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Abstract 

In recent decades, with the continuous development of technology based on information 

systems and big data, more and more fields have been started the research and 

applications of personalized recommendation technologies. With the rapid growth of 

Internet business data, the processing capacity’s demand is also in an increasing trend. 

Accompanied by the fast growth of customer information is that how to use it effectively 

has become one of the issues that need to be paid attention to.  

In this report, we first introduce an overview of recommender systems consisting of its 

definition, theoretical basis, typical approaches, and implementation. Besides, we present 

solid background knowledge that is used in these systems such as similarity functions and 

k-Nearest Neighbor, Gradient Descent and Artificial Neural Networks, some standard 

evaluation metrics for a recommender system. We then applied the previous research to 

implement three different typical algorithms based on collaborative filtering. They are 

item-based k-Nearest Neighbors (i-kNN), Alternating Least Square (ALS), and Neural 

Network-based collaborative filtering recommender systems (NeuNet). 

After that, we conduct experiments on a public dataset from Netflix called MovieLens, 

which contains user information, item information, and the interaction between users and 

items (e.g., ratings, comments, etc.). The comparison between these algorithms’ 

performance also is considered. Through the experimental results, we found that 

recommendations from the item-based k-Nearest Neighbors approach are less diverse 

than those from the approach of Alternating Least Square, which can bring “surprise” 

recommendations to the users. From the statistic point of view, the Root Mean Square 

Error (RMSE) of the Neural Network based Recommender System is a little better. This 

result gives us more reference in the practical applications, thus providing a direction on 

the modern approaches for recommender systems. 

Keywords: Recommender System; Collaborative Filtering; Neural Network; k-

Nearest Neighbors; Alternative Least Square. 
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Chapter1  

Introduction 

1.1 Recommender Systems: an overview 

In today’s digital era, with the rise of many E-commerce platforms like Youtube, 

Amazon, Netflix, and many other web services, recommender systems have become more 

and more important in our lives. Definition: "A recommender system, or 

a recommendation system, is a subclass of information filtering system that seeks to 

predict the "rating" or "preference" a user would give to an item [wikipedia]. " Today's 

recommender systems are inevitable in our daily online journey and consumers are facing 

various choices of products at any time, from e-commerce with suggestions to articles of 

potentially interested buyers to online advertising which suggests users the right content 

to match their preferences. 

Technically, the recommender system is an algorithm that aims to recommend relevant 

items to users. The items may be movies, texts, products or others depending on business 

contexts. 

In this chapter, we will present an overview of the recommender system and their 

different examples. For each instance, we will introduce how they work, describe their 

theoretical basis, and discuss their advantages and disadvantages. 

1.2 Typical approaches in Recommender Systems 

In the first part, we introduce two typical paradigms of a recommender system: content-

based approach and collaborative filtering one and how they work. The next part will then 

describe various methods of collaborative filterings, such as user-based, item-based and 

matrix factorization. The overall of different paradigms for the recommender system is 

depicted in Figure 1.1. 

https://en.wikipedia.org/wiki/Information_filtering_system
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Figure 1.1: Typical paradigms for a recommender system [1] 

1.2.1 Content-based methods 

Content-based methods use additional information about users or items in making 

recommendations [2]. If we take the movie recommendation system as an example, this 

additional information can be, for example, age, gender, any other personal details of the 

user(like click on a specific item, purchasing item, etc.) as well as category, main actor, 

duration or other characteristics of the item. 

Then, the critical idea of a content-based method is to try to build a model based on 

available "features" that precisely explain observed user-item interactions. Retake users 

and movies as an instance; a good recommender system should reflect the fact that young 

women score higher on some movies, while young men score higher on others, and so on. 

If we try to get such a model, it's easy to make new predictions for users: we can utilize 

the user's profile (eg., age, gender, etc.). Basing on this information to determine the 

relevant movies, then make a recommendation list. 

In the content-based approach, the recommendation problem is transformed into a 

classification problem (predicting whether the user "likes" the product) or a regression 

problem (predicting the user's evaluation of the product). In both cases, we will set up the 
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model based on the available user or item features. 

If the classification or regression is based on user features, then we say the method is 

item-centered: modeling, optimization and calculation can be conducted "by item". In this 

case, we will build and learn a model item by item according to the features of users to 

try to answer "what is the probability that each user likes this item?" for regression. The 

model associated with each item will naturally be trained based on the data related to the 

items, and because many users have interacted with the items, it usually leads to quite 

powerful models. However, considering that the interaction of the learning model comes 

from each user, even if these users have similar features, their features may be different. 

This means that even if this method is more robust, it can be considered less personalized 

(more biased) than the user-centric methods. 

If we use item functionality, the method will be user-centric: modeling, optimization, 

and calculation can be done "by the user." Then, our goal is to train a model according to 

the features of the items, which tries to answer the following questions: "what is the 

probability that the user likes each item?" for regression. Then, we can attach the model 

to each user trained in the data: therefore, the model obtained is more personalized than 

the item-centric model, because it only considers the interaction from the users. However, 

in most cases, users interact with relatively few items, so the model we get is far less 

robust than the item-centered model. 

From a practical view, we should emphasize that in most cases, it is much more difficult 

to ask new users some information (users don't want to answer too many questions) than 

new items. That is because the person who added the item is interested in filling in this 

information in order to recommend its product to the appropriate user. We can also note 

that according to the complexity of expression relationships, the models we build are 

more or less complex, ranging from basic models (logical/linear regression for 

classification/regression) to deep neural network [3]. Finally, it should be mentioned that 

content-based methods can be neither user-centered nor item-centered: both information 

of users and items can be used in our model, for example, by stacking two eigenvectors 
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and passing them through the neural network architecture [4]. 

1.2.2 Collaborative filtering methods 

The collaborative filtering methods of the recommender system are based on past 

interaction recorded between users and items to generate new recommendations. These 

interactions are stored in the “user-item interaction matrix.” 

Then, the main idea governing the collaborative filtering methods is that these past 

user-item interactions are sufficient to detect similar users or similar items, and predict 

based on the proximity of these estimates. 

The categories of collaborative filtering algorithms are divided into two subcategories, 

usually called memory-based methods and model-based methods. The memory-based 

approach works directly with the recorded interaction values and is basically on the 

nearest neighbor search. The model-based approach assumes a basic "build" model that 

interprets user-item interactions and attempts to discover such model in order to make 

new predictions. 

The main advantage of collaborative filtering algorithms is that they do not need 

information about users or items so that they can be used in many cases. Besides, the 

more users interact with the project, the more accurate the new suggestions are: for a set 

of fixed users and items, the new interaction recorded over time will bring new 

information and make the system more effective. 

However, since collaborative filtering only considers history interactions to make 

suggestions, it suffers some problem such as "Cold Start," "Scalability," "Sparsity": 

- Cold Start: when an item inserted into the catalog is minimal, even zero interactions. 

This causes some difficulty if recommender bases on those interactions to make 

recommendations 

- Scalability: when applying algorithms on a considerable dataset where the number of 

users and items are big enough. The current, practical datasets are almost extremely 

massive. 



 

5 

 

- Sparsity: in many practical E-commerce platforms such as Youtube, Netflix, Amazon, 

etc. The number of items & users is huge while the interaction between each (user, item) 

pairs is usually lacked. Because most users did not revise their purchasing products/items. 

This caused the problem of sparsity. 

It is unable to recommend anything to new users or items, and many users or items 

interactions are rarely effectively handled. This defect can be solved in different ways: 

such as random strategy [5] which is recommending random items to new users, 

maximum expectation strategy [6] which is recommending common items to new users 

or recommend new items to the most active users, exploratory strategy [7] which is 

recommending various items to new users or a group of new users and so on. 

1.2.2.1 Memory-based methods 

 User-based Collaborative Filtering 

To make new suggestions for users, the user-based method tries to identify users with 

the most similar "interaction" to propose the most popular items among these users. This 

approach is called "user-centric" because it represents users and evaluates the distance 

between users based on their interaction with the items. 

Supposing we want to make recommendations for a given user. Firstly, each user can 

be represented by its interaction vector (row in the matrix) with different items. Then, we 

can calculate a certain "similarity" between interested users and all other users. This 

similarity measure makes two users who have similar interaction on the same item be 

regarded as intimate. Once we have calculated the similarity with each user pairs, we can 

keep k nearest neighbor to our users, and then suggest the most popular items. 

