
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
An Approach to Support the Modeling and Usage of

Analysis Patterns

Author(s) 何, 非

Citation

Issue Date 2002-06

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1643

Rights

Description Supervisor:片山 茸蓍, 情報科学研究科, 修士



 

 

 
 

An Approach to Support the Modeling and Usage of An Approach to Support the Modeling and Usage of An Approach to Support the Modeling and Usage of An Approach to Support the Modeling and Usage of 
Analysis PatternsAnalysis PatternsAnalysis PatternsAnalysis Patterns    

 
 
 

By He Fei 
 

 

 

A thesis submitted to 
School of Information Science, 

Japan Advanced Institute of Science and Technology, 
in partial fulfillment of the requirements 

for the degree of 
Master of Information Science 

Graduate Program in Information Science 
 
 
 
 
 
 

Written under the direction of 
Professor Takuya Katayama 

 
 
 
 

June, 2002 



 

 

 
 

An Approach to Support the Modeling and Usage ofAn Approach to Support the Modeling and Usage ofAn Approach to Support the Modeling and Usage ofAn Approach to Support the Modeling and Usage of    
Analysis PatternsAnalysis PatternsAnalysis PatternsAnalysis Patterns 

 
 
 

By He Fei (010030) 
 
 
 

A thesis submitted to 
School of Information Science, 

Japan Advanced Institute of Science and Technology, 
in partial fulfillment of the requirements 

for the degree of 
Master of Information Science 

Graduate Program in Information Science 
 
 
 
 

Written under the direction of 
Professor Takuya Katayama 

 
and approved by 

Professor Takuya Katayama 
Professor Kokichi Futatsugi 

Associate Professor Katsuhiko Gondow 

 

 

 

March, 2002 (Submitted) 

 

 

 

 

Copyright Ⓒ 2002 by He Fei 



 

 

Chapter 1Chapter 1Chapter 1Chapter 1    
    
IntroductionIntroductionIntroductionIntroduction    
 
Typically, there are two respects in works around analysis patterns:  

One is on pattern itself, which describes the elements of patterns, such as the actual 
structure of solution, the intent or problem behind. 

The other is on the surrounding of patterns, that means things supporting the 
modeling, usage of patterns, the relationship with other patterns, and so on. 

 
The first one needs great understanding and expertise of diverse domains that beyond 

my reach, so I put my main efforts to find the common principles behind the second 
respect through the understanding of other peoples’ analysis patterns.  
 

Also around the two respects, Martin Fowler offers a set of analysis patterns and 
support patterns respectively. But on the second respect, the support patterns in Martin 
Fowler’s Analysis Patterns mainly address problems in building an actual software 
system with analysis patterns, just like how to fit those analysis patterns into system 
architecture and how to transform the model in analysis pattern into an explicit 
specification model in design or an implementation. And the only pattern used to 
examine modeling techniques and to advance modeling constructs on analysis patterns 
is the association pattern. My works can be seen as a complement or extension to the 
latter part of Martin Fowler’s. 
 

As to the structure of this paper, first in chapter 2, I give the explanation of these 
basic concepts related with my works, then discuss the detailed patterns on the 
principles of the second respect in Chapter 3, at last, chapter 4 offering a conclusion for 
my works. 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Chapter 2Chapter 2Chapter 2Chapter 2    
    
BackgroundBackgroundBackgroundBackground    
    
AnalysisAnalysisAnalysisAnalysis emphasizes an investigation of the problem and requirements with the 
application logic in mind, rather than a solution. For example, if a library system is 
desired, how will it be used? “Analysis” is a broad term, best qualified, as in 
requirement analysis (an investigation of the requirements) or object analysis (an 
investigation of objects in the problem domains). The latter is also the feature of 
object-oriented analysis. 
 
Analysis patternsAnalysis patternsAnalysis patternsAnalysis patterns are group of concepts that represent a common construction in 
business modeling. It may be relevant to only one domain, or it may span many domains. 
Analysis patterns belong to the object analysis. 
 

The most important artifact created in analysis patterns is the domain model. 
Combining the conceptual classes, associations and attributes discovered in the 
investigation yields the domain models, same with conceptual models used in Martin 
Fowler’s Analysis Patterns. Keep in your mind that a domain model is a visual 
representation of conceptual classes or objects in a domain of interest for easily 
comprehending. There are only relatively useful models, no such things as a single 
correct model. All models are approximations of the domain we are attempting to 
understand. A good domain model captures the essential abstractions and information 
required to understand the domain. 
 
Qualities of a PatternQualities of a PatternQualities of a PatternQualities of a Pattern    
 
In addition to containing the aforementioned element, a well-written pattern should 
exhibit several desirable qualities. 

Encapsulation and Abstraction. Each pattern encapsulates a well-defined problem 
and its solution in a particular domain. Patterns should provide crisp, clear 
boundaries that help crystallize the problem space and the solution space. 
Openness and Variability. Each pattern should be open for extension or 
parameterization by other patterns so that they may work together to solve a 
specialized or a larger problem. A pattern solution should be also capable of being 
realized by an infinite variety of implementations (in isolation, as well as in 
conjunction with other patterns). 
Generativity and Composability. Each pattern, once applied, generates a resulting 
context, which matches the initial context of one or more other patterns in a pattern 
language. These subsequent patterns may then be applied to progress further toward 



 

 

the final goal of generating a "whole" or complete overall solution by the means of 
piecemeal growth. But patterns are not simply linear in nature, more like fractals in 
that patterns at a particular level of abstraction and granularity may each lead to or 
be composed with other patterns at varying levels of scale. 
Equilibrium. Each pattern must realize some kind of balance among its forces and 
constraints. This may be due to one or more invariants or heuristics that are used to 
minimize conflict within the solution space. The invariants often typify an underlying 
problem solving principle or philosophy for the particular domain, and provide a 
rationale for each step or rule in the pattern. 

 
UMLUMLUMLUML    
 
UML is an industry-standard language for specifying, visualizing, constructing, and 
documenting the artifacts of software systems. As with any language, the UML has its 
own notation and syntax. Its notation comprises a set of specialized shapes for 
constructing different kinds of software diagrams. Each shape has a particular meaning, 
and the UML syntax dictates how the shapes can be combined. Although many major 
object-oriented analysis and design methods influenced the development of the UML, it 
is derived primarily from three notations: Booch OOD (Object-Oriented Design), 
Rumbaugh OMT (Object Modeling Technique), and Jacobson OOSE (Object-Oriented 
Software Engineering). In 1997, the Object Management Group (OMG) made the UML 
a standard modeling language for object-oriented applications. 

