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Abstract

In recent years, emerging industries such as smart homes, dialog robots,
and smart speakers have flourished, which has dramatically changed people’s
lifestyles and the way people interact with machines. Voice interactions have
been widely used in these emerging fields. With the application of deep
learning in speech task (e.g., automatic speech recognition (ASR), emotion
recognition, and other speech classification tasks), the performance of these
speech tasks has been greatly improved. The speech recognition accurate
rate also has exceeded, and the recognition effect has basically reached the
level of human hearing. The above tasks always rely heavily on voice activity
detection (VAD) technology.

VAD is a technique to determine the beginning and end points from a
segment of the speech signal. VAD is very important in front-end processing
in many different speech applications. Effective VAD can: (1) eliminate the
interference of the silent segment or noise segment for the speech task. (2)
reduce the amount of computation for the computer. Based on the above
two points, the useful VAD could improve the speed and accuracy of speech
tasks, especially all the speech applications first step is VAD. There are
many methods to study VAD in previous research. However, such methods
remain the robustness and accuracy insufficient, the performance of previous
methods is often affected by noise. Almost all the VAD methods can be
used in clean or stationary noise environments, only a few of methods could
be used under low signal-to-noise noise (SNR) non-stationary environments.
It’s easy to think of noise as speech, removing the effects of noise conditions
is crucial for the speech or non-speech detection task.

To find out what features and underlying concepts can be used to solve
noise issue and then to propose an accurate and robust VAD method against
environmental conditions, this research by incorporating the modulation
transfer function (MTF) concept into deep neural networks architecture aims
to solve the above issue final improve the VAD accuracy under noise environ-
ments. The effect of noise on noisy speech can be regarded as MTF. In theory,
if the MTF for the speech under noisy environments can be estimated, the
impact of noise on speech could use MTF to reduce, and further obtain an
accurate and robust VAD performance. In this research, a denoising method
is used for the temporal power envelope restoration. By setting a threshold
for the restored temporal envelope a further determine speech or non-speech
(VAD) can be obtained. Therefore, the key to this research is to find a way
to do temporal envelope denoising.



To eliminate the effect of additive noise, global signal-to-noise (gSNR)
should be estimated. Previous work proposed a robust gSNR detection
method in the sub-band speech signal. But with the increase of noise (de-
creased SNR), because VAD cannot usually be accurately judged by a single
threshold in the whole utterance, this method is not robust at low SNR. This
method is also often used in a specific kind of noise environment, and another
environment requires changing parameters. Many people have proposed deep
neural networks (DNNs) based end-to-end gSNR detection methods, end-to-
end based methods usually extract acoustic features of one utterance and
then input all of them to a neural network to predict gSNR. This method
often has the problem of data mismatch or environment mismatch. In addi-
tion, the end-to-end method requires that the input utterance have the same
shape. If they are different, you need to do pooling and speech cutting to
make all sentences the same length. This kind of processing method will
cause the problem of out of memory and cannot adapt to all applications.

In order to solve the above gSNR estimation problems, an indirect gSNR
estimation method is proposed in this research. Because the additive noise
and clean speech components are mixed together, estimating the gSNR in
the original time domain signal is very difficult. In this research, the sub-
band signal processing method is used. The proposed gSNR estimation
method mainly includes sub-band speech signal processing, sub-band thresh-
old calculation unit, sub-band power calculation unit and gSNR calculation
unit. Motivated by the noise and speech that have a difference represent in
the sub-band, the constant-band filter-bank (CBFB) is used to split noisy
speech into a different sub-band speech signal. The sub-band-based process-
ing method makes speech and noise processing more accurate than global
full-band processing. In addition, in previous studies, a static threshold is
often used to judge VAD, but this judgment is not reasonable because dif-
ferent speech sample may be in different threshold or different noise ratio.
In this study, based on the sub-band and the convolutional neural network
(CNN) encoder-decoder (C-ED) structure we propose a gSNR estimation
method, this method could estimate the noise ratio of different sub-band
speech signal sample. The deep neural network could solve the non-linear
problems well, this research uses for C-ED framework to estimate sub-band
speech signal threshold about speech and noise. Finally, the final gSNR can
be obtained according to the obtained threshold.

Experiments conducted on the stationary and non-stationary conditions
demonstrate that the proposed C-ED based MTF method achieves better
performance compare with the previous MTF based VAD method. This
method can effectively reduce the bad affect of noise for the VAD, especially
in the environment of low SNR and non-stationary noise.
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In conclusion, a VAD system utilizing the convolutional neural network
encoder-decoder model has been proved to achieve better performance com-
pared to the previous modulation transfer function based method.

A VAD system utilizing a C-ED model was proposed in this research.
The proposed method can improve the accuracy of speech/non-speech detec-
tion similar to the previous method using the modulation transfer function.
Although there was still much room for performance improvement, this re-
search put the first step toward the realization of incorporating deep neural
networks into modulation transfer function concept. Moreover, this will fur-
ther provide key technical support for not only various speech applications
but also man-machine speech communications under real environmental con-
ditions.
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Chapter 1

Introduction

In this chapter, the research background, research issues and research ob-
jective are briefly introduced. First of all, we explain the concept of voice
activity detection (VAD) and introduce its history. Secondly, we describe
the issue statement of current studies. Thirdly, the research objective of our
study is presented. Finally, the organization of this paper is listed.

1.1 Research background

In recent years, emerging industries such as smart homes, dialog robots,
and smart speakers have flourished, which has dramatically changed peo-
ple’s lifestyles and the way people interact with machines. Voice interactions
have been widely used in these emerging fields. With the application of
deep learning in speech task (e.g., automatic speech recognition [1], speaker
recognition [2], emotion recognition [3], speech enhancement [4, 5] and other
speech classification tasks), the performance of these speech tasks has been
greatly improved. The speech recognition accurate rate also has exceeded
95%, and the recognition effect has basically reached the level of human
hearing. The above tasks always rely heavily on VAD technology.

The aim of VAD is to judge speech and non-speech boundaries in the
speech signal. VAD is very important in front-end processing in many dif-
ferent speech applications, e.g., speech synthesis [8], speech recognition [7],
speech enhancement [6], and speech classifications [9]. Effective VAD can:
(1) eliminate the interference of the silent segment or noise segment for the
speech task. (2) reduce the amount of computation for the computer. Based
on the above two points, the useful VAD could improve the speed and accu-
racy of speech tasks, especially all the speech applications first step is VAD.
Figure 1.1 is a flowchart often used in speech applications.
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Figure 1.1: A flowchart often used in speech applications

Because of the importance of VAD, the history of its research can be
traced back to the 1980s [10]. The initial VAD methods are mainly based on
traditional signal processing methods, these methods mainly extract some
acoustic features, and then set some simple thresholds to judge speech and
non-speech. The above-selected acoustic features generally can easily de-
termine the boundaries between speech and non-speech, conventional linear
spectrum frequency, zero-crossing rate, signal energy, correlation function
[11] wavelet [12] and pitch features [13] widely used in VAD methods based
on signal processing.