 Item-based Collaborative Filtering 

In order to make new suggestions to users, the idea of the item-based method is to find 

items similar to those that users have already "actively" interacted with. If most users who 

interact with two items operate similarly, the two items are considered similar. This 

approach is called "item-centric" because it represents items based on the interaction 
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between users and them, and evaluates the distance between these items. 

Supposing we want to make recommendations for a particular user. Firstly, we consider 

his/her favorite products and represent them by an interaction vector (column in the 

matrix) with each user. Then, we can calculate the similarity between the "best item" and 

all other items. Once the similarity is calculated, we can keep k neighbors on the selected 

"best item", which is new for the users who are interested in, and recommend these items. 

Table 1.1 summarize the contrast between item-based and user-based in collaborative 

filtering [8]. 

Contrast User-based Item-based 

Search of similar Users Items 

Variance High Low 

Bias Low High 

Table 1.1: Contrast of memory-based methods 

1.2.2.2 Model-based methods 

The model-based collaboration method only depends on the interaction information of 

users and items and assumes a potential model can explain these interactions. For example, 

the matrix decomposition algorithm decomposes the vast and sparse user-item interaction 

matrix into two smaller, dense matrices: user factor matrix (including user representation) 

multiplied by item factor matrix (including item representation). 

The main assumption behind matrix decomposition is that there is a relatively low 

dimensional feature space in which we can represent users and items, and we can get the 

interaction between users and items by the dot product of the corresponding dense vectors 

in that space. 

For example, we have a user-movie rating matrix. To simulate the interaction between 

users and movies, we can assume that: 

(1) Some features can describe movies well. 

(2) These features can also describe the user's preferences 
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However, we don't want to assign these capabilities to our model explicitly. On the 

contrary, we prefer to let the system discover these useful features and make its own 

representations to users and items. Since these features are not learned, the features 

extracted separately are of mathematical significance, but there is no intuitive explanation. 

However, it is not uncommon that this type of algorithm structure is very close to the 

intuitive decomposition that human can think of. In fact, the result of this factorization is 

that in terms of preferences, close to users and features close to items eventually have a 

close representation in the potential space. 

1.2.3 Hybrid recommender system 

Recent studies have shown that the hybrid approach of collaborative filtering and 

content-based filtering may be more effective in some cases [9]. There are several ways 

to implement hybrid methods, which are content-based prediction and collaboration-

based prediction respectively [10], and then combine them to add content-based functions 

to collaboration based methods (and vice versa) or unify these methods into a method 

model [11]. Several studies compare the performance of the hybrid method with a pure 

collaboration-method and content-based approach and show that the hybrid method can 

provide more accurate suggestions than pure way [12]. These methods can also overcome 

some common problems in the recommender system, such as cold start and sparsity. 

1.3 Report objectives & Structure 

In this report, we will first study the typical approaches for a recommender system, 

then we reimplement these approaches and compare their performance in a specific 

context. To achieve this objective, we carry out subtasks as below: 

- Survey about the general pattern of a recommender system: its definition, theoretical 

basis, approaches and implementation. This task is represented in Chapter 1. 

- Accomplish the background knowledge that needed to constitute a typical 

recommender system. These backgrounds include Gradient Descent & Artificial 

Neural Network, similarity measure & k-Nearest Neighbor, and valuation metrics for 



 

8 

 

the recommender system. They are presented in Chapter 2. 

- Summarize three typical algorithm principles that provide the theoretical foundation 

for the whole report from different perspectives that will be present in Chapter 3. 

- Implementing the programs, conducting experiments on particular dataset, observing 

the result and make conclusions will be in Chapter 4 and Chapter 5. 
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Chapter 2  

Background 

This chapter will present a background knowledge of recommender systems. We will 

introduce the similarity functions and k-Nearest Neighbor, what is Gradient Descent and 

Artificial Neural Network in detail, and the evaluation method of the recommender 

system. 

2.1 Similarity functions 

Distance is a numerical measure of how far apart an object or point is. In physics or 

everyday use, distance can refer to physical length or an estimation basing on some 

predefined criteria. In mathematics, distance function or measure is a generalization 

version of physical distance’s concepts. Measurement is a function that runs according to 

a specific set of rules and is a way to describe the meaning of "close" or "far" between 

elements of a space. 

2.1.1 Minkowski(Euclidian, Manhattan, Chebyshev) 

Minkowski distance is a measure in norm vector space, which can be regarded as the 

generalization of Euclid distance, Manhattan distance and Chebyshev Distance. 

Minkowski distance of order p between two points 𝑋 = (𝑥1, 𝑥2, … … 𝑥𝑛) ∈ ℝ𝑛 and 𝑌 =

(𝑦1, 𝑦2, … … 𝑦𝑛) ∈ ℝ𝑛 is defined as: 

𝑑(𝑥, 𝑦) = √∑ |𝑥𝑖 − 𝑦𝑖|𝑝𝑛
𝑖=1

𝑝
                    (2-1) 

When p equals different value, the formula can be defined as different distance 

functions, shown in table 2.1, if we take an example that = [0,6,0] 𝑦 = [2,8,9], the 

different distances are also shown in the table. 
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Manhattan Distance: 

𝒑 = 𝟏 (L1-norm) 

Euclidian Distance: 

𝒑 = 𝟐 (L2-norm) 

Chebyshev Distance: 

𝒑 → +∞ (𝑳∝-norm) 

𝒅(𝒙, 𝒚) = ∑|𝒙𝒊 − 𝒚𝒊|

𝒏

𝒊=𝟏

 𝑑(𝑥, 𝑦) = √∑|𝑥𝑖 − 𝑦𝑖|2

𝑛

𝑖=1

2

 

𝑑(𝑥, 𝑦) = lim
𝑝→+∞

(∑|𝑥𝑖 − 𝑦𝑖|𝑝

𝑛

𝑖=1

)

1
𝑝

 

= max
∀ i

{|xi − yi|} 

𝒅(𝒙, 𝒚) = |𝟎 − 𝟐| +

|𝟔 − 𝟖| + |𝟎 − 𝟗| =13 

𝑑(𝑥, 𝑦) =

√|0 − 2|2 + |6 − 8|2 + |0 − 9|22
 

=89 

𝑑(𝑥, 𝑦) = max{|0 − 2| +

|6 − 8| + |0 − 9|} = 9 

Table 2.1: Different distance function and example 

2.1.2 Cosine Similarity & Pearson Correlation 

Cosine similarity is usually useful for text data. It considers the angle between two 

vectors 𝑢 = [𝑢1, 𝑢2, … , 𝑢𝑛] and 𝑣 = [𝑣1, 𝑣2, … , 𝑣𝑛] ∈ ℝ𝑛: 

Cosine(𝑢, 𝑣) =
𝑢∙𝑣

‖𝑢‖∗‖𝑣‖
=

∑ 𝑢𝑖∗𝑣𝑖
𝑛
𝑖=1

√∑ 𝑢𝑖
2𝑛

𝑖=1 √∑ 𝑣𝑖
2𝑛

𝑖=1

             (2-2) 

The range of similarity is from - 1 to 1, where 0 is orthogonal or decorrelated, and the 

middle value is similar or not. 