 
Types of UML diagrams. Each predefined UML diagram is designed to let developers 

and customers view a software system from a different perspective and in varying 
degrees of abstraction: 

Class Diagram. Models class structure and contents using elements such as classes, 
packages and objects. It also displays relationships such as containment, inheritance, 
associations and others. 
State-chart Diagram. Expresses possible object combinations of a specific class 
diagram. 
Sequence Diagram. Shows one or several sequences of messages sent among a set of 
objects. 
Use-Case Diagram. Illustrates the relationship among actors and use cases. 
Collaboration Diagram. Describes a complete collaboration among a set of objects. 
Activity Diagram. Describes activities and actions taking place in a system. 
Component Diagram. A special case of class diagram used to describe components 
within a software system. 
Deployment Diagram. A special case of class diagram used to describe hardware 
within a software system. 



 

 

 
Because the class diagram can be used to not only on the specification perspective 

(describing software abstraction) and implementation perspective (interpreting the 
software implementation) but also on the conceptual perspective, I use the same UML 
diagramming notation to illustrate the domain models in my works. This also lowers 
the representation gap with software designs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Chapter 3Chapter 3Chapter 3Chapter 3    
    
Support PatternsSupport PatternsSupport PatternsSupport Patterns 
 
There are many performances around analysis patterns: such as the construction, 
composition, decomposition, derivation, and adoption. If we can summarize the 
principles behind, we can make those performances into a structured and organized 
basis, and make sure that the pattern and its particular application can keep the 
required qualities. 
 

I abstract the principles behind those performances into patterns with the term 
support pattern, for a set of common infrastructures that describes how to construct and 
apply analysis patterns independent of a specific domain rather than modeling actual 
analysis patterns themselves. With the support patterns, patterns can be exposed to 
outside more clearly and cooperate together more easily. 
 

Those patterns are not an ad hoc collection of loosely related concepts but instead 
aims to originated from an insight on a small number of necessary and sufficient basic 
building blocks that are ubiquitous in the works around analysis patterns. 
 

The support patterns in Martin Fowler’s Analysis Patterns mainly address problems 
in building an actual software system with analysis patterns, just like how to fit those 
analysis patterns into system architecture and how to transform the model in analysis 
pattern into an explicit specification model in design or an implementation. And the 
only pattern used to examine modeling techniques and to advance modeling constructs 
on analysis patterns is the association pattern. My works can be seen as a complement 
or extension to that of Martin Fowler’s. 
 

But people should also notice the difference between support patterns and meta 
patterns, the latter is a set of design patterns that describe how to construct 
frameworks independent of a specific domain. Also meta patterns are based on the basic 
principles of template and hook methods, and the set of meta patterns capture different 
configurations of classes containing these methods. 
 

Patterns are often organized and classified into a set of categories independent of the 
problem domain they come from. There are different possibilities for categorizing 
patterns, but a common delineation is as follows:  

Functional. Describing the functionality of system. 
Structural. Dealing with structure issues. 
Behavioral. Capturing the behavioral aspects in dynamic descriptions.  



 

 

 
The support patterns presented in this paper have another categorization: 
Structure patterns. 
Collaboration patterns. 
These categories will be discussed in more details shortly. 

 
There is no rigorous form for the support patterns described in this paper; I just 

simply state the intents or motivations behind, show and a visual representation of the 
pattern structure in UML diagram, and illustrate by some examples. Generally, those 
patterns only have static type models. 
 

It is important to note three facts, one is that a pattern belongs to a certain category 
does not mean that the pattern can only possess characteristics for that category. 
Placing a pattern in a particular category means that the pattern is based more on the 
category under which it falls; the second is that the most successful patterns are those 
that can be rewired in many configurations in effective response to changes; and the 
third is simplicity as the highest priority while modeling and applying those patterns in 
your own works. 
 
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    



 

 

3.1 Structure Patterns3.1 Structure Patterns3.1 Structure Patterns3.1 Structure Patterns    
 

ActorActorActorActor----Role Pattern Role Pattern Role Pattern Role Pattern     
TitleTitleTitleTitle----ThingThingThingThing----Information PatternInformation PatternInformation PatternInformation Pattern    
GeneralizationGeneralizationGeneralizationGeneralization----SSSSpecializationpecializationpecializationpecialization Pattern  Pattern  Pattern  Pattern     
AAAAssociationssociationssociationssociation Pattern  Pattern  Pattern  Pattern     
Definition PatternDefinition PatternDefinition PatternDefinition Pattern    
Document Pattern Document Pattern Document Pattern Document Pattern     

 
Actor-Role pattern and Title-Thing-Information pattern help people to identify and 
represent the meaningful (to modeler or required system) concept entities. Identifying a 
suitable set of objects or conceptual classes is at the heart of the analysis works, and 
well worth the effort in terms of pay-off during the later design and implementation 
works. Generalization-Specialization pattern and Association pattern are used to make 
a clear insight of the relationships among those objects or classes. Definition pattern 
and Document pattern offer the auxiliary services to other patterns. All those patterns 
help people not get lost in the maze of concepts, or hard to define and locate the 
corresponding classes. 
 

These patterns establish rules or constraints as the inherent part of those objects or 
classes. Constraints structure and affect those classes and the attributes thereof, all 
this means that constraints cannot be separated from the structure where they exist. 
 

Using these patterns, modelers can have a clear idea about what the system structure 
looks like right now and can abstract this information into a more generic model not 
only applicable today but flexible for future changes and extensions.  
 

About the sources of those patterns: you can find almost all the needs of the patterns 
from the process of domain model generation in Craig Larman’s Applying UML and 
Patterns. The Generalization-Specialization pattern is also apparent in user-interface 
frameworks, such as the well-known Model-View-Control architecture. Association 
pattern directly comes from that of Martin Fowler’s Analysis Patterns. The Document 
pattern was also inspired by document patterns found in David Hay’s Data Model 
Patterns. Title-Thing-Information pattern is derived from the Item-Item Description 
pattern in Peter Coad’s Object Models: Strategies, Patterns and Applications, and 
Larman call them the need for specification or description classes. 
 
 
 
 



 

 

3.1.1 Actor3.1.1 Actor3.1.1 Actor3.1.1 Actor----Role PatternRole PatternRole PatternRole Pattern    
 
The Actor-Role pattern provides guidelines for using actor and role concepts, including 
how they should be separated and how can be combined. 
 

