
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

A study on relationships between some

subrecursive function classes and complexity

classes [Project Paper]

Author(s) 松山, 大輔

Citation

Issue Date 2020-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/16448

Rights

Description
Supervisor:石原　哉, 先端科学技術研究科, 修士（情

報科学）

Master’s Research Project Report

A study on relationships between some subrecursive
function classes and complexity classes

Daisuke Matsuyama

Supervisor Hajime Ishihara

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

March, 2020

Abstract

In computer science, various classes of computational complexity have
been studied, as represented by the class FPTIME of polynomial time com-
putable functions, and there are many unsolved problems such as the P vs NP
problem. On the other hand, in computability theory, classes of subrecursive
functions has been studied for a long time. Although many complexity classes
are contained in the class of elementary functions E , little research has been
done on relationship between classes of subrecursive functions smaller than
the class E and complexity classes. For example, the relationship between
the class E2 or the classM2 and the class FPTIME of polynomial time com-
putable functions is not known at all, where the class E2 is the second class
in the Grzegorczyk hierarchy using bounded recursion, and the class M2 is
the second class in the hierarchy obtained by replacing bounded recursion
with bounded minimisation.

In this thesis, we try to elucidate the relationship between the second
class E2 in the Grzegorczyk hierarchy and the class FPTIME of polynomial
time computable functions. We define a class of functions E2+. The class
E2+ is an extension of the second class E2 in the Grzegorczyk hierarchy to
which course-of-values recursion whose values are bounded by 1 is added.
And we also define simultaneiously and recursively two classes of functions
CN and CW. Functions in the class CN take two data types as their arguments,
natural numbers and binary strings, and their values are natural numbers,
and functions in the class CW take the two data types as their arguments,
and their values are binary strings. Then, we associate functions in E2+ with
functions in CN, and also associate functions in FPTIME with functions in
CW. Using these relations, with respect to their set classes E2+∗ and PTIME,
we show that PTIME is contained in E2+∗ .

Furthermore, we try to elucidate the relationship between the second class
M2 in the hierarchy of bounded minimisation and the function class FLH of
the logtime hierarchy. We define simultaneiously and recursively two classes
of functions DN and DW. Functions in the class DN take two data types as
their arguments, natural numbers and binary strings, and their values are
natural numbers, and functions in the class DW take the two data types as
their arguments, and their values are binary strings. Then, we associate
functions in M2 with functions in DN, and also associate functions in FLH

with functions in DW. Using these relations, with respect to their set classes
M2

∗ and LH, we show that LH is contained inM2
∗.

Keywords: Subrecursion; Grzegorczyk hierarchy; Implicit computational com-
plexity; Complexity classes; Polynomial-time functions; Logtime hierarchy;
Function algebra.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Research purpose . 1
1.3 Methodology . 1
1.4 Organization . 2

2 Preliminaries 3
2.1 Definitions of N and W, and some basic functions 3
2.2 Function classes, complexity classes and related concepts . . . 5
2.3 Notational conventions . 13

3 Relationship between E2+ and FPTIME 15
3.1 Definitions of CN and CW, and some basic functions 15
3.2 Representation of E2+ functions by CN functions 25
3.3 Representation of CN and CW functions by E2+ functions . . . 34
3.4 Representation of FPTIME functions by CN functions 53
3.5 Representation of CN and CW functions by FPTIME functions 60
3.6 Inclusion of PTIME by E2+∗ . 71

4 Relationship between M2 and FLH 72
4.1 Definitions of DN and DW, and some basic functions 72
4.2 Representation ofM2 functions by DN functions 75
4.3 Representation of DN and DW functions byM2 functions . . . 77
4.4 Representation of FLH functions by DW functions 88
4.5 Representation of DN and DW functions by FLH functions . . 95
4.6 Inclusion of LH byM2

∗ . 100

5 Concluding remarks 101
5.1 Conclusions . 101
5.2 Directions for further research 102

Acknowledgements 104

1 Introduction

1.1 Background

In computer science, various classes of computational complexity have been
studied, as represented by the class of polynomial time computable func-
tions, and there are many unsolved problems such as the P vs NP problem.
On the other hand, in computability theory, classes of subrecursive functions
has been studied for a long time (Grzegorczyk [4], Rose [7]). Although many
complexity classes are contained in the class of elementary functions E , lit-
tle research has been done on relationship between classes of subrecursive
functions smaller than the class E and complexity classes. For example, the
relationship between the class E2 or the class M2 and the class FPTIME of
polynomial time computable functions is not known at all (Rose [7]), where
the class E2 is the second class in the Grzegorczyk hierarchy using bounded
recursion, and the classM2 is the second class in the hierarchy obtained by
replacing bounded recursion with bounded minimisation (Grzegorczyk [4]).

1.2 Research purpose

The first purpose of this research is to elucidate the relationship between
the second class E2 in the Grzegorczyk hierarchy using bounded recursion
and the class FPTIME of polynomial time computable functions. The second
purpose of this research is to elucidate the relationship between the second
class M2 in the hierarchy of bounded minimisation and the function class
FLH of the logtime hierarchy.

It is known that LH ⫋ PTIME, hence FLH ⫋ FPTIME. If we can take the
correspondence between E2 and FPTIME and the correspondence between
M2 and FLH, we may be able to solve the unsolved problem of whether
the class M2 is properly contained in E2 or not (Rose [7]) by using the
relationship FLH ⫋ FPTIME.

1.3 Methodology

In this research, we use a function algebra which does not depend on any
specific computation model to represent a class of functions. If X is a set of
initial functions and OP is a collection of recursive operators, then a function
algebra [X ; OP] is the smallest set of functions containing X and closed under
the operations of OP (Clote [2]).

Many classes of subecursive functions, including classes in the Grzegor-
czyk hierarchy, are defined as function algebras. It is also known that typical

1

complexity classes can be characterized as function algebras by Clote and the
like (Clote [2]). In particular, the characterizations of the class FPTIME of
polynomial time computable functions by function algebras include Cobham
[3], Bellantoni and Cook [1], Ishihara [5] and the like.

On the other hand, previous researches on subrecursive functions have dis-
cussed functions on natural numbers, and previous researches on complexity
classes have discussed functions on natural numbers or binary strings. These
previous researches have assumed that natural numbers can be freely con-
verted to binary strings and binary strings can be freely converted to natural
numbers. This assumption holds for the class of elementary functions E ,
which is equivalent to the third class E3 in the Grzegorczyk hierarchy and
the third classM3 in the hierarchy of bounded minimisation, since it contains
the exponential function. However, when we discuss smaller classes than E ,
the validity of this assumption remains uncertain.

In this research, we deal with classes of functions defined on two data
types, natural numbers and binary strings. This allows us to discuss with-
out the assumption above and makes it possible to verify the validity of the
assumption. We define simultaneiously and recursively two classes of func-
tions. Functions in the one class take two data types as their arguments,
natural numbers and binary strings, and their values are natural numbers,
and functions in the other class take the two data types as their arguments,
and their values are binary strings. We expect that the class of functions
whose function values are natural numbers correspond to some class of sub-
recursive functions on natural numbers, and the class of functions whose
function values are binary strings correspond to some complexity class on
binary strings.

1.4 Organization

After this chapter, in chapter 2, we introduce a basic mathematical frame-
work and also introduce function classes, comlexity classes and their related
concepts. In chapter 3, we extend E2 to define E2+, and also define two inter-
mediate classes CN and CW. Then we associate E2+ with FPTIME via CN and
CW. Consequently, we show that PTIME is contained in E2+∗ . In chapter 4,
we also define two intermediate classes DN and DW. Then we associate M2

with FLH via DN and DW. Consequently, we show that LH is contained in
M2

∗. In Chapter 5, we state conclusions and directions for further research.

2

2 Preliminaries

In this chapter, we introduce some basic concepts and known results used in
this thesis.

2.1 Definitions of N and W, and some basic functions

To begin with, we define the set of natural numbers and the set of binary
strings, and define some basic functions defined on them. Each of these
functions gives a mathematical meaning caused by the function. Note that
these functions do not depend on any specific function class.

Definition 2.1. Let N be the set of natural numbers inductively defined by

0,
x
Sx,

where Sx is a successor of x.
Let W be the set of finite binary strings inductively defined by

ε,
a
a0,

a
a1,

where ε is an empty string.

Definition 2.2. Let prd,+,�, ⋅ and 2x be the predecessor function, the addi-
tion, the cut-off subtraction, the multiplication, and the exponential function,
respectively, defined by

{
prd(0) = 0,

prd(Sx) = x;
{

x + 0 = x,
x + Sy = S(x + y);

{
x � 0 = x,
x � Sy = prd(x � y);

{
x ⋅ 0 = 0,
x ⋅ Sy = (x ⋅ y) + x;

{
20 = 1,
2Sx = 2 ⋅ 2x.

Definition 2.3. Let Imi ∈ Nm → N (0 ≤ i < m) be the projection function,1

defined by
Imi (x0, . . . , xm−1) = xi.

Let s0 ∈ N→ N and s1 ∈ N→ N be the binary successor functions, respectively
defined by

s0(x) = 2 ⋅ x, s1(x) = 2 ⋅ x + 1.

1If f is a function from a set A to a set B, we use the notation f ∈ A→ B.

3

Let ∣ ⋅ ∣ ∈ N → N be the length function of natural numbers which computes
the length of a natural number represented in binary, defined by

∣x∣ = ⌈log(x + 1)⌉.

Using the same symbol, let ∣ ⋅ ∣ ∈ W → N be the length function of binary
strings, defined by

∣ε∣ = 0, ∣a0∣ = S(∣a∣), ∣a1∣ = S(∣a∣).

Let # ∈ N2 → N be the smash function, defined by

x#y = 2∣x∣⋅∣y∣.

Let MOD2 ∈ N→ N be the modulo 2 function, defined by

MOD2(x) = x � 2 ⋅ ⌊x/2⌋.

Let msp ∈ N2 → N be the most significant part function, defined by

msp(x, y) = ⌊x/2∣y∣⌋.

Let bin ∈ N →W be the binary representation of a natural number, defined
by

bin(0) = ε, bin(Sx) =
⎧⎪⎪⎨⎪⎪⎩

bin(⌊Sx/2⌋)0 if Sxmod 2 = 0,
bin(⌊Sx/2⌋)1 if Sxmod 2 = 1.

Let BIT ∈ N ×W→ N be the bit function, defined by

BIT(0, ε) = 0, BIT(Sx, ε) = 0,
BIT(0, a0) = 0, BIT(0, a1) = 1,

BIT(Sx, a0) = BIT(x, a), BIT(Sx, a1) = BIT(x, a).

Using the same symbol, Let BIT ∈ N ×N→ N be the bit function, defined by

BIT(x, y) =MOD2(⌊y/2x⌋).

Let bit ∈ N ×N→ N be the (lowercase) bit function, defined by

bit(x, y) =MOD2(⌊y/2∣x∣⌋).

4

Definition 2.4. Let sg, sg,max,min, cond, χ=, χ≤ and χ< be the signum func-
tion, the inverse signum function, the maximum function, the minimum func-
tion, the conditional function, the characteristic function of =, the character-
istic function of ≤ and the characteristic function of <, respectively, defined
by

sg(x) = { 1 if x > 0,
0 otherwise;

sg(x) = { 1 if x = 0,
0 otherwise;

max(x, y) = { x if x ≥ y,
y otherwise;

min(x, y) = { x if x ≤ y,
y otherwise;

cond(x, y, z) = { y if x = 0,
z otherwise.

χ=(x, y) = {
1 if x = y,
0 otherwise;

χ≤(x, y) = {
1 if x ≤ y,
0 otherwise;

χ<(x, y) = {
1 if x < y,
0 otherwise.

Definition 2.5. Let χ¬, χ∧, χ∨, χ→ and χ⊕ be the characteristic functions of
¬,∧,∨,→ and ⊕, respectively, defined by

χ¬(x) = {
1 if x = 0,
0 otherwise;

χ∧(x, y) = {
1 if x > 0 and y > 0,
0 otherwise;

χ∨(x, y) = {
1 if x > 0 or y > 0,
0 otherwise;

χ→(x, y) = {
0 if x > 0 and y = 0,
1 otherwise,

χ⊕(x, y) = {
1 if x > 0 and y = 0, or x = 0 and y > 0 ,
0 otherwise.

2.2 Function classes, complexity classes and related
concepts

We mainly deal with classes of functions. We sometimes call a class of func-
tions a function class. We use a function algebra to represent a function
class. According to Clote [2], we define a function algebra as follows:

Definition 2.6 (Clote [2]). An operator (also called an operation) is a map-
ping from functions to functions. If X is a set of functions (called initial
functions) and OP is a collection of operators, then [X ; OP] denotes the
smallest set of functions containing X and closed under the operations of
OP. The set [X ; OP] is called a function algebra.

5

Many subrecursive function classes are defined as function algebras. We
define some operators to define function classes of our interests.

Definition 2.7. 1. The function f is defined by composition (COMP)
from functions h, g0, . . . , gL−1 if

f(x⃗) = h(g0(x⃗), . . . , gL−1(x⃗)).

2. The function f is defined by primitive recursion (PR) from functions
g, h if

f(0, y⃗) = g(y⃗),
f(x + 1, y⃗) = h(x, y⃗, f(x, y⃗)).

3. The function f is defined by bounded recursion (BR) from functions
g, h, e if

f(0, y⃗) = g(y⃗),
f(x + 1, y⃗) = h(x, y⃗, f(x, y⃗)),

provided that f(x, y⃗) ≤ e(x, y⃗) for all x, y⃗.

4. The function f is defined by bounded minimisation (BMIN) from a
function g if

f(x, y⃗) =
⎧⎪⎪⎨⎪⎪⎩

the least z ≤ x such that g(z, y⃗) = 0 if it exists,

0 otherwise.

5. The function f is defined by bounded summation (BSUM) from func-
tions g, e if

f(x, y⃗) =
x

∑
i=0
g(i, y⃗).

provided that f(x, y⃗) ≤ e(x, y⃗) for all x, y⃗.

6. The function f is defined by bounded product (BPROD) from functions
g, e if

f(x, y⃗) =
x

∏
i=0
g(i, y⃗).

provided that f(x, y⃗) ≤ e(x, y⃗) for all x, y⃗.

6

Definition 2.8. The class of primitive recursive functions is defined by

PR = [0,I,S;COMP,PR],

where 0 is constant 0, I is projection function, S is successor function, COMP

is composition and PR is primitive recursion.

Definition 2.9. The class of elementary functions is defined by

E = [0,I,S,+,�;COMP,BSUM,BPROD],

where 0 is constant 0, I is projection function, S is successor function, + is
addtion, � is cut-off subtraction, COMP is composition, BSUM is bounded
summation and BPROD is bounded product.

The elementary functions were introduced by Kalmár(1943) and by Csil-
lag(1947). E is a basic class in the sense that it contains most of the useful
number theoretic and mathematical functions. In most recursion theroy texts
and papers where primitive recursive functions are used, it is in fact sufficient
to use elementary functinos (Rose [7]).

Grzegorczyk [4] investigated a hierarchy of subclasses En of the class of
primitive recursive functions PR, defined as the closure of certain initial
functions under composition and bounded recursion.

Definition 2.10. The Grzegorczyk hierarchy is a hierarchy of function classes
defined by

E0 = [0,I,S;COMP,BR],
E1 = [0,I,S,+;COMP,BR],
E2 = [0,I,S,+,×;COMP,BR],
E3 = [0,I,S,+,×,2x;COMP,BR],

⋮

where 0 is constant 0, I is projection function, S is successor function, + is
addition, × is multiplication, 2x is exponetial function, COMP is composition
and BR is bounded recursion.

For n ≥ 4, En contains the initial functions in En−1 and further contains
fn(x) = f (x)n−1(1), where f (0)(x) = x, f (n+1)(x) = f(f (n)(x)) and f3(x) = 2x,
and is closed under composition and bounded recursion.

Grzegorczyk [4] also considered a hierarchy of function classes in which
bounded recursion is replaced with bounded minimisation.

7

Definition 2.11. The hierarchy of bounded minimisation is a hierarchy of
function classes defined by

M0 = [0,I,S;COMP,BMIN],
M1 = [0,I,S,+;COMP,BMIN],
M2 = [0,I,S,+,×;COMP,BMIN],
M3 = [0,I,S,+,×, xy,2x;COMP,BMIN],

⋮

where 0 is constant 0, I is projection function, S is successor function, +
is addition, × is multiplication, xy is x to the y-th power, 2x is exponetial
function, COMP is composition and BMIN is bounded minimisation.

For n ≥ 4,Mn contains the initial functions inMn−1 and further contains
fn(x) = f (x)n−1(1), where f (0)(x) = x, f (n+1)(x) = f(f (n)(x)) and f3(x) = 2x,
and is closed under composition and bounded minimisation.

We study an extension of the class E2 in the chapter 3, and the classM2

in the chapter 4.

Inclusion, equality and proper inclusion between classes of functions can
be defined if their elements are functions from natural numbers to natural
number.

Definition 2.12. Let F1 and F2 be classes of functions of types Nm → N.
F1 is included in F2, denoted by F1 ⫅ F2, if for any f ∈ F1 there exists g ∈ F2

such that f(x⃗) = g(x⃗) for each x⃗. F1 is equal to F2, denoted by F1 = F2, if
F1 ⫅ F2 and F2 ⫅ F1. F1 is properly (or strictly) included in F2, denoted by
F1 ⫋ F2, if F1 ⫅ F2 and F1 ≠ F2, that is, F1 ⫅ F2 and F2 ⫅̸ F1.

We can relate a class of functions to a class of sets, or equivalently, a class
of predicates, by means of characteristic functions.

Definition 2.13. For a set s or a predicate p, define their characteristic
functions, respectively, by

χs(x⃗) = {
1 x⃗ ∈ s,
0 otherwise,

χp(x⃗) = {
1 p(x⃗) is true,
0 otherwise.

Definition 2.14. Let F be a class of functions. Then the class of sets F∗,
or equivalently, the class of predicates F∗, are defined respectively by

χs ∈ F ⇐⇒ s ∈ F∗, χp ∈ F ⇐⇒ p ∈ F∗.

8

Applying this definition to the classes in the Grzegorczyk hierarchy and
the hierarchy of bounded minimisation, we obtain sequences of classes E0∗ ,E1∗ ,E2∗ ,
E3∗ , . . . andM0

∗,M1
∗,M2

∗,M3
∗,

Next, we briefly describe complexity classes of our interests. A complexity
class is a class of sets (or languages) which are accepted by some type of
Turing machine within specified resource bounds. We assume that the sets
accepted by Turing machines are over the alphabet {0,1}.
Definition 2.15. (i) The PTIME (or P) is the class of all sets which are
accepted by deterministic Turing machine in time O(p(n)) for some polyno-
mial p(n), where n is the length of its input.
(ii) The logtime hierarchy LH is the class of all sets which are accepted by al-
ternating Turing mahine with random access in time O(logn) at most O(1)
alternations, where n is the length of its input.
(iii) The linear time hierarchy LTH is the class of all sets which are accepted
by alternating Turing mahine in time O(n) at most O(1) alternations, where
n is the length of its input.2

It is known that LH is properly included in PTIME. LH is clearly included
in LTH. It seems that LTH and PTIME are thought to be incomparable.

Note that though a complexity class is a class of sets, a set can be regarded
as a predicate, hence a complexity class is regarded as a class of predicates.

In our discussion, we would like to deal mainly with function classes.
When we make Turing machine compute a function, we generally consider

Turing machine with an output tape. That is, Turing machine with argu-
ments of the function separated by some symbol on its input tape, computes
the function and writes the value of the function on its output tape. If the
resource bounds of this Turing machine corresponds to a complexity class C,
we can consider the function computed by this Turing machine to be in a
function class FC.

However, we adopt a bit different definition of FC according to Clote [2].

Definition 2.16 (Clote [2]). A function f(x⃗) is polynomial growth if

∣f(x⃗)∣ = O(max
0≤j<n

∣xj ∣k) for some k.

The bitgraph Bf satisfies Bf(x⃗, i) if and only if the i-th bit of f(x⃗) is 1.
If C is a complexity class, then FC is the class of functions of polynomial
growth whose bitgraph belongs to C.

2For detailed descriptions of Turing machines, see, for example, Clote [2]. For more de-
tailed descriptions of alternating Turing machines, see, for example, Chapter 3 of Balcázar,
J. L., Dı́az, J., Gabarró, J. Structural Complexity II. Springer-Verlag, 1990.

9

That is, if C is a complexity class, the function class FC is defined by

f(x⃗) ∈ FC ⇐⇒
⎧⎪⎪⎨⎪⎪⎩

(i) ∣f(x⃗)∣ = O(max
0≤j<n

∣xj ∣k) for some k,

(ii) Bf(x⃗, i) ∈ C for 0 ≤ i < ∣f(x⃗)∣.

By Definition 2.14 and 2.16, we obtain the following lemma:

Lemma 2.17. Let C be a complexity class, then

(FC)∗ = C.