Example: Two documents consist of 10 words as below: 

 car bug gid dir gid ant fox fir cat log 

u 0 6 0 0 2 0 0 0 8 9 

v 1 0 0 0 1 0 0 3 0 0 

Thus 𝑢 ∙ 𝑣 = 0 ∗ 1 + 6 ∗ 0 + ⋯ + 2 ∗ 1 + ⋯ + 9 ∗ 0 = 2 

              ‖𝑢‖ = √02 + 62 + ⋯ + 22 + ⋯ + 82 + 92 = 13.60 

              ‖𝑣‖ = √12 + ⋯ + 12 + ⋯ + 32 + ⋯ = 3.32 

              𝐂𝐨𝐬𝐢𝐧𝐞(𝑢, 𝑣) =
𝑢 ∙ 𝑣

‖𝑢‖ ∗ ‖𝑣‖
=

2

13.60 ∗ 3.32
= 0.044 

These two documents are quite difference 

Pearson Correlation is a measure of the linear relationship between the attributes 
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of the two objects 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] and y = [𝑦1, 𝑦2, … , 𝑦𝑛] ∈ ℝ𝑛: 

𝑟(𝑥, 𝑦) =
𝑆𝑥𝑦

𝑆𝑥∗𝑆𝑦
                     (2-3) 

where 𝑆𝑥𝑦 = 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑥, 𝑦) =
1

𝑛−1
 ∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1  

𝑆𝑥 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑥) = √
1

𝑛−1
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1   

      𝑆𝑦 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑦) = √
1

𝑛−1
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1  

             �̅� = 𝑚𝑒𝑎𝑛 (𝑥) =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 

             �̅� = 𝑚𝑒𝑎𝑛 (𝑦) =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

 

Notice that 𝑟(𝑥, 𝑦) ∈ [−1, +1] , where +1  indicates total positive linear 

correlation, 0 means no linear correlation, and −1 indicates total negative linear 

correlation 

Example: if hours of study: 𝑥 = [8,8,6,5,7,6]  

Test score:              𝑦 = [81,80,75,65,91,80] 

Then: 𝑟(𝑥, 𝑦) = 0.648 

which is a certain correlation between study hours and test scores. 

2.2 k-Nearest Neighbors 

k-Nearest Neighbor is a method of estimating the distance between an unseen object 

and a set of observed data in the attribute vector space. It is instance-based or lazy learning 

in which the classification function is only approximated locally, and all calculations are 

delayed until the actual classification process. An object can be classified via a majority 

vote of its k neighbors. As shown in Figure 2.1, if 𝑘 = 1, the object is assigned to its 

nearest neighbor's class. 
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Figure 2.1: Demonstration of k-Nearest Neighbors [13] 

Table 2.2 illustrates a typical pattern of k-Nearest Neighbors' search. 

Algorithm: k-Nearest Neighbors 

//Goal: search the nearest neighbors data point of a target object 

//input： 

   - target object 

- A set of labeled objects  

- Similarity measure 𝑑(𝑥,𝑦) 

- The value of k (usually 𝑘 = 1,3,5,7 …) 

//Output: Top k data that are nearest to the target object. 

1. for each object in the dataset 

calculate d(target object, current object),  

insert the distance into a sorted list. 

2. Pick the first k entries from the sorted collection. 

3. Return the results in step 2. 

Table 2.2: Algorithm of k-Nearest Neighbors search 

2.3 Gradient Descent1 

Gradient Descent is one of the well-known optimization algorithms in machine 

learning, especially deep learning. It has a good mathematic background and usually be 

used in training models. Mathematically, gradient descent’s goal is to minimize a convex 

function to a local optimal by adjusting its parameters which are the gradients of the 

function 

                                                   

1 https://builtin.com/data-science/gradient-descent 

https://builtin.com/data-science/gradient-descent
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This method is used to find the value of parameters, which minimize the cost function 

as much as possible. Gradient descent usually starts with an initial value of the parameters; 

then it iteratively adjusts the value from the gradient descent using the calculus to 

minimize the given cost function.  

For example that figure 2.2 shows a hill from top to bottom, and the red arrow is the 

climber's step. In this case, we can think of the gradient as a vector containing the 

direction to the hill’s peak that a climber should take to arrive at the highest point of the 

hill. 

 

Figure 2.2: Contour plot of a 3D surface [wikipedia] 

The following equation describes the effect of gradient descent: 𝑏 is the climber's next 

position, and 𝑎 is his current location. A minus sign is the minimum part of the gradient 

drop. The middle 𝛾 is a waiting factor (e.g., known as learning rate) and the gradient 

(∆𝑓(𝑎)) is the direction of ascent. 

𝑏 = 𝑎 − 𝛾∆𝑓(𝑎)                       (2-4) 

Therefore, the formula tells us the next position we need to climb, that is, the direction 

of the steepest ascent. We want to apply gradient descent to a Machining Learning 

problem, as shown in Figure 2.3. To minimize the cost function 𝐽 (𝑊, 𝑏) that means we 
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want to minimize the local cost function 𝐽 (𝑊, 𝑏) by adjusting 𝑊 & 𝑏. That figure 2.3 

shows that the first two dimensions represent 𝑊 & 𝑏  respectively. The third one 

represents 𝐽 which is a convex function. 

 

Figure 2.3: Gradient Descent with two parameters [wikipedia] 

Our goal is to find 𝑊 & 𝑏 values (marked with red arrows) corresponding to the local 

minimum value of the cost function. To arrive at the correct value, 𝑊 & 𝑏 usually are 

initialized at some random value. Then, the gradient descent will start at this position 

(near the bottom of the hill) and proceeds step by step in the steepest downward direction 

into a lower position. After a number of iterations, the cost function eventually ends up at 

hopefully the lowest point, called local minimal. 

To guarantee that the gradient decrease to a local minimum, learning rate should be set 

to an appropriate value not too high neither too low. This is vital because if the step size 

is too large, you may not be able to reach a local minimum, as it bounces back and forth 

between convex functions with gradient descent. On the other hand, if the learning rate is 

set to a too-small value, the function eventually reaches its local minimum but requiring 

a long time. Figure 2.4 illustrates these situations 
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Figure 2.4: The convergence of Gradient Descent 

2.4 Artificial Neural Network2 

Artificial Neural Networks(ANNs) are the computational models that try to imitate the 

human brain. They have shown huge advancements in a variety of Artificial Intelligence’s 

fields like Image Recognition, Voice Recognition, Robotics.  

The term "Neral" derives from the basic functional unit "neuron" of the human nervous 

system or nerve cells existing in the human brains and other parts of the human body. 

Artificial neural networks attempt to mimic and simplify these brain behaviors. A neural 

network is an algorithm that captures the hidden relationship between data points inside 

the dataset. Technically, it adapts itself to the input so that its resulting output is "best fit" 

the true ground label 

 

 

 

 

 

 

  

                                                   

2 https://adventuresinmachinelearning.com/neural-networks-tutorial/#gradient-desc-opt 

https://adventuresinmachinelearning.com/neural-networks-tutorial/#gradient-desc-opt
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2.4.1 The structure of a typical ANNs 

2.4.1.1 The artificial neuron 

Biological neurons are simulated in ANN by activation function. In the classification 

tasks, this activation function must have the "on" feature - in other words, once the input 

is higher than a specific value, the output should change state, i.e. from 0 to 1, or from 

−1 to 1, or from 0 to 0. This mimics the "opening" of biological neurons. A common 

activation function is usually the sigmoid function: 

𝑓(𝑧) =
1

1+exp (−𝑧)
                         (2-5) 

Which looks like this: 

 

Figure 2.5: Sigmoid function 

As can be seen from the above figure, this function is "activated," that is, when the 

input x is higher than a specific value, it moves from 0 to 1. Sigmoid colon function is 

not a stepping function, but the edge is "soft," and the output will not change immediately. 

This means that the function has a derivative, which is very important for the training 

algorithm. 

2.4.1.2 Nodes 

As mentioned before, biological neurons are connected to layered networks, and the 
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output of some neurons is the input of other neurons. We can express these networks as 

the connection layer of nodes. Each node uses multiple weighted inputs, and the activation 

function is applied to the sum of these inputs to generate the output. Consider the 

following figure: 

 

Figure 2.6: Node with input in a Neural Network [14] 

The circle in figure 2.6 represents the node. Each node is then fed into the next layer, 

multiplied by the corresponding weight, sum up, then apply activation function to get the 

output at that layer unit. That output is shown as ℎ𝑤,𝑏(𝑥) in figure 2.6. Mathematically: 

   𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏                       (2-6) 

Where 𝑤𝑖  here is the weight (known as parameters), They are variables that are 

changeable during learning and effects on the node’s output along with the input. If the 

value changes, the active function will change. 

 

Figure 2.7: Effect of adjusting weights 

Here, changing the weight will shift the output slope of the active sigmoid function. If 

we want to model the different strengths of the relationship between input variables and 
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output variables, it is beneficial. 

2.4.1.3 The bias 

b is the weight of the +1 offset element - including this bias increases the flexibility 

of the node. If we only want to change the output when 𝑥 is higher than 1, that's where 

the bias occurs. 

 

Figure 2.8: Effect of adjusting bias 

We can see, by changing the bias "weight," we can change when the node is active. 