An actor is someone or something that functions on its own, such as a person. You can 
employ actors within a company. A role may have a certain series of actions taken by an 
actor. You cannot employ the role; it is defined in certain structure that uses it. For 
example, company employs a person as president; thus, the person is an actor playing 
the role of president. 
 

An actor can have more than one role at a time, and the same role can be played by 
more than one actor. However, the actor, who can and is allowed to play more roles, 
cannot play them at the same time in some cases. The actor-role pattern makes it easier 
to model and describe the constraints for such occasion, which can be very hard to model 
if the actor and role are not properly separated. An example is a system that handles 
sensitive data where the roles of system operator and system administrator need to be 
separated, because a system administrator adds or removes user accounts to the system, 
whereas a system operator has access to the data within the system. In this case, an 
actor that has the role of system administrator can never take on the role of system 
operator, because one would like to avoid the risk of a system administrator who creates 
accounts for himself and thus gains access to sensitive data. In this example, separating 
the roles eliminates a security risk. 
 

Other use for the actor-role pattern is when an actor needs to be matched to different 
roles. Roles and actors have different attributes. Actors have attributes that describe 
their abilities. Roles have attributes that describe operational directions (such as 
responsibility attached to that role) and, often, requirements for the actors who play 
those roles. These requirements can be based on the actor’s defined attributes. This 
pattern help to identify which actors are most qualified or even permitted to have 
certain roles. 
 

If constraints are assigned to different roles and there is no separation of actor and 
role, the constraints are difficult or even impossible to express because a single entity 
involves both the actor and the role. If the actor has several roles, there is a big risk that 
the roles will be simply lost in the model, or that the actor will be defined as having an 
aggregated role that may become very specialized for that actor and be intermingled 
with the actor’s attributes. The distinction of different roles becomes lost because the 
roles are not separated from the actors that play them.  
 



 

 

As to the applicability of the actor-role pattern, it can be used in all problem 
situations in which there is a need to separate actors from roles. For example, an 
everyday    business rule for any bank could be that all huge withdraws must be approved 
by the bank’s office manager. But if the roles of office manager and bank clerk are not 
separated, and only defining a bank employee to an actor, it would be hard to express 
precisely which actors are allowed to approve those withdraw, and finally, this would 
cause problems in the organization management of the bank. The actor-role pattern 
models the actor, the different roles and the rules to ensure that they are mutually 
exclusive. 
 
            *             *          plays a          *            * 
 
 
 
 
                                         *  
 
 
            assigned by                                  is defined in  
                                                           or exist in 
                                                       * 
                                         defined by 
                            *                      * 
 

Figure 3.1  The Actor-Role pattern’s structure 
 

Context is the situation in which the actors exist and for which the roles are defined. 
Actor class describes the actors. 
Role is a description that tells the actor how to function in a particular context. Actor 

and Role can be specialized into subclasses. 
Possible Actor-Role connection expresses possible or allowed connections between 

actors and roles. 
Actor-Role Connection Rule is the basis for the Possible Actor-Role Connection class, 

for example, only one of the possibilities is allowed in certain point of time. 
 

Actor-role pattern enable the easy separation of actors and their attributes from the 
roles that they play. And enable you to have a more clear insight of the organization 
structure the actor plays within, since the roles are one of the key reflections of 
structure. This makes it can be combined with the Organization and Party pattern in 
Analysis Patterns, typically by creating an association from the role class in the 

 
*                          * 
 

    * 
*  restricted by 

Actor 

Actor-Role 
Connection Rules 

Possible Actor-Role 
Connection 

Role 

Context 



 

 

actor-role pattern to the organization unit class in the organization and party pattern, 
then by connecting and defining the role so it is a specific part in the organization. 
 

One advantage of using the actor-role pattern is that you can identify roles that 
cannot be played at the same time by the same actor, alone with certain actor 
requirements that are dependent upon the role played. Using this pattern also makes it 
possible to locate and define certain connections, such as that a certain actor can play a 
set of roles in one context but not in another, 
 
Note: If the Actor-Role pattern is always used in situations where a one-to-one 
relationship exists between the actor and the role, then this pattern will lean to more 
complex in the model. 
 

Within the context of management of component trading, those member companies 
and persons can have possible connections with the roles of user, supporter, vendor, and 
criterion keeper. As the snapshot of a real situation showed in Figure 3.2, the actor-role 
connection rule can state AND that means all associated roles must be played at the 
same time, in other case, it may be XOR which means that two roles cannot be played 
simultaneously, only one of the roles referenced can be valid at a time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2  An example of the Actor-Role pattern 

Company A 

AND 

Vendor 

Management of  
Component Trading 

Supporter/ 
Developer

User 

Criterion 
Keeper 

Personal B
Possible Connection

Possible Connection

Possible Connection

Possible Connection

Possible Connection

Possible Connection



 

 

3.1.2 Title3.1.2 Title3.1.2 Title3.1.2 Title----ThingThingThingThing----Information PatternInformation PatternInformation PatternInformation Pattern    
 
The Title-Thing-Information Pattern is a special pattern. In the thing-information pair, 
it eliminates the focus–shifting by referring to two frequently used modeling views 
(thing focus and information focus) and how they are related to each other, and in the 
title-thing pair, it also help modelers to simplify the modeling process for systems that 
involve thing and titles of the thing that may share the same name but having different 
attribute. 
 

Because information is named according to what it represents, it is not always easy to 
distinguish the thing and the information thereof, especially when both appear in same 
model. So, during construction of domain models, it is necessary to analyze and 
structure both the thing and information about it. For instance, logistics in a company 
comprise both the actual transportation of goods and the information about the good 
and details on the transportation. The difference is that the goods have attributes such 
as size, color and package form while the information about the goods has attributes 
such as delivery address and date. If you model the information and thing object in the 
same class, these concepts are intermingled, making it difficult to determine which 
attribute describes the physical thing and which attribute provides information about 
the thing. This causes problems when maintaining and updating the information. But 
people should keep the thing and its information class in the same model, because they 
both are parts of the logistics. 
 

Another example is about the customer-information pair, many business systems, just 
like the client database or e-business, handle customers; however, they do not handle or 
store the actual customers, only the information about those customers. In this case, the 
customer class in the systems contains information of a customer. 
 