There is many typical signal processing based VAD methods, e. g., signal
energy-based method [11], VAD in G.729B [14], AMR VAD methods [15, 16],
empirical mode decomposition (EMD) based VAD method [17, 18], and mod-
ulation spectrum analysis (MSA) based VAD method [19, 20]. Most of them
have two-step processes: the first step is extracting acoustical features from
the observed signal and the second step is classifying speech or non-speech.
Although these features and classifications have excellent performance under
clean conditions, their performances are drastically reduced by interference
conditions.

With the application of statistics in various fields, e.g., image recognition
[21], natural language processing [22], recommender system [23], and speech
recognition [24], many scholars started using statistics to the VAD [25, 26,
27, 28, 29, 30] in the late 1990s. Statistical learning usually includes two
categories: supervised methods and unsupervised methods.

Both supervised and unsupervised can be used for VAD, some people use
supervised methods, and some people use unsupervised methods. Hidden
Markov model (HMM) [26] was first used in VAD as a supervised method.
The first step in this method is to extract acoustic features. Features that
can better distinguish between speech and non-speech are often used, e.g.,
energy, spectrogram, and wavelet always be used in this step. Lastly, by using
HMM to calculate the maximum posterior probability suitable for determin-
ing speech and non-speech we also could do VAD task. As for unsupervised
methods, clustering [31] is firstly used. The clustering-based method also
has the acoustic feature extracted and speech or non-speech to determine
two steps. This method determines the speech or non-speech by counting
the distribution of speech features. With the application of deep learning to
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(a) Noisy speech

(b) Clean speech

Figure 1.2: Example of noisy speech and clean speech

various fields, the VAD method based on deep learning greatly increases the
accuracy of previous methods.

1.2 Research issue

Although there are a variety of VAD methods, almost all the current meth-
ods are used for clean and stable noise environments. But there are all kinds
of noise in the real world, and these noises will seriously interfere with the
recognition effect of speech tasks with the increase of noise, the recognition
rate of automatic speech recognition will decrease rapidly. Figure 1.2 is a
comparison of noise and speech, as we can see noisy speech always disor-
ganized. The same with the automatic speech recognition, no matter what
concept and feature are used in the VAD task if above VAD methods are
used under noisy especially non-stationary noise (e.g., factory and babble)
and very low signal-to-noise ratio (SNR) conditions, performance is drasti-
cally decreased. Non-stationary noise and very low SNR conditions also are
problems that cannot be solved by industry and academia for the VAD task.

1.3 Research objective

The objective of this research is to propose a robust VAD method
that even in the non-stationary and low SNR noise conditions also
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could get a good performance.
To achieve these purposes, this study aims to find out what features and

underlying concepts can use to solve the above issue and then propose an ac-
curate and robust VAD method against environmental conditions. Since the
effects of noise have complexly a bad influence on VAD, the recent research
on VAD has to consider how to reduce these effects for detecting speech.
Thus, the research purpose in this study is to propose a VAD method that
could robustly and correctly detect speech and non-speech from the objec-
tive signal under noisy conditions even if noise could not be mathematically
modeled. This study definitely contributes the advanced technical support
for different speech applications, e.g., speech classification, speech recogni-
tion and speech enhancement in real environments. The proposed method
can also contribute a key technique for speech communications.

1.4 Organization of this research

The rest of this article is as follows:

• Literature Review (Chapter 2): In this chapter, we will give an overview
of voice activity detection, modulation transfer function and the re-
ceiver operating characteristic based global SNR.

• The previous method (Chapter 3): In this chapter, the previous mod-
ulation transfer function based VAD method is given a detail introduc-
tion.

• The proposed method (Chapter 4): We describe our modulation trans-
fer function based VAD method for using the CNN encoder-decoder
structure to calculation the global signal-to-noise ratio.

• Experimental and Results (Chapter 5): We give detail to the dataset
used in this research. We also carried out some objective measure-
ments to evaluate the correctness of the extracted sub-band signal and
temporal power envelope. Then we present the results of the objective
measurement and subjective test.

• Conclusion (Chapter 6): This chapter summarizes our work and we also
give out the contribution of our method. We also give out the remain-
ing work for our research, these remaining works are future research
direction.
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Chapter 2

Literature Review

As mentioned above, whether it is a statistical-based method or a signal-
processing-based method, almost all VAD algorithms have two steps: fea-
ture extraction and speech and non-speech decisions. This chapter mainly
introduces some typical VAD methods based on conventional signal process-
ing and statistic. The basic principles of deep learning in detail and details
the commonly used deep learning-based VAD methods also introduced in this
chapter. This research also points out some problems in previous VAD meth-
ods, and we hope to solve these problems to achieve robust VAD performance
through research.

2.1 Overview of voice activity detection

There are many kinds of VAD algorithms, and the most widely used methods
are based on signal processing and statistics. Among them, the method based
on signal processing mainly extracts some distinguishing speech features and
then sets the corresponding threshold to judge VAD. The statistical-based
detection method mainly extracts the characteristics suitable for distinguish-
ing between speech and non-speech and then determines VAD according to
the maximum posterior probability of speech or non-speech. But its adapt-
ability to noise has been the bottleneck of research. The detection algorithm
based on statistical characteristics can have a good suppression effect on spe-
cific noise, but its adaptability to different environments is not very good,
and there will be many problems of environment mismatch and data mis-
match. The traditional VAD algorithm flow in a noisy environment is shown
in Figure 2.1.

As shown in Figure 2.1, the first step of the VAD system is speech prepro-
cessing. To make the VAD system work well under noisy conditions, some
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Figure 2.1: Overview of a VAD system

research adds a speech enhancement preprocessing. Since a speech utterance
is time-varying, this makes the entire system difficult to process. In order to
process voice signals more easily, a frame operation is often used to divide
the speech into many small segments. We can think of these small pieces of
speech as time-invariant. To reduce the bad affect of additive noise on VAD,
the noise needs to be estimated.

The most common VAD system is mainly composed of feature extrac-
tion and speech/non-speech determination (classification). In the following
section, we will display some typical method of these two stages.

2.1.1 Feature extraction

The feature extraction module in the VAD algorithm is mainly divided ac-
cording to the characteristics of its speech. Among them, there are many
time-domain features of the speech such as the short-term zero-crossing
rate (ZC), autocorrelation, and logarithmic energy. There are also many
frequency-domain features of the speech. It mainly includes signal features
such as mel-frequency cepstrum coefficient (MFCC) features, spectral en-
tropy, and long-term spectral differences. At the same time, it also has mixed
features such as the combination of frequency domain and time domain, and
wavelet domain features. When detecting endpoints of speech, these features
play a decisive role in distinguishing between speech and noise. The extracted
features are expected to have the following characteristics: (1) this feature
must be easy to extract (2) this feature value must be able to effectively
determine speech and non-speech, or the difference between them is stable
and easy to distinguish (3) the voice characteristics expressed by this fea-
ture change with increasing noise not sensitive. Therefore, choosing proper
feature values has a great impact on VAD, we also will give an overview of
these features.

Short-time signal energy Speech signals are usually divided into un-
voiced and voiced. Voiced voices have short-term periodicity and energy
concentration. Unvoiced signals have noise-like characteristics, which are of-
ten mixed with noise and difficult to detect. Therefore, we can think that
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the short-term energy of the noise frame is much smaller than that of the
speech frame signal. The short-term energy calculation is as

En =
n+N−1∑
m=n

[y(m)w(n−m)]2 (2.1)

where w is window function of window length N . Energy-based features
cannot adapt to noisy environments.