Introducing a bias term, we can ensure that the node simulates a generic if function (𝑥 >

𝑧 ) and then 1 , 0  otherwise. Without the bias term, we cannot change z in that if 

statement, it will always be stuck at about 0 . This is useful if we try to simulate 

conditional relationships. 

2.4.1.4 Putting the structure together 

A typical network architecture consists of a large number of artificial neurons, which 

are arranged in a series of layers. In a typical Artificial Neural Network, it contains 

different layers. These structures can take many different forms, but the most common 

simple network structure is usually composed of an input layer, hidden layers, and an 

output layer. An example of this structure is as follows: 
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Figure 2.9: A Neural Network with two layers [15] 

- Input layer (layer 1): It contains units (artificial neurons) that take input from the 

outside world, on which the network will learn parameters or perform other processing. 

- Output layer (layer 3): it consists of units corresponding to information about how 

to learn any task. 

Hidden layer (layer 2) - these units are located between the input and output layers. 

The hidden layer’s job is transforming the input into some way that the output cell can 

use. 

As we can see, each node in layer 1 is connected to all nodes in layer 2. Similarly, 

for nodes in layer 2, there is a connection to layer 3 of a single output node. Each of 

these connections will have associated weights. 

2.4.1.5 The notation 

In the following equations, each of these weights is identified with the following 

notation: 𝑤𝑖𝑗
(𝑙)

.  

𝑖 refers to the number of nodes connected in layer 𝑙 + 1. 

𝑗 refers to the number of nodes connected in layer l.  

So, the connection between node 1 in layer 1 and node 2 in layer 2, the weight 

notation would be 𝑤21
(1)

. 

The notation of the bias weight is 𝑏𝑖
(𝑙)

. 

‘i’ is the node number in the layer 𝑙 + 1, which is the same as used for the regular 
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weight notation. So, the weight on the connection of the bias in layer 1 and the second 

node in layer 2 is given by 𝑏2
(1)

. 

Finally, the node output notation is ℎ𝑗
(𝑙)

. 

‘j’ denotes the node number in layer 1 of the network. As can be observed in the three-

layer network above, the output of node 2 in layer 2 has the notation of ℎ2
(2)

. 

2.4.2 Forward propagation 

The forward propagation can be treated to calculating the output from the input in 

neural networks. Below it is presented in equation form, we take the example in Figure 

2.5: 

ℎ1
(2)

= 𝑓(𝑤11
(1)

𝑥1 + 𝑤12
(1)

𝑥2 + 𝑤13
(1)

𝑥3 + 𝑏1
(1)

)                   (2-7) 

ℎ2
(2)

= 𝑓(𝑤21
(1)

𝑥1 + 𝑤22
(1)

𝑥2 + 𝑤23
(1)

𝑥3 + 𝑏2
(1)

)                   (2-8) 

ℎ3
(2)

= 𝑓(𝑤31
(1)

𝑥1 + 𝑤32
(1)

𝑥2 + 𝑤33
(1)

𝑥3 + 𝑏3
(1)

)                   (2-9) 

ℎ𝑊,𝑏(𝑥) = ℎ1
(3)

= 𝑓(𝑤11
(2)

ℎ1
(2)

+ 𝑤12
(2)

ℎ2
(2)

+ 𝑤13
(2)

ℎ3
(2)

+ 𝑏1
(2)

)       (2-10) 

In the equation above 𝑓(∗) refers to the node activation function, in this case, the 

sigmoid function. The first line, ℎ1
(2)

 is the first node’s output in the second layer, and 

its inputs are 𝑤11
(1)

𝑥1, 𝑤12
(1)

𝑥2,  𝑤13
(1)

𝑥3 and 𝑏1
(1)

.These These inputs can be found in the 

three-layer connection diagram above. Sum them and then calculate the output of the first 

node by active function. Again, for the other two nodes in the second layer. 

The last line is the output of the only node in the third and final layer, which is the final 

output of the neural network. It can be seen that the final node does not adopt the weighted 

input variables ( 𝑥1, 𝑥2, 𝑥3 ), but adds the weighted bias to the second layer nodes 

(ℎ1
(2)

, ℎ2
(2)

, ℎ3
(2)

). Therefore, we can see the hierarchical nature of the artificial neural 

network in the equation. 

For calculation, there is a method that can write equations more compactly and 

calculate the forward process more effectively in the neural network. First, we can 

introduce a new variable 𝑧𝑖
(𝑙)

, which is the total input of node i of layer 1, including the 

bias term. Therefore, for the first node in layer 2, z is equal to: 
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𝑧1
(2)

= 𝑤11
(1)

𝑥1 + 𝑤12
(1)

𝑥2 + 𝑤13
(1)

𝑥3 + 𝑏1
(1)

= ∑ 𝑤𝑖𝑗
(1)

𝑥𝑖
𝑛
𝑗=1 + 𝑏𝑖

(1)
       (2-11) 

where n is the nodes number of in layer 1.   

By this representation, the clumsy previous equations of the example three-layer 

network can be simplified as follows: 

𝑧(2) = 𝑊(1)𝑥 + 𝑏(1)                            (2-12) 

ℎ(2) = 𝑓(𝑧(2))                                 (2-13) 

𝑧(3) = 𝑊(2)ℎ(2) + 𝑏(2)                          (2-14) 

ℎ𝑊,𝑏(𝑥) = ℎ(3) = 𝑓(𝑧(3))                        (2-15) 

Note that capital W is used to represent the matrix form of the weight. It should be 

noted that all elements of the above equation are now matrices or vectors. We can 

spread the calculation results to any number of layers in the neural network by the 

following summary: 

𝑧(𝑙+1) = 𝑊(𝑙)ℎ(𝑙) + 𝑏(𝑙)                         (2-16) 

ℎ(𝑙+1) = 𝑓(𝑧(𝑙+1))                             (2-17) 

We can observe that the general forward propagation process, where the output of 

layer l becomes the input to its next layer 𝑙 + 1. We know that ℎ(1) is simply the 

input layer x and ℎ(𝑛𝑙)(where 𝑛𝑙 is the layers’ number in the network) is the output 

of the output layer. Note that in the above equation, we have removed the reference 

to the node number, and we can use matrix multiplication to do this more simply. 

2.4.3 Backward propagation 

The process of backward propagation is to learn the parameters of the network, which 

means to find the minimized settings (𝑊(1), 𝑏(1), 𝑊(2), 𝑏(2)) errors in our training data. 

We call the function of measurement error the cost function. The equivalent cost function 

of a training pair (𝑥𝑧 , 𝑦𝑧) in the neural network is as follows: 

𝐽(𝑤, 𝑏, 𝑥, 𝑦) =
1

2
‖𝑦𝑧 − ℎ𝑛𝑙(𝑥𝑧)‖2 =

1

2
‖𝑦𝑧 − 𝑦𝑝𝑟𝑒𝑑(𝑥𝑧)‖

2
        (2-18) 

This shows the cost function of the 𝑧𝑡ℎ training sample, ℎ𝑛𝑙 is the last layer’s output 

of the neural network, which is the neural network output. ℎ𝑛𝑙 is represented as 𝑦𝑝𝑟𝑒𝑑 



 

22 

 

to highlight the prediction for a given 𝑥𝑧 . The first 
1

2
 is just a constant. When we 

distinguish cost functions, we will sort things out, which will be done during backward 

propagation. 

Note that the formula for the above cost function applies to a single (x, y) training pair. 

We want to minimize the cost function among all m training pairs. So, we hope to find 

the minimum Mean Square Error (MSE) of all training samples: 

𝐽(𝑤, 𝑏) =
1

𝑚
∑

1

2
‖𝑦𝑧 − ℎ𝑛𝑙(𝑥𝑧)‖2𝑚

𝑧=0 =
1

𝑚
∑ 𝐽(𝑤, 𝑏, 𝑥(𝑧), 𝑦(𝑧))𝑚

𝑧=0         (2-19) 

We train the weight of the network by using the cost function J and gradient descent. 