Proof. For any set s,

s ∈ C ⇐⇒ ∣χs(x⃗)∣ ≤ 1 and Bχs(x⃗,0) ∈ C
⇐⇒ χs(x⃗) ∈ FC
⇐⇒ s ∈ (FC)∗.

Applying Definition 2.16 to PTIME, LH and LTH, we define the function
classes FPTIME, FLH and FLTH.
FPTIME, FLH and FLTH are known to be represented by some function

algebras. We further define some operators.

Definition 2.18. 1. The function f is defined by bounded recursion on
notation (BRN) from functions g, h0, h1, e if

f(0, y⃗) = g(y⃗),
f(s0(x), y⃗) = h0(x, y⃗, f(x, y⃗)) (if x ≠ 0),
f(s1(x), y⃗) = h1(x, y⃗, f(x, y⃗))

provided that f(x, y⃗) ≤ e(x, y⃗) for all x, y⃗.

2. The function f is defined by full concatenation recursion on notation
(FCRN) from functions g, h0, h1 if

f(0, y⃗) = g(y⃗),
f(s0(x), y⃗) = sh0(x,y⃗,f(x,y⃗))(f(x, y⃗)) (if x ≠ 0),
f(s1(x), y⃗) = sh1(x,y⃗,f(x,y⃗))(f(x, y⃗)).

3. The function f is defined by concatenation recursion on notation (CRN)
from functions g, h0, h1 if

f(0, y⃗) = g(y⃗),
f(s0(x), y⃗) = sh0(x,y⃗)(f(x, y⃗)) (if x ≠ 0),
f(s1(x), y⃗) = sh1(x,y⃗)(f(x, y⃗)).

10

Using these operators, FPTIME and FLH can be characterized as follows:

Theorem 2.19 (Cobham [3], see Rose [7], Clote [2]).

FPTIME = [0,I,s0,s1,#;COMP,BRN],

where 0 is constant 0, I is projection function, s0 and s1 are binary successor
functions, # is smash function, COMP is composition and BRN is bounded
recursion on notation.

Theorem 2.20 (Ishihara [5]3).

FPTIME = [0,I,s0,s1,MOD2,msp,#;COMP,FCRN]
= [0,I,s0,s1,BIT, ∣ ⋅ ∣,#;COMP,FCRN],

where 0 is constant 0, I is projection function, s0 and s1 are binary successor
functions, # is smash function, MOD2 is modulo 2 function, msp is most
significant part function, BIT is bit function, ∣ ⋅ ∣ is length function, COMP is
composition and FCRN is full concatenation recursion on notation.

Theorem 2.21 (Clote [2]).

FLH = [0,I,s0,s1,BIT, ∣ ⋅ ∣,#;COMP,CRN],

where 0 is constant 0, I is projection function, s0 and s1 are binary successor
functions, BIT is bit function, ∣ ⋅ ∣ is length function, # is smash function,
COMP is composition and CRN is concatenation recursion on notation.

Regarding FLTH, the following characterization is known.

Theorem 2.22 (see Corollary 3.57 in Clote [2]).

FLTH =M2, LTH =M2
∗.

Among the function classes described above, the following relations are
known. (Grzegorczyk [4], see Rose [7])

FPTIME

⫆̸ ⫅̸ ?
E0 ⫋ E1 ⫋ E2 ⫋ E3 = E ⫋ PR

⫋ ⫋ ⫅ =

M0 ⫋ M1 ⫋ M2 ⫋ M3

=

FLH ⫅ FLTH

3There is one more characterization of FPTIME in Ishihara [5].

11

In particular, it is not known whether M2 is strictly included in E2 or
not. (Grzegorczyk [4], Rose [7])

And the relationship of FPTIME and E2 is not fully known. FPTIME

is not a subclass of E2 because the function x∣y∣ belongs to FPTIME, but it
does not belongs to E2. And it seems reasonable to assume that E2 is not a
subclass of FPTIME because, for instance, E2 is closed under summation but
it seems most likely that FPTIME is not closed. (Rose [7])

Among the classes of sets described above, the following relations are
known (see Rose [7]).

PTIME

≠

E0∗ ⫅ E1∗ ⫅ E2∗ ⫋ E3∗

⫅

M0
∗ = M1

∗ ⫋ M2
∗

=

LH ⫅ LTH

In particular, though we haveM2
∗ ⫅ E0∗ ⫅ E1∗ ⫅ E2∗ , it is not known any of

these inclusions is proper or not. (Rose [7])
And it is shown that PTIME ≠ E2∗ by Book(1972), but the relationship of

E2∗ and PTIME is not known. (Rose [7])

We present one more relationship between E2 (and E2∗) and some com-
plexity class, but we omit its precise definition.

Theorem 2.23 (Ritchie (1963)).

FLINSPACE = E2, LINSPACE = E2∗ .

Regarding E2, we use the following proposition.

Proposition 2.24 (see the proof of Theorem 3.36 in Clote [2]). The length
function ∣ ⋅ ∣ and the bit function BIT belong to E2.

RegardingM2, we often use the following proposition.

Proposition 2.25 (Corollary 3.54 in Clote [2]). The function algebra
[0,I,s0,s1, ∣ ⋅ ∣,BIT;COMP,CRN] is contained in M2.

12

2.3 Notational conventions

In principle, we usually use symbols x, y, z,w, . . . for variables representing
natural numbers, and use symbols i, j or z for variable representing bit num-
bers. We use symbols a, b, c, . . . for variables representing binary strings.
There is one exception. Though the argument of function bin(⋅) is a natural
number, we use symbol k for it like bin(k).

We change symbols for functions according to classes of functions to
which they belong. We use symbols f, g, h, e, . . . for functions in E2+ and
M2, use symbols r, t, u, v, . . . for functions in FPTIME and FLH, use symbols
α,β, γ, δ, . . . for functions in CN, C̃, DN and D̃, and use symbols φ,ψ,χ, . . . for
functions in CW and DW.

Functions in CN,CW, C̃,DN,DW and D̃ can take both natural numbers and
binary strings as their arguments, and we distinguish between natural num-
bers and binary strings by placing a semicolon between them. For example,
we write α(x, y;a, b) ∈ CN. Note that even if these functions take only ones
of natural numbers or binary strings, we place a semicolon. For example, we
write β(x, y;) ∈ DN or φ(;a) ∈ CW.

We use a vector notations for a plurality of variables. For example, x⃗ is
used for m variables x0, x1, . . . , xm−1 and a⃗ is used for n variables a0, a1, . . . , an−1;

x⃗ = x0, x1, . . . , xm−1, a⃗ = a0, a1, . . . , an−1.

When we apply a function to a vector variable, its meaning is a bit dif-
ferent from usual. Two functions bin and ∣ ⋅ ∣ are often applied to a vector
variable. For example, bin(k⃗) means

bin(k⃗) = bin(k0),bin(k1), . . . ,bin(km−1),

which does not mean bin(k0, k1, . . . , km−1). Similarly, ∣a⃗∣ means

∣a⃗∣ = ∣a0∣, ∣a1∣, . . . , ∣an−1∣,

which does not mean ∣a0, a1, . . . , an−1∣.
When we write the numbers of arguments (i.e., arity) of functions, we use

lowercase letters ℓ,m,n. For example, we write α(x⃗; a⃗) ∈ Nm ×Wn → N. If
a function is defined by composition from some functions, we use uppercase
letters L,M,N for an outer function and lowercase letters ℓ,m,n for inner
functions. For example, if α(x⃗; a⃗) is defined by

α(x⃗; a⃗) = γ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)),

we may write α(x⃗; a⃗) ∈ Nm ×Wn → N, βi(x⃗; a⃗) ∈ Nm ×Wn → N for 0 ≤ i <M ,
χj(x⃗; a⃗) ∈ Nm ×Wn →W for 0 ≤ j < N and γ(y⃗; b⃗) ∈ NM ×WN → N.

13

Lastly, we generally write an equation so that its left-hand side is an
already-known function and its right-hand side is a function which is con-
structed or to be constructed. For example, we write as follows: For each
f ∈M2, there exists α ∈ DN such that

f(x⃗) = α(x⃗;)

for each x⃗.

14

3 Relationship between E2+ and FPTIME

In this capter, we study a relationship between E2+ and FPTIME.
Let E2 be the the second class in the Grzegorczyk hierarchy, that is,

E2 = [0,I,S,+,×;COMP,BR].

We extend E2 by adding course-of-values recursion whose values are bounded
by 1 and we call it E2+.

Definition 3.1. The function f is defined by 1-bounded course-of-values
recursion (1-BCVR) from functions g, h if

f(0, y⃗) = g(x⃗),
f(x + 1, y⃗) = h(x, y⃗, ⟨f(0, y⃗), . . . , f(x, y⃗)⟩),

provided that f(x, y⃗) ≤ 1 for all x, y⃗.

Definition 3.2. E2+ is a class of functions defined by the following function
algebra:

E2+ = [0,I,S,+,×;COMP,BR, 1-BCVR],
where 0 is constant 0, I is projection function, S is successor function, + is
addition, × is multiplication, COMP is composition, BR is bounded recursion
and 1-BCVR is 1-bounded course-of-values recursion.

As are defined in the next section, let CN and CW be classes of functions
defined simultaneously and recursively over both the set of natural numbers
N and the set of binary strings W such that functions in CN maps them to N
and functions in CW maps them to W.

Then, we associate functions in E2+ with functions in CN, and also asso-
ciate functions in FPTIME with functions in CW (via CN).

Using these correspondences, with respect to their set classes E2+∗ and
PTIME, we show that

PTIME ⫅ E2+∗
(Theorem 3.31).

3.1 Definitions of CN and CW, and some basic functions

To begin with, we define function classes CN and CW.

Definition 3.3. Classes CN and CW of functions of types Nm ×Wn → N and
Nm ×Wn → W, respectively, are generated simultaneously by the following
clauses.

15

1. The projection functions pN
m,n
i and pW

m,n
j belong to CN and CW, respec-

tively:

pN
m,n
i (x0, . . . , xm−1; a⃗) = xi (0 ≤ i <m),

pW
m,n
j (x⃗;a0, . . . , an−1) = aj (0 ≤ j < n);

2. the constant zero 0 belongs to CN: 0 = 0;

3. the successor function S belongs to CN: S(x;) = Sx;

4. the addition + belongs to CN: +(x, y;) = x + y;

5. the multiplication × belongs to CN: ×(x, y;) = x ⋅ y;

6. the length function ∣ ⋅ ∣ ∈W→ N belongs to CN: ∣;a∣ = ∣a∣;

7. the bit function BIT ∈ N ×W→ N belongs to CN: BIT(z;a) = BIT(z, a);

8. CN and CW are closed under composition (COMP):
if γ, β0, . . . , βM−1 ∈ CN and ψ,χ0, . . . , χN−1 ∈ CW with γ ∈ NM ×WN → N,
βi ∈ Nm ×Wn → N, ψ ∈ NM ×WN → W and χj ∈ Nm ×Wn → W for
0 ≤ i <M and 0 ≤ j < N , then there exist α ∈ CN and φ ∈ CW satisfying

α(x⃗; a⃗) = γ(β0(x⃗, a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)),
φ(x⃗; a⃗) = ψ(β0(x⃗, a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗));

9. CN is closed under bounded recursion (BR):
if β, γ, δ ∈ CN with β ∈ Nm ×Wn → N, γ ∈ Nm+2 ×Wn → N, and δ ∈
Nm+1 ×Wn → N, then there is α ∈ CN satisfying

α(0, x⃗; a⃗) = β(x⃗; a⃗),
α(S(z;), x⃗; a⃗) = γ(z, x⃗, α(z, x⃗; a⃗); a⃗),

provided that α(z, x⃗; a⃗) ≤ δ(z, x⃗; a⃗) for all z, x⃗, a⃗;

10. CN is closed under boolean course-of-values recursion (BCVR)4:
if β, γ ∈ CN with β ∈ Nm ×Wn → N and γ ∈ Nm+1 ×Wn+1 → N, then there
is α ∈ CN satisfying

α(0, x⃗; a⃗) = β(x⃗; a⃗),
α(S(z;), x⃗; a⃗) = γ(z, x⃗; b, a⃗),
where ∣; b∣ = z + 1 and BIT(i; b) = α(i, x⃗; a⃗) for 0 ≤ i ≤ z,

provided that α(z, x⃗; a⃗) ≤ 1 for all z, x⃗, a⃗;

4This operator is a string version of 1-bounded course-of-values recursion.

16

11. CW is closed under bounded comprehension (BC):
if α ∈ CN with α ∈ Nm+1 ×Wn → N, then there is φ ∈ CW satisfying

∣;φ(z, x⃗; a⃗)∣ = z and

∀i < z [BIT(i;φ(z, x⃗; a⃗)) = 0↔ α(i, x⃗; a⃗) = 0].

Notation. We often use x + 1, x + y and x × y instead of S(x;), +(x, y;) and
×(x, y;), respectively.

In function algebras, the classes CN and CW are represented as follows:

CN = [pNm,n
i ,0,S,+,×, ∣ ⋅ ∣,BIT;COMP,BR,BCVR],

CW = [pWm,n
j ;COMP,BC].

Note that any constant belongs to CN by repeatedly applying the successor
function S to the constant 0.

Now, we introduce some useful functions and an operator to CN which
will be used in the subsequent lemmas and propositions.

Lemma 3.4. The following functions belong to CN ∶

1. the predecessor fucntion prd ∶ prd(x;) = prd(x);

2. the cut-off subtraction � ∶ �(x, y;) = x � y.

Proof. The predecessor function is written as:

prd(0;) = 0,
prd(x + 1;) = x,

and prd(x;) ≤ x for any x, hence by bounded recursion, prd belongs to CN.
The cut-off subtraction is written as:

�(x,0;) = x,
�(x, y + 1;) = prd(�(x, y;);),

and �(x, y;) ≤ x for any x, y, hence by bounded recursion, � belongs to
CN.

Lemma 3.5. The following functions belong to CN ∶

1. the signum function sg ∶ sg(x;) = sg(x);

2. the inverse signum fucntion sg ∶ sg(x;) = sg(x);

17

3. the maximum function max ∶ max(x, y;) =max(x, y);

4. the minimum function min ∶ min(x, y;) =min(x, y);

5. the conditional function cond ∶ cond(x, y, z;) = cond(x, y, z);

6. the characteristic function χ= of = ∶ χ=(x, y;) = χ=(x, y);

7. the characteristic function χ≤ of ≤ ∶ χ≤(x, y;) = χ≤(x, y);

8. the characteristic function χ< of < ∶ χ<(x, y;) = χ<(x, y).

Proof. These functions are defined as follows:

sg(x;) = S(0;) � x,
sg(x;) = sg(sg(x;);),

max(x, y;) = x + (y � x),
min(x, y;) = x � (x � y),

cond(x, y, z;) = sg(x;) × y + sg(x;) × z,
χ=(x, y;) = sg((x � y) + (y � x);),
χ≤(x, y;) = sg(x � y;), and
χ<(x, y;) = sg(y � x;).

Notation. We often use x = y, x ≤ y and x < y instead of χ=(x, y;), χ≤(x, y;)
and χ<(x, y;), respectively.

Lemma 3.6. The following logical functions belong to CN ∶

1. the characteristic function χ¬ of ¬ ∶ χ¬(x;) = χ¬(x);

2. the characteristic function χ∧ of ∧ ∶ χ∧(x, y;) = χ∧(x, y);

3. the characteristic function χ∨ of ∨ ∶ χ∨(x, y;) = χ∨(x, y);

4. the characteristic function χ→ of → ∶ χ→(x, y;) = χ→(x, y).

Proof. These functions are defined as follows:

χ¬(x;) = sg(x;),
χ∧(x, y;) = cond(x,0,sg(y;);),
χ∨(x, y;) = cond(x,sg(y;),S(0;);), and
χ→(x, y;) = cond(sg(x;),sg(y;),S(0;);).

18

Notation. Similarly, we often use ¬x, x∧y, x∨y and x→ y instead of χ¬(x;),
χ∧(x, y;), χ∨(x, y;) and χ→(x, y;), respectively.
Notation. In the definition of each function in the following discussion, if ar-
guments of a function contain constants greater than 0, we often use 1,2,3, . . .
instead of S(0;), S(S(0;);), S(S(S(0;););), . . ., respectively.

Definition 3.7. The function α ∈ Nm+1 ×Wn → N is defined by bounded
minimisation (BMIN) from a function β if

α(z, x⃗; a⃗) =
⎧⎪⎪⎨⎪⎪⎩

the least y ≤ z such that β(y, x⃗; a⃗) ≠ 0 if it exists,

z + 1 otherwise.

Proposition 3.8. CN is closed under bounded minimisation.

Proof. Suppose that β is in CN with β ∈ Nm+1 ×Wn → N. Since CN is closed
under bounded recursion, define α by

α(0, x⃗; a⃗) = cond(β(0, x⃗; a⃗),1,0),
α(z + 1, x⃗; a⃗) = cond(β(z + 1, x⃗; a⃗) = 0 ∧ α(z, x⃗; a⃗) = z + 1,

α(z, x⃗; a⃗),
α(z, x⃗; a⃗) + 1;),

and α(z, x⃗, a⃗) ≤ z + 1 for ∀z, x⃗, a⃗, hence α ∈ CN. Then α computes

α(z, x⃗; a⃗) =
⎧⎪⎪⎨⎪⎪⎩

the least y ≤ z such that β(y, x⃗; a⃗) ≠ 0 if it exists,

z + 1 otherwise.

Notation. In using bounded minimisation, we write min
y≤z
{β(y, x⃗; a⃗) ≠ 0} for

α(z, x⃗; a⃗).

Lemma 3.9. If α is in CN with α ∈ Nm+1 ×Wn → N, then the following
βj(1 ≤ j ≤ 4) are also in CN ∶

(i) β1(z, x⃗; a⃗) = {
1 if ∀y ≤ z[α(y, x⃗; a⃗) = 0],
0 otherwise;

(ii) β2(z, x⃗; a⃗) = {
1 if ∀y ≤ z[α(y, x⃗; a⃗) ≠ 0],
0 otherwise;

(iii) β3(z, x⃗; a⃗) = {
1 if ∃y ≤ z[α(y, x⃗; a⃗) ≠ 0],
0 otherwise;

(iv) β4(z, x⃗; a⃗) = {
1 if ∃y ≤ z[α(y, x⃗; a⃗) = 0],
0 otherwise.

19

Proof. (i) If ∀y ≤ z[α(y, x⃗; a⃗) = 0], then by bounded minimisation, min
y≤z
{α(y, x⃗; a⃗) ≠

0} = z + 1, and if ∃y ≤ z[α(y, x⃗; a⃗) ≠ 0], then min
y≤z
{α(y, x⃗; a⃗) ≠ 0} ≤ z. Hence

we have
β1(z, x⃗; a⃗) =min

y≤z
{α(y, x⃗; a⃗) ≠ 0} � z.

(ii) Since ∀y ≤ z[α(y, x⃗; a⃗) ≠ 0]⇔ ∀y ≤ z[sg(α(y, x⃗; a⃗)) = 0], by using (i), we
have

β2(z, x⃗; a⃗) =min
y≤z
{sg(α(y, x⃗; a⃗)) ≠ 0} � z.

(iii) Since ∃y ≤ z[α(y, x⃗; a⃗) ≠ 0]⇔ ¬[∀y ≤ z[α(y, x⃗; a⃗) = 0]], by using (i), we
have

β3(z, x⃗; a⃗) = ¬(min
y≤z
{α(y, x⃗; a⃗) ≠ 0} � z) .

(iv) Since ∃y ≤ z[α(y, x⃗; a⃗) = 0]⇔ ¬[∀y ≤ z[α(y, x⃗; a⃗) ≠ 0]], by using (ii), we
have

β4(z, x⃗; a⃗) = ¬(min
y≤z
{sg(α(y, x⃗; a⃗)) ≠ 0} � z) .

Notation. For each βj(z, x⃗; a⃗)(1 ≤ j ≤ 4), we use the logical formula described
in the condition when βj’s value is 1. For example, we use ∀y ≤ z[α(y, x⃗; a⃗) =
0] instead of β1(z, x⃗; a⃗).

In the subsequent lemmas, we will construct bin(n;) ∈ CW which com-
putes the binary string of the binary representation of n.

Lemma 3.10. The function m∣n ∈ N ×N→ N belongs to CN ∶

m∣n = { 1 if m divides n,
0 otherwise.

Proof. Since m∣n ⇔ ∃i ≤ n[n = i ×m] ⇔ ∃i ≤ n[χ=(n, i ×m;) = 1] ⇔ ∃i ≤
n[χ=(n, i ×m;) ≠ 0], we have

m∣n = ∃i ≤ n[χ=(n, i ×m;) ≠ 0],

which is definable in CN by lemma 3.9 (iii).