Short-term average zero-crossing rate (STAZC) The amplitude of
the signal must pass through a zero value from the positive value to the
negative value, and also pass through a zero value from the negative value
to the positive value. The number of times a statistical signal crosses zero
in one second is called ZC. The speech waveform is divided into a plurality
of small speech waveform, and the zero-crossing rate of each segment of the
speech signal is statistically averaged, which is called a STAZC.

STAZC can be used to judge unvoiced or voiced speech in speech signal
analysis. It can be known from the speech generation model that when the
voiced sound is generated, the vocal cords vibrate. Although there are several
resonance peaks in the vocal tract, the glottal wave causes high-frequency
fading of the spectrum, so the voiced energy is concentrated in the range
of 3kHz. Conversely, in the unvoiced voice, the vocal cords do not vibrate,
and some parts of the channel block the airflow to generate white-like noise,
and its energy is concentrated in a higher frequency range. Since the low
frequency corresponds to the low ZC, and the high frequency corresponds
to the high ZC, there is a corresponding relationship between the ZC and
the unvoiced and voiced sounds of the speech. The short-term average ZC is
calculated as follows

zn =
∞∑

m=−∞

|sgn[y(m)]− sgn[y(m− 1)]| · w(n−m)

= |sgn[y(n)]− sgn[y(n− 1)]| ∗ w(n)

(2.2)

where ∗ is convolution calculation, w(n) is window function.
The STAZC of the voiced sound is high, and STAZC of the voiced sound

is low. However, there are overlapping areas between the two distributions,
so it is not easy to obtain the ideal VAD based on the STAZC to accurately
determine unvoiced and voiced sounds. Therefore, in practice, multiple fea-
tures parameters of speech are often used.

Mel-frequency cestrum coefficient (MFCC) MFCC is widely used
in many speech algorithms. It was originally conceived that the auditory
characteristics of the human ear should be taken into account in the speech
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features, and it has a non-linear correspondence relationship with the speech
frequency, which makes the calculation accuracy of MFCC decrease as the
frequency increases. Using this feature will discard the high-frequency infor-
mation and select select the low-frequency information of the speech. Per-
forming MFCC includes the following steps.

(1) Pre-emphasis: Speech signal passes a high-pass filter

H(Z) = 1− µZ−1 (2.3)

where µ is generally taken between 0.9-1.0 to improve high-frequency infor-
mation.

(2) Framing Because the audio signal is non-stationary, but many audio
processing technologies are based on a probability model, there is a require-
ment for the signal: the signal is a stationary signal. Otherwise, statistics
such as mean and variance are meaningless. Usually the audio signal is
framed to solve this problem. It is assumed that each frame is stable. Gen-
erally, 20-30ms is used as a frame, with an overlap rate of 25%, 50%, and
75%.

(3) Window function In order to avoid spectrum leakage, a Hamming
window is often used for processing.

(4) Mel-filter bank After the speech waveform passes through the Mel
filter bank, the conversion relationship between the linear frequency and the
Mel frequency is

fmel = 2595 · log

(
f

7000
+ 1

)
(2.4)

On the Mel-axis, P is equally divided, and the power spectrum is added
according to the triangular window on the Mel-axis, and the Mel sub-band
energy M1,M2, ...Mn can be obtained.

(5) Discrete cosine transforms After the information of each frequency
band is separated, Discrete cosine transforms (DCT) calculation can be used
to obtain the final features, the following function is DCT

Dk = 2

p−1∑
n=0

Mn+1 cos
2n+ 1

2P
kπ (2.5)

Since the MFCC feature takes into account the auditory characteristics of
the human ear and does not have any assumptions, this feature has good
speech recognition performance and noise immunity.

2.1.2 Speech/non-speech decision

(1) Threshold The threshold-based speech/non-speech determination method
is the simplest VAD method, and its voice and non-voice judgment methods
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mainly compare the extracted voice features with a set threshold and judge
VAD through preset rules.

If the thresholds are set properly, the algorithm can detect speech and
flying voices better. However, since the decision thresholds need to be set
based on experience, the thresholds play a important role in the entire VAD
task. Therefore, how to set an adaptive, accurate and reliable threshold
according to the additive noise environment is still a issue to be solved.

(2) Gaussian mixture model (GMM) The basic principle of the VAD
algorithm based on GMM [32] is to use for the features for each frame of
speech and noise waveform, and divide these features into several classes, as-
suming that classes are independent of each other, and between classes and
vectors. Then the vectors in each class are the same feature distribution, and
the normal distributions of multiple classes are added by a certain weight to
obtain the overall distribution of the speech and noise feature vectors. Next,
a speech model and a noise model are established based on the training aver-
age, covariance, and threshold parameters. The input signal of each frame is
determined by the principle of maximum posterior probability to determine
whether it is speech or noise, and the model parameters are updated appro-
priately. However, due to the problem of data mismatch and environment
mismatch in real life, this method does not produce good results in real life.

2.1.3 Smooth processing

In VAD detection, decision smoothing is a very important link. Its quality
directly affects the final detection result, because in most VAD detection,
the signal is framed by the frame, and then the endpoint is judged by frame.
In the process, we often encounter the problem of speech clipping, so that
the VAD algorithm must meet better robustness in a noisy environment.
Therefore, the VAD algorithm generally needs to add a decision smoothing
module. At the same time, we need to pay attention to the following prin-
ciples. First, because speech recognition and other algorithms have higher
requirements for the starting point of the speech, we generally need to push
the smoothing point forward for 0.2 seconds, and the cutting problem in
speech can be resolved by speech. The correlation between the length of the
silent sound and the corresponding number of frames is delayed accordingly,
and the problem existing at the end of the speech sentence can only be solved
by artificial settings. As a result, the speech at the end of the sentence is
confused with noise, which causes some errors. In addition, since the tran-
sient noise is relatively close in time to the speech segment of the speech, it
is difficult to distinguish them, and a better algorithm needs to be studied
to solve this problem.
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2.2 Deep neural network in voice activity de-

tection

2.2.1 Artificial neural network (ANN)

ANN [33] is a computational model that simulates the processing of infor-
mation by the human brain. In the past decade or so, with the continuous
deepening of the research work related to ANN, great progress has been
made. ANN has solved many practical problems which are difficult to be
solved by modern computers in many fields (e.g., pattern recognition and
automatic control).

In artificial neural networks, the smallest computing unit is a neuron.
It receives input parameters from other neurons and outputs the final result
after calculation. As shown in Figure 2.2, each input of neurons many weights
(w), and the input parameter also contains a very important parameter bias
(b). And each neuron will apply the following function to get the final output
t

t = f

(−→
W

′
A + b

)
(2.6)

where A = [a1, a2, ..., an] are inputs of neuron, W = [w1, w2, ..., wn] is the
weight of each synapse of the neuron. f is the activation function, which
is usually a non-linear function. In real life, many things are not linear
curves. Therefore, in order to better fit the calculation laws in life, non-
linear curves are needed to fit these real laws. This non-linear fitting process
is called activation, and this non-linear function is called activation function.
Common activation functions are as follows:

Sigmoid After the Sigmoid function, the result is a natural number in

t

an

an-1

a2

a1

wn-1

…

∑ f

Figure 2.2: Single neuron
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Inputs Outputs

Figure 2.3: Multilayer perceptron

the interval [0,1].

f(x) =
1

e−x + 1
(2.7)

Tanh The result obtained after Tanh is a value between [-1,1].

f(x) = −e
−x − ex

e−x + ex
(2.8)

ReLU After ReLU, the result is a number between [0,∞].

f(x) = max(0, x) (2.9)

In addition, a neuron cannot represent complex operations in real life.
In order to achieve more complex operations, we will use multiple layers of
network and multiple neurons to form a multilayer perceptron [34]. As shown
in Figure 2.3, this is the simplest three layers multilayer perceptron which
the last layer is the output layer, the begin layer is the input layer, and the
middle layer is hidden layer.

