comparing the frames of input and reconstructed video. In the
first stage, they used Convolutional Network (ConvNet) to extract spatial
features of input-image. Then, the features extracted by ConvNet were fed
into Convolutional Long Shot-TermMemory (ConvLSTM) in order to extract
temporal features of input-frames without excluding spatial information. In
final, Deconvolution Layers (Deconv) were employed to reconstruct frames
based on spatiotemporal features extracted by ConvNet and ConvLSTM. By
computing reconstruction error, abnormal actions could be detected. In the
case of anomaly, the reconstruction error would be large. Wang et al. [8] pro-
posed a method combining optical flow and Support Vector Machine (SVM)
to detect the abnormal events in video streams. Firstly, the optical flow
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method called Horn-Schunck (HS) was adopted for combining data terms
with spatial terms in order to compute the histograms of optical flow orien-
tation (HOFO) from the original images or the foreground images. Secondly,
authors let nonlinear one-class Support Vector Machine (SVM) learn period
characterizing normal behaviors and do the anomaly detection in the current
frame. The authors designed a detection algorithm that could detect abnor-
mal events faster in terms of combing the optical flow computation with a
background subtraction step [8].

2.1.2 Anomaly Detection in Unsupervised Learning

Hirokazu et al. [4] presented a competitive learning method using Self-Organi
zing Map (SOM) to learn features of normal actions of the elderly people.
Firstly, the SOM was used to extract the features of normal actions. Then,
the authors used the Eigenspace Method to classify the actions that SOM
has learned. Finally, abnormal actions of the elderly could be detected by
using the Parametric Eigenspace Method (PEM).

These suggest that the supervised learning and unsupervised learning
are fantastic method in the field of computer vision, especially in the field
of anomaly detection. However, there one problems have not been solved.
Firstly, in field of anomaly detection, the performance of unsupervised learn-
ing is worse than the result of supervised learning. Second, in general, al-
though the performance of supervised is better, labelling the data set will
consume lots of human labor. Therefore, using the deep Multiple Instance
Learning (MIL) model may solve these two problems at the same time.

2.2 Ranking Framework

The problem of learning how to rank is also a necessary and active issue
in machine learning [1]. In this section, some main methods of learning to
rank will be introduced. There have been several ranking methods proposed,
but most of them paid more attention to make the relative scores of the
items better instead of improving the scores of individual scores [1]. A rank-
SVM method is be proposed firstly to optimize the retrieval quality of search
engines in terms of using clickthrough data in the work of Thorsten et al. [9].

Lately, more and more deep ranking networks are used by researchers in
the field of computer vision. And the performances are good. The ranking
networks are used to learn features, detect face and other tasks [1]. For ex-
ample, in the work of Jiang et al. [10]. Learning fine-grained image similarity
is a very challenging task since it is necessary of researchers to capture the
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differences of between-class and within-class image [10]. However, authors
proposed a new ranking network which consists of ConvNet layer, Linear
Embedding layer, pooling layer and so on in order to learn similarity metric
from images directly [10]. But, for our problem, it is necessary that lots
of positive samples and negative samples must be provided if we add rank
network to our mode. That conflicts to the MIL method, which is a type
of weakly supervised learning. Thus, we formulate anomaly detection as a
regression problem in the ranking network in terms of using normal and ab-
normal data. And the features vectors of abnormal and normal actions will
be mapped to an abnormal score between 0 and 1 [1].
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Chapter 3

Model and Dataset

3.1 Proposed Anomaly Detection Model

The baseline model used in this study is summarized in Fig. 3.1 [1]. This
model begins with the anomaly video and normal video which have been
divided into non-overlapping 32 segments one by one. After dividing videos
into non-overlapping 32 segments, we organize them as positive bag and
negative bag. The positive bag consists of 32 video segments of anomaly
video. On the contrary, abnormal video segments (32) compose of negative
bags.

Figure 3.1: A flow diagram of the baseline model [1]

In the second stage, 30 positive bags and 30 negative bags are chosen
randomly to compose a mini-batch which will be fed into a pre-trained C3D
model to extract the spatiotemporal features. Due to its computational
efficiency and outstanding capability of capturing appearance and motion
dynamics, we opt to use this feature representation [1]. After extracting spa-
tiotemporal features, we connect (FC) layer FC6 of pre-trained C3D model
to Fully Connected Neural Network. Then a fully connected neural network
is trained in terms of utilizing proposed deep MIL ranking loss [1, 19].
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3.1.1 Multiple Instance Learning

In general, it is common to use the support vector machine to classify the
case of supervised learning [1]. And if the positive and negative labels have
been provided, the classifier could be learned in terms of using the following
optimization function [1]:

min
w

1

k

k∑
i=1

1©︷ ︸︸ ︷
max(0, 1− yi(w.φ(x)− b))+

1

2
||w||2, (3.1)

In this equation, b means a basic, w is the classifier ought to be studied.
We utilize φ(x) to denote feature representations of video segments and im-
ages [1]. k is the total number of training examples. And part of 1© is used
to represent the hinge loss. In the normal supervised learning, accurate an-
notations of positive and negative samples are essential for a model to learn
a robust classifier. Similarly, in a condition of abnormal action detection, if
we want to make a model learn features well, the temporal annotations of
every video segment are exceedingly necessary. However, it will consume lots
of time and human labor that obtaining temporal annotations of every video
segments [1].

It is obvious to use MIL model, because of time and human-labor con-
suming. This is the first reason for users to use MIL model. The second
reason is the peculiarities of anomaly videos. Abnormal actions are unpre-
dictable. That means abnormal actions could happen at any time and any
place. Besides, comparing to the whole video, the time of abnormal actions
is very short. For example, the action of arrest is just almost 20 seconds,
arson is almost 10 seconds and so on. This is another character of abnormal
video. Taking these two peculiarities of anomaly videos into consideration,
the video-level labels of normal videos and abnormal videos are suitable for
us [1]. Because video-level label is a type of label that label the whole video
instead of labeling all of the frames of the videos. Surely, the video-level label
will not consume lots of human-labor and time. Besides, the video-level label
is more suitable for anomaly action detection. Because the occurrence time
of abnormal action is unknowable.