Lemma 3.11. The function ⌊ n
m
⌋ ∈ N ×N→ N belongs to CN ∶

⌊ n
m
⌋ is a quotient when n is divided by m.

20

Proof. Since n = m × i + r (0 ≤ r < m), i is the least number satisfying
n <m × (i + 1), hence we have

⌊ n
m
⌋ =min

i≤n
{n <m × (i + 1)}

=min
i≤n
{χ<(n,m × (i + 1);) = 1}

=min
i≤n
{χ<(n,m × (i + 1);) ≠ 0},

which is definable in CN by bounded minimisation.

Lemma 3.12. The function mod(n,m;) ∈ N ×N→ N belongs to CN ∶

mod(n,m;) is a residue when n is divided by m.

Proof. We have

mod(n,m;) = n � ⌊ n
m
⌋ ×m.

Lemma 3.13. The function prime(n;) ∈ N→ N belongs to CN ∶

prime(n;) = { 1 if n is a prime number,
0 otherwise.

Proof. The function

p(k,n;) = { 1 if k(≥ 1) divides n, then k = 1 or k = n,
0 otherwise,

is definable in CN ∶

p(k,n;) = (0 < k ∧ k∣n)→ (k = 1 ∨ k = n).

Then, using p(k,n;), we have

prime(n;) = ∀k ≤ n[p(k,n;) = 1] ∧ (1 < n)
= ∀k ≤ n[p(k,n;) ≠ 0] ∧ (1 < n),

which is definable in CN by lemma 3.9 (ii). Here, the condition 1 < n is to
exclude the case that prime(0;) or prime(1;) holds.

Lemma 3.14. The function pow(n;) ∈ N→ N belongs to CN ∶

pow(n;) = { 1 if n is a power of 2,
0 otherwise.

21

Proof. The function

q(k,n;) = { 1 if n has a prime factor k, then k must be 2,
0 otherwise,

is definable in CN ∶

q(k,n;) = (k∣n ∧ prime(k;))→ k = 2.

Then, using q(k,n;), we have

pow(n;) = ∀k ≤ n[q(k,n;) = 1] ∧ (1 ≤ n)
= ∀k ≤ n[q(k,n;) ≠ 0] ∧ (1 ≤ n),

which is definable in CN by lemma 3.9 (ii). Here, the condition 1 ≤ n is to
exclude the case that pow(0;) holds.

Lemma 3.15. The function lpw(n;) ∈ N→ N belongs to CN ∶

lpw(n;) = the least power of 2 exceeding n.

Proof. The function

r(n, k;) = { 1 k is greater than n and k is a power of 2,
0 otherwise,

is definable in CN ∶
r(n, k;) = (n < k) ∧ pow(k).

If n ≥ 1, there is a number 2m such that 2m ≤ n. Taking the maximum
number 2m satisfying 2m ≤ n, we have n < 2m+1 ≤ 2n. (If 2m+1 ≤ n, it
contradicts 2m being the maximum number satisfying 2m ≤ n.) That is,
taking such the number 2m+1 as k, there is a number k being a power of 2
such that n < k ≤ 2n. If n = 0, lpw(0;) = 1. Hence, using r(n, k;), we have

lpw(n;) = min
k≤2×n
{r(n, k) = 1}

= min
k≤2×n
{r(n, k) ≠ 0},

which is definable in CN by bounded minimisation. Notice that in the case
lpw(0;), since r(0,0;) = 0, we have lpw(0;) = 1 by the definition of bounded
minimisation.

Lemma 3.16. The function None(n;) ∈ N→ N belongs to CN ∶

None(n;) = the number of 1’s in the binary representation of n.

22

Proof. The function

α(k,n;) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
k is 2m for some m and
m-th bit of the binary representation of n is 1,

0 otherwise,

is definable in CN ∶

α(k,n;) = pow(k;) ∧ {mod(⌊n
k
⌋ ,2;) = 1} .

Then, the function

β(k,n;) = the number of k(≤ n) satisfying α(k,n;) = 1
= the number of 1’s in the binary representation of n

whose positions are less than or equal to m-th

where 2m is the maximum number less than or equal to k,

is definable in CN using bounded recursion and α(k,n;) ∶

β(0, n;) = 0,
β(k + 1, n;) = cond(α(k + 1, n;), β(k,n;),S(β(k,n;););),

β(k,n;) ≤ n for ∀k,n.

Then we have
None(n;) = β(n,n;).

Lemma 3.17. The function ∣n; ∣ ∈ N→ N belongs to CN ∶

∣n; ∣ = the length of the binary representation of n.

Proof. We have
∣n; ∣ = None(lpw(n;)−̇1;).

Notice that ∣0; ∣ = 0.

Lemma 3.18. The function exp(i, k;) ∈ N ×N→ N belongs to CN ∶

exp(i, k;) = { 1 if k = 2i,
0 otherwise.

Proof. We have
exp(i, k;) = pow(k;) ∧ ∣k; ∣ = i + 1.

23

Lemma 3.19. The function BIT(i, n;) ∈ N ×N→ N belongs to CN ∶

BIT(i, n;) = the i-th bit in the binary representation of n .

Proof. The bounded exponential function

bexp(i, n;) = { 2i if 2i ≤ n,
n + 1 otherwise.

is definable in CN using bounded minimisation and exp(i, k;) ∶

bexp(i, n;) =min
k≤n
{exp(i, k;) ≠ 0}.

Then, using bexp(i, n;), we have

BIT(i, n;) = mod(⌊ n
2i
⌋ ,2)

= mod(⌊ n

bexp(i, n;)
⌋ ,2) .

Lemma 3.20. The function bin(k;) ∈ N→W belongs to CW ∶

bin(k;) = the binary string of the binary representation of k.

Proof. In the definition of bounded comprehension, let α(i, k;) = BIT(i, k;),
then there is φ ∈ DW satisfying

∣;φ(z, k;)∣ = z,
∀i < z [BIT(i;φ(z, k;)) = 0↔ α(i, k;) = 0].

Then we have
bin(k;) = φ(∣k; ∣, k;).

Notice that bin(0;) = ε (∈W).

In our notational conventions, we should write bin(k;), however, in the
following discussion, we omit a semicolon and write bin(k) for readability.

24

3.2 Representation of E2+ functions by CN functions

In this section, we show that any function in E2+ is represented by some
function in CN, that is,

∀f ∈ E2+ ∃α ∈ CN [f(x⃗) = α(x⃗;)]

(Proposition 3.22).
To begin with, we show a lemma used in this proposition. This lemma

asserts that for any function α in CN taking as an argument a coded natural
number y = ⟨y0, . . . , yℓ−1⟩ with yi ≤ 1 for 0 ≤ i < ℓ, there exists some function
α′ in CN taking as an argument a binary string b with ∣b∣ = ℓ and BIT(i, b) = yi
for 0 ≤ i < ℓ such that α(x⃗, y; a⃗) = α′(x⃗; a⃗, b). The same assertion holds for
any function in CW.

In this case, we assume that there are two functions ρ and π in CN which
compute the following values from a coded natural number y = ⟨y0, . . . , yℓ−1⟩:

• ρ(y;) = ℓ : the number of elements coded in y,

• π(i, y;) = yi : the value of the i-th element coded in y (0 ≤ i < ℓ).

As a simple example, if natural numbers y0, . . . , yℓ−1 with yi ≤ 1 for 0 ≤ i < ℓ
are coded as a natural number y in whose binary representation, the most
significant bit is 1 and i-th bit is yi for 0 ≤ i < ℓ such as

then we can use the functions ρ(y;) = ∣y; ∣�1 and π(i, y;) = BIT(i, y;). These
functions are constructed in Lemma 3.17 and Lemma 3.19, respectively.

Since functions which directly operate y in the structue of α(x⃗, y; a⃗) are
only ρ(y;) = ℓ or π(i, y;) = yi, these functions can be replaced with ∣; b∣ = ℓ or
BIT(i; b) = yi in the structure of α′(x⃗; a⃗, b), respectively.

Lemma 3.21. Let y be in N such that y = ⟨y0, . . . , yℓ−1⟩ with yi ≤ 1 for
0 ≤ i < ℓ, and let b be in W such that ∣b∣ = ℓ and BIT(i, b) = yi for 0 ≤ i < ℓ.
Then (i) for any α ∈ CN with α(x⃗, y; a⃗) ∈ Nm+1 ×Wn → N, there exists α′ ∈ CN
with α′(x⃗; a⃗, b) ∈ Nm ×Wn+1 → N such that

α(x⃗, y; a⃗) = α′(x⃗; a⃗, b),

and (ii) for any φ ∈ CW with φ(x⃗, y; a⃗) ∈ Nm+1 ×Wn →W, there exists φ′ ∈ CW
with φ′(x⃗; a⃗, b) ∈ Nm ×Wn+1 →W such that

φ(x⃗, y; a⃗) = φ′(x⃗; a⃗, b).

25

Proof. By simultaneous induction on the structures of α ∈ CN and φ ∈ CW.
Basis.
Case α = pNm+1,n

i :
Note that 0 ≤ i <m. Let α′ = pNm,n+1

i . Then

α(x⃗, y; a⃗) = pNm+1,n
i (x⃗, y; a⃗) = xi = pNm,n+1

i (x⃗; a⃗, b) = α′(x⃗; a⃗, b).

Case φ = pWm+1,n
j :

Note that 0 ≤ j < n. Let φ′ = pWm,n+1
j . Then

φ(x⃗, y; a⃗) = pWm+1,n
j (x⃗, y; a⃗) = aj = pWm,n+1

j (x⃗; a⃗, b) = φ′(x⃗; a⃗, b).

Case α = 0:
Note that m + 1 = n = 0. Let α′ = 0, then 0 = 0.

Case α = S:
Note that m + 1 = 1, n = 0, and y does not appear in the argument of S.

Let α′ = S, then S(x1;) = S(x1;).
Case α = +:

Note that m + 1 = 2, n = 0, and y does not appear in the argument of +.
Let α′ = +, then x1 + x2 = x1 + x2.
Case α = ×:

Note that m + 1 = 2, n = 0, and y does not appear in the argument of ×.
Let α′ = ×, then x1 × x2 = x1 × x2.
Case α = ∣ ⋅ ∣:

Note that m + 1 = 0, n = 1, and y does not appear in the argument of ∣ ⋅ ∣.
Let α′ = ∣ ⋅ ∣, then ∣;a1∣ = ∣;a1∣.
Case α = BIT:

Note that m+1 = 1, n = 1, and y does not appear in the argument of BIT.
Let α′ = BIT, then BIT(z;a1) = BIT(z;a1).
Case α(⋅) = ρ(pNm+1,n

m (⋅);):
Let α′(⋅) = ∣;pNm,n+1

n (⋅)∣. Then

α(x⃗, y; a⃗) = ρ(pNm+1,n
m (x⃗, y; a⃗);) = ρ(y;) = ℓ

= ∣; b∣ = ∣;pNm,n+1
n (x⃗; a⃗, b)∣ = α′(x⃗; a⃗, b).

Case α(⋅) = π(pNm+2,n
0 (⋅),pNm+2,n

m+1 (⋅);):
Let α′(⋅) = BIT(pNm+1,n+1

0 (⋅);pWm+1,n+1
n (⋅)). Then

α(i, x⃗, y; a⃗) = π(pNm+2,n
0 (i, x⃗, y; a⃗),pNm+2,n

m+1 (i, x⃗, y; a⃗);)
= π(i, y;) = yi = BIT(i; b)
= BIT(pNm+1,n+1

0 (i, x⃗; a⃗, b);pWm+1,n+1
n (i, x⃗; a⃗, b))

= α′(i, x⃗; a⃗, b).

26

Induction step.
Case COMP(∈ CN):

Suppose that

α(x⃗, y; a⃗) = β(γ0(x⃗, y; a⃗), . . . , γM−1(x⃗, y; a⃗);ψ0(x⃗, y; a⃗), . . . , ψN−1(x⃗, y; a⃗)),

whrere β (≠ ρ, π), γ0, . . . , γM−1 ∈ CN, and ψ0, . . . , ψN−1 ∈ CW. Then, by the
induction hypothesis, there exist γ′0, . . . , γ

′
M−1 ∈ CN and ψ′0, . . . , ψ

′
N−1 ∈ CW

such that

γi(x⃗, y; a⃗) = γ′i(x⃗; a⃗, b),
ψj(x⃗, y; a⃗) = ψ′j(x⃗; a⃗, b)

for 0 ≤ i <M and 0 ≤ j < N .
Since CN is closed under composition, define α′ ∈ CN by

α′(x⃗; a⃗, b) = β(γ′0(x⃗; a⃗, b), . . . , γ′M−1(x⃗; a⃗, b);ψ′0(x⃗; a⃗, b), . . . , ψ′N−1(x⃗; a⃗, b)).

Then we have

α(x⃗, y; a⃗) = β(γ0(x⃗, y; a⃗), . . . , γM−1(x⃗, y; a⃗);ψ0(x⃗, y; a⃗), . . . , ψN−1(x⃗, y; a⃗))
= β(γ′0(x⃗; a⃗, b), . . . , γ′M−1(x⃗; a⃗, b);ψ′0(x⃗; a⃗, b), . . . , ψ′N−1(x⃗; a⃗, b))
= α′(x⃗; a⃗, b).

Case COMP(∈ CW):
Suppose that

φ(x⃗, y; a⃗) = ψ(β0(x⃗, y; a⃗), . . . , βM−1(x⃗, y; a⃗);χ0(x⃗, y; a⃗), . . . , χN−1(x⃗, y; a⃗)),

whrere β0, . . . , βM−1 ∈ CN and ψ,χ0, . . . , χN−1 ∈ CW. Then, by the induction
hypothesis, there exist β′0, . . . , β

′
M−1 ∈ CN and χ′0, . . . , χ

′
N−1 ∈ CW such that

βi(x⃗, y; a⃗) = β′i(x⃗; a⃗, b),
χj(x⃗, y; a⃗) = χ′j(x⃗; a⃗, b)

for 0 ≤ i <M and 0 ≤ j < N .
Since CW is closed under composition, define φ′ ∈ CW by

φ′(x⃗; a⃗, b) = ψ(β′0(x⃗; a⃗, b), . . . , β′M−1(x⃗; a⃗, b);χ′0(x⃗; a⃗, b), . . . , χ′N−1(x⃗; a⃗, b)).

Then we have

φ(x⃗, y; a⃗) = ψ(β0(x⃗, y; a⃗), . . . , βM−1(x⃗, y; a⃗);χ0(x⃗, y; a⃗), . . . , χN−1(x⃗, y; a⃗))
= ψ(β′0(x⃗; a⃗, b), . . . , β′M−1(x⃗; a⃗, b);χ′0(x⃗; a⃗, b), . . . , χ′N−1(x⃗; a⃗, b))
= φ′(x⃗; a⃗, b).

27

Case BR:
Suppose that α ∈ CN with α(z, x⃗, y; a⃗) ∈ Nm+2 ×Wn → N is defined by

bounded recursion, then

α(0, x⃗, y; a⃗) = β(x⃗, y; a⃗),
α(z + 1, x⃗, y; a⃗) = γ(z, x⃗, α(z, x⃗, y; a⃗), y; a⃗),

α(z, x⃗, y; a⃗) ≤ δ(z, x⃗, y; a⃗) for any z, x⃗, y, a⃗,

where β, γ, δ ∈ CN.
By induction hypothesis, there exist β′, γ′, δ′ ∈ CN such that

β(x⃗, y; a⃗) = β′(x⃗; a⃗, b),
γ(z, x⃗,w, y; a⃗) = γ′(z, x⃗,w; a⃗, b),
δ(z, x⃗, y; a⃗) = δ′(z, x⃗; a⃗, b).

Since CN is closed under bounded recursion, define α′ by

α′(0, x⃗; a⃗, b) = β′(x⃗; a⃗, b),
α′(z + 1, x⃗; a⃗, b) = γ′(z, x⃗, α′(z, x⃗; a⃗, b); a⃗, b).

Now, we show α(z, x⃗, y; a⃗) = α′(z, x⃗; a⃗, b) by induction on z.
In the case z = 0,

α(0, x⃗, y; a⃗) = β(x⃗, y; a⃗) = β′(x⃗; a⃗, b) = α′(0, x⃗; a⃗, b).

In the case z, suppose that α(z, x⃗, y; a⃗) = α′(z, x⃗; a⃗, b).
In the case z + 1,

α(z + 1, x⃗, y; a⃗) = γ(z, x⃗, α(z, x⃗, y; a⃗), y; a⃗)
= γ′(z, x⃗, α′(z, x⃗; a⃗, b); a⃗, b)
= α′(z + 1, x⃗; a⃗, b).

Therefore, we have α(z, x⃗, y; a⃗) = α′(z, x⃗; a⃗, b) for all z.
Furthermore,

α′(z, x⃗; a⃗, b) = α(z, x⃗, y; a⃗)
≤ δ(z, x⃗, y; a⃗)
= δ′(z, x⃗; a⃗, b) for all z, x⃗, a⃗, b.

Since α′ is bounded from above by δ′ ∈ CN, we conclude α′ ∈ CN.
Case BCVR:

28

Suppose that α ∈ CN with α(z, x⃗, y; a⃗) ∈ Nm+2 ×Wn → N is defined by
boolean course-of-values recursion, then

α(0, x⃗, y; a⃗) = β(x⃗, y; a⃗),
α(z + 1, x⃗, y; a⃗) = γ(z, x⃗, y; c, a⃗),
where ∣; c∣ = z+1 and BIT(i; c) = α(i, x⃗, y; a⃗) for 0 ≤ i ≤ z,

α(z, x⃗, y; a⃗) ≤ 1 for any z, x⃗, y, a⃗,

where β, γ ∈ CN.
By induction hypothesis, there exist β′, γ′ ∈ CN such that

β(x⃗, y; a⃗) = β′(x⃗; a⃗, b),
γ(z, x⃗, y; c, a⃗) = γ′(z, x⃗; c, a⃗, b).

Since CN is closed under boolean course-of-values recursion, define α′ by

α′(0, x⃗; a⃗, b) = β′(x⃗; a⃗, b),
α′(z + 1, x⃗; a⃗, b) = γ′(z, x⃗; c, a⃗, b),
where ∣; c∣ = z+1 and BIT(i; c) = α′(i, x⃗; a⃗, b) for 0 ≤ i ≤ z.

Now, we show α(z, x⃗, y; a⃗) = α′(z, x⃗; a⃗, b) by course-of-values induction on
z.
In the case z = 0,

α(0, x⃗, y; a⃗) = β(x⃗, y; a⃗) = β′(x⃗; a⃗, b) = α′(0, x⃗; a⃗, b).

In the cases w(≤ z), suppose that α(w, x⃗, y; a⃗) = α′(w, x⃗; a⃗, b).
In the case z + 1,

α(z + 1, x⃗, y; a⃗) = γ(z, x⃗, y; c, a⃗),
where ∣; c∣ = z+1 and BIT(i; c) = α(i, x⃗, y; a⃗) for 0 ≤ i ≤ z,

= γ′(z, x⃗; c, a⃗, b),
since BIT(i; c) = α(i, x⃗, y; a⃗) = α′(i, x⃗; a⃗, b) for 0 ≤ i ≤ z,

= α′(z + 1, x⃗; a⃗, b).

Therefore, we have α(z, x⃗, y; a⃗) = α′(z, x⃗; a⃗, b) for all z.
Furthermore,

α′(z, x⃗; a⃗, b) = α(z, x⃗, y; a⃗) ≤ 1 for all z, x⃗, a⃗, b.

Since α′ is bounded from above by 1, we conclude α′ ∈ CN.

29

Case BC:
Suppose that φ ∈ CW with φ(z, x⃗, y; a⃗) ∈ Nm+2 ×Wn → W is defined by

bounded comprehension, then

∣;φ(z, x⃗, y; a⃗)∣ = z,
∀j < z [BIT(j;φ(z, x⃗, y; a⃗)) = 0↔ α(j, x⃗, y; a⃗) = 0],

where α ∈ CN with α(j, x⃗, y; a⃗) ∈ Nm+2 ×Wn → N.
By induction hypothesis, there exist α′ ∈ CN such that

α(j, x⃗, y; a⃗) = α′(j, x⃗; a⃗, b).

Since CW is closed under bounded comprehension, define φ′ ∈ CW by

∣;φ′(z, x⃗; a⃗, b)∣ = z,
∀j < z [BIT(j;φ′(z, x⃗; a⃗, b)) = 0↔ α′(j, x⃗; a⃗, b) = 0].

Then we have

∣;φ(z, x⃗, y; a⃗)∣ = z = ∣;φ′(z, x⃗; a⃗, b)∣.

In addition, for all j(< z), we have

BIT(j;φ(z, x⃗, y; a⃗)) = 0↔ α(j, x⃗, y; a⃗) = 0
↔ α′(j, x⃗; a⃗, b) = 0
↔ BIT(j;φ′(z, x⃗; a⃗, b)) = 0.