A title is a concept that typically refers to a thing or item as its description on 
properties. One concrete example is the problem domain of library. In the library, both 
the book and physical copy (thing), which sharing the same title, have to be handled. 
Searching a book often concerns with the title, key words, authors, ISBN, but the result 
may show you multiple physical copies of the book which keep the quite different 
information on whether the copies are on shelf, who own those copies currently or where 
they locate. Supposed you model the physical copy and the title together. If your clear 
old books from the library and delete those classes, then you will never know whether 
you have it or not in history. Also let the instances have redundant or duplicated data 
and get be space-inefficient. 
 

It is a very generic need to defining those three elements separately and clearly, so 



 

 

misunderstanding and confusion can be avoided, and the future maintenance of the 
models and the building of information system based on the models will be much easier. 
 
                       * applied to              own   * 
 
 

Figure 3.3  The structure of Title-Thing-Information Pattern 
 

Thing is an object that can be concrete and physical, such as customer, or abstract, 
such as the party. Things form the building block of an enterprise, and can be 
specialized to other types such as products, persons. 

Title represents the title concept corresponding to a thing, it may have categorized 
attributes, and different category has different limitations, just like biology 
encyclopedia dictionary belongs to a category of natural science, but according to 
physical copy category, it is a dictionary not a book, so you cannot borrow it out. 
 
 
 
 
 

Figure 3.4  An example of the Title-Thing-Information Pattern 
 

In the above example, the product (thing) can be an engine, it may only show the 
properties that customers have interest in, such as the rate of burning efficiency or fuel 
consumption; the product description (title) keeps all the detailed records of the 
specification of the engine and production thereof, usually only the manufacturers, not 
the customers, are interested in this description, the product information (information) 
may have the quantity, the delivery date, or the current market price of the engine or 
the factors concerned within a contract which both sides of the deal care for. 
 
 
 
3.1.3 Generalization3.1.3 Generalization3.1.3 Generalization3.1.3 Generalization----SSSSpecializationpecializationpecializationpecialization Pattern Pattern Pattern Pattern    
 
The Generalization-Specialization pattern structures the essentials in a problem 
domain with the purpose of building well-structured and easily changeable models. The 
superclass or core objects (generalized) of a business are things that rarely change 
fundamentally; conversely, subclasses or the representations of core objects (specialized) 
often change or are extended in its own context, and have many forms. A modeler should 
take this into consideration and separate the superclass from its subclasses by 

Title Information Thing 

Product 
Description 

Product 
Information 

Product 



 

 

generalization and specialization. 
 

Generalization is to identify commonality among concepts and defining superclass 
and subclass relationships, and allow us to understand concepts in more general, 
refined and abstract terms. It leads to economy of expression, improving comprehension 
and a reduction in repeated information. The specialization is operated under the 
motivation that additional attributes or associations of interest need to be handled in 
the subclasses. 
 

Generalization and specialization are fundamental concepts in domain modeling, 
which form the conceptual class hierarchies that are often the basis of inspiration for 
software class hierarchies. 
 

Models that use the Generalization and specialization pattern can handle changes in 
the representation without redefining the core object. It is also possible to add new 
representations at a later date without affecting the definition of the core. So you can 
create adaptive models for your system, and less expensive to maintain. 
 
                                    generalized to 
                                 *  or specialization of         *            
 
 
                                 * 
 
 

Figure 3.5  The structure of the Generalization-Specialization pattern 
 

In many businesses, the concepts CashPayment, CreditPayment, and CheckPayment 
(CP) are frequently used and all very similar. In this situation, it is possible and 
necessary to organize them by this pattern, where the Payment class represents the 
more general concept, the superclass, and the three CPs as the more specialized ones, 
the subclasses. 
 
                     1     has    1 
 
 
 
 
 

Figure 3.6  An example of the Generalization-Specialization pattern 

Representation A 
(subclass) 

Representation B
(subclass) 

Core 
(superclass)

Payment 

CheckPayment CreditPaymentCashPayment 

Payment Presentation 



 

 

3.1.4 A3.1.4 A3.1.4 A3.1.4 Associationssociationssociationssociation Pattern Pattern Pattern Pattern    
 
Usually, when an association has it own attributes, the instances of the association have 
a lifetime dependency, or there is a many-many association between two concepts, it is 
necessary to build the association in a separated class. More detailed explanation can be 
found in Analysis Patterns. 
 
Note: a special case in a domain model, if a class C can simultaneously have many 
values for the same kind of attribute A, do not place attribute A in C. Place attribute A 
in a new class that is associated with C. For example, a Person may have many contact 
information, just like e-mail address, fax and phone numbers, place those in another 
class, such as ContactInformation, and associate to the Person. 
 
                      1..*    0..*                0..*   1..* 
 
 
 
 
 

Figure 3.7  The Structure of the Association pattern 
 

Aggregation is a kind of association used to model whole-part relationships between 
things; the whole is called as the composite. But identifying and illustrating 
aggregation is not profoundly important; it is quite feasible to exclude it from a domain 
model, because most of the following benefits on it relate to the design rather than the 
analysis: the first, it clarifies the domain constraints regarding the eligible existence of 
the part independent of the whole. In composite aggregation, the part may not exist 
outside of the lifetime of the whole; the second, operation applied to the whole often 
propagate to the parts. 
 

Here, we should also notice the difference between roles as concepts and roles in 
associations. Roles in associations are appealing because they are a relatively accurate 
way to express the notion that the same instance of a person takes on multiple (and 
dynamically changing) roles in various associations. I, a person, simultaneously or in 
sequence, may take on the role of designer, parent, and so on. On the other hand, roles 
as concepts provide ease and flexibility in adding unique attributes, associations, and 
additional semantics. 
 
 
 

Concept A Concept B 
Association 
attributes 

Constraint 



 

 

                     1..*    0..*                0..*   1..* 
 
 

Figure 3.8  An example of the Association pattern 
 

Martin Fowler also mentioned two other patterns, one is Keyed Mapping, the other is 
Historic Mapping, see more details in Analysis Patterns. 
 
 
 
3.1.5 Definition Pattern3.1.5 Definition Pattern3.1.5 Definition Pattern3.1.5 Definition Pattern    
 
The Definition Pattern captures and organizes term definitions in business or problem 
domains, in order to manage them and improves the vocabulary of patterns. 
 

All businesses and problem domains have many critical concepts that must be 
communicated clearly, accurately, and easily via terms, that is, words. The important 
terms for these concepts, call domain definitions, must be defined unambiguously. The 
word associations we make to the same concept are very individual is well known in 
most fields. Therein lies the need to rigorously define critical terms used to describe 
concepts within a domain. It is not sufficient to just define the concept that the term 
represents. As people will undoubtedly use the same term differently, so it is also 
necessary to demonstrate the various uses for the term, in short, it must be carefully 
defined for each potential situation or group users. 
 