In this paragraph, the basic fundamental of MIL model is going to be
introduced to make it obvious how does MIL model deal with the input
and output. A video without any abnormal actions will be labeled as a
negative bag. On the contrary, a video containing anomaly in the whole
video will be labeled as a positive bag. Then, denoting the positive bag as
Ba. And the 32 temporal video segments in the positive bag will be denoted
as (p1, p2, p3, ...pm) and m are used to represent the number of instances in
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this bag. Similarly, representing a negative video as a negative bag of Bn.
And the 32 temporal video segments in the negative bag will be denoted as
(n1, n2, n3, ...nm).

In the positive bag, there is at least one abnormal action. But in the
negative bag, there is no abnormal action. This is the most important point
in the MIL model. Exact information of the instance in positive and negative
bag will not be known because of the video-level label in the deep MIL
ranking model [1]. So we optimize the following function in terms of utilizing
the instance which obtained the maximum score in positive bag [11]:

min
w

1

z

z∑
j=1

max(0, 1− YBj
(max
i∈Bj

(w.φ(xi))− b)) +
1

2
||w||2 (3.2)

In this function, YBj
means the bag-level label and z represents a sum

total of bags. The meaning of other variables in this function is the same as
in Eq. 3.1 [1].

3.1.2 Deep MIL Ranking Model

It is known that it is difficult for researchers to judge the abnormal actions
accurately in the real world in terms of utilizing surveillance cameras [12].
Because there is no standard for them to judge the abnormal actions. This
means the researchers have to judge that a type of action is abnormal ac-
tions or not by themselves. This kind of judgment is subjective [1]. And the
judgment of abnormal actions will vary largely from person to person. This
is one of the biggest problems in the field of anomaly detection. In the past,
there are three solutions used by researchers, in general, to deal with this
problem. Firstly, researchers label some categories of normal actions and let
the model learn features from them. All of the actions which are not learned
by the model will be recognized as abnormal actions. Secondly, similarly,
researchers define some obvious categories of abnormal actions and let the
model learn features from abnormal actions. Thirdly, utilizing the unsuper-
vised learning method to detect abnormal actions. It is obvious that the
first and the second method cannot solve the problem that avoiding judging
abnormal actions in the subject well. In the third method, although label-
ing the abnormal actions is unnecessary, the performance of unsupervised
learning is not satisfactory.

Therefore, we treat the anomaly detection as low likelihood pattern de-
tection instead of classification problem, because of considering the unavail-
ability of sufficient examples of abnormal and normal actions [1, 27, 13, 14,
15, 16, 17, 18].

9



In our proposed approach, anomaly detection problem is treated as a re-
gression problem [1]. In general, that means the anomaly scores of abnormal
action segments will be higher than anomaly scores of normal actions. So
the straightforward method is using ranking loss [1]:

f(Va) > f(Vn) (3.3)

The video segments of abnormal action could obtain higher anomaly
scores, comparing to normal segments. The Va and Vn represent video seg-
ments of abnormal action and normal action [1]. Variables of f(Va) and f(Vn)
mean the anomaly scores of video segments of abnormal action and normal
action. Besides, the range of anomaly scores is from 0 to 1. If the segment-
level labels could be obtained in the training stage, the ranking function
could work well [1].

However, it is impossible to obtain the segment-level labels in the training
stage because there are just video-level labels in the MIL. So, using Eq. 3.3 is
not possible [1]. The following multiple instance ranking objective function
is proposed by us to represent Eq. 3.3.

max
i∈Ba

f(V i
a ) > max

i∈Bn

f(V i
n) (3.4)

In this ranking objective function, the meanings of variables are the same
as the variables in Eq. 3.3. The difference between Eq. 3.4 and Eq. 3.3
is that Eq. 3.3 rank each instance of the bag (positive and negative), but
Eq. 3.4 does not. In Eq. 3.4, we only rank on the two instances which
have the highest anomaly score respectively in a positive bag and a negative
bag [1]. The left part of Eq. 3.4 means the video segment which obtains
the highest anomaly score in a positive bag. The right part means the video
segment which obtains the highest anomaly score in a negative bag. Treating
the video segment which obtains the highest anomaly score in the positive
bag as true positive instance [1]. At least, the possibility that there are
abnormal actions in this video segment is very high. The video segment
which obtains the highest anomaly score in a negative bag is denoted as
a hard instance. Because this type of segment is the one that looks most
similar to an anomalous segments but is a normal instance. And the hard
instance causes a false alarm easily in abnormal action detection [1].

The goal of using Eq. 3.4 is to keep positive instances away from negative
instances. Our ranking loss in the hinge-loss formulation is [1]:

l(Ba, Bn) = max(0, 1−max
i∈Ba

f(V i
a ) + max

i∈Bn

f(V i
n)) (3.5)

However, there is a demerit in this formulation that the underlying tem-
poral structure of videos include abnormal actions does not be taken into
consideration [1].
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In order to improve the performance of the model, the formulation is
modified. Firstly, adding 2© to Eq. 3.5. 2© represents a sparsity term. The
occurrence time of abnormal action is short. That means the scores of in-
stances(segments) in a positive bag should be sparse and only a few segments
may include the abnormal action [1]. Secondly, adding 1© to Eq. 3.5. And
1© is the temporal smoothness term. Video is a type of sequential segments.
That means in this case, the score of anomaly ought to change smoothly
between video segments [1]. So, the score of anomaly changes smoothly be-
tween video segments could be ensured in terms of minimizing the difference
of scores for adjacent video segments. And the new loss function is given as
follows:

l(Ba, Bn) = max(0, 1−max
i∈Ba

f(V i
a ) + max

i∈Bn

f(V i
n))

+

1©︷ ︸︸ ︷

λ1

(n−1)∑
i

(f(V i
a )− f(V i+1

a ))2 +

2©︷ ︸︸ ︷
λ2

n∑
i

f(V i
a ),

(3.6)

In Eq. 3.6, error is back-propagated from the maximum scored video
segments in both positive and negative bags [1]. It is possible to obtain a
network that could predict high scores for video segments include abnormal
actions.

In the final, it is necessary to add model weights to the loss function. So
the final formulation is given as follows [1]:

L(w) = l(Ba, Bn) + λ3||w||F , (3.7)

In this equation, w denotes model weights.