Therefore, we have φ(z, x⃗, y; a⃗) = φ′(z, x⃗; a⃗, b) for all z.

Proposition 3.22. For each f ∈ E2+ with f ∈ Nm → N, there exists α ∈ CN
such that

f(x⃗) = α(x⃗;)

for each x⃗.

Proof. By induction on the structure of f ∈ E2+.
Basis.
Case f = 0:

Note that m = 0. Let α = 0, then 0 = 0.
Case f = Imi :

Note that 0 ≤ i <m. Let α = pNm,0
i , then

f(x⃗) = Imi (x⃗) = xi = pN
m,0
i (x⃗;) = α(x⃗;).

30

Case f = S:
Note that m = 1. Let α = S, then S(x1) = S(x1;).

Case f = +:
Note that m = 2. Let α = +, then x1 + x2 = x1 + x2.

Case f = ×:
Note that m = 2. Let α = ×, then x1 × x2 = x1 × x2.

Induction step.
Case COMP:

Suppose that
f(x⃗) = h(g0(x⃗), . . . , gL−1(x⃗)),

whrere h, g0, . . . , gL−1 ∈ E2+. Then, by the induction hypothesis, there exist
γ, β0, . . . , βL−1 ∈ CN such that

h(y⃗) = γ(y⃗;),
gi(x⃗) = βi(x⃗;)

for 0 ≤ i < L.
Since CN is closed under composition, define α ∈ CN by

α(x⃗;) = γ(β0(x⃗;), . . . , βL−1(x⃗;);).

Then we have

f(x⃗) = h(g0(x⃗), . . . , gL−1(x⃗))
= γ(β0(x⃗;), . . . , βL−1(x⃗;);)
= α(x⃗;).

Case BR:
Suppose that f ∈ E2+ is defined by bounded recursion, then

f(0, x⃗) = g(x⃗),
f(z + 1, x⃗) = h(z, x⃗, f(z, x⃗)),

f(z, x⃗) ≤ e(z, x⃗) for any z, x⃗,

where g, h, e ∈ E2+.
By induction hypothesis, there exist β, γ, δ ∈ CN such that

g(x⃗) = β(x⃗;),
h(z, x⃗, y) = γ(z, x⃗, y;),
e(z, x⃗) = δ(z, x⃗;).

31

Since CN is closed under bounded recursion, define α by

α(0, x⃗;) = β(x⃗;),
α(z + 1, x⃗;) = γ(z, x⃗, α(z, x⃗;);).

Now, we show f(z, x⃗) = α(z, x⃗;) by induction on z.
In the case z = 0,

f(0, x⃗) = g(x⃗) = β(x⃗;) = α(0, x⃗;).

In the case z, suppose that f(z, x⃗;) = α(z, x⃗;).
In the case z + 1,

f(z + 1, x⃗) = h(z, x⃗, f(z, x⃗))
= γ(z, x⃗, α(z, x⃗;);)
= α(z + 1, x⃗;).

Therefore, we have f(z, x⃗) = α(z, x⃗;) for all z.
Furthermore,

α(z, x⃗;) = f(z, x⃗) ≤ e(z, x⃗) = δ(z, x⃗;) for all z, x⃗.

Since α is bounded from above by δ ∈ CN, we conclude α ∈ CN.
Case 1-BCVR:

Suppose that f ∈ E2+ is defined by 1-bounded course-of-values recursion,
then

f(0, x⃗) = g(x⃗),
f(z + 1, x⃗) = h(z, x⃗, ⟨f(0, x⃗), . . . , f(z, x⃗)⟩),

f(z, x⃗) ≤ 1 for any z, x⃗,

where g, h ∈ E2+.
By induction hypothesis, there exist β, γ ∈ CN such that

g(x⃗) = β(x⃗;),
h(z, x⃗, y) = γ(z, x⃗, y;).

Here, let y be in N such that y = ⟨y0, . . . , yz⟩ with yi ≤ 1 for 0 ≤ i ≤ z, and
let b be in W such that ∣b∣ = z + 1 and BIT(i, b) = yi for 0 ≤ i ≤ z. Then, by
Lemma 3.21 (i), there exists γ′ ∈ CN such that

γ(z, x⃗, y;) = γ′(z, x⃗; b).

32

Since CN is closed under boolean course-of-values recursion, define α by the
following formula using β and γ′:

α(0, x⃗;) = β(x⃗;),
α(z + 1, x⃗;) = γ′(z, x⃗; b),
where ∣; b∣ =z + 1 and BIT(i; b) = α(i, x⃗;) for 0 ≤ i ≤ z.

Now, we show f(z, x⃗) = α(z, x⃗;) by course-of-values induction on z.
In the case z = 0,

f(0, x⃗) = g(x⃗) = β(x⃗;) = α(0, x⃗;).

In the case w(≤ z), suppose that f(w, x⃗;) = α(w, x⃗;).
In the case z + 1,

f(z + 1, x⃗) = h(z, x⃗, ⟨f(0, x⃗), . . . , f(z, x⃗)⟩)
= γ(z, x⃗, ⟨f(0, x⃗), . . . , f(z, x⃗)⟩;)
= γ(z, x⃗, ⟨α(0, x⃗;), . . . , α(z, x⃗;)⟩;)
= γ′(z, x⃗; b)

where ∣; b∣ = z + 1 and BIT(i; b) = α(i, x⃗;) for 0 ≤ i ≤ z
= α(z + 1, x⃗;).

Therefore, we have f(z, x⃗) = α(z, x⃗;) for all z.
Furthermore,

α(z, x⃗;) = f(z, x⃗) ≤ 1 for all z, x⃗.

Since α is bounded from above by 1, we conclude α ∈ CN.

33

3.3 Representation of CN and CW functions by E2+ func-
tions

In this section, we would like to show that any function in CN is represented
by some function in E2+ and that any function in CW is represented by some
function in E2+, that is,

∀α ∈ CN ∃f ∈ E2+ [α(x⃗;bin(k⃗)) = f(x⃗, k⃗)],
∀φ ∈ CW ∃g ∈ E2+ [φ(x⃗;bin(k⃗)) = bin(g(x⃗, k⃗))].

There is a problem here. If a function φ ∈ CW is defined by bounded
comprehension, we have ∣;φ(z, x⃗;bin(k⃗))∣ = z. Hence we must construct a
fucntion g ∈ E2+ such that g = Θ(2z). However, we cannot construct such a
function in E2+ because E2+ does not contain exponential function. Therefore,
the latter formula above does not hold.

For this reason, we consider an intermediate class C̃ of functions of types
Nm ×Wn → N, and for each function in CN we construct a function in C̃ of
the same values, and for each function in CW we construct two functions in
C̃, one giving its bit contents and the other giving its length, that is,

∀α ∈ CN ∃α̃ ∈ C̃ [α(x⃗; a⃗) = α̃(x⃗; a⃗)],
∀φ ∈ CW ∃φ̃ ∈ C̃ [BIT(z;φ(x⃗; a⃗)) = φ̃(z, x⃗; a⃗)] and

∃φ̂ ∈ C̃ [∣;φ(x⃗; a⃗)∣ = φ̂(x⃗; a⃗)]

(Proposition 3.26). And then, for each function in C̃ we construct a function
in E2+ of the same values, that is,

∀α̃ ∈ C̃ ∃f ∈ E2+ [α̃(x⃗;bin(k⃗)) = f(x⃗, k⃗)]

(Proposition 3.27).
The ideas of thie section, especially, Definition 3.23, Lemma 3.24 and

Proposition 3.26 are based on Ishihara [6].
To begin with, we define an intermediate class C̃.

Definition 3.23. A class C̃ of functions of types Nm ×Wn → N is generated
by the following clauses.

1. The projection functions pN
m,n
i belong to C̃:

pN
m,n
i (x0, . . . , xm−1; a⃗) = xi (0 ≤ i <m);

2. the constant zero 0 belongs to C̃: 0 = 0;

34

3. the successor function S belongs to C̃: S(x;) = Sx;

4. the addition + belongs to C̃: +(x, y;) = x + y;

5. the multiplication × belongs to C̃: ×(x, y;) = x ⋅ y;

6. the projective length function ∣ ⋅ ∣m,n
j belongs to C̃:

∣(x⃗;a0, . . . , an−1)∣m,n
j = ∣aj ∣ (0 ≤ j < n);

7. the projective bit function BIT
m+1,n
j belongs to C̃:

BIT
m+1,n
j (z, x⃗;a0, . . . , an−1) = BIT(z, aj) (0 ≤ j < n);

8. C̃ is closed under composition (COMP):
if β0, . . . , βL−1, γ ∈ C̃ with βi ∈ Nm ×Wn → N and γ ∈ NL ×Wn → N for
0 ≤ i < L, then there exist α ∈ C̃ satisfying

α(x⃗; a⃗) = γ(β0(x⃗, a⃗), . . . , βL−1(x⃗; a⃗); a⃗);

9. C̃ is closed under bounded recursion (BR):
if β, γ, δ ∈ C̃ with β ∈ Nm ×Wn → N, γ ∈ Nm+2 ×Wn → N, and δ ∈
Nm+1 ×Wn → N, then there is α ∈ C̃ satisfying

α(0, x⃗; a⃗) = β(x⃗; a⃗),
α(S(z;), x⃗; a⃗) = γ(z, x⃗, α(z, x⃗; a⃗); a⃗),

provided that α(z, x⃗; a⃗) ≤ δ(z, x⃗; a⃗) for all z, x⃗, a⃗;

10. C̃ is closed under 1-bounded course-of-values recursion (1-BCVR):
if β, γ ∈ C̃ with β ∈ Nm ×Wn → N, and γ ∈ Nm+2 ×Wn → N, then there
is α ∈ C̃ satisfying

α(0, x⃗; a⃗) = β(x⃗; a⃗),
α(S(z;), x⃗; a⃗) = γ(z, x⃗, ⟨α(0, x⃗; a⃗), . . . , α(z, x⃗; a⃗)⟩; a⃗),

provided that α(z, x⃗; a⃗) ≤ 1 for all z, x⃗, a⃗.

In function algebra, the class C̃ is represented as follows:

C̃ = [pNm,n
i ,0,S,+,×, ∣ ⋅ ∣m,n

j ,BITm+1,n
j ;COMP,BR, 1-BCVR].

We show two lemmas used in the proposition 3.26.

35

Lemma 3.24. Let χ0, . . . , χN−1 be in CW with χj ∈ Nm ×Wn → W for 0 ≤
j < N , and suppose that there exist χ

∣⋅∣
0 , . . . , χ

∣⋅∣
N−1 and χ

BIT
0 , . . . , χBIT

N−1 in C̃ such
that

∣χj(x⃗; a⃗)∣ = χ∣⋅∣j (x⃗; a⃗), BIT(z,χj(x⃗; a⃗)) = χBIT
j (z, x⃗; a⃗)

for each 0 ≤ j < N . Then for any α ∈ C̃ with α ∈ NM ×WN → N, there exists
α̃ ∈ C̃ with α̃ ∈ NM+m ×Wn → N such that

α(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = α̃(y⃗, x⃗; a⃗).

Proof. By induction on the structure of α ∈ C̃.
Basis.
Case α = pNM,N

i :
Note that 0 ≤ i <M . Let α̃ = pNM+m,n

i . Then

α(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = pNM,N
i (y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))

= yi = pNM+m,n
i (y⃗, x⃗; a⃗) = α̃(y⃗, x⃗; a⃗).

Case α = 0:
Note that M = N = 0. Let α̃ = 0, then 0 = 0.

Case α = S:
Note that M = 1,N = 0. Let α̃ = S, then S(y1;) = S(y1;).

Case α = +:
Note that M = 2,N = 0. Let α̃ = +, then y1 + y2 = y1 + y2.

Case α = ×:
Note that M = 2,N = 0. Let α̃ = ×, then y1 × y2 = y1 × y2.

Case α = ∣ ⋅ ∣M,N
j :

Note that 0 ≤ j < N . Let α̃(y⃗, x⃗; a⃗) = χ∣⋅∣j (x⃗; a⃗). Then

α(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = ∣(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))∣M,N
j

= ∣χj(x⃗; a⃗)∣ = χ∣⋅∣j (x⃗; a⃗) = α̃(y⃗, x⃗; a⃗).

Case α = BITM+1,N
j :

Note that 0 ≤ j < N . Let α̃(z, y⃗, x⃗; a⃗) = χBIT
j (z, x⃗; a⃗). Then

α(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= BITM+1,N

j (z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= BIT(z,χj(x⃗; a⃗)) = χBIT

j (z, x⃗; a⃗) = α̃(z, y⃗, x⃗; a⃗).

Induction step.

36

Case COMP:
Suppose that α ∈ C̃ with α(y⃗; b⃗) ∈ NM×WN → N is defined by composition,

then
α(y⃗; b⃗) = γ(β0(y⃗; b⃗), . . . , βL−1(y⃗; b⃗); b⃗),

whrere γ, β0, . . . , βL−1 ∈ C̃. Then, by the induction hypothesis, there exist
γ̃, β̃0, . . . , β̃L−1 ∈ C̃ such that

γ(z⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = γ̃(z⃗, x⃗; a⃗),
βj(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = β̃j(y⃗, x⃗; a⃗)

for 0 ≤ j < L.
Since C̃ is closed under composition, define α̃ ∈ C̃ by

α̃(y⃗, x⃗; a⃗) = γ̃(β̃0(y⃗, x⃗; a⃗), . . . , β̃L−1(y⃗, x⃗; a⃗), x⃗; a⃗).

Then we have

α(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ(β0(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)), . . . , βL−1(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗));

χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ(β̃0(y⃗, x⃗; a⃗), . . . , β̃L−1(y⃗, x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ̃(β̃0(y⃗, x⃗; a⃗), . . . , β̃L−1(y⃗, x⃗; a⃗), x⃗; a⃗)
= α̃(y⃗, x⃗; a⃗).

Case BR:
Suppose that α ∈ C̃ with α(z, y⃗; b⃗) ∈ NM+1×WN → N is defined by bounded

recursion, then

α(0, y⃗; b⃗) = β(y⃗; b⃗),
α(z + 1, y⃗; b⃗) = γ(z, y⃗, α(z, y⃗; b⃗); b⃗),

α(z, y⃗; b⃗) ≤ δ(z, y⃗; b⃗) for any z, y⃗, b⃗,

where β, γ, δ ∈ C̃.
By induction hypothesis, there exist β̃, γ̃, δ̃ ∈ C̃ such that

β(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = β̃(y⃗, x⃗; a⃗),
γ(z, y⃗,w;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = γ̃(z, y⃗,w, x⃗; a⃗),
δ(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = δ̃(z, y⃗, x⃗; a⃗).

37

Since C̃ is closed under bounded recursion, define α̃ by

α̃(0, y⃗, x⃗; a⃗) = β̃(y⃗, x⃗; a⃗),
α̃(z + 1, y⃗, x⃗; a⃗) = γ̃(z, y⃗, α̃(z, y⃗, x⃗; a⃗), x⃗; a⃗).

Now, we show α(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = α̃(z, y⃗, x⃗; a⃗) by induction
on z.
In the case z = 0,

α(0, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = β(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= β̃(y⃗, x⃗; a⃗) = α̃(0, y⃗, x⃗; a⃗).

In the case z, suppose that α(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = α̃(z, y⃗, x⃗; a⃗).
In the case z + 1,

α(z + 1, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ(z, y⃗, α(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗));χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ(z, y⃗, α̃(z, y⃗, x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ̃(z, y⃗, α̃(z, y⃗, x⃗; a⃗), x⃗; a⃗)
= α̃(z + 1, y⃗, x⃗; a⃗).

Therefore, we have α(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = α̃(z, y⃗, x⃗; a⃗) for all z.
Furthermore,

α̃(z, y⃗, x⃗; a⃗) = α(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
≤ δ(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= δ̃(z, y⃗, x⃗; a⃗) for all z, y⃗, x⃗, a⃗.

Since α̃ is bounded from above by δ̃ ∈ C̃, we conclude α̃ ∈ C̃.
Case 1-BCVR:

Suppose that α ∈ C̃ with α(z, y⃗; b⃗) ∈ NM+1 ×WN → N is defined by 1-
bounded course-of-values recursion, then

α(0, y⃗; b⃗) = β(y⃗; b⃗),
α(z + 1, y⃗; b⃗) = γ(z, y⃗, ⟨α(0, y⃗; b⃗), . . . , α(z, y⃗; b⃗)⟩; b⃗),

α(z, y⃗; b⃗) ≤ 1 for any z, y⃗, b⃗,

where β, γ ∈ C̃.
By induction hypothesis, there exist β̃, γ̃ ∈ C̃ such that

β(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = β̃(y⃗, x⃗; a⃗),
γ(z, y⃗,w;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = γ̃(z, y⃗,w, x⃗; a⃗).

38

Since C̃ is closed under 1-bounded course-of-values recursion, define α̃ by

α̃(0, y⃗, x⃗; a⃗) = β̃(y⃗, x⃗; a⃗),
α̃(z + 1, y⃗, x⃗; a⃗) = γ̃(z, y⃗, ⟨α̃(0, y⃗, x⃗; a⃗), . . . , α̃(z, y⃗, x⃗; a⃗)⟩, x⃗; a⃗).

Now, we show α(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = α̃(z, y⃗, x⃗; a⃗) by course-of-
values induction on z.
In the case z = 0,

α(0, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = β(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= β̃(y⃗, x⃗; a⃗) = α̃(0, y⃗, x⃗; a⃗).

In the case v(≤ z), suppose that α(v, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = α̃(v, y⃗, x⃗; a⃗).
In the case z + 1,

α(z + 1, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ(z, y⃗, ⟨α(0, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)), . . . ,

α(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))⟩;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ(z, y⃗, ⟨α̃(0, y⃗, x⃗; a⃗), . . . , α̃(z, y⃗, x⃗; a⃗)⟩;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ̃(z, y⃗, ⟨α̃(0, y⃗, x⃗; a⃗), . . . , α̃(z, y⃗, x⃗; a⃗)⟩, x⃗; a⃗)
= α̃(z + 1, y⃗, x⃗; a⃗).

Therefore, we have α(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = α̃(z, y⃗, x⃗; a⃗) for all z.
Furthermore,

α̃(z, y⃗, x⃗; a⃗) = α(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) ≤ 1 for all z, y⃗, x⃗, a⃗.

Since α̃ is bounded from above by 1, we conclude α̃ ∈ C̃.

At the beginning of section 3.2, we assume that there are two functions
ρ and π in CN. Similarly, in the following lemma, we assume that these two
functions ρ and π also belong to C̃. That is, if y is a coded natural number
y = ⟨y0, . . . , yℓ−1⟩, then ρ(y;) = ℓ and π(i, y;) = yi for 0 ≤ i < ℓ. The example
of ρ and π mentioned for CN at the beginning of section 3.2 also holds for C̃.

Lemma 3.25. Let b be in W, and let y be in N such that y = ⟨BIT(0, b),BIT
(1, b), . . . ,BIT(∣b∣−1, b)⟩. Then for any α ∈ C̃ with α(x⃗; a⃗, b) ∈ Nm×Wn+1 → N,
there exists α̃ ∈ C̃ with α̃(x⃗, y; a⃗) ∈ Nm+1 ×Wn → N such that

α(x⃗; a⃗, b) = α̃(x⃗, y; a⃗).

39

Proof. By induction on the structure of α ∈ C̃.
Basis.
Case α = pNm,n+1

i :
Note that 0 ≤ i <m. Let α̃ = pNm+1,n

i . Then

α(x⃗; a⃗, b) = pNm,n+1
i (x⃗; a⃗, b) = xi = pNm+1,n

i (x⃗, y; a⃗) = α̃(x⃗, y; a⃗).

Case α = 0:
Note that m = n + 1 = 0. Let α̃ = 0, then 0 = 0.

Case α = S:
Note that m = 1, n + 1 = 0. Let α̃ = S, then S(x1;) = S(x1;).

Case α = +:
Note that m = 2, n + 1 = 0. Let α̃ = +, then x1 + x2 = x1 + x2.

Case α = ×:
Note that m = 2, n + 1 = 0. Let α̃ = ×, then x1 × x2 = x1 × x2.

Case α = ∣ ⋅ ∣m,n+1
j :

Note that 0 ≤ j ≤ n.
In the case 0 ≤ j ≤ n − 1, let α̃(⋅) = ∣ ⋅ ∣m+1,n

j . Then

α(x⃗; a⃗, b) = ∣(x⃗; a⃗, b)∣m,n+1
j = ∣aj ∣ = ∣(x⃗, y; a⃗)∣m+1,n

j = α̃(x⃗, y; a⃗).

In the case j = n, let α̃(⋅) = ρ(pNm+1,n
m (⋅);). Then

α(x⃗; a⃗, b) = ∣(x⃗; a⃗, b)∣m,n+1
n = ∣b∣

= ρ(y;) = ρ(pNm+1,n
m (x⃗, y; a⃗);) = α̃(x⃗, y; a⃗).