The gradient of each weight 𝑤𝑖𝑗
(𝑙)

 and bias 𝑏𝑖
(𝑙)

 in the neural network is as follows: 

𝑤𝑖𝑗
(𝑙)

= 𝑤𝑖𝑗
(𝑙)

− 𝛼
𝜕

𝜕𝑤𝑖𝑗
(𝑙) 𝐽(𝑤, 𝑏)                          (2-20) 

𝑏𝑖
(𝑙)

= 𝑏𝑖
(𝑙)

− 𝛼
𝜕

𝜕𝑏𝑖
(𝑙) 𝐽(𝑤, 𝑏)                          (2-21) 

Where 𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝛼 ∗ ∇𝑒𝑟𝑟𝑜𝑟 . The left-hand side of this equation is the 

updated value of the weight, while the right-hand side is the old value of the weight. 

Again, we have an iterative process in which the weights are updated at each step 

basing on J (W, b). 

2.5 Evaluation of Recommender Systems Results 

The recommender system is a prediction model with algorithms. Usually, these 

algorithms are seeking to minimize the function error. Therefore, it is essential to measure 

the prediction error that they compare the expected results with the prediction results 

given by the model. 

To measure the accuracy of recommender system results, some of the most common 

prediction error measures are usually used, including Mean Absolute Error (MAE) and 

its related measures: Mean Square Error (MSE), Root Mean Square Error (RMSE) and 

normalized mean absolute error. 
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𝑀𝐴𝐸 =
∑ |�̂�𝑢𝑖−𝑟𝑢𝑖|𝑛

𝑖=1

𝑛
                        (2-22) 

𝑀𝑆𝐸 =
∑ (�̂�𝑢𝑖−𝑟𝑢𝑖)2𝑛

𝑖=1

𝑛
                       (2-23) 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑢𝑖−𝑟𝑢𝑖)2𝑛

𝑖=1

𝑛
                     (2-24) 

Where �̂�𝑢𝑖 − 𝑟𝑢𝑖 is the difference between the predicted and the real value, for each n 

occurrence 

MAE measures the average size of errors in a set of predictions, regardless of their 

direction. It is the average of the absolute difference between the predicted value and the 

actual observed value in the test sample, where the weight of all individual differences is 

equal. 

RMSE is a secondary scoring rule, which can also measure the average magnitude of 

error. It is the square root of the average value of the squared difference between the 

predicted value and the actual observed value. 

In addition to these three indicators, two critical concepts also need to be considered: 

Precision and Recall. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑∩𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡|

|𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑|
                     (2-25) 

𝑅𝑎𝑐𝑎𝑙𝑙 =
|𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑∩𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡|

|𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡|
                     (2-26) 

Precision is the ability to provide the relevant elements with the least amount of advice. 

Recall can find all relevant elements and recommend them to users. 
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Chapter 3  

Problem Formulation and Approaches 

3.1 Problem Formulation: 

Let’s take the problem of predicting movie ratings for the process of our formulation, 

although the general form is similar to this specific instance. 

Assume that there are 𝑛𝑢 users and 𝑛𝑚 movies. Each user gives a rating, which is a 

real number from 1 to 5, for all movies that he/she is interested in. Each movie receives 

a rating from all users. Formally, we get a matrix of size 𝑛𝑚 × 𝑛𝑢  where each row 

represents a list of ratings made by all users for a specific movie, and each column 

represents a list of ratings made by a particular user for all movies. As shown in Figure 

3.1. Each cell in the matrix may receive unknown value which is denoted as a “?” because 

there are some users who did not rate for a movie. This is known as a sparse matrix.  

Movie Alice Bob Carol Dave … 

Love at last 5 5 0 1  

Romance forever 5 ? ? 0  

Cute puppies of love ? 4 0 ?  

Nonstop car chases 0 0 4 4  

Sword vs karate 0 0 5 ?  

…      

Figure 3.1: User-Item rating matrix 
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Notations Description 

𝒏𝒖 Number of users 

𝒏𝒎 Number of movies 

𝒓(𝒊, 𝒋) Indicator function, 𝑟(𝑖, 𝑗) = 1 if user 𝑖𝑡ℎ gives a rating to a movie 𝑗𝑡ℎ 

𝒚(𝒊,𝒊) Actual rating made by user 𝑖𝑡ℎ on movie 𝑗𝑡ℎ if 𝑟(𝑖, 𝑗) 

𝒄(𝒊, 𝒋) Value from 1 to 5 represents a rating made by user 𝑖𝑡ℎ for movie 𝑗𝑡ℎ 

𝒎(𝒋) Number of movies rated by user 𝑗  

𝜽(𝒋) Parameter vector for user 𝑗 

𝒙(𝒋) Parameter vector for movie 𝑖 

Table 3.1: Summarizes the notation used in this chapter 

The goal is to efficiently infer these missing values so that the matrix “best reflects” 

the actual interaction between each movie and its corresponding users.  

Mathematically, for user 𝑖, movie 𝑗, predict: (𝜃(𝑗))
𝑇

(𝑥(𝑖)). 

Equivalently, we want to learn: 𝜃(𝑗) and 𝑥(𝑖) for all 𝑖, 𝑗. 

In the following sections of this chapter, we will introduce some approaches for learning 

these missing values which are Item-based k-Nearest Neighbor Recommender System (i-

kNN-RS), Alternative Least Square based Collaborative Filtering (ALS-CF), and Neural 

Network-based Collaborative Filtering (Neural Network-CF). 

3.2 Item-based k-Nearest Neighbor Recommender System 

(i-kNN-RS) 

In this section, we introduce the item-based k-Nearest Neighbor Recommender System 

algorithm called i-kNN-RS. In chapter 4, we will show the experiment results of this 

model. i-kNN-RS is an easy-to-go model and usually plays the role of a very appropriate 

baseline for comparison between different recommender models. As shown in figure 3.2 

and be introduced in chapter2, kNN is a non-parametric, lazy learning model. It uses a 

dataset consisting of the data points which are separated into groups to predict the value 

for a new instance. Also, note that kNN’s result much depends on the distance function. 
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In the case, that input training data are in a high dimensional space. kNN’s performance 

will commit the problem of the curse of dimensionality if kNN considers Euclidean 

distance as its objective function. Euclidean distance does not help in high dimensions, 

because all vectors are almost equidistant from the input query vectors (features of the 

target movie). Instead, the cosine similarity introduced in chapter 2 is entirely appropriate 

in this situation. Although the detail process of i-kNN-RS is depicted in Figure 3.2, we 

should introduce its key idea first. 

 

Figure 3.2: Demonstration of k-Nearest Neighbors 

3.2.1 Idea of i-kNN-RS: 

The primary purpose of the item-based kNN-Recommender System is simple. It does 

not add any particular assumption on the data distribution; it much bases on the feature 

similarity between items. When making inference about the similarity between movies, 

kNN needs to compute the distance between the target movie and other movies in the 

dataset, then ranks the results in a descending order according to distance from each 

movie to the input target movie, and returns the top k nearest neighbor movies which are 

the most 𝑘 similar movies. The overall algorithm for i-kNN-RS is illustrated in Table 

3.2. 
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Algorithm: item-based k-NN Recommender System 

//Goal: Implement a recommender system bases on item-based k-NN search  

//Input:  

- 𝑘: number of nearest neighbors 

- 𝑖𝑛𝑝𝑢𝑡_𝑚𝑜𝑣𝑖𝑒: the target movie for recommending  

- a matrix of size 𝑚 × 𝑛 consisting of all ratings of 𝑚 movies by 𝑛 users 

- 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑦𝑝𝑒: distance function type, e.g., Euclidian, Manhattan, cosine, etc. 

//Output: Top 𝑘 movies that are nearest to the 𝑖𝑛𝑝𝑢𝑡_𝑚𝑜𝑣𝑖𝑒. 

1. for every 𝑚𝑜𝑣𝑖𝑒𝑖 in the dataset do 

2. calculate and store the distance 𝑑(𝑚𝑜𝑣𝑖𝑒𝑖, 𝑖𝑛𝑝𝑢𝑡_𝑚𝑜𝑣𝑖𝑒)  

3. Sort the movies in a descending order regarding its distances 

4. Pick up and return the top 𝑘 movies at step #3 

5. end item-based k-NN Recommender System 

Table 3.2: Algorithm of Item-based k-Nearest Neighbor Recommender System 

3.2.2 Implementation Concerns 

This section describes some critical concerns related to the implementation of i-kNN-

RS. First, the rating input data need to be transformed into an appropriate format that can 

be feed into the i-kNN-RS model. The data should be in a 2D array of size 𝑚 × 𝑛, where 

𝑚, 𝑛 represent for the number of movies and the number of users, respectively. To 

reshape the data frame of ratings, we format movies as rows and users as columns. Then 

missing values need to be filled in with zeros because of applying linear algebra 

operations which are computing the distances between vectors. We can now consider this 

new data frame as a feature vector of each movie in the input dataset.  