3.2 Model Architecture

In this section, the introduction of final model and process of changing the
model form the baseline model to final model have been given. In Section 3.1,
introducing lots of details of the baseline model. However, we found there
are 2 limitations in the baseline model. Firstly, the parameters settings in
the Fully Connected Neural Network could not supply the best performance.
Secondly, the temporal features extracted by the C3D model do not be made
full use of.

Therefore, our model can be divided into 2 stages. In the first stage,
optimizing the parameters of the Fully Connected Neural Network (FCNN).
This stage will be introduced in Section 3.2.1. In the second stage, inserting
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Bi-directional LSTM module to the baseline model to obtain the final model.
However, before inserting Bi-directional LSTMmodule to the baseline model,
we tried to insert LSTM module to baseline model first. This process also
makes a contribution to obtaining the finial model. So this process is also
necessary to be introduced. The details of a model with Bi-directional LSTM
module (final model) or LSTM module will be introduced in Section 3.2.2
and 3.2.3. Surely, the output and input will be introduced again, if they
change. Besides, all of the experiment results will be given in Chapter 4
instead of in this chapter. Every model has been marked by the name which
are corresponding to inner structure of itself. All of names and introductions
of inner structures will be given in Section 4.2 and Fig. 4.1.

3.2.1 Parameter Optimization of Fully Connected Neu-
ral Network

To obtain the best performance without changing other parts of the baseline
model, we only optimized the parameters in FCNN. In the right part of
Fig. 3.2, the red numbers are the optimized parameters. After doing 6
experiments, the parameter settings in the right of Fig. 3.2 have been found
which could give the best performance if the inner structure of the baseline
model does not be changed. The experiment result will be given in Chapter4.

Figure 3.2: Left part is the baseline model. The right part is the baseline
model after optimizing parameters in Fully Connected Neural Network [1]

After finding the best parameter setting in Fully Connected Neural Net-
work, we will start changing the inner structure of the model without chang-
ing the parameter settings. And we use ”ParameterA” to represent parame-
ter settings which have been optimize. ”Baseline Model” denotes the model
without optimizing parameter settings.
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3.2.2 Combing Long Short-term Memory layer to Fully
Connected Neural Network

In this and next section, the process of changing the model from baseline
model to final model will be introduced. And changing the inner structure
of the baseline model to get better performance.

From the baseline model, the 3D convolution features(spatiotemporal fea-
tures) which are extracted by C3D model are fed into a fully connected neural
network directly to obtain anomalous scores. However, there is a limitation
that the temporal features extracted by C3D model don’t be made most of.

The input of baseline model is 32 non-overlapping temporal video seg-
ments of the positive bag or negative bag [1]. In training stage, the positive
bag or negative bag is fed into C3D model directly one by one in order to
extract spatiotemporal features of 32 non-overlapping temporal video seg-
ments. The normal actions or abnormal actions in the video are divided into
one or some video segments which are included in 32 non-overlapping video
segments [1]. And it is obvious that even though normal actions or abnormal
actions in video are divided into some segments, there are some temporal
relationships between adjacent video segments. If abnormal or normal ac-
tions are divided into one video segment because the occurrence time is shot,
there are also temporal relationships between adjacent video segments. How-
ever, the spatiotemporal features of 32 non-overlapping video segments are
directly fed into a Fully Connected Neural Network to do classifications in
the baseline model [1]. So it is necessary to insert LSTM module between
C3D model and FCNN to extract temporal features between adjacent video
segments in order to improve the performance of the whole model.

In the following article in this section, the inner structure of LSTM will
be introduced firstly. Then, introducing the whole model with LSTM mod-
ule. Especially, explaining how does LSTM connects to the C3D model and
FCNN.

In the Fig. 3.3, the inner structure has been given. In Fig.3.3 (a), the
function of red line is to send the information from Ct−1 to Ct. There are
two gate on the red line in Fig. 3.3 (a), the left and right one are denoted as
”Forget Gate” and ”Input Gate”. The whole blue area is a cell which could
memory the information. These two gates are used to decide the information
comes from Ct−1 could be sent to Ct or not. The layer (red) which connects
to ”Forget Gate” directly is ”Forget Gate Layer” in Fig. 3.3 (b). The inputs
of ”Forget Gate Layer” are ht−1 and Xt. The output is a vector and the range
of every element of this vector is between 0 and 1. 0 means the information
of Ct−1 is denied. 1 means the information could pass ”Forget Gate Layer”
and be sent to Ct. In simple, the output of ”Forget Gate Layer” is a vector
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(a) (b)

(c) (d)

Figure 3.3: Inner structure of LSTM [33, 35]

which could decide how much information in Ct−1 will be remained. The
layer (red) which connects to ”Input Gate” directly is ”Input Gate Layer”
in Fig. 3.3 (c). The inputs of this layer are ht−1 and Xt. Output is also a
vector which could decide how much information of ht−1 and Xt could pass
”Input Gate” then, be sent into the cell. In Fig. 3.3 (d), the ”Output Gate
Layer” connects to ”Output Gate”. The inputs are ht−1 and Xt. Output is
ht. The function of ”Output Gate Layer” is to decide how much information
will be output. In general, the inputs of LSTM are ht−1 and Xt. Outputs is
ht.

Fig. 3.4 is a LSTM network. Xt−1, Xt, Xt+1 represent inputs and ht−1,
ht, ht+1 are the outputs of LSTM network. From Fig. 3.4, it is easy to find
that LSTM network could extract the temporal features of input in efficient.
Because according to Fig. 3.3, function of forward layer is to decide what
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Figure 3.4: The temporal inner structure of LSTM [33, 35]

category of information will be forgotten and what kind of information will
be remembered (saved) instead of saving all of the information which are
input. Besides, LSTM network can avoid vanishing gradient problem and
exploding gradient problem. Because of the character that LSTM network
only remembers or saves the necessary or important information which is
decided by forward layer.

After introducing the inner structure of LSTM, it is necessary to concen-
trate on the whole model with LSTM and explain how do 32 video segments
be dealt with in the whole model [33].

Figure 3.5: The Model with LSTM. The parameters of FCNN in this figure
is ”ParameterA”.