Case α = BITm+1,n+1
j :

Note that 0 ≤ j ≤ n.
In the case 0 ≤ j ≤ n − 1, let α̃(⋅) = BITm+2,n

j (⋅). Then

α(z, x⃗; a⃗, b) = BITm+1,n+1
j (z, x⃗; a⃗, b) = BIT(z, aj)

= BITm+2,n
j (z, x⃗, y; a⃗) = α̃(z, x⃗, y; a⃗).

In the case j = n, let α̃(⋅) = π(pNm+2,n
0 (⋅),pNm+2,n

m+1 (⋅);). Then

α(z, x⃗; a⃗, b) = BITm+1,n+1
n (z, x⃗; a⃗, b) = BIT(z, b) = π(z, y;)

= π(pNm+2,n
0 (z, x⃗, y; a⃗),pNm+2,n

m+1 (z, x⃗, y; a⃗);)
= α̃(z, x⃗, y; a⃗).

Induction step.
Case COMP:

40

Suppose that

α(x⃗; a⃗, b) = γ(β0(x⃗; a⃗, b), . . . , βL−1(x⃗; a⃗, b); a⃗, b),

whrere γ, β0, . . . , βL−1 ∈ C̃. Then, by the induction hypothesis, there exist
γ̃, β̃0, . . . , β̃L−1 ∈ C̃ such that

γ(z⃗; a⃗, b) = γ̃(z⃗, y; a⃗),
βj(x⃗; a⃗, b) = β̃j(x⃗, y; a⃗)

for 0 ≤ j < L.
Since C̃ is closed under composition, define α̃ ∈ C̃ by

α̃(x⃗, y; a⃗) = γ̃(β̃0(x⃗, y; a⃗), . . . , β̃L−1(x⃗, y; a⃗), y; a⃗).

Then we have

α(x⃗; a⃗, b) = γ(β0(x⃗; a⃗, b), . . . , βL−1(x⃗; a⃗, b); a⃗, b)
= γ(β̃0(x⃗, y; a⃗), . . . , β̃L−1(x⃗, y; a⃗); a⃗, b)
= γ̃(β̃0(x⃗, y; a⃗), . . . , β̃L−1(x⃗, y; a⃗), y; a⃗)
= α̃(x⃗, y; a⃗).

Case BR:
Suppose that α ∈ C̃ with α(z, x⃗; a⃗, b) ∈ Nn+1 ×Wm+1 → N is defined by

bounded recursion, then

α(0, x⃗; a⃗, b) = β(x⃗; a⃗, b),
α(z + 1, x⃗; a⃗, b) = γ(z, x⃗, α(z, x⃗; a⃗, b); a⃗, b),

α(z, x⃗; a⃗, b) ≤ δ(z, x⃗; a⃗, b) for any z, x⃗, a⃗, b,

where β, γ, δ ∈ C̃.
By induction hypothesis, there exist β̃, γ̃, δ̃ ∈ C̃ such that

β(x⃗; a⃗, b) = β̃(x⃗, y; a⃗),
γ(z, x⃗,w; a⃗, b) = γ̃(z, x⃗,w, y; a⃗),
δ(z, x⃗; a⃗, b) = δ̃(z, x⃗, y; a⃗).

Since C̃ is closed under bounded recursion, define α̃ by

α̃(0, x⃗, y; a⃗) = β̃(x⃗, y; a⃗),
α̃(z + 1, x⃗, y; a⃗) = γ̃(z, x⃗, α̃(z, x⃗, y; a⃗), y; a⃗).

41

Now, we show α(z, x⃗; a⃗, b) = α̃(z, x⃗, y; a⃗) by induction on z.
In the case z = 0,

α(0, x⃗; a⃗, b) = β(x⃗; a⃗, b) = β̃(x⃗, y; a⃗) = α̃(0, x⃗, y; a⃗).

In the case z, suppose that α(z, x⃗; a⃗, b) = α̃(z, x⃗, y; a⃗).
In the case z + 1,

α(z + 1, x⃗; a⃗, b) = γ(z, x⃗, α(z, x⃗; a⃗, b); a⃗, b)
= γ(z, x⃗, α̃(z, x⃗, y; a⃗); a⃗, b)
= γ̃(z, x⃗, α̃(z, x⃗, y; a⃗), y; a⃗)
= α̃(z + 1, x⃗, y; a⃗).

Therefore, we have α(z, x⃗; a⃗, b) = α̃(z, x⃗, y; a⃗) for all z.
Furthermore,

α̃(z, x⃗, y; a⃗) = α(z, x⃗; a⃗, b)
≤ δ(z, x⃗; a⃗, b) = δ̃(z, x⃗, y; a⃗) for all z, x⃗, y, a⃗.

Since α̃ is bounded from above by δ̃ ∈ C̃, we conclude α̃ ∈ C̃.
Case 1-BCVR:

Suppose that α ∈ C̃ with α(z, x⃗; a⃗, b) ∈ Nn+1 ×Wm+1 → N is defined by
1-bounded course-of-values recursion, then

α(0, x⃗; a⃗, b) = β(x⃗; a⃗, b),
α(z + 1, x⃗; a⃗, b) = γ(z, x⃗, ⟨α(0, x⃗; a⃗, b), . . . , α(z, x⃗; a⃗, b)⟩; a⃗, b),

α(z, x⃗; a⃗, b) ≤ 1 for any z, x⃗, a⃗, b,

where β, γ ∈ C̃.
By induction hypothesis, there exist β̃, γ̃ ∈ C̃ such that

β(x⃗; a⃗, b) = β̃(x⃗, y; a⃗),
γ(z, x⃗,w; a⃗, b) = γ̃(z, x⃗,w, y; a⃗).

Since C̃ is closed under 1-bounded course-of-values recursion, define α̃ by

α̃(0, x⃗, y; a⃗) = β̃(x⃗, y; a⃗),
α̃(z + 1, x⃗, y; a⃗) = γ̃(z, x⃗, ⟨α̃(0, x⃗, y; a⃗), . . . , α̃(z, x⃗, y; a⃗)⟩, y; a⃗).

Now, we show α(z, x⃗; a⃗, b) = α̃(z, x⃗, y; a⃗) by course-of-values induction on
z.
In the case z = 0,

α(0, x⃗; a⃗, b) = β(x⃗; a⃗, b) = β̃(x⃗, y; a⃗) = α̃(0, x⃗, y; a⃗).

42

In the case v(≤ z), suppose that α(v, x⃗; a⃗, b) = α̃(v, x⃗, y; a⃗).
In the case z + 1,

α(z + 1, x⃗; a⃗, b) = γ(z, x⃗, ⟨α(0, x⃗; a⃗, b), . . . , α(z, x⃗; a⃗, b)⟩; a⃗, b)
= γ(z, x⃗, ⟨α̃(0, x⃗, y; a⃗), . . . , α̃(z, x⃗, y; a⃗)⟩; a⃗, b)
= γ̃(z, x⃗, ⟨α̃(0, x⃗, y; a⃗), . . . , α̃(z, x⃗, y; a⃗)⟩, y; a⃗)
= α̃(z + 1, x⃗, y; a⃗).

Therefore, we have α(z, x⃗; a⃗, b) = α̃(z, x⃗, y; a⃗) for all z.
Furthermore,

α̃(z, x⃗, y; a⃗) = α(z, x⃗; a⃗, b) ≤ 1 for all z, x⃗, y, a⃗.

Since α̃ is bounded from above by 1, we conclude α̃ ∈ C̃.

Proposition 3.26. For each α ∈ CN with α ∈ Nm ×Wn → N and φ ∈ CW with
φ ∈ Nm ×Wn →W, there exist α̃, φ̃, φ̂ ∈ C̃ such that

α(x⃗; a⃗) = α̃(x⃗; a⃗),
BIT(z;φ(x⃗; a⃗)) = φ̃(z, x⃗; a⃗),

∣;φ(x⃗; a⃗)∣ = φ̂(x⃗; a⃗)

for each x⃗, a⃗ and z.

Proof. By simultaneous induction on the structures of α ∈ CN and φ ∈ CW.
Basis.
Case α = pNm,n

i :
Note that 0 ≤ i <m. Let α̃ = pNm,n

i . Then

α(x⃗; a⃗) = pNm,n
i (x⃗; a⃗) = xi = α̃(x⃗; a⃗).

Case φ = pWm,n
j :

Note that 0 ≤ j < n. Let φ̃ = BITm+1,n
j and φ̂ = ∣ ⋅ ∣m,n

j . Then

BIT(z;φ(x⃗; a⃗)) = BIT(z;pWm,n
j (x⃗; a⃗)) = BIT(z;aj)

= BITm+1,n
j (z, x⃗; a⃗) = φ̃(z, x⃗; a⃗),

∣;φ(x⃗; a⃗)∣ = ∣;pWm,n
j (x⃗; a⃗)∣ = ∣;aj ∣

= ∣(x⃗; a⃗)∣m,n
j = φ̂(x⃗; a⃗).

Case α = 0:
Note that m = n = 0. Let α̃ = 0, then 0 = 0.

43

Case α = S:
Note that m = 1, n = 0. Let α̃ = S, then S(x1;) = S(x1;).

Case α = +:
Note that m = 2, n = 0. Let α̃ = +, then x1 + x2 = x1 + x2.

Case α = ×:
Note that m = 2, n = 0. Let α̃ = ×, then x1 × x2 = x1 × x2.

Case α = ∣ ⋅ ∣:
Note that m = 0, n = 1. Let α̃ = ∣ ⋅ ∣0,10 . Then

α(;a1) = ∣;a1∣ = ∣(;a1)∣0,10 = α̃(;a1).

Case α = BIT:
Note that m = 1, n = 1. Let α̃ = BIT1,10 . Then

α(z;a1) = BIT(z;a1) = BIT1,10 (z;a1) = α̃(z;a1).

Induction step.
Case COMP(∈ CN):

Suppose that

α(x⃗; a⃗) = γ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)),

whrere γ, β0, . . . , βM−1 ∈ CN and χ0, . . . , χN−1 ∈ CW. Then, by the induction
hypothesis, there exist γ̃, β̃0, . . . , β̃M−1, χ̃0, . . . , χ̃N−1, χ̂0, . . . , χ̂N−1 ∈ C̃ such that

γ(y⃗; b⃗) = γ̃(y⃗; b⃗), βi(x⃗; a⃗) = β̃i(x⃗; a⃗),
BIT(z;χj(x⃗; a⃗)) = χ̃j(z, x⃗; a⃗), ∣;χj(x⃗; a⃗)∣ = χ̂j(x⃗; a⃗)

for 0 ≤ i < M and 0 ≤ j < N . Since the bit contents and lengths of χj(x⃗; a⃗)
for 0 ≤ j < N are known, by Lemma 3.24, there exist γ̃′ ∈ C̃ such that

γ̃(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = γ̃′(y⃗, x⃗; a⃗).

Since C̃ is closed under composition, define α̃ ∈ C̃ by the following formula
using γ̃′ and β̃i for 0 ≤ i <M :

α̃(x⃗; a⃗) = γ̃′(β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗), x⃗; a⃗).

Then we have

α(x⃗; a⃗) = γ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ(β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ̃(β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ̃′(β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗), x⃗; a⃗)
= α̃(x⃗; a⃗).

44

Case COMP(∈ CW):
Suppose that

φ(x⃗; a⃗) = ψ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)),

whrere β0, . . . , βM−1 ∈ CN and ψ,χ0, . . . , χN−1 ∈ CW. Then, by the induction
hypothesis, there exist β̃0, . . . , β̃M−1, ψ̃, χ̃0, . . . , χ̃N−1, ψ̂, χ̂0, . . . , χ̂N−1 ∈ C̃ such
that

βi(x⃗; a⃗) = β̃i(x⃗; a⃗),
BIT(z;ψ(y⃗; b⃗)) = ψ̃(z, y⃗; b⃗), ∣;ψ(y⃗; b⃗)∣ = ψ̂(y⃗; b⃗),
BIT(z;χj(x⃗; a⃗)) = χ̃j(z, x⃗; a⃗), ∣;χj(x⃗; a⃗)∣ = χ̂j(x⃗; a⃗)

for 0 ≤ i < M and 0 ≤ j < N . Since the bit contents and lengths of χj(x⃗; a⃗)
for 0 ≤ j < N are known, by Lemma 3.24, there exist ψ̃′, ψ̂′ ∈ C̃ such that

ψ̃(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = ψ̃′(z, y⃗, x⃗; a⃗),
ψ̂(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = ψ̂′(y⃗, x⃗; a⃗).

Since C̃ is closed under composition, define φ̃, φ̂ ∈ C̃ by the following formulas
using ψ̃′, ψ̂′ and β̃i for 0 ≤ i <M :

φ̃(z, x⃗; a⃗) = ψ̃′(z, β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗), x⃗; a⃗),
φ̂(x⃗; a⃗) = ψ̂′(β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗), x⃗; a⃗).

Then we have

BIT(z;φ(x⃗; a⃗)) = BIT(z;ψ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)))
= ψ̃(z, β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= ψ̃(z, β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= ψ̃′(z, β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗), x⃗; a⃗)
= φ̃(z, x⃗; a⃗),

∣;φ(x⃗; a⃗)∣ = ∣;ψ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))∣
= ψ̂(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= ψ̂(β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= ψ̂′(β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗), x⃗; a⃗)
= φ̂(x⃗; a⃗).

45

Case BR:
Suppose that α ∈ CN with α(z, x⃗; a⃗) ∈ Nm+1×Wn → N is defined by bounded

recursion, then

α(0, x⃗; a⃗) = β(x⃗; a⃗),
α(z + 1, x⃗; a⃗) = γ(z, x⃗, α(z, x⃗; a⃗); a⃗),

α(z, x⃗; a⃗) ≤ δ(z, x⃗; a⃗) for any z, x⃗, a⃗,

where β, γ, δ ∈ CN.
By induction hypothesis, there exist β̃, γ̃, δ̃ ∈ C̃ such that

β(x⃗; a⃗) = β̃(x⃗; a⃗),
γ(z, x⃗,w; a⃗) = γ̃(z, x⃗,w; a⃗),
δ(z, x⃗; a⃗) = δ̃(z, x⃗; a⃗).

Since C̃ is closed under bounded recursion, define α̃ by

α̃(0, x⃗; a⃗) = β̃(x⃗; a⃗),
α̃(z + 1, x⃗; a⃗) = γ̃(z, x⃗, α̃(z, x⃗; a⃗); a⃗).

Now, we show α(z, x⃗; a⃗) = α̃(z, x⃗; a⃗) by induction on z.
In the case z = 0,

α(0, x⃗; a⃗) = β(x⃗; a⃗) = β̃(x⃗; a⃗) = α̃(0, x⃗; a⃗).

In the case z, suppose that α(z, x⃗; a⃗) = α̃(z, x⃗; a⃗).
In the case z + 1,

α(z + 1, x⃗; a⃗) = γ(z, x⃗, α(z, x⃗; a⃗); a⃗)
= γ̃(z, x⃗, α̃(z, x⃗; a⃗); a⃗)
= α̃(z + 1, x⃗; a⃗).

Therefore, we have α(z, x⃗; a⃗) = α̃(z, x⃗; a⃗) for all z.
Furthermore,

α̃(z, x⃗; a⃗) = α(z, x⃗; a⃗)
≤ δ(z, x⃗; a⃗) = δ̃(z, x⃗; a⃗) for all z, x⃗, a⃗.

Since α′ is bounded from above by δ̃ ∈ C̃, we conclude α̃ ∈ C̃.
Case BCVR:

46

Suppose that α ∈ CN with α(z, x⃗; a⃗) ∈ Nm+1×Wn → N is defined by boolean
course-of-values recursion, then

α(0, x⃗; a⃗) = β(x⃗; a⃗),
α(z + 1, x⃗; a⃗) = γ(z, x⃗; b, a⃗),
where ∣; b∣ =z + 1 and BIT(i; b) = α(i, x⃗; a⃗) for 0 ≤ i ≤ z,
α(z, x⃗; a⃗) ≤ 1 for any z, x⃗, a⃗,

where β, γ ∈ CN.
By induction hypothesis, there exist β̃, γ̃ ∈ C̃ such that

β(x⃗; a⃗) = β̃(x⃗; a⃗),
γ(z, x⃗; b, a⃗) = γ̃(z, x⃗; b, a⃗).

Here, for any b ∈W, let y be in N such that y = ⟨BIT(0, b), . . . ,BIT(∣b∣−1, b)⟩.
Then, by Lemma 3.25, there exists γ̃′ ∈ C̃ such that

γ̃(z, x⃗; b, a⃗) = γ̃′(z, x⃗, y; a⃗).

Since C̃ is closed under 1-bounded course-of-values recursion, define α̃ by the
following formula using β̃ and γ̃′:

α̃(0, x⃗; a⃗) = β̃(x⃗; a⃗),
α̃(z + 1, x⃗; a⃗) = γ̃′(z, x⃗, ⟨α̃(0, x⃗; a⃗), . . . , α̃(z, x⃗; a⃗)⟩; a⃗).

Now, we show α(z, x⃗; a⃗) = α̃(z, x⃗; a⃗) by course-of-values induction on z.
In the case z = 0,

α(0, x⃗; a⃗) = β(x⃗; a⃗) = β̃(x⃗; a⃗) = α̃(0, x⃗; a⃗).

In the cases w(≤ z), suppose that α(w, x⃗; a⃗) = α̃(w, x⃗; a⃗).
In the case z + 1,

α(z + 1, x⃗; a⃗) = γ(z, x⃗; b, a⃗),
where ∣; b∣ = z + 1 and BIT(i; b) = α(i, x⃗; a⃗) for 0 ≤ i ≤ z,

= γ̃(z, x⃗; b, a⃗)
= γ̃′(z, x⃗, ⟨α(0, x⃗; a⃗), . . . , α(z, x⃗; a⃗)⟩; a⃗)
= γ̃′(z, x⃗, ⟨α̃(0, x⃗; a⃗), . . . , α̃(z, x⃗; a⃗)⟩; a⃗)
= α̃(z + 1, x⃗; a⃗).

Therefore, we have α(z, x⃗; a⃗) = α̃(z, x⃗; a⃗) for all z.

47

Furthermore,

α̃(z, x⃗; a⃗) = α(z, x⃗; a⃗) ≤ 1 for all z, x⃗, a⃗.

Since α̃ is bounded from above by 1, we conclude α̃ ∈ C̃.
Case BC:

Suppose that φ ∈ CW with φ(z, x⃗; a⃗) ∈ Nm+1 × Wn → W is defined by
bounded comprehension, then

∣;φ(z, x⃗; a⃗)∣ = z,
∀j < z [BIT(j;φ(z, x⃗; a⃗)) = 0↔ α(j, x⃗; a⃗) = 0],

where α ∈ CN with α(j, x⃗; a⃗) ∈ Nm+1 ×Wn → N.
By induction hypothesis, there exist α̃ ∈ C̃ such that

α(j, x⃗; a⃗) = α̃(j, x⃗; a⃗).

With respect to ∣;φ(z, x⃗; a⃗)∣, define φ̃ ∈ C̃ by φ̃(z, x⃗; a⃗) = z.
Then we have

∣;φ(z, x⃗; a⃗)∣ = z = φ̃(z, x⃗; a⃗).

With respect to BIT(j;φ(z, x⃗; a⃗)), since

BIT(j;φ(z, x⃗; a⃗)) = { sg(α(j, x⃗; a⃗);) if 0 ≤ j < z,
0 if j ≥ z,

define φ̂ ∈ C̃ by5

φ̂(j, z, x⃗; a⃗) = cond(j < z,0,sg(α̃(j, x⃗; a⃗););).

Then we have
BIT(j;φ(z, x⃗; a⃗)) = φ̂(j, z, x⃗; a⃗).

Proposition 3.27. For each α̃ ∈ C̃ with α̃ ∈ Nm×Wn → N, there exists f ∈ E2+
such that

α̃(x⃗;bin(k⃗)) = f(x⃗, k⃗)

for each x⃗ and k⃗.

5Notice that Lemma 3.4 and Lemma 3.5 also hold for C̃.

48

Proof. By induction on the structure of α̃ ∈ C̃.
Basis.
Case α̃ = pNm,n

i :
Note that 0 ≤ i <m. Let f = Im,n

i . Then

α̃(x⃗;bin(k⃗)) = pNm,n
i (x⃗;bin(k⃗)) = xi = I

m,n
i (x⃗, k⃗) = f(x⃗, k⃗).

Case α̃ = 0:
Note that m = n = 0. Let f = 0, then 0 = 0.

Case α̃ = S:
Note that m = 1, n = 0. Let f = S, then S(x1;) = S(x1).

Case α̃ = +:
Note that m = 2, n = 0. Let f = +, then x1 + x2 = x1 + x2.

Case α̃ = ×:
Note that m = 2, n = 0. Let f = ×, then x1 × x2 = x1 × x2.