Domain definitions are composed of a term (actual word or words), a description of 
how it’s used, and a concept (semantics of the term, the actual meaning of the word). 
 

In the field of object-oriented modeling the term multiplicity is widely used to describe 
the number of instances allowed at the end of an association. In the world of data 
modeling, another term, cardinality, stands for the same concept. This is an example of 
two terms used to describe the same concept, but in different contexts (object-oriented 
versus the data-modeling community). This classifies the need to differentiate the use of 
the term and its concept. In some cases, which show that the same concept can have 
more than two different terms. This is referred to as the term usage. Clearly, to define a 
pattern in certain contexts, it is vital to define the various terms, the correct use of 
those terms, and the concepts that those terms represent. This is where the Definition 
Pattern comes in.  
 
 

Person Company
Employment 
Start: Date 



 

 

 
 
                     is used as 
                     (refers to) 
                              *        * refers to        * 
 
 
                                      * refers to              *       * 
                         imply                     specialized        specialized 
                                                        to sub        from super 
             is used on *    1..*                            1..*       1..* 
                                        * is used to     
                                        communicate a  
                           *       *                      from       to  
                                                             *       * 
 
                                                        * 

Figure 3.9  The Definition Pattern’s structure 
 

Term is represented with words and has a name, which can be a text string or an 
equivalent. Term is used to communicate one or many concepts. The terms and concepts 
are connected to each other through the Term Usage.  

Term usage class is the connection between the terms and the concepts, or how the 
term is used by a specific group of users. Typical attributes can be a description of the 
term’s users. The usage itself is not expressed as an attribute; it is expressed through 
the associated classes Reference, Term, and Concept. In some cases, it is useful to 
connect the Term Usage to an explicit user or group of users. This may be achieved by 
adding a user class and associating it with the Term Usage class. 

Concept is an understanding or interpretation of something in the real world. Terms 
are used to communicate concepts among people. The concept name or label is the term 
used. A concept is usually defined through its relationships to other concepts. The 
relationship can be of two kinds: Association or Specialization. 

Association is used to combine or relate concepts to each other. An association exists 
between the instances of the concepts, meaning that associations have multiplicity. 

Specialization is another potential relationship between concepts. As opposed to 
Association, Specialization is used only between concepts, it cannot be with instances 
and do not have multiplicity. 

Source is the point of origin form that the different kinds of term usage are generated 
and described. 

Reference class is between the Source and the Term Usage. The Reference uses a 

Source 

Term 

Reference 

Association 

Concept 

Specification 

Term Usage 

Cross 
Reference 



 

 

Source with reference to both specializations and associations between the Concepts 
referred by the Term Usage and other concepts to present a picture of how to use a Term 
that reference a concept. 

Cross-reference is used to support the term usage in multi-domains, which concerned 
with different terminology applications. 
 
 
 
3.1.6 Document Pattern3.1.6 Document Pattern3.1.6 Document Pattern3.1.6 Document Pattern    
 
The intent of the Document Pattern is to provide a practical way to approach the issues 
inherent in the modeling and management of documents of a pattern, all these works 
result in a structured understanding of the pattern and the effective usage thereof, such 
as how to apply, adjust or improve it in your own system. 
 

The development and maturation of a pattern are achieved incrementally, so 
documenting the ongoing process and studying the documents are good ways to 
understand the pattern, and also make the pattern management easily. The consistent 
structure of documents lends uniformity to patterns, letting people compare them easily. 
Structured documents also help people search for information. Less structure means 
more prose, which might be fine for casual reading but unacceptable for comparison and 
reference purposes. Once you have settled on structured documents, make sure you 
follow it consistently. You need not be afraid to change the structure, but you will have 
to change it in every pattern, and that gets increasingly expensive as your patterns 
mature. 
 

Also, patterns are not to guarantee reusable software, higher quality or productivity, 
etc., people should not overemphasizes solution at the expense of problem, context, 
teaching and so on. As the experience and expertise, the generativity of pattern is in the 
parts of a pattern dedicated to teaching and communication through deep 
understanding of its documents, not only the solution but the forces behind, the possible 
consequence, the example, the instance, etc.. Put it simple, patterns themselves do not 
guarantee anything, people who use them do, and they do it only if both they and the 
patterns they are up to snuff. 
 

The essential documents of patterns usually comprise: 
The pattern itself, describes all the elements of the original pattern, such as the 
author, intent, structure of model, participants, and so on. 
The versions of the pattern, record the evolution of the pattern, such as the changes in 
the structure of the pattern; the feedback that measures and evaluates the results of 



 

 

the pattern; the trade-off, balance, special requirements or configurations set in the 
pattern while applied to certain contexts or domains, which can be different from the 
original domain where the pattern discovered.    
The pattern instance, which can be considered as the application or execution of the 
pattern in actual system. Separating the pattern from its instances clarifies the 
distinction between pattern and a pattern instance. The distinctions mean the generic 
properties of the pattern and the individual properties of the instance. 

 
A pattern instance is always generated under a certain version of the pattern, a 

classic instance can be a powerful example or explanation of the pattern. Each version 
and instance object should have kept a record of the properties of the context in which 
the pattern had been involved, such as when, where, how. 
 
                                              1           * 
 
                                     the reference to 
                                                          * 
 
 
                                              1           * 
                                     the reference to 
                                                          * 
 

Figure 3.10  The structure for the Document pattern 
 

Index Entry is a class used to index documents. A document can be indexed on version 
or pattern instances, I separate the Index Entry into Instance Index Entry and Version 
Index Entry to simplify the model, so I do not need to care the specialized relationships 
between Index Entry Instance Index Entry and Index Entry Version Index Entry. Each 
index entry is a reference to one or more objects. The index is a strategy for identifying 
documents through a set of information associated with those documents. 
 