In Fig. 3.5, the positive bag and negative bag consist of non-overlapping
32 video segments respectively are fed into a pre-trained C3D model to ex-
tract spatiotemporal features. The output of (FC) layer FC6 of the pre-
trained C3D model [19] is a feature vector with 4096 dimension. And the
feature vector will be fed into LSTM in Fig.3.4 to extract the temporal fea-
tures between adjacent video segments in order to make FCNN make a better
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classification. After extracting temporal features between adjacent video seg-
ments by LSTM, the output is fed into FCNN directly in Fig. 3.5. In finial,
we could obtain an anomalous score between 0 and 1 [33, 35].

3.2.3 Combing Bi-directional Long Short-term Mem-
ory layer to Fully Connected Neural Network

If the LSTM module is inserted between C3D model and FCNN, the per-
formance is better. However, this only a speculation based on the theory.
According to the experience of using LSTM and other models, there is a
possibility that although LSTM is used to extract temporal features between
adjacent video segments, the performance will be worse or cannot be bet-
ter [35]. Because there is only a forward layer in LSTM module [33]. This
will cause LSTM could not extract the temporal features efficiently. Be-
sides, there is a huge number of parameters in LSTM and that will result
in overfitting easily. Based on these two reasons, it is possible that perfor-
mance of the model with LSTM will be affected [33, 35]. Thus, replacing
LSTM with Bi-directional LSTM to obtain better performance is essential
and necessary. Because Bi-directional LSTM could utilize a forward layer
and backward layer to extracting the temporal features between adjacent
video segments compared to the inner structure of LSTM [35]. Therefore, it
is possible that Bi-directional LSTM with forward layer and backward layer
is able to extract features more efficient than LSTM. The input and output
are invariable comparing to the model with LSTM [33].

The inner structure of Bi-directional LSTM is given in Fig. 3.6. The
input is still a feature vector with 4096 dimension from C3D model. Output
is a 2048-dimension vector which could be fed into FCNN directly. The
equations of Bi-LSTM are give as follows:

At = f(WAt−1 + UIt) (3.8)

A
′
t = f(W

′
A

′
t+1 + U

′
It) (3.9)

Ot = f(V At + V
′
A

′
t) (3.10)

In these equations, variate W and W
′
represent the weight of forward

layer and backward layer. It and Ot mean input and output of bi-directional
LSTM. At and A

′
t represent the cells of forward layer and backward layer.

In Fig. 3.6, orange layer and black layer are forward layer and backward
layer. Comparing to the inner structure of LSTM, Bi-LSTM not only has
forward layer but also backward layer. The LSTM only use forward layer to
decide how much information can enter into cell and how much information
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Figure 3.6: The inner structure of Bi-directional LSTM [36, 37]

could be sent into next cell or output. In Bi-LSTM, the forward layer and
backward layer are used to decide how much information can enter into cell,
respectively [34, 36, 37]. Besides, in the stage of output, forward layer and
backward layer are used to decide how much information will be output in
Bi-LSTM. This is the merit and difference between LSTM and Bi-LSTM
[34, 36, 37]. Thus, it is the model with Bi-LSTM module will bring better
performance.

Figure 3.7: The model with Bi-directional LSTM. The parameters of FCNN
in this figure is ”ParameterA”.

The output and input of Bi-LSTM are not changed, comparing to the
model with LSTM module. Thus, the introduction of input will be skipped.
However, the output and other parts of the model in Fig. 3.7 will be in-
troduced. Concerning the parameter settings of the model with LSTM or

17



Bi-LSTM will be introduced in detail in Section 4 [34].

3.3 Dataset

UCF-Crime is a dataset proposed by Waqas Sultani et al., in 2018 [1]. It con-
sists of 1900 long and untrimmed real-world surveillance videos. The 1900
long and untrimmed surveillance videos include 13 categories of abnormal
actions including Abuse, Arrest, Assault, Arson, Road Accident, Burglary,
Explosion, Fighting, Robbery, Shooting, Stealing, Shoplifting, and Vandal-
ism. The total time of this dataset is 128 hours. And the details about this
dataset will be shown in Table 3.1.

Anomaly Number Anomaly Number
Abuse 50 (48) Road Accidents 150 (127)
Arrest 50 (45) Robbery 150 (145)
Arson 50 (41) Shooting 50 (27)
Assault 50 (47) Shoplifting 50 (29)
Burglary 100 (87) Stealing 100 (95)
Explosion 50 (29) Vandalism 50 (45)
Fighting 50 (45) Normal events 950 (800)

Table 3.1: Total number of videos of every anomaly in UCF-Crime Dataset.
The numbers in brackets represent the number of videos in training dataset.

Figure 3.8: The time distribution of videos in training dataset [1]
.

The UCF-Dataset is divided into two parts: the training dataset and
the testing dataset [1]. And there are 800 videos with normal actions and
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810 with abnormal actions. In the testing dataset, there are 150 videos
with normal actions and 140 videos with abnormal actions [1]. Besides,
the training dataset and testing dataset include all 13 anomalies at various
temporal locations in the videos [1].

In Fig. 3.8, it is obvious that most of the videos are short-time videos.
There are two merits of this type of video. Firstly, the abnormal actions
happen in a very short time, in general. Secondly, the short-time videos in
the training dataset will not cost lots of training time. Therefore, all of the
experiments of this research will be conducted in UCF-Crime Dataset.
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Chapter 4

Experimentation and
Evaluation

In this chapter, details about implementing the experiment will be intro-
duced, evaluation metrics and the results of the experiment. Because there
are lots of experiments in this research, in order to let readers understand
this chapter easily, we will give a short analysis after giving the result corre-
sponding to the model, respectively. And in finial, we analyze results of the
baseline model and the model we proposed (final model) to give a conclusion.

4.1 Process of Model changing

Due to lots of experiments in this thesis, it is necessary to narrate the whole
process of model changing in order to ensure readers could understand this
research easily.