Case α̃ = ∣ ⋅ ∣m,n
j :

Note that 0 ≤ j < n. Since ∣ ⋅ ∣ belongs to E2+ by Proposition 2.24, let
f(x⃗, k⃗) = ∣Im+n

m+j (x⃗, k⃗)∣. Then

α̃(x⃗;bin(k⃗)) = ∣(x⃗;bin(k⃗))∣m,n
j = ∣bin(kj)∣

= ∣kj ∣ = ∣Im+n
m+j (x⃗, k⃗)∣ = f(x⃗, k⃗).

Case α̃ = BITm+1,n
j :

Note that 0 ≤ j < n. Since BIT belongs to E2+ by Proposition 2.24, let
f(z, x⃗, k⃗) = BIT(Im+1+n

0 (z, x⃗, k⃗),Im+1+n
m+1+j (z, x⃗, k⃗)). Then

α̃(z, x⃗;bin(k⃗)) = BITm+1,n
j (z, x⃗;bin(k⃗)) = BIT(z,bin(kj))

= BIT(z, kj) = BIT(Im+1+n
0 (z, x⃗, k⃗),Im+1+n

m+1+j (z, x⃗, k⃗)) = f(z, x⃗, k⃗).

Induction step.
Case COMP:

Suppose that

α̃(x⃗;bin(k⃗)) = γ̃(β̃0(x⃗;bin(k⃗)), . . . , β̃L−1(x⃗;bin(k⃗));bin(k⃗)),

whrere γ̃, β̃0, . . . , β̃L−1 ∈ C̃. Then, by the induction hypothesis, there exist
h, g0, . . . , gL−1 ∈ E2+ such that

γ̃(y⃗;bin(k⃗)) = h(y⃗, k⃗),
β̃j(x⃗;bin(k⃗)) = gj(x⃗, k⃗)

49

for 0 ≤ j < L.
Since E2+ is closed under composition, define f ∈ E2+ by

f(x⃗, k⃗) = h(g0(x⃗, k⃗), . . . , gL−1(x⃗, k⃗), k⃗).

Then we have

α̃(x⃗;bin(k⃗)) = γ̃(β̃0(x⃗;bin(k⃗)), . . . , β̃L−1(x⃗;bin(k⃗));bin(k⃗))
= γ̃(g0(x⃗, k⃗), . . . , gL−1(x⃗, k⃗);bin(k⃗))
= h(g0(x⃗, k⃗), . . . , gL−1(x⃗, k⃗), k⃗)
= f(x⃗, k⃗).

Case BR:
Suppose that α̃ ∈ C̃ with α̃(z, x⃗;bin(k⃗)) ∈ Nn+1 ×Wm → N is defined by

bounded recursion, then

α̃(0, x⃗;bin(k⃗)) = β̃(x⃗;bin(k⃗)),
α̃(z + 1, x⃗;bin(k⃗)) = γ̃(z, x⃗, α̃(z, x⃗;bin(k⃗));bin(k⃗)),

α̃(z, x⃗;bin(k⃗)) ≤ δ̃(z, x⃗;bin(k⃗)) for any z, x⃗, k⃗,

where β̃, γ̃, δ̃ ∈ C̃.
By induction hypothesis, there exist g, h, e ∈ E2+ such that

β̃(x⃗;bin(k⃗)) = g(x⃗, k⃗),
γ̃(z, x⃗, y;bin(k⃗)) = h(z, x⃗, y, k⃗),
δ̃(z, x⃗;bin(k⃗)) = e(z, x⃗, k⃗).

Since E2+ is closed under bounded recursion, define f by

f(0, x⃗, k⃗) = g(x⃗, k⃗),
f(z + 1, x⃗, k⃗) = h(z, x⃗, f(z, x⃗, k⃗), k⃗).

Now, we show α̃(z, x⃗;bin(k⃗)) = f(z, x⃗, k⃗) by induction on z.
In the case z = 0,

α̃(0, x⃗;bin(k⃗)) = β̃(x⃗;bin(k⃗)) = g(x⃗, k⃗) = f(0, x⃗, k⃗).

In the case z, suppose that α̃(z, x⃗;bin(k⃗)) = f(z, x⃗, k⃗).
In the case z + 1,

α̃(z + 1, x⃗;bin(k⃗)) = γ̃(z, x⃗, α̃(z, x⃗;bin(k⃗));bin(k⃗))
= γ̃(z, x⃗, f(z, x⃗, k⃗);bin(k⃗))
= h(z, x⃗, f(z, x⃗, k⃗), k⃗)
= f(z + 1, x⃗, k⃗).

50

Therefore, we have α̃(z, x⃗;bin(k⃗)) = f(z, x⃗, k⃗) for all z.
Furthermore,

f(z, x⃗, k⃗) = α̃(z, x⃗;bin(k⃗))
≤ δ̃(z, x⃗;bin(k⃗)) = e(z, x⃗, k⃗) for all z, x⃗, k⃗.

Since f is bounded from above by e ∈ E2+, we conclude f ∈ E2+.
Case 1-BCVR:

Suppose that α̃ ∈ C̃ with α̃(z, x⃗;bin(k⃗)) ∈ Nn+1 ×Wm → N is defined by
1-bounded course-of-values recursion, then

α̃(0, x⃗;bin(k⃗)) = β̃(x⃗;bin(k⃗)),
α̃(z + 1, x⃗;bin(k⃗)) = γ̃(z, x⃗, ⟨α̃(0, x⃗;bin(k⃗)), . . . , α̃(z, x⃗;bin(k⃗))⟩;bin(k⃗)),

α̃(z, x⃗;bin(k⃗)) ≤ 1 for any z, x⃗, k⃗,

where β̃, γ̃ ∈ C̃.
By induction hypothesis, there exist g, h ∈ E2+ such that

β̃(x⃗;bin(k⃗)) = g(x⃗, k⃗),
γ̃(z, x⃗, y;bin(k⃗)) = h(z, x⃗, y, k⃗).

Since E2+ is closed under 1-bounded course-of-values recursion, define f by

f(0, x⃗, k⃗) = g(x⃗, k⃗),
f(z + 1, x⃗, k⃗) = h(z, x⃗, ⟨f(0, x⃗, k⃗), . . . , f(z, x⃗, k⃗)⟩, k⃗).

Now, we show α̃(z, x⃗;bin(k⃗)) = f(z, x⃗, k⃗) by course-of-values induction
on z.
In the case z = 0,

α̃(0, x⃗;bin(k⃗)) = β̃(x⃗;bin(k⃗)) = g(x⃗, k⃗) = f(0, x⃗, k⃗).

In the case w(≤ z), suppose that α̃(w, x⃗;bin(k⃗)) = f(w, x⃗, k⃗).
In the case z + 1,

α̃(z + 1, x⃗;bin(k⃗)) = γ̃(z, x⃗, ⟨α̃(0, x⃗;bin(k⃗)), . . . , α̃(z, x⃗;bin(k⃗))⟩;bin(k⃗))
= γ̃(z, x⃗, ⟨f(0, x⃗, k⃗), . . . , f(z, x⃗, k⃗)⟩;bin(k⃗))
= h(z, x⃗, ⟨f(0, x⃗, k⃗), . . . , f(z, x⃗, k⃗)⟩, k⃗)
= f(z + 1, x⃗, k⃗).

51

Therefore, we have α̃(z, x⃗;bin(k⃗)) = f(z, x⃗, k⃗) for all z.
Furthermore,

f(z, x⃗, k⃗) = α̃(z, x⃗;bin(k⃗)) ≤ 1 for all z, x⃗, k⃗.

Since f is bounded from above by 1, we conclude f ∈ E2+.

Combining Proposition 3.26 with Proposition 3.27, we can derive the
following corollary:

Corollary 3.28. For each α ∈ CN and φ ∈ CW, there exist f, g̃, ĝ ∈ E2+ such
that

α(x⃗;bin(k⃗)) = f(x⃗, k⃗),
BIT(z;φ(x⃗;bin(k⃗)) = g̃(z, x⃗, k⃗),

∣;φ(x⃗;bin(k⃗))∣ = ĝ(x⃗, k⃗)

for each x⃗, k⃗ and z.

52

3.4 Representation of FPTIME functions by CN functions

In this section, we show that for any function in FPTIME, the bit contents
and length of its binary representation can be represented by some functions
in CN, that is,

∀r ∈ FPTIME ∃α ∈ CN [BIT(i,bin(r(x⃗))) = α(i;bin(x⃗))],
∀r ∈ FPTIME ∃β ∈ CN [∣bin(r(x⃗))∣ = β(;bin(x⃗))]

(Proposition 3.29). In this Proposition, we take the following function algebra
as FPTIME:

FPTIME = [0,I,s0,s1,MOD2,msp,#;COMP,FCRN]

(Theorem 2.20). And, in this proposition and in the following discussion,
the function bin(⋅) applied to a natural number in FPTIME is an identity
function which regards a natural number as its binary representation.

Note that in the above relations, if we apply bounded comprehension to
α(i;bin(x⃗)) ∈ CN, we obtain φ(z;bin(x⃗)) ∈ CW satisfying

∣;φ(z;bin(x⃗))∣ = z,
∀i < z [BIT(i;φ(z;bin(x⃗))) = 0↔ α(i;bin(x⃗)) = 0].

Then we have
bin(r(x⃗)) = φ(β(;bin(x⃗));bin(x⃗)),

that is, the above relations are the same thing as making r ∈ FPTIME corre-
spond to φ ∈ CW.

Proposition 3.29. For any r ∈ FPTIME with r ∈ Nm → N, there exist α,β ∈
CN such that

(i) BIT(i,bin(r(x⃗))) = α(i;bin(x⃗)),
(ii) ∣bin(r(x⃗))∣ = β(;bin(x⃗))

for each x and i.

Proof. By simultaneous induction of (i) and (ii) on the structures of r ∈
FPTIME.
Basis.
Case r = 0:

Note thatm = 0 and bin(0) = 0, hence, BIT(i,bin(0)) = 0 and ∣bin(0)∣ = 0.
(i) Let α(i;bin(x⃗)) = 0. Then BIT(i,bin(0)) = 0 = α(i;bin(x⃗)).
(ii) Let β(;bin(x⃗)) = 0. Then ∣bin(0)∣ = 0 = β(;bin(x⃗)).

53

Case r = Imj :
Note that 0 ≤ j <m and Imj (x⃗) = xj.

(i) Let α(i;bin(x⃗)) = BIT(pN1,m
0 (i;bin(x⃗));pW

1,m
j (i;bin(x⃗))) = BIT(i;bin(xj)).

Then

BIT(i,bin(Imj (x⃗))) = BIT(i,bin(xj)) = BIT(i;bin(xj)) = α(i;bin(x⃗)).

(ii) Let β(;bin(x⃗)) = ∣;pW0,m
j (;bin(x⃗))∣ = ∣;bin(xj)∣. Then

∣bin(Imj (x⃗))∣ = ∣bin(xj)∣ = ∣;bin(xj)∣ = β(;bin(x⃗)).

Case r = s0:
Note that m = 1 and s0(x) = 2 ⋅ x.

(i) Let α(i;bin(x)) = cond(i,0,bit(i � 1;bin(x));). Then

BIT(i,bin(s0(x))) = BIT(i,bin(2 ⋅ x)) = α(i;bin(x)).

(ii) ∣bin(s0(x))∣ is ∣bin(x)∣ + 1 if x ≠ 0, and is ∣bin(0)∣ = 0 if x = 0. Hence, let
β(;bin(x)) = cond(∣;bin(x)∣,0, ∣;bin(x)∣ + 1;). Then

∣bin(s0(x))∣ = ∣bin(2 ⋅ x)∣ = β(;bin(x⃗)).

Case r = s1:
Note that m = 1 and s1(x) = 2 ⋅ x + 1.

(i) Let α(i;bin(x)) = cond(i,1,bit(i � 1;bin(x));). Then

BIT(i,bin(s1(x))) = BIT(i,bin(2 ⋅ x + 1)) = α(i;bin(x)).

(ii) Let β(;bin(x)) = ∣;bin(x)∣ + 1. Then

∣bin(s1(x))∣ = ∣bin(2 ⋅ x + 1)∣ = β(;bin(x⃗)).

Case r = MOD2:
Note that m = 1 and MOD2(x) = x − ⌊x

2
⌋ ⋅ 2, the residue of x divided by 2.

(i) Let α(i;bin(x)) = cond(i,bit(i;bin(x)),0;). Then

BIT(i,bin(MOD2(x))) = α(i;bin(x)).

(ii) ∣bin(MOD2(x))∣ is 0 if MOD2(x) = 0, and is 1 if MOD2(x) = 1. Hence, let
β(;bin(x)) = bit(0;bin(x)). Then

∣bin(MOD2(x))∣ = β(;bin(x⃗)).

Case r = msp:

54

Note that m = 2 and msp(x, y) = ⌊ x
2∣y∣
⌋, that is, the number obtained by

cutting the lower ∣y∣ bits of x in the binary representation of x.
(i) Let α(i;bin(x),bin(y)) = bit(i + ∣;bin(y)∣;bin(x)). Then

BIT(i,bin(msp(x, y))) = α(i;bin(x),bin(y)).

(ii) Let β(;bin(x),bin(y)) = ∣;bin(x)∣ � ∣;bin(y)∣. Then

∣bin(msp(x, y))∣ = β(;bin(x),bin(y)).

Case r =#:
Note that m = 2 and x#y = 2∣x∣⋅∣y∣. 2∣x∣⋅∣y∣ is the number in which the

∣x∣ ⋅ ∣y∣-th bit is 1 and the other bits are 0 in its binary representation.
(i) Let α(i;bin(x),bin(y)) = cond(χ=(∣;bin(x)∣ × ∣;bin(y)∣, i;),0,S(0;);).
Then

BIT(i,bin(x#y)) = α(i;bin(x),bin(y)).

(ii) Since ∣x#y∣ = ∣2∣x∣⋅∣y∣∣ = ∣x∣ ⋅ ∣y∣ + 1, let β(;bin(x),bin(y)) = ∣;bin(x)∣ ×
∣;bin(y)∣ + 1. Then

∣bin(x#y)∣ = β(;bin(x),bin(y)).

Induction step.
Case COMP:

Suppose that
r(x⃗) = u(t0(x⃗), . . . , tL−1(x⃗)),

whrere u, t0, . . . , tL−1 ∈ FPTIME. Then, by the induction hypothesis, there
exist γ, γℓ, β0, . . . , βL−1, βℓ

0, . . . , β
ℓ
L−1 ∈ CN such that

BIT(i,bin(u(y⃗))) = γ(i;bin(y⃗)),
∣bin(u(y⃗))∣ = γℓ(;bin(y⃗)),
BIT(i,bin(tj(x⃗))) = βj(i;bin(x⃗)),
∣bin(tj(x⃗))∣ = βℓ

j(;bin(x⃗))

for 0 ≤ j < L.
Applying bounded comprehension to βj(i;bin(x⃗)) ∈ CN for 0 ≤ j < L, we

obtain φj(z;bin(x⃗)) ∈ CW satisfying

∣;φj(z;bin(x⃗))∣ = z,
∀i < z [BIT(i;φj(z;bin(x⃗))) = 0↔ βj(i;bin(x⃗)) = 0].

55

Then, each bin(tj(x⃗)) for 0 ≤ j < L is represented by some composite function
taking only bin(x⃗) as its arguments:

bin(tj(x⃗)) = φj(βℓ
j(;bin(x⃗));bin(x⃗)).

(i) Define α ∈ CN by

α(i;bin(x⃗))
= γ(i;φ0(βℓ

0(;bin(x⃗));bin(x⃗)), . . . , φL−1(βℓ
L−1(;bin(x⃗));bin(x⃗))).

Then we have

BIT(i,bin(r(x⃗)))
= BIT(i,bin(u(t0(x⃗), . . . , tL−1(x⃗))))
= γ(i;bin(t0(x⃗)), . . . ,bin(tL−1(x⃗)))
= γ(i;φ0(βℓ

0(;bin(x⃗));bin(x⃗)), . . . , φL−1(βℓ
L−1(;bin(x⃗));bin(x⃗)))

= α(i;bin(x⃗)).

(ii) Define αℓ ∈ CN by

αℓ(;bin(x⃗))
= γℓ(;φ0(βℓ

0(;bin(x⃗));bin(x⃗)), . . . , φL−1(βℓ
L−1(;bin(x⃗));bin(x⃗))).

Then we have

∣bin(r(x⃗))∣
= ∣bin(u(t0(x⃗), . . . , tL−1(x⃗)))∣
= γℓ(;bin(t0(x⃗)), . . . ,bin(tL−1(x⃗)))
= γℓ(;φ0(βℓ

0(;bin(x⃗));bin(x⃗)), . . . , φL−1(βℓ
L−1(;bin(x⃗));bin(x⃗)))

= αℓ(;bin(x⃗)).

Case FCRN:
First, we prepare some auxiliary functions in CN and CW.

1. The function check(i;a) ∈ N ×W → N computes the i-th bit counting
from the most significant bit6 of a for 0 ≤ i < ∣a∣. We have

check(i;a) = BIT(∣;a∣ � 1 � i;a).

6The most significant bit of a is the ∣a∣ − 1-th bit of a.

56

2. The function rev(;a) ∈ W → W computes the reverse of a. Applying
bounded comprehension to check(i;a), we obtain φ ∈ CW such that

∣;φ(z;a)∣ = z,
∀i < z [BIT(i;φ(z;a) = 0↔ check(i;a) = 0].

Then we have
rev(;a) = φ(∣;a∣;a).

3. The function left(i;a) ∈ N×W→W computes a string of i-many bits
counting from the most significant bit of a for 0 ≤ i ≤ ∣a∣. Using φ in 2.
above, we have

left(i;a) = rev(φ(i;a)).

Suppose that r ∈ FPTIME with r ∈ Nm+1 → N is defined by full concate-
nation recursion on notation, then

r(0, y⃗) = t(y⃗),
r(s0(x), y⃗) = su0(x,y⃗,r(x,y⃗))(r(x, y⃗)) (if x ≠ 0),
r(s1(x), y⃗) = su1(x,y⃗,r(x,y⃗))(r(x, y⃗)),

where t, u0(≤ 1), u1(≤ 1) ∈ FPTIME.
By induction hypothesis, there exist β, βℓ, γ0, γℓ0, γ1, γ

ℓ
1 ∈ CN such that

BIT(i,bin(t(y⃗))) = β(i;bin(y⃗)),
∣bin(t(y⃗))∣ = βℓ(;bin(y⃗)),
BIT(i,bin(u0(x, y⃗, z))) = γ0(i;bin(x),bin(y⃗),bin(z)),
∣bin(u0(x, y⃗, z))∣ = γℓ0(;bin(x),bin(y⃗),bin(z)),
BIT(i,bin(u1(x, y⃗, z))) = γ1(i;bin(x),bin(y⃗),bin(z)),
∣bin(u1(x, y⃗, z))∣ = γℓ1(;bin(x),bin(y⃗),bin(z)).

We want to show that there exist α,αℓ ∈ CN such that

BIT(i,bin(r(x, y⃗))) = α(i;bin(x),bin(y⃗)),
∣bin(r(x, y⃗))∣ = αℓ(;bin(x),bin(y⃗)).

(ii) Firstly, since in FPTIME, ∣r(x, y⃗)∣ is ∣t(y⃗)∣ plus ∣x∣, we take

αℓ(;bin(x),bin(y⃗)) = βℓ(;bin(y⃗)) + ∣;bin(x)∣.

Then we have
∣bin(r(x, y⃗))∣ = αℓ(;bin(x),bin(y⃗)).

57

(i) Secondly, CN is closed under boolean course-of-values recursion, we define
δ(i;bin(x),bin(y⃗)) ∈ CN which computes the bit corresponding to the i-th bit
counting from the most significant bit of bin(r(x, y⃗)) for 0 ≤ i < ∣bin(r(x, y⃗))∣
by BCVR.

Note that by the definition of FCRN, bin(r(x, y⃗)) is obtained by attaching
a bit sequence in which each bit of bin(x) is replaced by the value of u0 or
u1 to the right end of bin(t(y⃗)).

In the case i < βℓ(;bin(y⃗)),

δ(i;bin(x),bin(y⃗)) corresponds to the i-th bit counting from the most sig-
nificant bit of bin(t(y⃗)), hence we have

δ(i;bin(x),bin(y⃗)) = β(βℓ(;bin(y⃗)) � 1 � i;bin(y⃗)).