One important observation here is that the matrix representing the movie extremely 

sparse. We should not feed the entire data with mostly floating zero numbers into the i-

kNN-RS model. To achieve the calculation efficiency and consuming less memory units, 
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the data frame should be transformed into a SciPy sparse matrix3 and being implemented 

as shown in Figure 3.3. 

 

Figure 3.3: Code of turning data frame 

 

Figure 3.4: Flowchart of item-based k-NN Recommender System 

                                                   

3 SciPy sparse matrix is a python package providing tools for creating sparse matrices 

using multiple data structures, as well as tools for converting a dense matrix into a sparse 

one. 
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In chapter 4, we will conduct experiments on this model and consider its performance 

as a baseline with the other ones.  

3.3 Alternating Least Square based Collaborative Filtering 

Recommender Systems(ALS-CFRS) 

In the previous section, we formulated and introduced a baseline recommender system 

called i-kNN-RS, as well as provided some implementation concerns for it. Although i-

kNN-RS is easy to be implemented, it is evident that there are some limitations such as 

“cold-start problem” and “scalability issue.” 

The problem of item cold-start occurs when a movie inserted into the catalog is 

minimal, even zero interactions. This causes some difficulty if recommender bases on 

those interactions to make recommendations 

The issue of scalability occurs when applying i-kNN-RS on a considerable dataset 

where the number of users and items are big enough. The current, practical datasets are 

almost extremely massive, e.g., MovieLens_Datasets 

These two above problems are prevalent challenges for a typical collaborative filtering 

recommender system. They appear naturally along with the user-item (or item-user) 

interaction matrix where each cell 𝑐(𝑖, 𝑗) in the matrix represents a rating of the user 𝑖 

and movie 𝑗. In practical applications, one item (e.g., movie) receives very few or even 

no ratings by all users. So that we are coping with an extremely sparse matrix with sparsity 

level is more than 99% as illustrated in Figure 3.5. 
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Figure 3.5: Sparsity of a general dataset 

To deal with the problem, this section presents a little more sophisticated approach 

called ALS-CFRS which is based on a well-known mathematical technique called low-

rank Matrix Factorization.  

3.3.1 Least Square Problem 

Before discussing in detail Alternative Least Square Collaborative Filtering let’s briefly 

revise the least-squares problem (in particular, a norm 𝐿2 -regularized least squares 

problem). Mainly, our goal in the least-squares problem by the language of linear algebra 

is to minimize the cost function of the form: 

 

argmin
𝑤

(‖𝑦 − 𝑋𝑤‖2
2 + 𝜆‖𝑤‖2

2)                 (3-1) 

where  

𝑋 is a feature matrix, 𝑋 ∈ ℝ𝑚×𝑑;  

𝑦 is the target value, 𝑦 ∈ ℝ𝑚×1; 

𝑤 is the parameter of the model 𝑤 ∈ ℝ𝑑×1; and 

𝜆 is the adjusting rate for avoiding overfitting. 

In the language of linear algebra, the optimal solution of linear regression can be 

found analytically as follow: 



 

31 

 

𝑤 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦                    (3-2) 

We can further expand this approach for multi-linear regression over multiple 

target 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} using the same feature matrix. The solution parameter is similar 

but now is put all together within a matrix as below: 

𝑊 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑌                    (3-3) 

In practice, we rarely get to use this elegant analytical approach because it requires 

inverting a square matrix of size 𝑑 where 𝑑 usually takes a value from thousands to 

millions. And this is not a feasibly right approach because the inversion of a huge-size 

matrix is not only computationally expensive but numerically unstable. Fortunately, 

despite being rarely used in practical problems, this analytical approach is possible for 

recommender systems as we will show shortly as below. 

Recall from the problem definition section that for user 𝑖, movie 𝑗, we want to predict: 

(𝜃(𝑗))
𝑇

(𝑥(𝑖)). Equivalently, we want to learn: 𝜃(𝑗) and 𝑥(𝑖) for all 𝑖, 𝑗. 

Note that the role of users and movies is exchangeable. That means if the movie 

parameter 𝑥(𝑖) is given, then 𝜃(𝑗) can be learned by minimizing the following least-

square lost function for a particular user 𝜃(𝑗): 

min
𝜃(𝑗)

1

2
∑ ((𝜃(𝑗))

𝑇
(𝑥(𝑖)) − 𝑦(𝑖,𝑗))

2

+
𝜆

2𝑖:𝑟(𝑖,𝑗)=1 ∑ (𝜃𝑘
(𝑗)

)
2

𝑛
𝑘=1     (3-4) 

To learn 𝜃(1), 𝜃(2), … , 𝜃(𝑛𝑢) for all users, the total cost function turns out to be: 

min
𝜃(1),𝜃(2),…,𝜃(𝑛𝑢)

1

2
∑ ∑ ((𝜃(𝑗))

𝑇
(𝑥(𝑖)) − 𝑦(𝑖,𝑗))

2

+
𝜆

2𝑖:𝑟(𝑖,𝑗)=1
𝑛𝑢
𝑗=1 ∑ ∑ (𝜃𝑘

(𝑗)
)

2
𝑛
𝑘=1

𝑛𝑢
𝑗=1  (3-5) 

Similarly, if the user parameter 𝜃(𝑗) is given, then 𝑥(𝑖) can be learned by minimizing 

the following least square cost function for a particular movie 𝑥(𝑖): 

min
𝑥(𝑖)

1

2
∑ ((𝜃(𝑗))

𝑇
(𝑥(𝑖)) − 𝑦(𝑖,𝑗))

2

+
𝜆

2𝑗:𝑟(𝑖,𝑗)=1 ∑ (𝑥𝑘
(𝑖)

)
2

𝑛
𝑘=1       (3-6) 

To learn 𝑥(1), 𝑥(2), … , 𝑥(𝑛𝑚) for all users, the total cost function turns out to be: 

min
𝑥(1),𝑥(2),…,𝑥(𝑛𝑚)

1

2
∑ ∑ ((𝜃(𝑗))

𝑇
(𝑥(𝑖)) − 𝑦(𝑖,𝑗))

2

+
𝜆

2𝑗:𝑟(𝑖,𝑗)=1
𝑛𝑚
𝑖=1 ∑ ∑ (𝑥𝑘

(𝑖)
)

2
𝑛
𝑘=1

𝑛𝑚
𝑖=1  (3-7) 

Combining (3-5) and (3-7), give us the objective cost function as below: 
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min
Θ,𝑋

 𝐽(Θ, 𝑋) = min
Θ,𝑋

1

2
∑ ((𝜃(𝑗))

𝑇
(𝑥(𝑖)) − 𝑦(𝑖,𝑗))

2

(𝑖,𝑗):𝑟(𝑖,𝑗)=1 +
𝜆

2
∑ ∑ (𝑥𝑘

(𝑖)
)

2
𝑛
𝑘=1

𝑛𝑚
𝑖=1 +

𝜆

2
∑ ∑ (𝜃𝑘

(𝑗)
)

2
𝑛
𝑘=1

𝑛𝑢
𝑗=1                               (3-8) 

Now we can employ gradient descent to learn both 𝜃(𝑗) and 𝑥(𝑖) simultaneously with 

the update rule for every 𝑗 = 1,2, … , 𝑛𝑢, 𝑖 = 1,2, … , 𝑛𝑚 as below: 

𝑥𝑘
(𝑖)

= 𝑥𝑘
(𝑖)

− 𝛼 (∑ ((𝜃(𝑗))
𝑇

(𝑥(𝑖)) − 𝑦(𝑖,𝑗))𝑗:𝑟(𝑖,𝑗)=1 𝜃𝑘
(𝑗)

+ 𝜆𝑥𝑘
(𝑖)

)    (3-9) 

𝜃𝑘
(𝑗)

= 𝜃𝑘
(𝑗)

− 𝛼 (∑ ((𝜃(𝑗))
𝑇

(𝑥(𝑖)) − 𝑦(𝑖,𝑗))𝑖:𝑟(𝑖,𝑗)=1 𝑥𝑘
(𝑖)

+ 𝜆𝜃𝑘
(𝑗)

)   (3-10) 

The overall algorithm is described in Table 3.3. 