Because the parameter settings in Fully Connected Neural Network of
the baseline model could be optimized further to make performance better,
we change parameter settings in FCNN for finding a better performance of
FCNN. And we denote this parameter setting which is mentioned in Sec-
tion 3.2.1 as ”ParameterA”. However, the parameters of ParameterA are
too many and we doubt that a huge number of parameters is an important
reason to cause overfitting. Thus, except parameter settings of parameterA,
we also found another parameter settings which bring a better performance
of FCNN than baseline model and the parameters are less than ParameterA.
We denote this parameter settings of FCNN as ”ParameterB”. Surely, the
performance of ParameterA is better than ParameterB. After obtaining new
parameter settings ( ParameterA and ParameterB), we insert LSTM mod-
ule between pre-tainded C3D model and FCNN to extract the temporal fea-
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tures between adjacent video segments. We doubt temporal features between
adjacent video segments could not be extracted efficiently because there is
only a forward layer in LSTM module. Thus, we tried to use Bi-directional
LSTM includes the forward layer and backward layer to extract temporal
features. In finial, we found Bi-directional LSTM could extract temporal
features between adjacent video segments more efficiently and bring the best
performance.

4.2 Implementation Details

Every video will be cut into 32 non-overlapping video segments and one
video treated as a bag (positive or negative) [1]. Then, 30 positive bags and
30 negative bags will be chosen randomly to be fed into a pre-trained C3D
model to extract spatiotemporal features [1]. The number of 32 and 30 is
empirically set [1].

Before feeding positive and negative bags to C3D model, it is necessary
to resize the video frames to 240 × 320 pixel and set the frame rate as 30
fps [1]. Then, extracting spatiotemporal features of 32 video segments in
terms of computing C3D features for each 16-frames video clips of each video
segment followed by l2 normalization [1]. 16-frame clip features are taken the
average of, in order to achieve features for every video segments [1]. Then,
layer FC6 of pre-trained C3D model is connected to LSTM or Bi-directional
LSTM model to extract temporal features between adjacent video segment
[19]. In finial, training the FCNN in terms of feeding features of LSTM or
Bi-directional LSTM to FCNN.

In this research, Drop regularization between every layer in FCNN is set
as 60% [20]. Besides, ReLU activation and Sigmoid activation are used for
the last layer. [1, 21]. Besides, we use Adagrad optimizer with an initial
learning rate of 0.001 [22, 1]. The parameters in Eq. 3.6 and Eq. 3.7 are set
as follows: λ1 = 8× 10−5, λ2 = 8× 10−5 and λ3 = 0.01.

After computing gradients and loss, we back-propagate the loss for the
whole batch by utilizing Eq. 3.6 and Eq. 3.7 [1].

There are only baseline model, baseline model with LSTM module and
baseline model with Bi-LSTM (final model) in this research. But, there are
two sets of parameters of FCNN and the Bi-LSTM module will be optimized
once. So, some models are derived. And these derived models could not be
ignored. Because if results of all of models will not be compared with each
other, it is impossible to find a model with the best performance. For narrat-
ing and comparing the results of each model in convenient, the introduction
of every model are given in Fig. 4.1.
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All of the model in Fig. 4.1 are based on the baseline model. ”FCNN-
ParameterB” and ”FCNN-ParameterA” are the baseline model with op-
timized parameter settings (ParameterB and ParameterA) in FCNN. The
”FCNN-ParameterB” is a 4-layer FC neural network and it has 4096 units
in the first layer. The first layer followed by 512 units, 64units and 1 unit
FC layers [1]. In ”FCNN-ParameterA”, the first FC layer has 4096 units
followed by 1024 units, 512 units and 1 unit FC layers [1].

The differences between ”FCNN-ParameterB-LSTM”, ”FCNN-Parameter
A-LSTM” and baseline model is that LSTM module is inserted into base-
line model. And the parameter settings of FCNN are changed. The input
of LSTM module is a vector with 4096 Dimension. Output of LSTM is a
2048 dimensional vector. Besides, in Fully Connected Neural Network of
FCNN-ParameterB-LSTM, there are 2048 units in the first FC layer. The
first layer followed by 1024 units, 512units, 64 units and 1 unit FC layers.
In FCNN-ParameterA-LSTM, the first FC layer has 2048 units followed by
1024 units, 512 units and 1 unit FC layers [1].

In final, the structure of ”FCNN-ParameterA-BiLSTM’” and ”FCNN-
ParameterB-BiLSTM’” are almost the same with ”FCNN-ParameterA-BiLST
M” and ”FCNN-ParameterB-BiLSTM”. There are two differences. The
structures of Bi-LSTM and FCNN. Surely, these models are also based on
baseline model. In ”FCNN-ParameterB-BiLSTM’” and ”FCNN-ParameterA-
BiLSTM’”, input of Bi-LSTM module is a vector with 4096 Dimension. Out-
put of Bi-LSTM is a 2048 deimensional vector. The first layer in FCNN of
”FCNN-ParameterB-BiLSTM’” is FC layer with 4096 units. And it followed
by 1024 units, 512units, 64 units and 1 unit FC layers. In FCNN of ”FCNN-
ParameterA-BiLSTM’”, the first layer has 4096 units followed by 1024 units,
512 units and 1 unit FC layers [1]. In ”FCNN-ParameterB-BiLSTM” and
”FCNN-ParameterA-BiLSTM”, the output of Bi-LSTM is a vector with 1024
demension. The inner structure of FCNN of ”FCNN-ParameterB-BiLSTM”
is the same with ”FCNN-ParameterB-BiLSTM’”. Similarly, inner struc-
ture of FCNN of ”FCNN-ParameterA-BiLSTM” is the same with ”FCNN-
ParameterA-BiLSTM’”.

4.3 Evaluation Metrics

Although, ROC and AUC are important and comprehensive evaluation met-
rics [30, 32]. But, it is not enough to only use ROC and AUC to evaluate
our model. Thus, except for ROC and AUC, F-measure, Recall and Loss
Convergence Rate are also used to evaluate our model [32].

23



4.3.1 Loss Convergence Rate

Loss convergence Rate is a relatively weak metric to evaluate the model. It
reveals when does loss function finishes convergence. Loss function converges
faster without changing the learning rate, iterations and so on, the parameter
settings of the model are optimized better.

4.3.2 ROC and AUC

Receiver Operating Characteristic is a contingency table that consists of
True Positive Rate (TPR) and False Positive Rate (FPR). The TPR and
FPR are the horizontal coordinate and vertical coordinate. From Eq. 4.1,
it reveals TPR means how many correct positive results occur among all
positive samples available. From Eq. 4.2, it reveals FPR defines how many
incorrect positive results occur among all negative samples available. All of
the parameters in Eq. 4.1 and Eq. 4.2 are given in Tab. 4.1.