2.2.2 Deep neural network-based voice activity detec-
tion

The traditional VAD method performs poorly under the condition of the
low signal-to-noise ratio. As neural networks are gradually applied to speech
and image tasks, research has begun to use deep neural networks to per-
form VAD tasks to the improvement of VAD performance at low SNR. A
preferred choice for VAD is a deep neural network (DNN) [35], as shown
in Figure 2.4, which has been extensively explored in the past few years.
First, a DNN classification model is trained from a set of noisy speech rep-
resented by multiple speech features (e.g., Pitch, MFCC, LPC, and PLP).
Then, the features of noisy speech are added to the trained DNN model to
generate the maximum posterior probability of speech and non-speech. As
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Figure 2.4: DNN based VAD method

with other classification tasks, the loss function used by deep learning-based
VAD methods is cross-entropy (CE) which is calculated from the following
function

Loss = −[(1− y) · log(1− p) + y · log(p)] (2.10)

where y represent the ideal state, it is the true speech or non-speech. p is
the probability that the sample is predicted to be positive.

In addition to DNN [35, 36], convolutional neural networks (CNN) and
long short-term memory (LSTM) [38] will also promote the robustness of
VAD. But DNNs-based VAD methods are also very restrictive, it must have
massive datasets including these noise conditions, for the unknown environ-
ments need retraining model.

12



Chapter 3

Previous method

Morita et al. proposed a robust VAD method using the modulation transfer
function (MTF) based concept in previous studies [20]. We will give a brief
introduction to MTF-based method in this chapter. In addition, the key
global signal-to-speech (gSNR) estimation methods proposed in the previous
methods [39] will also be described in detail in this research.

3.1 Modulation transfer function based VAD

3.1.1 Modulation transfer function concept

The definition of MTF was proposed in the speech intelligibility prediction
task in room acoustics by Houtgast and Steeneken [40]. It is used as a mod-
ulation index that illustrates the relationship between the degree of modu-
lation of the temporal envelope between the input and output signals in the
enclosure. The input temporal power envelope and output temporal power
envelope could define as follow function

Input :I2i (1 + cos(2πfmt)) (3.1)

Output :I2o (1 +m(fm)) cos(2πfm(t− θ)) (3.2)

where Io and Ii are respectively the output of speech intensities and the input
of speech intensities, θ is the phase of modulation signal, fm is the frequency
of modulation signal, and m(fm) is the modulation index of the temporal
power envelope that also called MTF.

3.1.2 Speech signal modeling based on MTF

For the speech signal, if y(t), n(t), h(t), and x(t) respectively represent the
output speech, noise, room impulse response (RIR) and input speech in an
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acoustic room. For the MTF concept, the relation of y(t), n(t), h(t), and
x(t) can be represented as

y(t) = n(t) + x(t) ∗ h(t) (3.3)

n(t) = cn(t)en(t) (3.4)

h(t) = eh(t)ch(t) = ach(t) exp(−6.9t/TR) (3.5)

x(t) = cx(t)ex(t) (3.6)

where ex(t), eh(t), and en(t) respectively represent the temporal envelope of
x(t), h(t), and n(t). cx(t), ch(t), and cn(t) respectively represent the carriers
signal of x(t), h(t), and n(t) (gaussian white noise). Lastly, TR represent
reverberation time. Based on the theory of stochastic analysis, the following
formula is derived 〈

y2(t)
〉

=
〈
h2(t) ∗ x2(t)

〉
+
〈
n2(t)

〉
(3.7)

In this formula,〈cl(t), cl(t− τ)〉 = δ(τ) with cl(t) ∈ {cx, ch, cn}, ∗ is the con-
volution calculation, and 〈·〉 represents an ensemble average operation.

3.1.3 The MTF of complex conditions

The complex MTF can be simulated under noisy, reverberant and noisy re-
verberant environments. If there is just only reverberate, the complex MTF
is defined as the follow function

mR(fm) =

[
1 +

(
2πfm

TR
13.8

)2
]−1/2

(3.8)

where fm is the modulation frequency. The value of MTF is affected by TR.
The larger the TR, the smaller the MTF.

Like the reverberant environments, the complex MTF in the noisy con-
ditions is defined as

mN(fm) =
ex

2

ex
2 + en

2 =
1

1 + 10−
SNR
10

(3.9)

The value of MTF is affected by SNR. The larger the SNR, the larger the
MTF.

If we consider the effects of additive noise and RIR, MTF in the noisy
reverberant environment can be calculated as the following function

m(fm) = mR(fm) ·mN (fm) =
1√

1 +
(
2πfm

TR
13.8

) (
1 + 10−

SNR
10

) (3.10)
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As mentioned above, MTF is affected by three parameters: TR, SNR, and
fm. This means that the low-pass characteristic is produced by the RIR as
a function of TR, and the constant attenuation is produced by the additive
noise. In theory, if we know the final MTF, the effect of additive noise and
RIR on the noisy reverberant speech temporal envelope can be eliminated
by an inverse filter.

3.1.4 Power Envelope Restoration from Complex Con-
ditions

As mentioned in the previous section, if we know the MTF, we can get the
clean speech power envelope signal through an inverse filter. In this part, we
will introduce in detail the process of using the inverse filter to restore the
noisy reverberant speech temporal power envelope. Figure 3.1 is a detailed
flowchart of this process, it contains: (i) temporal power envelope feature
extraction (ii) temporal power envelope restoration under noisy conditions
(iii) temporal power envelope restoration under reverberant conditions.

The temporal power envelope feature is calculated by the following for-
mula

e2y = LPF
[
|y(t) + jHilbert(y(t))|2

]
(3.11)

where LPF 〈·〉 is low-pass filter which the cut-off frequency is 20Hz and
Hilbert 〈·〉 is Hilbert transform operation.

As for the temporal power envelope restoration under noisy conditions
stage to suppress additive noise effect. This step is calculated by the following
function

ê2x (t) = ē2y

(
1 +mN (fm) cos

(
2πfmt ·

1

mN (fm)

))
= e2y − ē2n (3.12)

where ē2y and ē2n respectively represent the mean power of e2y and e2n. ê2x (t)
is the denoised temporal power envelope. The key to this step is to find
the SNR. It is very difficult to get an accurate SNR. How to calculate the
accurate SNR in the next section will be explained in detail.