In the case i ≥ βℓ(;bin(y⃗)),

δ(i;bin(x),bin(y⃗)) corresponds to the i-th bit counting from the most sig-
nificant bit of bin((r(x, y⃗)), and when the value of the corresponding bit of
bin(x) is z and the value of the left-side part of the corresponding bit of
bin(x) is x′, δ(i;bin(x),bin(y⃗)) is uz(x′, y⃗, r(x′, y⃗)). Since

uz(x′, y⃗, r(x′, y⃗)) = BIT(0,bin(uz(x′, y⃗, r(x′, y⃗))))
= γz(0;bin(x′),bin(y⃗),bin(r(x′, y⃗))),

we have

δ(i;bin(x),bin(y⃗))
= cond(check(i � βℓ(;bin(y⃗));bin(x)),

γ0(0;left(i � βℓ(;bin(y⃗));bin(x)),bin(y⃗),bin(r(x′, y⃗))),
γ1(0;left(i � βℓ(;bin(y⃗));bin(x)),bin(y⃗),bin(r(x′, y⃗)));)

58

= cond(check(i � βℓ(;bin(y⃗));bin(x)),
γ0(0;left(i � βℓ(;bin(y⃗));bin(x)),bin(y⃗),rev(; b)),
γ1(0;left(i � βℓ(;bin(y⃗));bin(x)),bin(y⃗),rev(; b));)

where ∣; b∣ = i and BIT(j; b) = δ(j;bin(x),bin(y⃗)) for 0 ≤ j ≤ i − 1.

Therefore, unifying the above cases into the cases i = 0 and i > 0 in the BCVR

form,we have

δ(0;bin(x),bin(y⃗)) = β(βℓ(;bin(y⃗)) � 1;bin(y⃗)),
δ(i;bin(x),bin(y⃗)) (i > 0)
= cond(i ≥ βℓ(;bin(y⃗)),

β(βℓ(;bin(y⃗)) � 1 � i;bin(y⃗)),
cond(check(i � βℓ(;bin(y⃗));bin(x)),

γ0(0;left(i � βℓ(;bin(y⃗));bin(x)),bin(y⃗),rev(; b)),
γ1(0;left(i � βℓ(;bin(y⃗));bin(x)),bin(y⃗),rev(; b)););),

where ∣; b∣ = i and BIT(j; b) = δ(j;bin(x),bin(y⃗)) for 0 ≤ j ≤ i − 1.

And clearly, δ(i;bin(x),bin(y⃗)) ≤ 1 for any i, x, y⃗.
Then, let

α(i;bin(x),bin(y⃗)) = δ(βℓ(;bin(y⃗)) + ∣;bin(x)∣ � 1 � i;bin(x),bin(y⃗)),

we have
BIT(i,bin(r(x, y⃗))) = α(i;bin(x),bin(y⃗)).

59

3.5 Representation of CN and CW functions by FPTIME

functions

In this section, we show that any function in CN is represented by some
function in FPTIME and that any function in CW is represented by some
function is FPTIME, that is,

∀α ∈ CN ∃r ∈ FPTIME [α(∣x⃗∣;bin(k⃗)) = ∣r(x⃗, k⃗)∣],
∀φ ∈ CW ∃t ∈ FPTIME [φ(∣x⃗∣;bin(k⃗)) = bin(t(x⃗, k⃗))]

(Proposition 3.30). Note that we make lengths of natural numbers in argu-
ments of functions in CN and CW correspond to natural numbers in arguments
of the corresponding functions in FPTIME, and we make values of functions in
CN correspond to lengths of values of the corresponding functions in FPTIME.
In this Proposition, we take the following function algebra as FPTIME:

FPTIME = [0,I,s0,s1,#;COMP,BRN]

(Theorem 2.19).
To begin with, since the length function ∣⋅∣ is used in the above expression,

we define ∣ ⋅ ∣ in FPTIME.
The function S(x) = x + 1 is defined in FPTIME using bounded recursion

on notation (BRN) as follows:

S(0) = s1(0),
S(s0(x)) = s1(x) (x ≠ 0),
S(s1(x)) = s0(S(x)),

S(x) ≤ s1(x) for any x.

Hence, S(x) ∈ FPTIME. Notice that any constant belongs to FPTIME by
repeatedly applying the successor function S(x) to the constant 0.
The function ∣x∣ which computes the length of x in binary is defined in
FPTIME using BRN as follows:

∣0∣ = 0,
∣s0(x)∣ = S(∣x∣) (x ≠ 0),
∣s1(x)∣ = S(∣x∣),
∣x∣ ≤ x for any x.

Hence, ∣x∣ ∈ FPTIME.

60

Proposition 3.30. For each α ∈ CN with α ∈ Nm ×Wn → N and φ ∈ CW with
φ ∈ Nm ×Wn →W, there exist r, t ∈ FPTIME, respectively, such that

α(∣x⃗∣;bin(k⃗)) = ∣r(x⃗, k⃗)∣,
φ(∣x⃗∣;bin(k⃗)) = bin(t(x⃗, k⃗))

for each x⃗, k⃗.

Proof. By simultaneous induction on the structures of α ∈ CN and φ ∈ CW.
Basis.
Case α = pNm,n

i :
Note that 0 ≤ i <m. Let r = Im+n

i . Then

α(∣x⃗∣;bin(k⃗)) = pNm,n
i (∣x⃗∣;bin(k⃗)) = ∣xi∣

= ∣Im+n
i (x⃗, k⃗)∣ = ∣r(x⃗, k⃗)∣.

Case φ = pWm,n
j :

Note that 0 ≤ j < n. Let r = Im+n
m+j . Then

α(∣x⃗∣;bin(k⃗)) = pWm,n
j (∣x⃗∣;bin(k⃗)) = bin(kj)

= bin(kj) = bin(Im+n
m+j (x⃗, k⃗)) = bin(r(x⃗, k⃗)).

Case α = 0:
Note that m = n = 0. Let r = 0, then 0 = ∣0∣.

Case α = S:
Note that m = 1, n = 0. Let r = s1, Then

α(∣x∣;) = S(∣x∣;) = ∣x∣ + 1 = ∣s1(x)∣ = ∣r(x)∣.

Case α = +:
Note that m = 2, n = 0. Define the function x ∗ y which computes the

concatenation of x and y in binary using BRN as follows:

x ∗ 0 = x,
x ∗ s0(y) = s0(x ∗ y) (y ≠ 0),
x ∗ s1(y) = s1(x ∗ y),

x ∗ y ≤ s1(x)#s1(y) for any x, y.

In the last inequality above, notice that for any x, y we have

x ∗ y = 2∣y∣ ⋅ x + y ≤ 2∣y∣ ⋅ x + 2∣y∣ = 2∣y∣ ⋅ (x + 1) ≤ 2∣y∣ ⋅ 2∣x∣

≤ 2∣x∣+∣y∣ ≤ 2(∣x∣+1)⋅(∣y∣+1) = 2∣s1(x)∣⋅∣s1(y)∣ = s1(x)#s1(y).

61

Hence, x ∗ y ∈ FPTIME. Let r(x, y) = x ∗ y, then

α(∣x∣, ∣y∣;) = ∣x∣ + ∣y∣ = ∣x ∗ y∣ = ∣r(x, y)∣.

Case α = ×:
Note that m = 2, n = 0. Define the function ⌊x/2⌋ which computes the

quotient of x divided by 2 using BRN as follows:

⌊0/2⌋ = 0,
⌊s0(x)/2⌋ = x (x ≠ 0),
⌊s1(x)/2⌋ = x,
⌊x/2⌋ ≤ x for any x.

Hence, ⌊x/2⌋ ∈ FPTIME.
Let r(x, y) = ⌊(x#y)/2⌋(= 2∣x∣⋅∣y∣−1). Since ∣⌊(x#y)/2⌋∣ = ∣x∣ ⋅ ∣y∣, we have

α(∣x∣, ∣y∣;) = ∣x∣ × ∣y∣ = ∣⌊x#y
2
⌋∣ = ∣r(x, y)∣.

Case α = ∣ ⋅ ∣:
Note that m = 0, n = 1. Let r(k) = I10(k). Then

α(;bin(k)) = ∣;bin(k)∣ = ∣k∣ = ∣I10(k)∣ = ∣r(k)∣.

Case α = BIT:
In the following discussion, according to the proof of Lemma 2.3 in Ishi-

hara [5], we construct the function BIT(y, x) in FPTIME which computes the
y-th bit in the binary representation of x.

1. The function msp(x, y) = ⌊x/2∣y∣⌋ is in FPTIME. Using BRN, we have

msp(x,0) = x,
msp(x,s0(y)) = ⌊msp(x, y)/2⌋ (y ≠ 0),
msp(x,s1(y)) = ⌊msp(x, y)/2⌋

msp(x, y) ≤ x for any x.

2. The function MOD2(x) = x mod 2 is in FPTIME. Using BRN, we have

MOD2(0) = 0,
MOD2(s0(x)) = 0 (x ≠ 0),
MOD2(s1(x)) = 1,

MOD2(x) ≤ x for any x.

62

3. The function prd(x) = x � 1 is in FPTIME. Using BRN, we have

prd(0) = 0,
prd(s0(x)) = s1(prd(x)) (x ≠ 0),
prd(s1(x)) = s0(x),

prd(x) ≤ x for any x.

4. The function y � ∣x∣ is in FPTIME. Using BRN, we have

y � ∣0∣ = y,
y � ∣s0(x)∣ = prd(y � ∣x∣) (x ≠ 0),
y � ∣s1(x)∣ = prd(y � ∣x∣),

y � ∣x∣ ≤ y for any x, y.

5. The function cond(x, y, z), whose value is y if x = 0 and z if x > 0, is in
FPTIME. Using BRN, we have

cond(0, y, z) = y,
cond(s0(x), y, z) = z (x ≠ 0),
cond(s1(x), y, z) = z,

cond(x, y, z) ≤ y ∗ z for any x, y, z.

6. The function 2min(∣x∣,y) is in FPTIME. Using BRN, we have

2min(∣0∣,y) = S(0),
2min(∣s0(x)∣,y) = cond(y � ∣x∣,2min(∣x∣,y),s0(2min(∣x∣,y))) (x ≠ 0),
2min(∣s1(x)∣,y) = cond(y � ∣x∣,2min(∣x∣,y),s0(2min(∣x∣,y))),

2min(∣x∣,y) ≤ 2∣x∣ = 1#x for any x, y.

7. The function BIT(y, x) = BIT(y, x) is in FPTIME. Using msp(x, y),MOD2(x)
and 2min(∣x∣,y), We have

BIT(y, x) = MOD2(⌊ x

2min(∣x∣,y)
⌋) = MOD2(msp(x, ⌊2

min(∣x∣,y)

2
⌋)) .

If α = BIT, note that m = 1, n = 1. Let r(x, k) = BIT(∣x∣, k). Then

α(∣x∣;bin(k)) = BIT(∣x∣;bin(k))
= BIT(∣x∣, k) = ∣BIT(∣x∣, k)∣ = ∣r(x, k)∣.

63

Induction step.
Case COMP(∈ CN):

Suppose that

α(x⃗; a⃗) = γ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)),

whrere γ, β0, . . . , βM−1 ∈ CN and χ0, . . . , χN−1 ∈ CW. Then, by the induction
hypothesis, there exist t, u0, . . . , uM−1, v0, . . . , vN−1 ∈ FPTIME such that

γ(∣y⃗∣;bin(ℓ⃗)) = ∣t(y⃗, ℓ⃗)∣,
βi(∣x⃗∣;bin(k⃗)) = ∣ui(x⃗, k⃗)∣,
χj(∣x⃗∣;bin(k⃗)) = bin(vj(x⃗, k⃗))

for 0 ≤ i < M and 0 ≤ j < N . Since FPTIME is closed under composition,
define r ∈ FPTIME by

r(x⃗, k⃗) = t(u0(x⃗, k⃗), . . . , tM−1(x⃗, k⃗), v0(x⃗, k⃗), . . . , vN−1(x⃗, k⃗)).

Then we have7

α(∣x⃗∣;bin(k⃗))
= γ(β0(∣x⃗∣;bin(k⃗)), . . . , βM−1(∣x⃗∣;bin(k⃗));

χ0(∣x⃗∣;bin(k⃗)), . . . , χN−1(∣x⃗∣;bin(k⃗)))
= γ(∣u0(x⃗, k⃗)∣, . . . , ∣uM−1(x⃗, k⃗)∣; bin(v0(x⃗, k⃗)), . . . ,bin(vN−1(x⃗, k⃗)))
= ∣t(u0(x⃗, k⃗), . . . , uM−1(x⃗, k⃗), v0(x⃗, k⃗), . . . , vN−1(x⃗, k⃗))∣
= ∣r(x⃗, k⃗)∣.

Case COMP(∈ CW):
Suppose that

φ(x⃗; a⃗) = ψ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)),

whrere β0, . . . , βM−1 ∈ CN and ψ,χ0, . . . , χN−1 ∈ CW. Then, by the induction
hypothesis, there exist u0, . . . , uM−1, r, v0, . . . , vN−1 ∈ FPTIME such that

ψ(∣y⃗∣;bin(ℓ⃗)) = bin(r(y⃗, ℓ⃗)),
βi(∣x⃗∣;bin(k⃗)) = ∣ui(x⃗, k⃗)∣,
χj(∣x⃗∣;bin(k⃗)) = bin(vj(x⃗, k⃗))

7To make the expression easier to see, we write the expression as this, but, more
precisely, apply the 2nd equation of I.H. firstly, and then apply the 1st equation and 3rd
equation of I.H. simultaneously.

64

for 0 ≤ i < M and 0 ≤ j < N . Since FPTIME is closed under composition,
define r ∈ FPTIME by

t(x⃗, k⃗) = r(u0(x⃗, k⃗), . . . , tM−1(x⃗, k⃗), v0(x⃗, k⃗), . . . , vN−1(x⃗, k⃗)).

Then we have8

φ(∣x⃗∣;bin(k⃗))
= ψ(β0(∣x⃗∣;bin(k⃗)), . . . , βM−1(∣x⃗∣;bin(k⃗));

χ0(∣x⃗∣;bin(k⃗)), . . . , χN−1(∣x⃗∣;bin(k⃗)))
= ψ(∣u0(x⃗, k⃗)∣, . . . , ∣uM−1(x⃗, k⃗)∣; bin(v0(x⃗, k⃗)), . . . ,bin(vN−1(x⃗, k⃗)))
= bin(r(u0(x⃗, k⃗), . . . , uM−1(x⃗, k⃗), v0(x⃗, k⃗), . . . , vN−1(x⃗, k⃗)))
= bin(t(x⃗, k⃗)).

Case BR:
Suppose that α ∈ CN with α ∈ Nm+1 ×Wn → N is defined by bounded

recursion, then

α(0, x⃗; a⃗) = β(x⃗; a⃗),
α(z + 1, x⃗; a⃗) = γ(z, x⃗, α(z, x⃗; a⃗); a⃗),

α(z, x⃗; a⃗) ≤ δ(z, x⃗; a⃗) for any z, x⃗, a⃗,

where β, γ, δ ∈ CN.
By induction hypothesis, there exist t, u, v ∈ FPTIME such that

β(∣x⃗∣;bin(k⃗)) = ∣t(x⃗, k⃗)∣,
γ(∣z∣, ∣x⃗∣, ∣y∣;bin(k⃗)) = ∣u(z, x⃗, y, k⃗)∣,

δ(∣z∣, ∣x⃗∣;bin(k⃗)) = ∣v(z, x⃗, k⃗)∣.

Since FPTIME is closed under bounded recursion on notation, define r by

r(0, x⃗, k⃗) = t(x⃗, k⃗),
r(s0(z), x⃗, k⃗) = u(z, x⃗, r(z, x⃗, k⃗), k⃗) (z ≠ 0),
r(s1(z), x⃗, k⃗) = u(z, x⃗, r(z, x⃗, k⃗), k⃗).

Now, we show α(∣z∣, ∣x⃗∣;bin(k⃗)) = ∣r(z, x⃗, k⃗)∣ by induction on ∣z∣.
In the case ∣0∣,

α(∣0∣, ∣x⃗∣;bin(k⃗)) = β(∣x⃗∣;bin(k⃗)) = ∣t(x⃗, k⃗)∣ = ∣r(0, x⃗, k⃗)∣.
8Note the same as in the previous footnote.

65

In the case ∣z∣, suppose that α(∣z∣, ∣x⃗∣;bin(k⃗)) = ∣r(z, x⃗, k⃗)∣.
In the case ∣si(z)∣,

α(∣si(z)∣, ∣x⃗∣;bin(k⃗)) = α(∣z∣ + 1, ∣x⃗∣;bin(k⃗))
= γ(∣z∣, ∣x⃗∣, α(∣z∣, ∣x⃗∣;bin(k⃗));bin(k⃗))
= γ(∣z∣, ∣x⃗∣, ∣r(z, x⃗, k⃗)∣;bin(k⃗))
= ∣u(z, x⃗, r(z, x⃗, k⃗), k⃗)∣
= ∣r(si(z), x⃗, k⃗)∣.

Therefore, we have α(∣z∣, ∣x⃗∣;bin(k⃗)) = ∣r(z, x⃗, k⃗)∣ for all z.9
Furthermore,

∣r(z, x⃗, k⃗)∣ = α(∣z∣, ∣x⃗∣;bin(k⃗)) ≤ δ(∣z∣, ∣x⃗∣;bin(k⃗)) = ∣v(z, x⃗, k⃗)∣.

Hence, we have

r(z, x⃗, k⃗) ≤ 2∣v(z,x⃗,k⃗)∣ = 1#v(z, x⃗, k⃗) for all z, x⃗, k⃗.

Since r is bounded from above by some function in FPTIME, we conclude
r ∈ FPTIME.
Case BCVR:

We prepare the function rev(x) which computes the number whose binary
representaion is the reverse of the binary representaion of x. Firstly, we
prepare an auxiliary function rev0(x, y) ∈ FPTIME using BRN as follows:

rev0(x,0) = 0,
rev0(x,s0(y)) = sBIT(∣y∣,x)(rev0(x, y)) (y ≠ 0),
rev0(x,s1(y)) = sBIT(∣y∣,x)(rev0(x, y)),

rev0(x, y) ≤ 2∣y∣ = 1#y for any x, y.

Then, we define rev(x) ∈ FPTIME by rev(x) = rev0(x,x).10

Suppose that α ∈ CN with α ∈ Nm+1 × Wn → N is defined by boolean
course-of-values recursion, then

α(0, x⃗; a⃗) = β(x⃗; a⃗),
α(z + 1, x⃗; a⃗) = γ(z, x⃗; b, a⃗),
where ∣; b∣ =z + 1 and BIT(i; b) = α(i, x⃗; a⃗) for 0 ≤ i ≤ z,
α(z, x⃗; a⃗) ≤ 1 for any z, x⃗, a⃗,

9This proof by induction divides N into length classes ∣z∣, and prove the equation for
each ∣z∣. Hence, the equation holds for all x included in ∣z∣, i.e., 2∣z∣−1 ≤ x < 2∣z∣ − 1.

10These constructions are based on Clote [2].

66

where β, γ ∈ CN.
By induction hypothesis, there exist t, u ∈ FPTIME such that

β(∣x⃗∣;bin(k⃗)) = ∣t(x⃗, k⃗)∣,
γ(∣z∣, ∣x⃗∣;bin(ℓ),bin(k⃗) = ∣u(z, x⃗, ℓ, k⃗)∣.

We want to show that there exists r ∈ FPTIME such that

α(∣z∣, ∣x⃗∣;bin(k⃗)) = ∣r(z, x⃗, k⃗)∣.

Since FPTIME is closed under bounded recursion on notation, define v by11

v(0, x⃗, k⃗) = s∣t(x⃗,k⃗)∣(1),

v(s0(z), x⃗, k⃗) = s∣u(z,x⃗,v′(z,x⃗,k⃗),k⃗)∣(v(z, x⃗, k⃗)) (z ≠ 0),

v(s1(z), x⃗, k⃗) = s∣u(z,x⃗,v′(z,x⃗,k⃗),k⃗)∣(v(z, x⃗, k⃗)),

v′(z, x⃗, k⃗) = msp(rev(v(z, x⃗, k⃗)),1),
v(z, x⃗, k⃗) = s0(s0(1#z)) = 2∣z∣+2 for all z, x⃗, k⃗.

Then, define r ∈ FPTIME by

r(z, x⃗, k⃗) = MOD2(v(z, x⃗, k⃗)).

Now, we show that the string constructed by appending α(∣0∣, ∣x⃗∣;bin(k⃗)),
. . . , α(∣z∣, ∣x⃗∣;bin(k⃗)) to 1 is equal to bin(v(z, x⃗, k⃗))12 by induction on ∣z∣. We
illustrate this in the following diagram.

In the case ∣0∣,

v(0, x⃗, k⃗) = s∣t(x⃗,k⃗)∣(1) = sβ(∣x⃗∣;bin(k⃗))(1) = sα(∣0∣,∣x⃗∣;bin(k⃗))(1),

which means the following is true.

11Notice that β, γ ≤ 1, hence ∣t∣, ∣u∣ ≤ 1.
12Since bin(⋅) is a identity function which regards a natural number as its binary repre-

sentaion, we may or may not apply bin(⋅) to v(z, x⃗, k⃗).

67

In the case ∣z∣, suppose that the above statement holds.