True condition
Total population Condition positive Condition negative

Predicted
condition

Predicted condition
positive

True positive
(TP)

False positive
(FP)

Predicted condition
negative

False negative
(FN)

True negative
(TN)

Table 4.1: The relationship between True condation and Predicted condation

TPR =
TP

TP + FN
(4.1)

FPR =
FP

FP + TN
(4.2)

The ROC Space is given in Fig. 4.2. All of the points in dashed in the
figure represent TRP = FPR. If ROC of a model matches with dashed in
Fig. 4.2, that means a prediction of this model is 50%. If ROC of a model
is under the dashed, the model should not be used because the prediction is
under 50%. The perfect point of ROC Space is (1, 0), that represents the
model could predict all of the positive samples correctly. Because TPR = 1
and FPR = 0. Therefore, ROC is closer to (1, 0), the classification of the
model is better. ROC is a full-scale evaluation metric that is used to evaluate
a model is an advantage or not.
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Figure 4.2: ROC Space (https://en.wikipedia.org/wiki/Receiver operating
characteristic)

.

However, in reality, it is difficult for to distinguish the advantage model
or disadvantage model in terms of only comparing the ROC of model re-
spectively. Because there is some model with similar ROC. At this time,
AUC is a good auxiliary evaluation metric to evaluate a model. Area Under
Curve means the area under the ROC curve. Sometimes, At this time, AUC
is worked. A advantage model could be distinguished with a disadvantage
model easily by AUC which is expressed as a percentage. So, AUC and ROC
are used together by researchers. If the AUC of one model is 1, the model is
a perfect model in the world. But, that is not reality. Thus, if a model with
AUC > 0.5, that is an acceptable model.

4.3.3 Recall

Recall represents how many positive samples are predicted right [32]. This
could represent the capability of detecting positive samples. And the equa-
tion is given as follows:

Recall =
TP

TP + FN
(4.3)
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4.3.4 F1-Measure

F1-Measure is a measure of a test’s accuracy [31, 32]. It considers both the
precision and the recall of the test. F1-Measure is the harmonic mean of the
precision and recall and the score of F1-Measure is between 0 and 1 [31, 32].
If F1 = 1, that means the model had the best precision and recall. If F1
= 0, the performance of the model is the worst. In general, if F1 > 0.3, a
conclusion could be given that the model is good and reliable.

F1 =
2TP

2TP + FN + FP
(4.4)

4.4 Results

(a) ROC and AUC (b) Loss Convergence Rate

Figure 4.3: ROC and Loss Convergence Rate of Baseline Model

This is the ROC-AUC and Loss Convergence Rate of the baseline model.
The AUC of baseline model is 0.73 in Fig. 4.3 [32]. The loss function starts
converging from 0 epoch and finishes on 20000th epoch. The convergence
time of loss is very long.

After doing 6 experiments, we found FCNN-ParameterA and FCNN-
ParameterB could bring better performance than the baseline model. And
parameters of FCNN-ParameterB is less than FCNN-ParameterA. The Fully
Connected Neural Network of FCNN-ParameterA consists of 4 layers. There
are 4096 units in the first layer which are followed by 1024 units, 512 units
and 1 unit FC layers [1]. FC Neural Network of FCNN-ParameterB consists
of 4 layers. The first FC layer has 4096 units followed by 512 units, 64 units
and 1 unit FC layer. In terms of comparing Fig. 4.4 and Fig. 4.5 with Fig.
4.3, we can find that the performance of FCNN-ParameterA is the best. And

26



(a) ROC and AUC (b) Loss Convergence Rate

Figure 4.4: ROC and Loss Convergence Rate of FCNN-ParameterB Model

(a) ROC and AUC (b) Loss Convergence Rate

Figure 4.5: ROC and Loss Convergence Rate of FCNN-ParameterA Model

loss convergence rate is the fastest. The loss function finishes converging al-
most on the 10000th epoch. The loss function of FCNN-ParameterB finishes
converging almost on the 17500th epoch.

Besides, according to Tab. 4.2, we found Recall, ROC, AUC are the best
in FCNN-ParameterA but F1-Measure is worse than FCNN-ParameterB.
The reason is that the Recall of FCNN-ParameterA is higher too much than
FCNN-ParameterB. Because F1-Measure is an evaluation metric consists of
Precision and Recall. If Recall higher than Precision too much, F1-Measure
will decline. Vice versa. The higher recall means the capability of detecting
abnormal actions of FCNN-ParameterA is better.

In order to extract temporal features between adjacent video segments,
LSTM module is inerted between C3D model and FCNN. The consequences
are given in Fig. 4.6 and Fig. 4.7. Because of LSTM module, parameter
settings of FCNN have been optimized further. The input of LSTM is a spa-
tiotemporal feature(4096D) from FC6 of the C3D model [1] and output is a
vector (2048D). Then we feed the vector (2048D) to Fully Connected Neural
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Model F1-Measure Recall
Baseline model 0.260 0.55

FCNN-ParameterB 0.272 0.687
FCNN-ParameterA 0.269 0.781

Table 4.2: F1-Measure and Recall

Network to do classification. The structure of a Fully Connected Neural Net-
work in FCNN-ParameterA-LSTM is a 3-layer FC neural network[1]. There
are 1024 units in the first layer which fellowed by 512 units and 1 unit layers
[1]. Fully Connected Neural Network in FCNN-ParameterB-LSTM has 1024,
512, 64 and 1 unit in the first, second, third and fourth layers [1].