Noisy reverberant 
speech

SNR estimation

Power envelope 

extraction

Power envelope 

subtraction

Power envelope 

inverse filtering

Figure 3.1: Time power envelope recovery of complex conditions speech
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For the temporal power envelope restoration under reverberant conditions
stage to suppress reverberate effect. This step is calculated from

Ex(z) =
Ey
z

{
1− exp

(
− 13.8

TR · fs

)
z−1
}

(3.13)

where Ex(z) represent the z-transforms of dereverberated temporal power en-
velope, Ey(z) represent the z-transforms of e2y, and fs is the sample frequency.
a and TR are estimated as following function

T̂R = arg min

{
dTP (TR)

dTR

}
(3.14)

TP (TR) = min
(
arg min

∣∣θ − êx,n,TR(t)2
∣∣) (3.15)

â =

√
1/

∫ T

0

exp(−13.8t/T̂R)dt (3.16)

In this research, we assume that the environment is noisy. So, we just
only to do denoise for the noisy speech temporal power envelope can restore
the original clean speech temporal power envelope.

3.2 Sub-band based gSNR estimation

To eliminate the effect of noise signal, we should calculate the accurate global
signal-to-noise ratio (gSNR). Because the additive noise and clean speech
components are mixed together, estimating the gSNR in the original time
domain signal is very difficult. In previous research, Morita et al. proposed a
robust gSNR estimation method [39], which mainly includes sub-band speech
signal processing, VAD, and threshold optimization.

The sub-band-based processing method makes speech and noise process-
ing more accurate than global full-band processing. In addition, in previous
studies, a fixed threshold is often used to do a final decision of the speech
or non-speech parts, but this judgment is not reasonable because different
sentences may be in different noise environments. In this study, an optimal
threshold is designed to detect speech and noise (for example, different signal-
to-noise ratios) under all test conditions to solve the above problems. The
optimal threshold is based on minimizing the root mean square (RMS) of the
false acceptance rate (FAR) and false rejection rate (FRR) in each sub-band.
Finally, gSNR is obtained by calculating the speech energy and noise energy
of each sub-band and then calculating the energy ratio of speech and noise.
The detailed block of this method will be described which contains sub-band
filter design and how to estimate the threshold. Figure 3.2 is the flowchart
of this method.
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Figure 3.2: Diagram of signal flow with sub-band.

3.2.1 gSNR definition

gSNR refers to the ratio of speech to noise in a speech signal. The speech
signal here refers to a signal containing only the additive noise and clean
speech refers to an irregular extra signal that does not exist in the original
target speech signal generated after a long distance or interference from a
recording device. We usually calculate gSNR with the following formula

gSNR = 10 log10

(
PS
PN

)
(3.17)

where PS and PN respectively represent the target speech waveform and
interference noise waveform. Because the energy of speech and noise is not
known from the observed noisy speech waveform, they must be estimated
based on the detected speech and non-speech period.

3.2.2 Filter-bank design

It is not easy to distinguish noise from speech using the global full-band
method. To overcome this, in this study we use a multi-sub-band approach.
Noise has different distributions at different frequencies. At high gSNR, be-
cause the noise is mostly distributed at high frequencies, the high-frequency
components of the sub-bands can be used to easily distinguish the noise. At
low gSNR, it is difficult to calculate the energy of speech and noise from
noisy speech. The use of sub-bands can process the noise into frequency
bands, which makes it easier to judge speech and non-speech parts. Separat-
ing the noisy speech into sub-bands of different frequencies can improve the
discrimination between noise and speech.
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As shown in Figure 3.2., in this study, constant-bandwidth based filter-
bank CBFB was used to split the original speech signal into different sub-
bands. The CBFB filter-bank consists of a band-pass filter with constant
bandwidth. In this research, the bandwidth frequency is set as 100Hz. Since
the speech sampling rate is 8,000 Hz, the number of bandwidth filters is
40. Finally, the original noisy speech is split into 40 sub-bands. Lately,
by comparing the energy of the sub-band and the estimated threshold, the
speech and non-speech parts will be detected from each sub-band separately.
The resulting sub-band VAD will be used to calculate its clean speech energy
and noise energy to obtain the gSNR.

3.2.3 Threshold decision

After sub-band processing, we get the sub-band speech signal. Since the
proportion of speech and noise energy is different in every sub-band, this
research detect speech and noise periods in each sub-band use a given power
level threshold for each of them. Different sub-bands and different utterances
have different thresholds. These decision thresholds are designed based on
minimizing the RMS values of FAR and FRR on the receiver operating char-
acteristic (ROC) curve. The local speech energy and noise energy could be
accurately estimated by the sub-band FAR and FRR.

The FAR(α) and FRR(α) of different sub-bands are determined by the
VAD of the selected threshold in this sub-band. Use these FAR(α) and
FRR(α) pairs could further get a ROC curve. In order to more clearly
represent these sub-band parameters, these sub-band thresholds could be
rewritten as k and the sub-band FAR(α) and FRR(α) could be rewritten as
FAR(αk) and FRR(αk). This study uses a noisy data corpus to train under
different gSNR conditions and noise types to find the most optimal FAR(αk)
and FRR(αk) pairs. The objective function of finding the optimal sub-band
threshold is determined by minimizing the RMS(αk) obtained from FAR(αk)
and FRR(αk) which could be written as

α∗k = arg min RMS(αk) (3.18)

RMS(αk) =

√
FAR2(αk) + FRR2(αk)

2
(3.19)

After obtaining the optimal sub-band thresholds at all gSNRs, the sub-
band threshold-gSNR curve is fitted, As shown in Figure 3.3. To better fit
the sub-band gSNR-threshold curve, this study used a fourth-order Sigmoid
function. In the fitting function, the minimum mean square error of the best
threshold value and the threshold value obtained under the true gSNR are
used as the fitting criterion.
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Figure 3.3: The estimation of threshold-SNR curve

3.2.4 Power calculation use for sub-band threshold

The corresponding sub-band VAD can be obtained through the sub-band
threshold. The final gSNR is calculated by the following formula

ˆgSNR = 10 log10

(∑K
k=1 PSTk∑K
k=1 PNTk

)
(3.20)

PNTk =

∫ T

0

PNkHSk(t)dt (3.21)

PSTk =

∫ T

0

PSNkHSk(t)dt−
∫ T

0

PNkHSk(t)dt (3.22)

where PNTk and PSTk are the energy of the sub-band noise and speech, respec-
tively. K is the sub-bands number, Hsk is the VAD decision under different
sub-band.

In addition to the above process, this study also used an iterative ap-
proach to adjust the estimated gSNR. In this loop, the estimated SNR is fed
to the threshold decision phase of the VAD. Then, reset the decision thresh-
old of VAD for the gSNR estimate in the next iterations. After multiple
iteration, the estimated gSNR is converged to the convergence point of the
gSNR of the loop based on the threshold-gSNR curve.
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Chapter 4

Proposed Method

The utility of the MTF concept for the VAD task has been proposed to
improve robustness against noisy conditions [20]. In this method, the con-
cept of MTF has been used to reduce the bad affect of additive noise on
the target speech. However, the robustness of the method decreases under
realistic conditions in which non-stationary and low SNR noise conditions
appear. Besides, methods based on deep neural networks (DNNs) have been
proposed to directly learn nonlinear functions to do VAD as an end-to-end
model [35]. However, the DNNs-based method must have massive datasets
including these noises. If the speech collected in the real life is not included
in these environments, the model needs to be retrained. This research aims
to solve the above two issues by incorporating the MTF concept into DNNs
architecture. Specifically, in order to solve the MTF based method decreases
under realistic conditions, we make efforts to the exploration of improving
gSNR accurate which use for the CNN encoder-decoder. Then the estimated
gSNR is used to do a restoration of the temporal power envelope. This
chapter will display the overall framework of the proposed method and then
explain the gSNR estimation method based on CNN encoder-decoder in de-
tail.