Algorithm: Alternative Least Square Collaborative Filtering Recommender 

Systems 

//Goal: Implement a recommender system bases on ALS-CFRS  

//Input:  

- 𝑛: number of components for user parameters and movie parameters  

- a matrix of size 𝑛𝑚 × 𝑛𝑢 consisting of all ratings of 𝑛𝑚 movies by 𝑛𝑢 users 

//Output: predicting the rating of a user 𝜃(𝑗) and a movie 𝑥(𝑖) 

1. Initialize 𝜃(1), 𝜃(2), … , 𝜃(𝑛𝑢) & 𝑥(1), 𝑥(2), … , 𝑥(𝑛𝑚) to small random values.  

2. Minimize 𝐽(𝜃(1), 𝜃(2), … , 𝜃(𝑛𝑢), 𝑥(1), 𝑥(2), … , 𝑥(𝑛𝑚)) using gradient descent 

𝑥𝑘
(𝑖)

= 𝑥𝑘
(𝑖)

− 𝛼 ( ∑ ((𝜃(𝑗))
𝑇

(𝑥(𝑖)) − 𝑦(𝑖,𝑗))

𝑗:𝑟(𝑖,𝑗)=1

𝜃𝑘
(𝑗)

+ 𝜆𝑥𝑘
(𝑖)

) 

𝜃𝑘
(𝑗)

= 𝜃𝑘
(𝑗)

− 𝛼 ( ∑ ((𝜃(𝑗))
𝑇

(𝑥(𝑖)) − 𝑦(𝑖,𝑗))

𝑖:𝑟(𝑖,𝑗)=1

𝑥𝑘
(𝑖)

+ 𝜆𝜃𝑘
(𝑗)

) 

3. For a user with parameter 𝜃(𝑗) and a movie with parameter 𝑥(𝑖), predict a 

star rating of (𝜃(𝑗))
𝑇

(𝑥(𝑖)). 

4. End 

Table 3.3: Algorithm of Alternative Least Square Collaborative Filtering 

Note that in the language of linear algebra, this problem is known as a low-rank matrix 

factorization problem. The detail of low-rank matrix factorization is beyond the scope of 
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this thesis. Chapter 4 will describe the experiment results of this approach. Furthermore, 

similar to other machine learning algorithms, ALS-CFRS has its own set of hyper-

parameters such as:  

rank: the number of hidden factors in our ALS-CFRS model (defaults: 10) 

regParam is the regularization parameter (defaults: 1.0) 

We may need to tune these hyper-parameters via hold-out validation or grid search to 

get the final ALS-CFRS model. In the tuning process of ALS-CFRS, we applied the grid 

search. Particularly, after tuning, we found the best choice for hyper-parameters are 

𝑟𝑒𝑔𝑃𝑎𝑟𝑎𝑚 = 0.05 and 𝑟𝑎𝑛𝑘 = 20. 

3.4 Neural Network-based Recommender Systems 

One of the disadvantages of the ALS-RS is that it just considers the linear relationship 

between data points in the dataset. In this section, we consider a much more complex 

model which bases on Neural Network to copy with non-linear relationships within the 

dataset. Because the background of the Neural Network was introduced in chapter 2, here 

we present the architecture network that will be used in this report. 

Table 3.4 summarize all notations used for defining network architecture 

Notations Description 

num_users number of users 

num_items number of movies 

MF_dim int, embedded dimension for user and item vector 

MF_reg tuple of float, 𝐿2-regularization of MF embedded layer 

MLP_layers list of int, each element is hidden unit number for each MLP layer, 

except for the first element. First element is the sum of user latent 

vector and item latent vector 

MLP_regs list of int, each element is the 𝐿2-regularization parameter for each 

layer in the neural network model 

Table 3.4: Notations of network architecture 

We declare the neural network model via Keras4 library as below: 

                                                   

4 Keras is an open-source library written in Python, designed to enable fast 
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Figure 3.6: Neural Network model in Keras 

Figure 3.7 summarizes our neural network architecture 

 

Figure 3.7: Neural Network architecture 

                                                   

experimentation with deep neural networks, it focuses on being user-friendly, modular, 

and extensible [wikipedia]. 
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Next, we train the model via Adam5 optimization algorithm with some parameters 

such as  

𝐵𝐴𝑇𝐶𝐻_𝑆𝐼𝑍𝐸 = 64 

𝐸𝑃𝑂𝐶𝐻𝐸𝑆 = 30 

𝑉𝐴𝐿𝐼𝐷𝐴𝑇𝐼𝑂𝑁_𝑆𝑃𝐿𝐼𝑇 = 25% 

After training the model, we estimate its performance on the test set via the estimator 

Root Mean Square Error (RMSE). The experimental results will be discussed in chapter 

4. 

Note that the process of selecting an appropriate network architecture is known as 

hyper-parameter tuning and usually not easy to cope with. We leave that problem as future 

work in this report. 

In conclusion, this chapter introduced three different approaches for a recommender 

system such as i-kNN-RS, ALS-RS, and Neural Network-based RS. Table 3.5 

summarized the advantages and disadvantages of these approaches. 

Approach Advantages Disadvantages 

i-kNN-RS 

Simple, easy to be 

implemented 

No training phase 

Much depends on distant function and 

the value of 𝑘. 

Simply filling zero to the missing 

values, so that does not reflect the 

genuine relationship inside the dataset 

ALS-CFRS 

Has a well mathematical 

definition so that there is an 

analytical solution 

Efficient for problem with 

medium dataset 

Not work well for datasets consisting of 

a non-linear relationship between data 

points 

Neural 

Network-RS 

Able to consider complex 

relationships between data 

points inside the dataset 

Require more resources like training 

times.  

A large number of hyper-parameters 

need to be tuned 

Table 3.5: Contrast of different approach recommender system 

  

                                                   

5  Adam optimization algorithm is a kind of stochastic gradient descent optimizer 

provided by Keras library. 
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Chapter 4  

Implementation and Experiments 

4.1 Data Description 

The experiment in this chapter uses MovieLens6 dataset which consists of two main 

files, movies.csv, and ratings.csv. The dataset describes a list of ratings and free-text 

tagging activities made by users for movies. In total, there are 27,753,444 ratings and 

1,108,997 tags across 53,098 unique movies. These data created by 283,228 individual 

users during the time (1995/01/09-2018/09/26). The dataset has eliminated demographic 

information. A hash id identifies each user without any other information. Table 4.1 

summarizes the general information of this dataset. 

Data Description 

Number of movies 53,098 

Number of users 283,228 

Number of ratings 27,753,444 

Number of tags 1,108,997 

Time of collecting the dataset 1995/01 – 2018/09 

Table 4.1: Information of the experiment dataset 

Figure 4.1 extracts and shows some instances from the dataset 

                                                   

6 This is a public dataset available at https://grouplens.org/datasets/movielens/latest/ 
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Figure 4.1: Example of the dataset 

4.2 Data Exploration and Preprocessing 

Before executing the program, let’s explore some properties of the data. Firstly, we 

want to get the counts of each rating from the file “ratings.csv” of the entire dataset. 

Because the count for zero-rating score is too large when being compared with others. So 

we should take a logarithm to transform the count values into a scale that can be easily 

visualized. The result is shown in Figure 4.2. 

 

Figure 4.2: Count of the rating by users 
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Figure 4.3 illustrates the rating made by a user for a particular movie 

 

Figure 4.3: Example of a specific movie 

Figure 4.4 plots the rating frequency for all movies in log scale 

 

Figure 4.4: Rating frequency plot 

We can observe that about 10,000 out of 53,098 movies are rated more than 100 times. 
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More interestingly, roughly 20,000 out of 53,889 movies are rated less than only 10 times. 

Table 4.2 looks closer by displaying top quantiles of rating counts for movies 

Quantiles Counts 

1.00 97,999 

0.95 1855 

0.90 531 

0.85 205 

0.80 91 

0.75 48 

0.70 28 

0.65 18 

Table 4.2: Rating counts of movies 

After dropping 75% of movies, the dataset is still large enough for the next state. But 

next, we also need to reduce the number of users. Similarly, Table 4.3 shows some 

quantiles of users regarding the number of times they made a rate for movies. 