(a) ROC and AUC (b) Loss Convergence Rate

Figure 4.6: ROC and Loss Convergence Rate of FCNN-ParameterB-LSTM
Model

Comparing Fig. 4.6 and Fig. 4.7 with Fig. 4.3, we found that although
the loss convergence rate is faster, AUC becomes worse after inserting LSTM
module between C3D model and FCNN. According to Tab. 4.3, Recall be-
comes worse too. Because LSTM module could extract temporal features
between adjacent video segments, the performance could be better, at least
AUC should be higher if LSTM module is inserted between C3D model and
FCNN. However, the performances are not very satisfactory. Thus, overfit-
ting is the most reasonable reason for resulting in bad performance. Because
the capability of extracting temporal features between adjacent videos is not
very remarkable, in the meantime, a huge number of parameters are brought
to the model. These two elements lead to overfitting and make performance
worse than the model without the LSTM module. According to Tab. 4.3,
comparing FCNN-ParameterA-LSTM and FCNN-ParameterB-LSTM than
FCNN-ParameterA, FCNN-ParameterB, it shows that F1-Measures are bet-
ter but Recall declined. This is not satisfactory because the decline of recall
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(a) ROC and AUC (b) Loss Convergence Rate

Figure 4.7: ROC and Loss Convergence Rate of FCNN-ParameterA-LSTM
Model

Model F1-Measure Recall
Baseline model 0.260 0.55

FCNN-ParameterB 0.272 0.687
FCNN-ParameterA 0.269 0.781

FCNN-ParameterB-LSTM 0.276 0.377
FCNN-ParameterA-LSTM 0.278 0.397

Table 4.3: F1-Measure and Recall

reveals the capability of recognizing positive samples (abnormal actions) de-
cline. This is cannot be ignored in the field of anomaly detection. Therefore,
it is necessary to optimize the model further. Considering overfitting re-
sults in the worse performance, LSTM module is replaced with Bi-directional
LSTM module which could extract temporal features more efficiently. The
input of Bi-LSTM module is a spatiotemporal features(4096D) from FC6
of the C3D model [1] and output is vector (4096D). Then we feed the vec-
tor (4096D) to Fully Connected Neural Network to do classification. The
structure of a Fully Connected Neural Network is unchanged. That means
LSTM module is replaced with Bi-LSTM module only without changing any
parameters.

According to Fig. 4.8 and Fig. 4.9, it shows the performances improve
obviously in terms of replacing LSTM module with Bi-directional LSTM
module. Comparing Fig. 4.8 with Fig. 4.6, it is obvious that AUC in-
creases 1%. The changing of the loss convergence rate is not conspicu-
ous. And AUC increases 5%, if we compare Fig. 4.9 to Fig. 4.7. The
loss convergence rate does not change a lot. According to Tab. 4.4, com-
paring FCNN-ParameterB-BiLSTM’ and FCNN-ParameterA-BiLSTM’ with
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(a) ROC and AUC (b) Loss Convergence Rate

Figure 4.8: ROC and Loss Convergence Rate of FCNN-ParameterB-
BiLSTM’ Model

(a) ROC and AUC (b) Loss Convergence Rate

Figure 4.9: ROC and Loss Convergence Rate of FCNN-ParameterA-
BiLSTM’ Model

FCNN-ParameterB-LSTM and FCNN-ParameterA-LSTM respectively, F1-
Measure and Recall increased.

It is obvious that the Recall and F1-Measure of FCNN-ParameterA-
BiLSTM’ are the best. Thus, two conclusions could be obtained. Firstly, Bi-
directional LSTM is worked and that can make the performance of the model
better. Secondly, because there is one more FC layer in FCNN-ParameterB-
BiLSTM’ than FCNN-ParameterA-BiLSTM’, the overfitting has existed al-
ready in FCNN-ParameterB-BiLSTM’. And the overfitting affects the AUC
performance of FCNN-ParameterB-BiLSTM’.

Although replacing the Bi-directional LSTM module with LSTM mod-
ule and the performance of the model has been better, it is necessary to
optimize the parameter settings of Bi-directional LSTM module further in
order to obtain the better performance. Because it is possible that there is
an overfitting phenomenon in FCNN-ParameterB-BiLSTM’. Therefore, we
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Model F1-Measure Recall
FCNN-ParameterB-LSTM 0.276 0.377
FCNN-ParameterA-LSTM 0.278 0.397

FCNN-ParameterB-BiLSTM’ 0.242 0.352
FCNN-ParameterA-BiLSTM’ 0.295 0.651

Table 4.4: F1-Measure and Recall

(a) ROC and AUC (b) Loss Convergence Rate

Figure 4.10: ROC and Loss Convergence Rate of FCNN-ParameterB-
BiLSTM Model

optimize the parameters and make the output of Bi-directional LSTM is a
vector (2048D). Input is still a spatiotemporal features(4096D) from FC6 of
the C3D model [1]. The structure of a Fully Connected Neural Network is un-
changed. After adjusting the parameters of Bi-directional LSTM, we obtain
new results which are given in Fig. 4.10 and Fig. 4.11. Comparing Fig. 4.3,
Fig. 4.4, Fig. 4.6, Fig. 4.8 and Fig. 4.10, we could find the AUC performance
of FCNN-ParameterB-BiLSTM is the best in the model which are based on
Fully Connected Neural Network with parameterB. The AUC performance
of FCNN-ParameterA-BiLSTM is the best in the model which are based
on Fully Connected Neural Network with parameterA. Besides, AUC per-
formance of FCNN-ParameterB-BiLSTM is better than FCNN-ParameterB-
BiLSTM.

From the Fig. 4.14, F1-Measure is the highest of all of the model. Besides,
Recall is also the highest of all the model. That reveals that the capability of
detecting abnormal actions of FCNN-ParameterA-BiLSTM is the best. And
F1-Measure shows FCNN-ParameterA-BiLSTM is the most stable model of
all of the model. Thus, the conclusion can be given that the model of FCNN-
ParameterB-BiLSTM has the best performance. And the model is given in
Fig. 3.7.
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(a) ROC and AUC (b) Loss Convergence Rate

Figure 4.11: ROC and Loss Convergence Rate of FCNN-ParameterA-
BiLSTM

4.5 Comparison and Analysis

In Section 4.4, the results and process of optimization of the model have
been given. For the convenience of analyzing baseline model and final model
(FCNN-ParameterA-BiLSTM), the evaluation metrics of these two models
are compared only.

According to Fig. 4.12, it shows the ROC of baseline and finial model are
smooth. It represents there is no overfitting in these two models. Besides,
from Fig. 4.13, ROC of the final model covers the ROC of baseline model
fully and AUC in Fig. 4.12(b) is 6% than baseline model. Thus, a conclusion
can be given that from ROC’s point of vies, the performance of final model
is better than the baseline model.