4.1 Framework for proposed VAD method

Similar to Morita’s method, This research also propose a temporal power
envelope based VAD method. To achieve robust VAD, we must remove the
bad affect of noise on the power envelope. In this study, we propose a method
for restoring envelope features use for the MTF to release the effect of additive
noise under noisy environments for speech processing.

As shown in Figure 4.1, the proposed framework have the envelope fea-
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Figure 4.1: Framework for proposed VAD method.

ture extraction, gSNR estimation, the temporal power envelope restoration
and the speech/non-speech decision step. In the previous work, a similar
framework has already used for achieving a robust VAD performance under
reverberant environments. to remove the bad affect of additive noise, we
have done a envelope subtraction calculation. The key gSNR will be esti-
mated to do power envelope subtraction. Finally, by using a threshold the
speech/non-speech will be decided. In the following section, we will give a
detail introduction to the proposed method.

4.2 Restoration of the temporal power enve-

lope

For the proposed method, the first step is extract temporal power envelope
feature. The power envelope feature extracted from the following function

e2y(t) = LPF
[
|y(t) + jHilbert(y(t))|2

]
(4.1)

where LPF[·] represent the low pass filter of cut-off frequency is 20Hz and
Hilbert[·] represent Hilbert transform.

If there is just only additive noise, from the last chapter the MTF could
be represented as

mN =
1

1 + 10−
gSNR

10

(4.2)

e2y(t) = e2x(t) + e2y(t) · (1−mN) (4.3)

where e2x represent the clean speech power envelope. How to estimate the
gSNR will be introduced in the following paper. We can design an inverse
filter corresponding to mN to remove the bad affect of additive noise on the
noisy speech temporal envelope feature. The restoration of the temporal
power envelope can be calculated as

ê2x(t) = e2y(t)− e2y(t) · (1−mN) (4.4)

where ê2x(t) is the envelope feature by remove the additive noise bad affect.
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4.3 Sub-band based dynamic SNR estimation

method

To eliminate the bad affect of additive noise, we should estimate the gSNR
in the Equation 4.3. As shown in the last section, Morita et al. proposed
a robust gSNR detection method in the sub-band speech signal [39]. But
with the increase of noise (decreased SNR), because VAD cannot usually be
accurately judged by a single threshold in the whole sentence, this method
is not robust at low SNR. Many people have proposed DNNs based end-
to-end gSNR detection methods [41, 42], end-to-end based methods usually
extract acoustic features of one utterance and then input all of them to a
neural network to predict gSNR. This method often has the problem of data
mismatch or environment mismatch. In addition, the end-to-end method
requires that the input utterance have the same shape. If they are different,
you need to do pooling and speech cutting to make all sentences the same
length. This kind of processing method will cause the problem of out of
memory and cannot adapt to all applications.

To solve the above problems, we propose an indirect gSNR estimation
method. Because all additive noise and clean speech components are mixed
in one noisy speech, it is not easy to calculate the gSNR in the original
speech waveform. In this research, we use for the sub-band signal process-
ing method. The proposed gSNR estimation method mainly includes sub-
band speech signal processing, sub-band threshold calculation unit, sub-band
power calculation unit and gSNR calculation unit. The sub-band-based pro-
cessing method makes speech and noise processing more accurate than global
full-band processing. In addition, in previous studies, a static threshold often
does the final VAD decision, but this judgment is not reasonable because dif-
ferent speech samples may be in different threshold or different noise ratios.
In this study, based on the sub-band and CNN encoder-decoder structure we
propose a gSNR estimation method, this method could estimate the noise
ratio of different sub-band speech signal sample. Figure 4.2 is a diagram of
the proposed method.

4.3.1 Sub-band processing design

It is not easy to distinguish noise from noisy speech using the global full-
band method. To overcome this, in this study we use a multi-sub-band
approach. Noise has different distributions at different frequencies. At high
gSNR conditions, because the noise is mostly distributed at high frequencies,
the high-frequency components of the sub-bands can be used to easily distin-
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Figure 4.2: Block diagram of signal flow with proposed gSNR method.

guish the noise. At low gSNR conditions, it is difficult to estimate the energy
of speech and noise from noisy speech. The use of sub-bands can process the
noise into frequency bands, which makes it easier to determine speech and
noise parts. Separating the noisy speech into sub-bands of different frequen-
cies can improve the discrimination between noise and speech.

As shown in Figure 4.2, in this study, constant-bandwidth based filter-
bank CBFB was used to split the original speech waveform into different
sub-bands. The CBFB filter-bank consists of a band-pass filter with constant
bandwidth. In this research, the bandwidth frequency is set as 200Hz. Since
the speech downsamples to 8,000 Hz, the number of bandwidth filters is 20.
Finally, the original speech is split into 20 sub-bands. This process could be
represented in the following function

[y1(t), y2(t), ..., yn(t)] = CBFB(y(t)) (4.5)

where CBFB[·] is the constant bandwidth filter-bank and [y1(t), y2(t), ..., yn(t)]
is the sub-band speech signal.

Lately, by comparing the energy of the sub-band and the estimated
threshold, the speech and non-speech parts will be detected from each sub-
band separately. The sub-band speech signal energy could be computed as
the following function

[E1(t), E2(t), ..., En(t)] = [|y1(t)|2 , |y2(t)|2 , ..., |yn(t)|2] (4.6)

where E1(t), E2(t), ..., En(t) is the sub-band speech energy. The resulting
sub-band VAD will be used to calculate its clean speech energy and noise
energy to obtain the gSNR.

4.3.2 Threshold calculation network

After got the sub-band speech signal is the sub-band threshold calculation
stage. Figure 4.3 is the diagram of the proposed sub-band threshold calcula-
tion network. First is the threshold calculation network (ThCNet) training
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Figure 4.3: The diagram of proposed sub-band threshold calculation.

stage, the ThCNet will be trained from the noisy speech sub-band waveform
energy and sub-band noise ratio. Then the well trained ThCNet is fed with
the features of noisy speech sub-band speech signal energy for the generation
of the sub-band noise ratio. Afterward, the sub-band noisy speech energy
is multiplied by the corresponding sub-band noise ratio to get the sub-band
threshold.

The context of the speech signal is related, how to correlate the corre-
lation between these contexts can improve the accuracy of the model. To
exploit more accurate context information from the given sub-band speech
signal energy, CNN is used in the ThCNet. ThCNet can fully explore the
characteristics of the sub-band signal, which will greatly promote the accu-
racy of the sub-band noise ratio, then get an accurate sub-band threshold.
Unlike Morita’s method, this method makes full use of the advantages of
nonlinear learning of neural networks to learn a dynamic threshold learn-
ing method. It will let our proposed method more robust under low SNR
conditions. In addition, since the model based on deep learning is trained
under many different kinds of noise, the proposed method can adapt to many
different kinds of noise.