Quantiles Counts 

1.00 9,384 

0.95 403 

0.90 239 

0.85 164 

0.80 121 

0.75 94 

0.70 73 

0.65 58 

0.60 47 

0.55 37 

Table 4.3: Number of times for movies 

We can observe that the distribution of ratings by users is very similar to one of the 

ratings among movies. They both have long-tail property. There is a tiny fraction of users 

who are actively engaged with rating movies that they watched. So we should limit users 

to the top 40%, which is around 113,290 users. 
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To summarize about the dataset, we observed that: 

- Rating score of 3 and 4 is quite popular among the users than other scores 

- The score of zero is at a considerable number, and this confirms the situation that we 

are coping with a sparse dataset. 

- The experiment in this chapter will use the top 25% of movies which are around 

13,500 movies that have ratings and the top 40% of users who made the ratings. 

4.3 Experimental Results 

4.3.1 i-kNN-RS 

As introduced in chapter 3, i-kNN-RS requires defining values for hyper-parameters as 

shown in Table 4.4.  

Hyper-parameters Value 

Number of nearest 𝑘 = 10 

Distance function Cosine similarity 

Type of algorithms Brute-force 

Table 4.4: The value of hyper-parameters for i-kNN-RS 

Ten movies that were recommended by i-kNN-RS are shown in Figure 4.5. One 

interesting thing is that the movie Sherlock Holmes (2009) and “Sherlock Holmes: A 

Game of Shadows (2011)” are in the recommendation list. However, some other matching 

movies did not appear such as “Sherlock Holmes (2010)”, “Sherlock Holmes Faces Death 

(1943)”, and “Young Sherlock Holmes (1985)”. 
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Figure 4.5: Recommendations of i-kNN-RS 

4.3.2 ALS-CFRS 

Table 4.5 shows the value of hyper-parameters of ALS-RS which are used in the 

experiments. Furthermore, because both rank and regularized parameter λ can take a list 

of values so that we applied the grid search to select the best model among them. 

Moreover, we split the dataset into train/validation/test sets using a 7:2:1 ratio. 

Hyper-parameters Values 

Number of iterations 10 

Rank for matrix factorization [8,10,12,14,16,18,20] 

Regularized Parameter [0.001,0.01,0.05,0.1,0.2] 

Train/Validation/Test Ratio 7:2:1 

Table 4.5: The value of hyper-parameters for ALS-CFRS 

We first train the model on a train set, then apply a grid search to select the best model 

which results in minimal Root Mean Square Error on a validation set. Table 4.6 shows 

detail. 
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       Rank 

Reg_para 
8 10 12 14 16 18 20 

0.001 0.863 0.860 0.856 0.861 0.859 0.870 0.848 

0.01 0.843 0.850 0.846 0.831 0.849 0.873 0.868 

0.05 0.835 0.829 0.831 0.839 0.823 0.818 0.807 

0.1 0.853 0.850 0.848 0.831 0.839 0.869 0.858 

0.2 0.843 0.845 0.846 0.841 0.845 0.863 0.845 

Table 4.6: Grid search of rank and regularized parameter 

We observe that 𝑟𝑎𝑛𝑘 = 20, and regularized parameter 𝑟𝑒𝑔_𝑝𝑎𝑟𝑎 = 0.05 give the 

best model. Figure 4.6 illustrates the learning curve representing the fluctuation of RMSE 

at each iteration. 

 

Figure 4.6: Learning Curve of RMSE 

We observe that after three iterations, the RMSE starts to converge around 0.8. After 

training the model, we now use it to make a recommendation. Similarly, ten movies were 

recommended by ALS-CFRS are shown in Table 4.7.  

We can see that the recommendation list made by ALS-CFRS is entirely different from 

the i-kNN-RS model recommender. Not only the ALS-CFRS model recommends movies 
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outside of years between 2007 and 2009 periods, but also it recommends less known 

movies. This can offer users some elements of surprise so that users won't get bored by 

getting the same popular movies all the time. Table 4.7 shows the results made by these 

two algorithms. 

i-kNN-RS 

(Ref: “Sherlock Holmes(2010)”) 

ALS-CFRS 

(Ref: “Sherlock Holmes(2010)”) 

Hitch Hikers Guide to the Galaxy(1981) Shawshank Redemption(1994) 

Adjustment Bureau(2011) Godfather(1972) 

John Carter(2012) Philadelphia Story(1940) 

Source Code(2011) Casablanca(1942) 

Cowboys & Aliens(2011) Rebecca(1940) 

Looper(2012) 12 Angry Men(1957) 

X-Men(2011) Amadeus(1984) 

Sherlock Holmes: A Game of Shadows(2011) Adam’s Rib(1949) 

Total Recall(2012) About Time(2013) 

Sherlock Holmes(2009) Spotlight(2015) 

Table 4.7: Results of i-kNN-RS and ALS-CFRS 

4.4 Neural Network-Based Collaborative Filtering 

Recommender Systems 

This section will show the experiment result of Neural Network-based Collaborative 

Recommender Systems. We use the network architecture introduced in chapter 3 for the 

experiment here on the train set and validation set. Figure 4.7 depicts the fluctuation of 

RMSE on the training set and validation set along with the increasing number of training 

epochs. As we can see that when the number of epochs increases the train, RMSE tends 

to increase while those of the validation set tends to decrease. This explains the overfitting 

problem if we train the model too much to fit the data. 
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Figure 4.7: Learning Curve of RMSE on different data partition 

After preparing the model, we can make a recommendation via the cosine similarity as 

in ALS-CFRS. The goodness of recommendation can be estimated in practical situations 

likes whether or not users click the recommendation items or purchasing times made by 

users for a particular item. Here we focus on the RMSE of the algorithm in comparison 

with the ALS-CFRS method, as shown in Table 4.8. 

 
ALS-CFRS 

Neural Network-

based CFRS 

RMSE on Train set 0.92 0.90 

RMSE on Validation set 0.91 0.91 

Table 4.8: RMSE on ALS-CFRS and Neural Network-based CFRS 

On the overall, we observe that RMSE of Neural Network-based CFRS is a little better 

than the one of ALS-CFRS. This is because the Neural Network takes into consideration 

nonlinear relationships between data, whereas this is not considered in the ALS-CFRS 

model. Although the value of RMSE is similar to the validation set, these differences will 

increase if we use a deeper network model. Because in that case, Neural Network will fit 

better ALS-CFRS model due to its complex learning function. 
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Chapter 5  

Conclusion & Future work 

5.1 Conclusion 

In this report, we reimplement three approaches of the recommender system to compare 

the impact of different algorithms on the recommender system. Through the experimental 

results, we can obtain a conclusion like the following: 

- The k-Nearest Neighbor algorithm based on the items only focuses on the item feature 

itself to analyzes the similarity between items, so that the recommendation results are too 

single; on the other hand, the Alternative Least Square algorithm focuses on the 

collaborative relationship between the user and the item, so that the recommendation 

results are diversified, which can bring “surprise” recommendations to the user, and will 

improve the user's reliance and satisfaction towards recommender system. 

- But one of the disadvantages of the Alternative Least Square algorithm is just 

considered the linear relationship between datapoints in the dataset. Generally, the dataset 

is more complicated. By building a more complex Neural Network recommender system, 

we can improve the accuracy of the results further from the statistical point of view, which 

can give us more reference in the practical application of the recommender system likes 

whether or not users click the recommendation items or purchasing times made by users 

for a particular item. 

- Concurrently, we can also find that as an excellent recommender system not only 

focus on one aspect. The more latent factors we consider, the better we obtain the 

performance of recommendation. But on the contrary, more and more factors are 

considered, and the requirements for system stability and hardware endurance become 

higher and higher, which also brings significant challenges to the development of the 

recommender system. 
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5.2 Future works 

- In the future work, we can consider more preferences of the users into the 

recommendation system, and build a model combining different characteristics of users, 

which can make the recommendation system more personalized, and more acceptable of 

the recommendation results. 

- In hyper-parameter tuning, we can also make the parameters more detailed such as 

neural network architecture, carrying out grid search at a more granularity level to find 

out the best settings and apply them to the model of the recommender system. 
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