JAIST Repository

https://dspace.jaist.ac.jp/

Title	A study on relationships between some subrecursive function classes and complexity classes [Project Paper]
Author(s)	松山,大輔
Citation	
Issue Date	2020-03
Туре	Thesis or Dissertation
Text version	author
URL	http://hdl.handle.net/10119/16448
Rights	
Description	Supervisor:石原 哉, 先端科学技術研究科, 修士(情 報科学)

Japan Advanced Institute of Science and Technology

A study on relationships between some subrecursive function classes and complexity classes

1630025 Daisuke Matsuyama

In computer science, various classes of computational complexity have been studied, as represented by the class \mathcal{F} PTIME of polynomial time computable functions, and there are many unsolved problems such as the P vs NP problem. On the other hand, in computability theory, classes of subrecursive functions has been studied for a long time. Although many complexity classes are contained in the class of elementary functions \mathcal{E} , little research has been done on relationship between classes of subrecursive functions smaller than the class \mathcal{E} and complexity classes. For example, the relationship between the class \mathcal{E}^2 or the class \mathcal{M}^2 and the class \mathcal{F} PTIME of polynomial time computable functions is not known at all, where the class \mathcal{E}^2 is the second class in the Grzegorczyk hierarchy using bounded recursion, and the class \mathcal{M}^2 is the second class in the hierarchy obtained by replacing bounded recursion with bounded minimisation.

In this thesis, we try to elucidate the relationship between the second class \mathcal{E}^2 in the Grzegorczyk hierarchy and the class $\mathcal{F}PTIME$ of polynomial time computable functions. We define a class of functions \mathcal{E}^{2+} . The class \mathcal{E}^{2+} is an extension of the second class \mathcal{E}^2 in the Grzegorczyk hierarchy to which course-of-values recursion whose values are bounded by 1 is added. And we also define simultaneiously and recursively two classes of functions $\mathcal{C}_{\mathbb{N}}$ and $\mathcal{C}_{\mathbb{W}}$. Functions in the class $\mathcal{C}_{\mathbb{N}}$ take two data types as their arguments, natural numbers and binary strings, and their values are natural numbers, and functions in the class $\mathcal{C}_{\mathbb{W}}$ take the two data types as their arguments, and their values are binary strings. Then, we associate functions in \mathcal{E}^{2+} with functions in $\mathcal{C}_{\mathbb{N}}$, and also associate functions in $\mathcal{F}PTIME$ with functions in $\mathcal{C}_{\mathbb{W}}$. Using these relations, with respect to their set classes \mathcal{E}^{2+}_* and PTIME, we show that PTIME is contained in \mathcal{E}^{2+}_* .

Furthermore, we try to elucidate the relationship between the second class \mathcal{M}^2 in the hierarchy of bounded minimisation and the function class $\mathcal{F}LH$ of the logtime hierarchy. We define simultaneiously and recursively two classes of functions $\mathcal{D}_{\mathbb{N}}$ and $\mathcal{D}_{\mathbb{W}}$. Functions in the class $\mathcal{D}_{\mathbb{N}}$ take two data types as their arguments, natural numbers and binary strings, and their values are natural numbers, and functions in the class $\mathcal{D}_{\mathbb{W}}$ take the two data types as their arguments, and their values are binary strings. Then, we associate functions in \mathcal{M}^2 with functions in $\mathcal{D}_{\mathbb{N}}$, and also associate functions in $\mathcal{F}LH$ with functions in $\mathcal{D}_{\mathbb{W}}$. Using these relations, with respect to their set classes \mathcal{M}^2_* and LH, we show that LH is contained in \mathcal{M}^2_* .

Keywords: Subrecursion; Grzegorczyk hierarchy; Implicit computational complexity; Complexity classes; Polynomial-time functions; Logtime hierarchy; Function algebra.