Formally, E = E1(t), E2(t), ..., En(t) represents the noisy speech sub-band
energy and R = r1, r2, ..., rn represents its corresponding sub-band noise ratio
which is calculated by the following function

[r1, r2, ..., rn] =

[∫∞
0
EN1(t)dt∫∞

0
E1(t)dt

,

∫∞
0
EN2(t)dt∫∞

0
E2(t)dt

, ...,

∫∞
0
ENn(t)dt∫∞

0
En(t)dt

]
(4.7)

[EN1(t), EN2(t), ..., ENn(t)] =
[
|n1(t)|2 , |n2(t)|2 , ..., |nn(t)|2

]
(4.8)

where nn(t) is the sub-band waveform of noise, ENn(t) is the the sub-band
noise waveform energy. Given a training set of sub-band noisy and sub-band
noise ratio, the problem of sub-band noise ratio estimation is formalized as
finding a mapping that maps a noisy speech energy to a noise ratio gθ(E).
Then the following optimization problem is solved for obtaining the best
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model parameter θ

θ̂ = arg min
n∑
i=1

‖gθ(E)−R‖2 (4.9)

where n is the sub-band number. Under this setting, ThCNet is designed as
mapping function gθ(E) for noise ratio estimation. As shown in the Figure
4.4, it is mainly making up by CNN encoder-decoder, post-mapping and the
output composition.

CNN encoder-decoder component To exploit a more accurate lo-
cal context pattern from given sub-band speech energy, the CNN encoder-
decoder is utilized in ThCNet. Not just only use for the fully connected
layer, we use another convolutional network structure which name is the
CNN encoder-decoder (C-ED) network. As shown in Figure 4.4, C-ED is
made up of convolution, batch normalization, and ReLU layer. Because the
pooling layer always leads to the loss of information, there is no pooling and
upsampling layer in the C-ED. The number of encoder and decoder filters
is corresponding, the number of encoder filters gradually increases, and the
number of decoder filters gradually decreases. To do the generalization abil-
ity improvement of the model, we set different convolution kernels in the
CNN model to learn different context pattern. By the C-ED, the hidden
representation V (E) of target sub-band noise ratio is generated as

V (E) = CED(E) (4.10)

Post-mapping component In order to estimate noise more accurately, a
fully connected layer-based network is used in the ThCNet. Through deeper
non-linear operations, the network can predict more detailed information,
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which is conducive to the learning of the sub-band noise ratio. The post-
mapping network consists of two layers full connected layers in which the
activation function is ReLU. By the post mapping network, the hidden rep-
resentation of target sub-band noise ratio is generated as

M(E) = ReLU(W2(ReLU(W1V (E) + b1)) + b2) (4.11)

ReLU(x) = max(0, x) (4.12)

Output composition In this layer by a Sigmoid function will let the output
noise ratio [r̂1, r̂2, ..., r̂n] to the around 0 to 1

[r̂1, r̂2, ..., r̂n] = Sigmoid(W3M(E) + b3) (4.13)

Sigmoid(x) =
1

1 + e−x
(4.14)

In the threshold estimation stage, we use for the following equation to
calculate the threshold

[T1, T2, ..., Tn] =

[
r̂1

∫ ∞
0

E1(t)dt, r̂2

∫ ∞
0

E2(t)dt, ..., r̂n

∫ ∞
0

En(t)dt

]
(4.15)

4.3.3 gSNR calculation

The power of a speech waveform in the time domain is calculated from the
summation of power from all sub-bands. Since threshold has been separately
designed in each sub-band, the estimates of noise and speech powers are much
more accurate than direct estimates in the time domain. The final gSNR is
obtained from the power fusion of all sub-bands as

ˆgSNR = 10 log10

(∑N
k=1 PSTk∑N
k=1 PNTk

)
(4.16)

PNTk =

∑LN
i=1 T

i
k

LN
· L(r̂k > P ) (4.17)

PSTk =
LN∑
i=1

Ei
k −

∑LN
i=1 T

i
k

LN
· L (4.18)

where PNTk and PSTk are the total power of additive noise and clean speech
in the k-th sub-band, LN is the number of thresholds T ik when the sub-band
noise ratio bigger than the parameter P . L is the total length of utterance.

Using a C-ED structure can fully learn the relationship between contexts
in speech features, making acoustic feature learning more fully. In addition,
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since the model at the same time inputs different types of noisy speech into
the network for training, the proposed method can adapt to thresholds under
a variety of different types of noise. Compared with Morita’s method, it
is not necessary to adjust the model according to the type of noise. In
addition, since the proposed method can dynamically learn the threshold
in each utterance. Because the Morita’s static threshold method based on
simple ROC curve only seeks the average value of VAD accuracy suitable
for the whole utterance, it cannot fully use the information of the acoustic
feature itself. Therefore, compared with the method proposed in the previous
method, better gSNR performance can be obtained. Substituting this better
gSNR into Equation 4.3 can better restore the temporal power envelope of
speech, and further get better VAD performance.
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Chapter 5

Evaluation

5.1 Dataset

To do the final evaluation, we use for the speech data of AURORA-2J [43] and
NOISEX-92 [44] dataset. Inthe training dataset, 8440 clean speech utterances
of AURORA-2J were selected as clean. White, pink, factory and babble noise
in NOISEX-92 were used as background noise like Table 5.1. Noisy speech
signals were artificially created as

y(t) = n(t) + x(t) (5.1)

where y(t) is noisy speech, n(t) is the background noise, and x(t) is the clean
speech signal. Noisy speech signals with SNRs of 20, 15, 10, 5, 0, -5, and -10
were generated like the Table 5.2. These clean and noisy speech signals were
then used to find the SNR design. The sampling frequency was 8 kHz, the
bandwidth of sub-bands was 200 Hz, and the number of sub-bands was 20.

Table 5.1: Noise type used in the experiments

Noise type

White Pink Factory Babble

Table 5.2: SNR type used in the experiments

SNR

20 dB 15 dB 10 dB 5 dB 0 dB −5 dB −10 dB
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5.2 Experimental setup

Our gSNR calculation is finally used to do the noisy speech temporal power
envelope denoise. Tensorflow is used to train our ThCNet with a CNN
encoder-decoder model and the sub-band energy features. All of the hid-
den layer use for the ReLU as the activation function. We used the Adam
algorithm [45] as optimizer. The convolution layer filters number is 21, 40,
64, 128, 64, 40, 21 and the kernel size is set as 2, 3, 5, 7, 5, 3, 2. In the
Mapping-net, the hidden size is set as 512. Lastly, the batch size is set to 64,
the learning rate of our method is set to 0.01.

The evaluation criterion of gSNR is the mean absolute error (MAE) for
the estimated gSNR and the real gSNR, the mean estimated gSNR of every
utterance also is used to do gSNR estimation.

MAE =
1

N

N∑
i=1

|Gi −Ri| (5.2)

MEAN =
1

N

N∑
i=1

Gi (5.3)

where N is the number of test dataset (1001), G is calculated gSNR, and R
is real gSNR. The MAE lower, the better gSNR performed. To evaluate the
performance of VAD, the RMS (%) of FRR (%) and FAR (%) is used as

RMS =

√
FRR2 + FAR2

2
(5.4)

and a smaller RMS indicates better results.