 
 
3.1.7 Summary3.1.7 Summary3.1.7 Summary3.1.7 Summary    
 

In this part, I wish to find out those elementary building blocks that provide a relative 
small set of patterns, based on those principles or from which complex patterns can be 
constructed more efficiently, and also hope them can be compact and expressive, as to 
the saying, “less is more, less is powerful”. But I still think we need further discussion 

Pattern 

Version Index Entry 

Instance Index Entry

Instance B 

Instance A

Version 2 

Version 1 



 

 

on the potential usages of many other patterns, just like the observation pattern, 
organization pattern, party pattern or category pattern which help us restrict our 
discussion to topologies of interest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

3.2 3.2 3.2 3.2 CollaborationCollaborationCollaborationCollaboration Patterns Patterns Patterns Patterns    
 

Layer Supply PatternLayer Supply PatternLayer Supply PatternLayer Supply Pattern    
LaLaLaLayer Control Pattern yer Control Pattern yer Control Pattern yer Control Pattern     
Composition Composition Composition Composition PatternPatternPatternPattern    

 
The collaboration patterns describe the relationships between patterns and help to 
organize them into certain hierarchy structures to support the pattern application. 
 

There are two ways in UML to represent a pattern. To review the notations, one is by 
using the symbol, called collaboration, to represent both the structure (typically class 
diagrams) and behaviors (typically a sequence or a collaboration diagram), in order to 
see them, you need to zoom into the pattern, see Figure3.11 a. The other is package 
shown as tabbed folder. Subordinate packages may be shown within it. In the case of 
pattern, you can show the domain models, constraints within it. The package name is 
within the tab if the package needs to depict its elements; otherwise, it is centered 
within the folder itself, see Figure3.11 b.  
 
 
 
 
                a. collaboration                      b. package 

Figure3.11  The UML notations for patterns 
 

Packages are linked by visibility relationships. And all possible visibility 
relationships must be explicitly declared in a package. This is required for any service 
between different packages: such as holding in an attribute, or passing as a parameter. 
You should keep in your mind there are multiple access levels to a package, this always 
results in different needs on interfaces from different packages. But when developing a 
large system, people should try to minimize the visibilities between packages so that 
the system has less dependency and is thus easier to manage. Martin Fowler also 
mentions other problems and solutions, just like the mutual visibility, but it is beyond 
the current scope of this paper. 
 

Any element is owned by the package within which it is defined, but may be 
referenced in other packages. A class shown in a foreign package may be modified with 
new associations, but most otherwise remain unchanged. If a model element is in some 
way dependent on another, the dependency may be shown with a dependency 
relationship that can be an arrowed line. A package dependency indicates that elements 
of the dependent package in some way know about or are coupled to elements in the 

Document Definition 



 

 

target package. 
 

In my works, I choose package to represent a pattern, for I thought that package 
notation is a more controlled mechanism and more intuitive to organize the elements of 
analysis patterns. 
 

A domain model of a analysis pattern can easily grow large enough that it is desirable 
to factor it into smaller packages of strongly related concepts, as an aid to 
comprehension and parallel analysis works in which different people do domain 
analysis with different sub-domains. To partition the domain model into packages, place 
elements together that: 

are in the same subject area, closely related by concepts or goals; 
are in a class hierarchy together; 
are strongly associated. 

 
 
 
3.2.1 Layered Patterns3.2.1 Layered Patterns3.2.1 Layered Patterns3.2.1 Layered Patterns    
 
The following two patterns state the structure of patterns layered in a hierarchy with 
the concerns of goals or problems behind. 
 

Goals are not only what the business models and the resulting business process strive 
for, but also the intents or motivations behind each analysis pattern. They establish the 
reason of the existence of the domain model in analysis patterns and the definition of 
the resource objects and constraints that related with the achievement of goals in the 
models. Any pattern without corresponding goals should be eliminated. The more 
clearly a goal is stated, the easier it is to identify the corresponding patterns so that the 
goal can be achieved. 
 

Also certain problems may hinder the achievement of these goals. The goal and the 
problems thereof are just the flip sides of the same coin counted on a pattern.  
 

No matter what kind of business or problem domains, it will always have its main 
goals or senior problems for its existence and some auxiliary goals working as supplying 
factors. This hierarchy reflected in corresponding analysis patterns results in the Layer 
Supply pattern. 
 

Goal decomposition is used to streamline the goal modeling process by breaking down 
the goal into hierarchies. In this way, high-level goals can be divided into more concrete 



 

 

sub-goals that are then allocated to specific patterns. With this as the internal force to 
the hierarchy of corresponding analysis patterns, we have the Layer Control pattern. 
 
 
 
3.2.1.1 Layer Supply Pattern3.2.1.1 Layer Supply Pattern3.2.1.1 Layer Supply Pattern3.2.1.1 Layer Supply Pattern    
 
Because patterns are motivated by the goals or problems thereof, we also should model 
the hierarchy of patterns according to the properties of these goals or problems. 
 

The Layer Supply pattern organizes the structure of complex organization of patterns 
into primary and supporting patterns by the priority of goals or problems behind them. 
Breaking the organization down into primary and supporting patterns allows for a 
better understanding of the entire organization and provides a stable and solid 
foundation for future work efforts. The division can be made in several layers where one 
pattern can supply and be supplied at the same time. 
 

Patterns that achieve the primary goals and solve the main problems thereof in a 
system, called primary patterns, Patterns that perform the supporting works on junior 
goals or problems of a system, called supply patterns.  
 

To state the obvious: in a car manufacture system, managing the process of producing 
car components is much more important than ordering materials from a third parties, 
the later only offer supply services; but in a network meeting system, the pattern that 
handles information exchange or negotiation with other members are the key features 
of the system, more essential than the pattern describing local storage for information 
exchanged. 
 

There is a special case, in which patterns are grouped under certain sequence, and 
you cannot tell the priority of its goal or problem among them. The achievement of 
previous goal just forms the required context or pre-condition for the next goal, and the 
whole process is completed step by step. However, you can still regard the works of 
previous goals as the supply to the following goals. 
 

The Layer Supply pattern is related to the Layer Control pattern, up next, which is 
also organized in a hierarchy of layers. In the latter pattern, each layer controls the 
layer below, whereas each layer in this pattern supplies and creates the conditions 
required for the layer above.  
 
 



 

 

           for Analysis Patterns                      from business models 
 
 
 
                                                                     have 
 
 
 
                               achieve 
 
                          solve 
                supply                                      refer to 

Figure 3.12  The structure of the Layer Supply pattern (left) 
 

Many business systems, which concerned with production, sales and delivery, 
describe product-to-market and product-to-customer, where the product-to-market 
supplies the product-to-customer with a set of products. Here, the product-to-customer 
is the primary part, for it is the part that can really bring the business benefits; and the 
corresponding patterns are primary patterns. Also illustrated in Figure 3.13, there is 
another pattern that maintains the infrastructure, called the maintain pattern, and 
supplies the product-to-market and product-to-customer pattern both. Related to 
maintain pattern the product-to-market pattern can also be considered as a primary 
pattern. 
 