(a) Baseline Model (b) FCNN-ParameterA-BiLSTM Model

Figure 4.12: Comparison of Baseline and FCNN-ParameterA-BiLSTMModel
(ROC, AUC)
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Figure 4.13: ROC of Baseline and FCNN-ParameterA-BiLSTM model

Model AUC F1-Measure Recall
Baseline model 0.73 0.260 0.554

FCNN-ParameterA-BiLSTM 0.79 0.351 0.665
Performance Improvement 0.06 0.091 0.111

Table 4.5: AUC, F1-Measure and Recall of baseline and FCNN-ParameterA-
BiLSTM model

By comparing the final model with baseline model, it reveals Recall in-
creases 11.1%. That means the possibility of detecting abnormal actions
successfully has been increased by 11.1%. The abnormal actions which are
could not be detected successfully by the baseline model could be detected
successfully by our model. Furthermore, recall means how many the positive
samples are detected in all of positive samples. It is shown clearly in Eq. 4.1.
In the field of anomaly detection, the positive sample is abnormal action.
Our goal is to detect all of the abnormal actions in terms of surveillance
videos. In another word, high recall means the high possibility of detecting
abnormal actions. But not the higher the better. Sometimes we had better
to decline recall to improve prediction. Because if the model detects every
video as abnormal video, all of the positive samples absolutely will be de-
tected and recall surely is 100%. Obviously, this model is a bad. Because
the prediction will be very very low.

Thus, it is essential to use another evaluation metric —F1-Measure to
evaluate our model. Because of Eq. 4.4, it shows F1-Measure is an evaluation
metric that is affected by recall and prediction. It means a model could not
obtain a good F1-Measure score unless the model could obtain a balance
between good recall and prediction. Therefore, F1-Measure is a full-scale
evaluation metric. In general, if the score of F1-Measure is more than 0.3,
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the model could be considered as a good model. According to Tab. 4.5, the
F1-Measure score changed from 0.260 to 0.351. The growing rate is 9.1%. It
is obvious that F1-Measure improves because of the improvement of Recall.

Concerning the Loss Convergence Rate, that is a weak evaluation met-
ric, so we don’t compare the loss convergence rate of baseline and FCNN-
ParameterA-BiLSMT model in terms of giving images of Loss Convergence
Rate, respectively. From Tab. 4.14, it is obvious that baseline model con-
verges slower than the FCNN-ParameterA-BiLSMT model. Thus, if the loss
convergence rate of a model becomes faster without changing the learning
rate and loss function, the model is optimized better.

After comparing every evaluation metric of baseline and final model, we
could conclude that the finial model (FCNN-ParameterA-BiLSTM) obtained
better performance than the baseline model.
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Chapter 5

Conclusion and Further Work

In this thesis, our research ”A Study on Anomaly Detection in Surveillance
Videos” is presented. In this research, the new proposed deep learning ap-
proach are used to detect abnormal actions in terms of utilizing surveillance
videos [1]. In the past, lots of researchers use only abnormal actions or ab-
normal actions to train a model in order to obtain a good performance in
detecting abnormal actions by using surveillance videos [1]. However, the
results are not very satisfactory. Thus, in this research, we use normal ac-
tions and abnormal actions to train the model to detect abnormal actions [1].
Our research focuses on improving the performance of the anomaly detection
model which is proposed by Sultani et al. in 2018 [1]. Especially, improving
the performance of ROC, AUC, F1-Measure, and Recall. We take a model
proposed by Sultani et al. in 2018 [1] as our baseline mode. And analyzing
why our model could obtain better performance than the baseline model.
The most important contributions of my research as follows:

• After doing 6 experiments in terms of only optimizing parameter set-
tings in Fully Connected Neural Network, a set of parameters which
could improve the performance of FCNN has been found. And the
structure of FCNN with best performance is a 3-layer FC neural net-
work (FCNN-ParameterA) [1]. There are 1024 units in the first FC
layer which are followed by 512 units and 1 unit FC layer [1]. Surely,
the structure of FCNN changed, after LSTM or Bi-directional LSTM
module is inserted between the pre-trained C3D model and FCNN [1].
However, that is another story. Because based on FCNN-ParameterA,
all of the models in this research are designed. Even though, the struc-
ture of FCNN changed, the function of FCNN-ParameterA is still im-
portant and it is indispensable.

• In order to extract temporal features between adjacent video segments,
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LSTM and Bi-directional LSTM module are inserted between C3D
model and FCNN. Besides, we also give the analysis on every exper-
iment and reveal why the performance become worse or better after
inserting LSTM or Bi-directional LSTM module between C3D and
FCNN. Especially, after inserting LSMT module into the model, the
performance become worse. That is not a positive case. However, the
analysis and explanation are given. And it is obvious that the anal-
ysis will be meaningful to others’ researches in future. According to
Fig. 4.14, it reveals the performance of FCNN-ParameterA-BiLSTM
is the best. Comparing to baseline model, AUC and ROC increase 6%
and F1-Measure increase almost 9.1%. It means the strategy that in
terms of extracting temporal features between adjacent video segments,
improving performance of the whole model is successful. Toward to ex-
tract temporal features from adjacent video segments, Bi-directional
LSTM module could extract features in more efficient. And will con-
tribute to someone’s research in future.

Although comparing to baseline model, the better performance has been
obtained, there are still some limitations in our model. If these limitations
are solved, the performances will become better.

• The Recall of our model is 0.665. And that means the possibility that
detecting normal action as abnormal action is high. And if the system
developed based on our model go live, the mis-detection will cause lost
of problems and waste of resource of enforcement agencies [1]. Thus,
finding some way to decline the recall and improve the F1-Measure.
This is a important theme in future.

• The input of C3D model is only 16 frames whatever how long does
the video segments. And the performance could be improved further
if a new model that could decide the number of frames of input based
on the time of video segment could be found. If the time of the video
segment is short, the model will decrease the number of frames of input
to save the resource of computation. If the time of video segment is
very long, the model will decrease the number of frames of input to
extract more spatiotemporal features.

• Last but not least, it is also possible to combine the visualization algo-
rithm to this model. We could know which part of the frames is used
to extract spatiotemporal features by the model. And the performance
could be improved easily because we could know how does the model
learns or extract the spatiotemporal features from inputs.
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We think other researchers who are interested in anomaly detection could
spare no effort to solving the limitations of our model which had been intro-
duced above. And if the three problems are solved well, detecting abnormal
actions to keep the safety of public space is not just a dream and we think
that could be realized in the future.
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