5.3 gSNR results and analysis

Figure 5.1 is the average value of estimated gSNR and previous gSNR esti-
mation methods under different noise environments and different SNR. The
analysis results display that the C-ED based method is closer to the ideal
gSNR than the method proposed by Morita’s gSNR method. The table re-
veal that the estimated gSNR of Morita’s method is generally higher than the
ideal value in a low SNR environment. This is because the gSNR method
of Morita uses a threshold to determine VAD, but it is not reasonable to
use only the threshold to judge VAD, because the speech and non-speech
waveform are very close in a low SNR environment. If just only use a fixed
threshold to judge speech and non-speech for an utterance, the VAD results

29



-15

-10

-5

0

5

10

15

20

25

20 15 10 5 0 -5 -10

E
st

im
at

ed
 S

N
R

 (
d

B
)

Working conditions (dB)

(b) Mean of gSNR under pink noise(a) Mean of gSNR under white noise

(c) Mean of gSNR under factory noise

-15

-10

-5

0

5

10

15

20

25

20 15 10 5 0 -5 -10

E
s
t
i
m
a
t
e
d
 S
N
R
 (
d
B
)

Working conditions (dB)
-15

-10

-5

0

5

10

15

20

25

20 15 10 5 0 -5 -10

E
st

im
at

ed
 S

N
R

 (
d

B
)

Working conditions (dB)

-15

-10

-5

0

5

10

15

20

25

20 15 10 5 0 -5 -10

E
st

im
at

ed
 S

N
R

 (
d

B
)

Working conditions (dB)

Ideal Proposed Previous

(d) Mean of gSNR under babble noise

Figure 5.1: Mean of estimated gSNR under different noise conditions

judged at low SNR will tend to be almost random. Our proposed method
uses deep learning to learn a dynamic noise ratio in a short speech frame.
Deep learning can learn this nonlinear relationship well. This makes the
learned threshold dynamic rather than static in an utterance. Therefore, the
proposed method has a significant performance improvement over Morita’s
method, it is nearly close to ideal values especially with white and pink noise
conditions. For some non-stationary noise, the proposed method can achieve
the ideal value when the SNR is greater than 0. When the SNR is less than 0,
although the result is greatly improved compared with the previous method,
the non-stationary noise is irregular due to the change in utterance, which
is very similar to real speech. The estimation of gSNR under non-stationary
noise is still a difficult problem.

In order to detect the proposed method more fairly, as shown in Figure
5.2, we also use MAE as the detection index. Using MAE can more ob-
jectively evaluate the performance of a single sample. The mean is more
representative of the performance of the overall sample. From the MAE
analysis, it reveal that the C-ED based method has a smaller value than the
Morita’s method. This shows that the performance of the proposed method
is more stable than that of Morita’s method, which will enable the proposed
method to adapt to more and more complex environments. The proposed
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Figure 5.2: MAE of gSNR under different noise conditions

method has stable performance under white noise and pink noise, but under
non-stationary noise, although it has been greatly improved compared to the
Morita’s method, its MAE size is still large. This shows that the results
under unstable noise conditions are unstable. This is because the proposed
C-ED based method calculates the average value of the energy of a speech
segment below a certain threshold and then uses the total energy and its
subtraction to obtain the energy of its speech segment. The energy distribu-
tion of non-stationary noise in a speech is unstable, this will make the result
not ideal. The use of sub-band processing can alleviate this problem to some
extent, but how to improve performance under non-steady-state noise is still
quite difficult.

5.4 VAD results and analysis

Figure 5.3 shows the VAD results under white noise. The results revealed
that the previous method has a performance degradation in the low SNR
environments. Although the performance of the proposed method decreases
in a low SNR environment, the VAD results of the proposed C-ED based
VAD method are significantly improved compared to previous methods due
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Figure 5.3: VAD Results for accuracy of RMS(%) under white noise

to the very accurate gSNR estimation of the C-ED based VAD proposed
method. The accuracy of the proposed C-ED based VAD method is still
maintained at about 95% RMS at a very low SNR.

Figure 5.4 shows the results of VAD under pink noise. The results re-
veal that the performance of the previous method or the proposed method
is reduced under pink noise. This is because pink noise has some unstable
phonemes. In addition, the previous method has significant performance
degradation in a low SNR environment. Due to the very accurate gSNR
estimation of the proposed C-ED based method, the VAD results are signifi-
cantly improved compared to previous methods. The proposed C-ED based
VAD method is still maintained at about 90% RMS at very low SNR.

Figure 5.5 shows the results of VAD under factory noise. The results
reveal that the performance of both the previous method and the proposed
method is reduced under the factory noise. This is because factory noise is
an unstable noise. As in the case of white noise and pink noise, the previous
method has a significant performance degradation in low SNR environments.
Due to the very accurate gSNR estimation of the proposed method, the VAD
results are significantly improved compared to previous methods. Since the
factory is non-stationary noise, its energy characteristics are very similar to
speech, so VAD detection under this condition is very difficult. The differ-
ence between white and pink in this environment is that the latter has a
more average energy distribution, which makes the estimation of gSNR more
difficult than the unstable factory noise. This is an important reason why
the performance of both the previous method and the proposed method is
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Figure 5.4: VAD Results for accuracy of RMS(%) under pink noise
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Figure 5.5: VAD Results for accuracy of RMS(%) under factory noise
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Figure 5.6: VAD Results for accuracy of RMS(%) under babble noise

rapidly degraded.
Figure 5.6 shows the results of VAD under babble noise. This result is

similar to that in the factory environment. This is because babble noise is
also unstable noise. How to solve the VAD problem in low SNR and unstable
noise environment is still very difficult.
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Chapter 6

Conclusion

6.1 Summary

This research proposed a sub-band based dynamic gSNR estimation method
used convolutional neural network encoder-decoder for the power envelope
restoration. Further, this restored power envelope was used to do final
speech/non-speech decision. Comparing with the previous modulation trans-
fer function based voice activity detection method our method could work
better under non-stationary noise and low SNR environments.

The advantage of the proposed method has two-point. Sub-band-based
speech signal processing can process speech and noise signals in different fre-
quency bands to obtain a robust gSNR, and if changing the environment
does not require readjusting model parameters. Secondly, this method out-
performed the conventional sub-band based VAD in terms of accuracy.

In conclusion, a voice activity detection system utilizing the convolutional
neural network encoder-decoder model has been proved to achieve better
performance compared to the previous modulation transfer function based
method.

6.2 Contribution

The voice activity detection system utilizing a convolutional neural network
encoder-decoder model was proposed in this research. The proposed CNN
encoder-decoder based VAD method can improve the accuracy of speech/non-
speech detection similar to the previous method using the modulation trans-
fer function. Although there was still much room for performance improve-
ment, this research put the first step toward the realization of incorporating
deep neural networks into modulation transfer function concept. Moreover,
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this will further provide key technical support for not only various speech
applications but also man-machine speech communications under real envi-
ronmental conditions.

6.3 Remaining works

• Under a very low SNR babble noise environment, the gSNR estimation
is still a problem, it will further affect the voice activity detection per-
formance. Therefore, using what feature and concept could solve the
above problem is still a direction in the future.

• The reverberant speech also has a bad effect on the VAD, how to elim-
inate the reverberant speech effect also another direction in the future.

• Proposed gSNR could predict very well under low gSNR. In future
work, I would use it in some other speech signal processing method,
e.g. Wiener filter.
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