 
 
 
 
 
 
 

Figure 3.13  An example of the Layer Supply pattern 
 

The product-to-market can include product plan and development patterns to help 
implement the products needed. The product-to-customer can comprise contract and 
sale patterns to achieve the services for customers. The maintain pattern can have 
protocol and resource allocation patterns as its elements to collaborate the performance 
of those primary patterns, so those patterns can keep their productivity. 
 
 

Primary Pattern 

Supporting 
Pattern A 

Supporting 
Pattern B 

Primary Goal 

Supporting 
Goal A 

Problem N 

Product-to-customer

Product-to-market

Maintain 



 

 

3.2.1.2 3.2.1.2 3.2.1.2 3.2.1.2 Layer Control PatternLayer Control PatternLayer Control PatternLayer Control Pattern    
 
Layer Control is a pattern that helps to structure complex relationships of patterns for 
the purpose of reengineering or understanding them. The fundamental principle is that 
all patterns are layered to control the layer underneath. 
 

The hierarchy of patterns can be studied and modeled from several perspectives, two 
of which are very useful: 

Target-oriented perspective. Each pattern enables the pattern above it; the pattern at 
the top is motivated by the overall goals of the system. This perspective is used in the 
process layer supply pattern previously described. 

Control-oriented perspective. The difference is that the pattern on top, which is 
directly motivated by the overall goal, controls the pattern underneath, which in turn 
controls the next pattern below, and so on. This perspective is used in the Layer Control 
Pattern. The layer control pattern usually affects our strategies in pattern management 
and application. That means if your patterns generated in a complex domain are not 
well structured, you may finally lose control of your development. 
 
            for Analysis Patterns                      from business models 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  control or comprise of                    refer to 

Figure 3.14  The structure of Layer Control pattern (left) 
 

The special case of a set of sequence goals or problems can also be explained in this 
way by consider the each step as a sub-goal in the whole process. 
 

Here I use the example of trade to illustrate the layer control pattern, illustrated in 

Supergoal 

Pattern A Subgoal A
Subgoal B 

Patterns 
(high-level) 

Problem Ba 

Problem Aa 

Problem Bb 
Problem Ab 

Pattern Ba

Pattern Ab 
Pattern Bb

Pattern Aa 

Pattern B 



 

 

Figure 3.15. Trade is about buying and selling of goods, and the value of these goods 
with respect to changing market conditions; this makes people have to understand the 
value of the net effect of these trades in different circumstances. 
 

Each trade is described by a contract. The contract can either buy or sell goods and is 
useful for businesses which need to track both directions of deals. People can look at the 
net effect of a number of contracts by using a portfolio, so people can manage the joint 
risk and assemble them easily to select contracts in different ways or under certain 
criteria. 
 

To understand the value of a contract, people need to understand the price of the 
goods being traded. Goods are often priced differently depending on whether they are 
bought or sold. This two-way pricing behavior can be captured by a quote. 
 

In volatile markets, prices can change rapidly. Traders need to value goods against a 
range of possible changes. The scenario puts together a combination of the conditions 
that can act as a single state of the market for valuation. Scenarios can be complex, but 
we still need to use the same scenario construction at different times in a consistent 
manner. Scenarios are useful for any domain with complex price changes. 
 
 
 
 
 
 
 
 
 
 
 
                                   the dependency 

Figure 3.15  An example of the Layer Control pattern 
 

No hierarchy exists simply supplying the above or controlling the bellowing, the 
Layer Supply pattern and the Layer Control pattern are then used together often. I 
combine the examples of the above two patterns to illustrate this, seeing the example in 
Figure 3.16. 
 
 
 

Contract 

Trade 

Quote Scenario

Portfolio 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.16  An example of the combination of layer supply and control patterns 
 
 
 
3.2.2 Composition 3.2.2 Composition 3.2.2 Composition 3.2.2 Composition PatternPatternPatternPattern    
 
The composition pattern is to build more complex patterns in a incremental way of 
combining patterns to progress further toward the final goal of generating a "whole" or 
complete overall pattern that state the whole domain or certain aspects of the domain. 
The composition pattern is based on the sharability and reusability of patterns. To 
reach the goal, patterns must support the following features: 

1. The pattern must be consisted of predefined normative modeling constructs, not 
only with modeling manners and notations. 
2. Predefined modeling constructs should include the common atomic objects or 
aggregated objects (by using the atomic objects) that are agreed by all members and 
are needless to be discussed when they are used. 
3. The typical relationship among common elementary aggregated or simple objects 
should also be predefined as normative modeling constructs. 
4. Because pattern also encapsulates constraints within it, it is also necessary to 
include mechanisms for constraint inheritance and composition among patterns. 

 
Figure 3.17 illustrates the principle of composition, which organizes patterns into 

 

 

Product-to-customer 

 

Product-to-market

Contract 

Trade 

Portfolio 
Product plan 

Product development Product production

Maintain 

Collaboration protocol

Resource allocation 



 

 

recursive structures to represent part-whole hierarchy, and give users a uniform way of 
dealing with these patterns whether they are internal nodes or leaves. 
 
 
 
 
 
 

Figure 3.17  The recursive principle of composition 
 

As usual, there should have three basic forms of patterns. First, simple or elementary 
pattern which is a pattern consisting of minimal elements needed to form a pattern and 
does not involve another pattern. Second, inherited pattern which is a pattern defined 
by inheriting from another pattern. And the third is composite pattern that is a pattern 
defined as a result of combining more than two patterns in a recursive way. The 
instantiation of a composite pattern in this hierarchical structure becomes possible by 
resolving pattern inheritance and collaboration with the “unfold” performance. 
 
 
 
 
 
                                                unfold  
 
 
 

Figure 3.18  The elementary pattern (left) and the application thereof 
 
 
                                       A’                  A            B  
 
                                                 unfold  
 
                                                        unfold 
 
 

                         A’ : subtype of A 
                         B’ : subtype of B 

 
Figure 3.19  The format of pattern inheritance (left) and the application thereof 

P1 

A B

P2 

A ’ 

P1

B ‘ 

P2

A”

P1

A” B ‘

A” B ‘

P 

A B

P

A ’

A ‘ B‘ 

Component 

Leaf Composite



 

 

 
                                                A” 
 
 
                                                          unfold  
 
 
                                                             unfold 
 
 
 
 
 

Figure 3.20  The structure of pattern composition (left) and the application thereof 
 

The P1 and P2 can be seen as the elementary patterns or composite patterns; the P3 
is a new composite pattern, the result of composition of P1 and P2. In the package of P3, 
Pattern P1 and P2 should both reference to the common characteristics (a set of 
common objects, the structure of those objects, and the constraints thereof, or even 
patterns) shared by them. The dependencies among patterns within a pattern package 
can be derived from the hierarchy structure described by layer supply pattern and layer 
control pattern. UML parameterized collaboration mechanism is used to materialize the 
pattern integration. 
 

Based on the concepts from accountability pattern in Analysis Patterns, resulting a 
simple example to illustrate how to apply the composition pattern, seeing Figure 3.21. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P1

B A

P3 

A”

P1 P2

P2

A’ C 
P3 A”’ P1 P2 

A”’ 

A”’ B C 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                   Unfold 
 
                                                 Unfold 
 
 
 
 
 
 
 
 
 

Figure 3.21  An example of Composition pattern and unfolding thereof 

Organization 
Structure 

Employee 
Assignment 

Organization

 
 
Organization  Department   Employee 

Organization 

OrganizationStructure

Period 

Department 

Employee 

Assignment 

Organization
Structure 

Employee 
Assignment

Organization

EnterpriseOrg Employee 

Organization 
Structure

Employee 
Assignment 

 
 
Organization   Department   Employee 

OurEnterprise OutEmployee 

Organization 
Structure

Employee 
Assignment

 
 
 

OurEnterprise OutEmployee 

Organization 

Organization
Structure 

OurEnterprise 

Period

OutEmployee 

Assignment



 

 

3.2.3 Summary3.2.3 Summary3.2.3 Summary3.2.3 Summary    
 
Many applications of patterns are an available-enable process, an adoption process. The 
process demonstrates from demand to demand satisfaction by choosing the suitable 
patterns from all the available patterns to enable the target system. It is also used to 
demonstrate the combination of the previous patterns. 
 

The detailed configurations of the goals, problems or constraints defined by the 
domain generate the demands that patterns must satisfy. Under the hierarchy 
described by layer control and layer supply patterns, an adopter chooses one or more 
patterns by the prosperities recorded in the document pattern to form the certain 
pattern or patterns that may be derivations or extensions of the original patterns or a 
composition of a group of patterns. The available-enable process encourages precluding 
spending time and efforts on unnecessary searching and leads to a more effective 
pattern or a group of patterns to your needs. 
 

And usually, there is more than one pattern available for choosing, especially when 
people develop a series of systems, they will find out that many patterns possess the 
quite similar properties, or you can say they origin from the same ancestry. This leads to 
the concepts of pattern family. All the member patterns in a family should be organized 
as sub-hierarchies of the global class hierarchy under the root of their ancestor. 
Recursively, a family can comprise sub-families. The family can add virtual or late 
instance creation to these sub-hierarchies and suggest certain adoptions on appropriate 
family members. This way, the family could ensure that users of the family are always 
provided with instances of the patterns that best suit their needs, without needing to 
know the detail of these member patterns in a family. 
 

The ancestor is naturally abstract, usually not necessary to have its own instances, 
and specifies the properties shared by all its descendants. Every member pattern of the 
family also has unique properties that distinguish it from other members or relatives. 
In fact, the differences are the only reasons to specify member patterns or sub-patterns. 
Yet there are many situations in which a user need not see nor care about (unless it 
desires to) the distinction between the different members, it simply requires that the 
instance it needs haves what expected, that is, conforms to the interface specified by the 
abstract ancestor, the root of the family. 
 

Instance creation is provided by virtual or late constructors within the root, but 
defined by the properties of its descendants, and the concrete pattern of created 
instance is determined by the constructor and the parameters of the construction. 
 



 

 

Chapter 4Chapter 4Chapter 4Chapter 4    
    
ConclusionConclusionConclusionConclusion    
 

In my works, I hope to possess a set of support patterns as a complement or extension 
to that of Martin Fowler’s with some desirable properties: generality, abstraction, 
elementary, compact and expressive. Although, adopting those patterns would not 
guarantee your success in yours own works, but it should at least help you focus your 
efforts profitably, and more impact they will have. 
 

Also this paper reflects the incomplete state of satisfaction on the ultimate goals. I 
think you even feel unsatisfied, that there are more to discuss and more to extend, such 
as those patterns listed in the appendix: table of patterns in Analysis Patterns need to 
be re-organized in order to generate new patterns. I also need to find out more examples 
that can be applied to, check the existing problems, gaps, limitations, or variation. 
Simplified, trying all those patterns out in more business or problem domains.  
 

Now, if you agree, then consider what Alfred North Whitehead said in 1943, admitted 
in different context, that might nonetheless make a more appealing conclusion: 

Art is the imposing of a pattern on experience, and our aesthetic enjoyment in 
recognition of the pattern. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

ReferenceReferenceReferenceReferencessss    
 
[1] Martin Fowler, Analysis Patterns, Reusable Object Models, Addison-Wesley, 1997. 
 
[2] Craig Larman, Applying UML and Patterns, Prentice Hall PTR, 2002. 
 
[3] Hans-Erik Eriksson, Magnus Penker, Business Modeling with UML, John Wiley, 
2000. 
 
[4] Gamma, E., R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of 
Object-Oriented Software, Addison-Wesley, 1995. 
 
[5] Desmond F. D’Souza, Alan Cameron Wills, Objects, Components, and frameworks 
with UML: The Catalysis Approach, Addison-Wesley, 1999. 
 
[6] The Unified Modeling Language Resource Center,  
http://www.rational.com/uml/index.html 


	By He Fei
	Chapter 1
	Introduction
	Chapter 2
	Background
	Qualities of a Pattern
	
	Openness and Variability. Each pattern should be open for exten...
	Generativity and Composability. Each pattern, once applied, gen...


	UML
	
	
	Types of UML diagrams. Each predefined UML diagram is designed ...



	Chapter 3
	
	
	
	
	Document Pattern





	3.1.1 Actor-Role Pattern
	3.1.3 Generalization-Specialization Pattern
	3.1.5 Definition Pattern
	3.1.6 Document Pattern
	3.2.1 Layered Patterns
	3.2.1.1 Layer Supply Pattern
	3.2.1.2 Layer Control Pattern
	3.2.3 Summary
	Conclusion
	References