In the case ∣si(z)∣,

v(si(z), x⃗, k⃗) = s∣u(z,x⃗,v′(z,x⃗,k⃗),k⃗)∣(v(z, x⃗, k⃗)),

v′(z, x⃗, k⃗) = msp(rev(v(z, x⃗, k⃗)),1).

By induction hypothesis, bin(v′(z, x⃗, k⃗)) is the number whose j-th bit is
α(j, ∣x⃗∣,bin(k⃗)) for ∣0∣ ≤ j ≤ ∣z∣ shown as follows.

Hence,

∣u(z, x⃗, v′(z, x⃗, k⃗), k⃗)∣ = γ(∣z∣, ∣x⃗∣; b,bin(k⃗))
where ∣; b∣ = ∣si(z)∣ and BIT(j; b) = α(j, ∣x⃗∣; bin(k⃗)) for ∣0∣ ≤ j ≤ ∣z∣,

= α(∣si(z)∣, ∣x⃗∣; bin(k⃗))

Hence, we have

v(si(z), x⃗, k⃗) = sα(∣si(z)∣,∣x⃗∣;bin(k⃗))(v(z, x⃗, k⃗)),

which shows by induction hypothesis the following is true.

Therefore, the above statement holds for all z.
Thus, we have

α(∣z∣, ∣x⃗∣;bin(k⃗)) = MOD2(v(z, x⃗, k⃗))
= r(z, x⃗, k⃗) = ∣r(z, x⃗, k⃗)∣.

68

Case BC:
Firstly, we prepare an auxiliary function ones(x) ∈ FPTIME using BRN

as follows:

ones(0) = 0,
ones(s0(x)) = s1(ones(x)) (x ≠ 0),
ones(s1(x)) = s1(ones(x)),

ones(x) ≤ 2∣x∣ = 1#x for any x.

Then, we define the signum function sg(x) ∈ FPTIME by sg(x) = MOD2(ones(x)).

Suppose that φ ∈ CW with φ ∈ Nm+1 ×Wn → W is defined by bounded
comprehension, then

∣;φ(z, x⃗; a⃗)∣ = z,
∀j < z [BIT(j;φ(z, x⃗; a⃗)) = 0↔ α(j, x⃗; a⃗) = 0],

where α ∈ CN with α ∈ Nm+1 ×Wn → N.
By induction hypothesis, there exists r ∈ FPTIME such that

α(∣j∣, ∣x⃗∣;bin(k⃗)) = ∣r(j, x⃗; k⃗)∣.

We want to show that there exists t ∈ FPTIME such that

φ(∣z∣, ∣x⃗∣;bin(k⃗)) = bin(t(z, x⃗, k⃗)).

Since FPTIME is closed under bounded recursion on notation, define u by

u(0, x⃗, k⃗) = 1,
u(s0(z), x⃗, k⃗) = ssg(∣r(z,x⃗,k⃗)∣)(u(z, x⃗, k⃗)) (z ≠ 0),

u(s1(z), x⃗, k⃗) = ssg(∣r(z,x⃗,k⃗)∣)(u(z, x⃗, k⃗)),

u(z, x⃗, k⃗) = s0(1#z) = 2∣z∣+1 for all z, x⃗, k⃗.

Then, define t ∈ FPTIME by

t(z, x⃗, k⃗) = msp(rev(u(z, x⃗, k⃗)),1).

Now, we show that the string constructed by appending sg(α(∣0∣, ∣x⃗∣;bin(k⃗))),
. . . ,sg(α(∣z∣ � 1, ∣x⃗∣;bin(k⃗))) to 1 is equal to bin(u(z, x⃗, k⃗)) by induction on
∣z∣. We illustrate this in the following diagram.

69

In the case ∣1∣,
u(1, x⃗, k⃗) = u(s1(0), x⃗, k⃗)
= ssg(∣r(0,x⃗,k⃗)∣)(u(0, x⃗, k⃗)) = ssg(α(∣0∣,∣x⃗∣;bin(k⃗)))(1),

which means the following is true.

In the case ∣z∣, suppose that the above statement holds.

In the case ∣si(z)∣,
u(si(z), x⃗, k⃗)
= ssg(∣r(z,x⃗,k⃗)∣)(u(z, x⃗, k⃗)) = ssg(α(∣z∣,∣x⃗∣;bin(k⃗)))(u(z, x⃗, k⃗)).

By induction hypothesis, the above expression means the following is true.

Therefore, the above statement holds for all z(≥ 1).
Since by the definition of φ, φ(∣z∣, ∣x⃗∣;bin(k⃗)) is the string constructed

by appeding from sg(α(∣z∣�1, ∣x⃗∣;bin(k⃗))) to sg(α(∣0∣, ∣x⃗∣;bin(k⃗))), we have
for z(≥ 1)

φ(∣z∣, ∣x⃗∣;bin(k⃗)) = bin(msp(rev(u(z, x⃗, k⃗)),1))
= bin(t(z, x⃗, k⃗)).

Note that since φ(∣0∣, ∣x⃗∣;bin(k⃗)) = ε = bin(0) and bin(t(0, x⃗, k⃗)) = bin(0),
the above equation holds for z = 0.

70

3.6 Inclusion of PTIME by E2+∗
In section 3.2 and section 3.3, we have associated functions in E2+ with func-
tions in CN, and in section 3.4 and section 3.5, we have associated functions
in FPTIME with functions in CW (via CN). Using these correspondences, we
obtain the following theorem.

Theorem 3.31.
PTIME ⫅ E2+∗ .

Proof. Let s be any set in PTIME, then the charateristic function χs of s is
in FPTIME.
By Proposition 3.29 (i), there exists α ∈ CN such that

BIT(i,bin(χs(x⃗))) = α(i;bin(x⃗)).

By Corollary 3.28, there exists f ∈ E2+ such that

α(i;bin(x⃗)) = f(i, x⃗).

Hence, we have
BIT(i,bin(χs(x⃗))) = f(i, x⃗).

Since χs is the characteristic function, we have

χs(x⃗) = BIT(0,bin(χs(x⃗))) = f(0, x⃗).

Hence,
χs ∈ E2+.

Therefore,
s ∈ E2+∗ .

71

4 Relationship between M2 and FLH

In this capter, we study a relationship betweenM2 and FLH.
LetM2 be the the second class in the hierarchy of bounded minimisation,

that is,

M2 = [0,I,S,+,×;COMP,BMIN].

As are defined in the next section, let DN and DW be classes of functions
defined simultaneously and recursively over both the set of natural numbers
N and the set of binary strings W such that functions in DN maps them to
N and functions in DW maps them to W.

Then, we associate functions inM2 with functions in DN, and also asso-
ciate functions in FLH with functions in DW.

Using these correspondences, with respect to their set classes M2
∗ and

LH, we show that
LH ⫅M2

∗

(Theorem 4.16)13.

4.1 Definitions of DN and DW, and some basic functions

To begin with, we define function classes DN and DW.

Definition 4.1. Classes DN and DN of functions of types Nm ×Wn → N and
Nm ×Wn → W, respectively, are generated simultaneously by the following
clauses.

1. The projection functions pN
m,n
i and pW

m,n
j belong to DN and DW, re-

spectively:

pN
m,n
i (x0, . . . , xm−1; a⃗) = xi (0 ≤ i <m),

pW
m,n
j (x⃗;a0, . . . , an−1) = aj (0 ≤ j < n);

2. the constant zero 0 belongs to DN: 0 = 0;

3. the successor function S belongs to DN: S(x;) = Sx;

4. the cut-off subtraction � belongs to DN: �(x, y;) = x � y;

13It is known LTH = M2
∗ (Theorem 2.22). And, it holds that LH ⫅ LTH. Hence, it

can be derived from existing knowledge that LH ⫅ M2
∗. Accordingly, the contents of this

chapter are another proof of this inclusion.

72

5. the multiplication × belongs to DN: ×(x, y;) = x ⋅ y;

6. the length function ∣ ⋅ ∣ ∈W→ N belongs to DN: ∣;a∣ = ∣a∣;

7. the bit function BIT ∈ N×W→ N belongs to DN: BIT(z;a) = BIT(z, a);

8. DN and DW are closed under composition (COMP):
if γ, β0, . . . , βM−1 ∈ DN and ψ,χ0, . . . , χN−1 ∈ DW with γ ∈ NM ×WN → N,
βi ∈ Nm ×Wn → N, ψ ∈ NM ×WN → W and χj ∈ Nm ×Wn → W for
0 ≤ i <M and 0 ≤ j < N , then there exist α ∈ DN and φ ∈ DW satisfying

α(x⃗; a⃗) = γ(β0(x⃗, a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)),
φ(x⃗; a⃗) = ψ(β0(x⃗, a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗));

9. DN is closed under bounded minimisation (BMIN):
if β ∈ DN with β ∈ Nm+1 ×Wn → N, then there is α ∈ DN satisfying

α(z, x⃗; a⃗) =
⎧⎪⎪⎨⎪⎪⎩

the least y ≤ z such that β(y, x⃗; a⃗) ≠ 0 if it exists,

z + 1 otherwise;

10. DW is closed under bounded comprehension (BC):
if α ∈ DN with α ∈ Nm+1 ×Wn → N, then there is φ ∈ DW satisfying

∣;φ(z, x⃗; a⃗)∣ = z and

∀i < z [BIT(i;φ(z, x⃗; a⃗)) = 0↔ α(i, x⃗; a⃗) = 0].

Notation. We will use the same notations in DN and DW as ones used in CN
and CW, unless otherwise noted. In using bounded minimisation, we write
min
y≤z
{β(y, x⃗; a⃗) ≠ 0} for α(z, x⃗; a⃗).

In function algebras, the classes DN and DW are represented as follows:

DN = [pNm,n
i ,0,S,�,×, ∣ ⋅ ∣,BIT;COMP,BMIN],

DW = [pWm,n
j ;COMP,BC].

Note that any constant belongs to DN by repeatedly applying the succes-
sor function S to the constant 0.

Now, we introduce some useful functions to DN which will be used in
subsequent lemmas and propositions.

73

Lemma 4.2. The following functions belong to DN ∶

1. the predecessor fucntion prd ∶ prd(x;) = prd(x);

2. the addition + ∶ +(x, y;) = x + y.

Proof. The predecessor function is defined by prd(x;) = x � S(0;).
The addition is defined by

+(x, y;) = S(x;) × S(y;) � x × y � 1.

Lemma 4.3. The following functions belong to DN ∶

1. the signum function sg ∶ sg(x;) = sg(x);

2. the inverse signum fucntion sg ∶ sg(x;) = sg(x);

3. the maximum function max ∶ max(x, y;) =max(x, y);

4. the minimum function min ∶ min(x, y;) =min(x, y);

5. the conditional function cond ∶ cond(x, y, z;) = cond(x, y, z);

6. the characteristic function χ= of = ∶ χ=(x, y;) = χ=(x, y);

7. the characteristic function χ≤ of ≤ ∶ χ≤(x, y;) = χ≤(x, y);

8. the characteristic function χ< of < ∶ χ<(x, y;) = χ<(x, y).

Proof. See the proof of Lemma 3.5.

Lemma 4.4. The following logical functions belong to DN ∶

1. the characteristic function χ¬ of ¬ ∶ χ¬(x;) = χ¬(x);

2. the characteristic function χ∧ of ∧ ∶ χ∧(x, y;) = χ∧(x, y);

3. the characteristic function χ∨ of ∨ ∶ χ∨(x, y;) = χ∨(x, y);

4. the characteristic function χ→ of → ∶ χ→(x, y;) = χ→(x, y).

Proof. See the proof of Lemma 3.6.

At the beginning of section 4.3. we will construct bin(n;) ∈ DW which
computes the binary string of the binary representation of n.

74

4.2 Representation of M2 functions by DN functions

In this section, we show that any function in M2 is represented by some
function in DN, that is,

∀f ∈M2 ∃α ∈ DN [f(x⃗) = α(x⃗;)].

Proposition 4.5. For each f ∈M2 with f ∈ Nm → N, there exists α ∈ DN
such that

f(x⃗) = α(x⃗;)

for each x⃗.

Proof. By induction on the structure of f ∈M2.
Basis.
Case f = 0:

Note that m = 0. Let α = 0, then 0 = 0.
Case f = Imi :

Note that 0 ≤ i <m. Let α = pNm,0
i , then

f(x⃗) = Imi (x⃗) = xi = pN
m,0
i (x⃗;) = α(x⃗;).

Case f = S:
Note that m = 1. Let α = S, then S(x1) = S(x1;).

Case f = +:
Note that m = 2. Let α = +, then x1 + x2 = x1 + x2.

Case f = ×:
Note that m = 2. Let α = ×, then x1 × x2 = x1 × x2.

Induction step.
Case COMP:

Suppose that
f(x⃗) = h(g0(x⃗), . . . , gL−1(x⃗)),

whrere h, g0, . . . , gL−1 ∈M2. Then, by the induction hypothesis, there exist
γ, β0, . . . , βL−1 ∈ DN such that

h(y⃗) = γ(y⃗;),
gi(x⃗) = βi(x⃗;)

for 0 ≤ i < L.
Since DN is closed under composition, define α ∈ DN by

α(x⃗;) = γ(β0(x⃗;), . . . , βL−1(x⃗;);).

75

Then we have

f(x⃗) = h(g0(x⃗), . . . , gL−1(x⃗))
= γ(β0(x⃗;), . . . , βL−1(x⃗;);)
= α(x⃗;).

Case BMIN:
Suppose that f ∈M2 is defined by bounded minimisation, then

f(z, x⃗) =
⎧⎪⎪⎨⎪⎪⎩

the least y ≤ z such that g(y, x⃗) = 0 if it exists,

0 otherwise,

where g ∈M2.
By induction hypothesis, there exists β ∈ DN such that

g(y, x⃗) = β(y, x⃗;).

Since DN is closed under bounded minimisation, define α by

α(z, x⃗;) = cond(χ=(min
y≤z
{sg(β(y, x⃗;)) ≠ 0}, z + 1),

min
y≤z
{sg(β(y, x⃗;)) ≠ 0},

0).

Then we have
f(z, x⃗) = α(z, x⃗;).

76

4.3 Representation of DN and DW functions byM2 func-
tions

Firstly, the function bin(k⃗) will be used in the arguments of functions in DN
and DW, we explain the construction of bin(k;) in DN and DW.

In section 3.1, we construct the bin(k;) function in CN and CW, but
bounded recursion is used in the definition of the function None ∈ N → N,
which is needed in the definitions of the functions ∣ ⋅ ∣ ∈ N→ N, exp ∈ N2 → N,
BIT ∈ N2 → N and bin ∈ N→W. Hence, this construction can not be used in
DN and DW.

However, by Proposition 4.5 in the previous section, we have shown that

∀f ∈M2 ∃α ∈ DN [f(x⃗) = α(x⃗;)].

By Proposition 2.25, we know that the functions ∣⋅∣ ∈ N→ N and BIT ∈ N2 → N
belong toM2, hence, these functions also belong to DN. Therefore, we obtain
the following lemma:

Lemma 4.6. The function bin(k;) ∈ N→W belongs to DW ∶14

bin(k;) = the binary string of the binary representation of k.

Proof. In the definition of bounded comprehension, let α(i, k;) = BIT(i, k;),
then there is φ ∈ DW satisfying

∣;φ(z, k;)∣ = z,
∀i < z [BIT(i;φ(z, k;)) = 0↔ α(i, k;) = 0].

Then we have
bin(k;) = φ(∣k; ∣, k;).

Notice that bin(0;) = ε (∈W).

In this section, we would like to show that any function in DN is repre-
sented by some function in M2 and that any function in DW is represented
by some function inM2, that is,

∀α ∈ DN ∃f ∈M2 [α(x⃗;bin(k⃗)) = f(x⃗, k⃗)],
∀φ ∈ DW ∃g ∈M2 [φ(x⃗;bin(k⃗)) = bin(g(x⃗, k⃗))].

Just as there was a problem in CW and CW, there is the same prob-
lem. If a function φ ∈ DW is defined by bounded comprehension, we have

14Again, we will omit a semicolon in bin(k;).

77

∣;φ(z, x⃗;bin(k⃗))∣ = z. Hence we must construct a fucntion g ∈M2 such that
g = Θ(2z). However, we cannot construct such a function inM2 becauseM2

does not contain exponential function. Therefore, the latter formula above
does not hold.

For this reason, we consider an intermediate class D̃ of functions of types
Nm ×Wn → N, and for each function in DN we construct a function in D̃ of
the same values, and for each function in DW we construct two functions in
D̃, one giving its bit contents and the other giving its length, that is,

∀α ∈ DN ∃α̃ ∈ D̃ [α(x⃗; a⃗) = α̃(x⃗, a⃗)],
∀φ ∈ DW ∃φ̃ ∈ D̃ [BIT(z;φ(x⃗; a⃗)) = φ̃(z, x⃗; a⃗)] and

∃φ̂ ∈ D̃ [∣;φ(x⃗; a⃗)∣ = φ̂(x⃗; a⃗)]

(Proposition 4.9). And then, for each function in D̃ we construct a function
inM2 of the same values, that is,

∀α̃ ∈ D̃ ∃f ∈M2 [α̃(x⃗;bin(k⃗)) = f(x⃗, k⃗)]

(Proposition 4.10).
The contents of thie section are based on Ishihara [6].
To begin with, we define an intermediate class D̃.

Definition 4.7. A class D̃ of functions of types Nm ×Wn → N is generated
by the following clauses.

1. The projection functions pN
m,n
i belong to D̃:

pN
m,n
i (x0, . . . , xm−1; a⃗) = xi (0 ≤ i <m);

2. the constant zero 0 belongs to D̃: 0 = 0;

3. the successor function S belongs to D̃: S(x;) = Sx;

4. the cut-off subtraction � belongs to D̃: −(x, y;) = x � y;

5. the multiplication × belongs to D̃: ×(x, y;) = x ⋅ y;

6. the projective length function ∣ ⋅ ∣m,n
j belongs to D̃:

∣(x⃗;a0, . . . , an−1)∣m,n
j = ∣aj ∣ (0 ≤ j < n);

7. the projective bit function BIT
m+1,n
j belongs to D̃:

BIT
m+1,n
j (z, x⃗;a0, . . . , an−1) = BIT(z, aj) (0 ≤ j < n);

78

8. D̃ is closed under composition (COMP):
if β0, . . . , βL−1, γ ∈ D̃ with βi ∈ Nm ×Wn → N and γ ∈ NL ×Wn → N for
0 ≤ i < L, then there exist α ∈ D̃ satisfying

α(x⃗; a⃗) = γ(β0(x⃗, a⃗), . . . , βL−1(x⃗; a⃗); a⃗);

9. D̃ is closed under bounded minimisation (BMIN):
if β ∈ D̃ with β ∈ Nm+1 ×Wn → N, then there is α ∈ D̃ satisfying

α(z, x⃗; a⃗) =
⎧⎪⎪⎨⎪⎪⎩

the least y ≤ z such that β(y, x⃗; a⃗) ≠ 0 if it exists,

z + 1 otherwise.

In function algebra, the class D̃ is represented as follows:

D̃ = [pNm,n
i ,0,S,�,×, ∣ ⋅ ∣m,n

j ,BITm+1,n
j ;COMP,BMIN].

We show a lemma used in the proposition 4.9.

Lemma 4.8. Let χ0, . . . , χN−1 be in DW with χj ∈ Nm×Wn →W for 0 ≤ j < N ,

and suppose that there exist χ
∣⋅∣
0 , . . . , χ

∣⋅∣
N−1 and χBIT

0 , . . . , χBIT
N−1 in D̃ such that

∣χj(x⃗; a⃗)∣ = χ∣⋅∣j (x⃗; a⃗), BIT(z,χj(x⃗; a⃗)) = χBIT
j (z, x⃗; a⃗)

for each 0 ≤ j < N . Then for any α ∈ D̃ with α ∈ NM ×WN → N, there exists
α̃ ∈ D̃ with α̃ ∈ NM+m ×Wn → N such that

α(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = α̃(y⃗, x⃗; a⃗).

Proof. By induction on the structure of α ∈ D̃.
Basis.
Case α = pNM,N

i :
Note that 0 ≤ i <M . Let α̃ = pNM+m,n

i . Then

α(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = pNM,N
i (y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))

= yi = pNM+m,n
i (y⃗, x⃗; a⃗) = α̃(y⃗, x⃗; a⃗).

Case α = 0:
Note that M = N = 0. Let α̃ = 0, then 0 = 0.

Case α = S:
Note that M = 1,N = 0. Let α̃ = S, then S(y1;) = S(y1;).

Case α = �:
Note that M = 2,N = 0. Let α̃ = �, then y1 � y2 = y1 � y2.

79

Case α = ×:
Note that M = 2,N = 0. Let α̃ = ×, then y1 × y2 = y1 × y2.

Case α = ∣ ⋅ ∣M,N
j :

Note that 0 ≤ j < N . Let α̃(y⃗, x⃗; a⃗) = χ∣⋅∣j (x⃗; a⃗). Then

α(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = ∣(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))∣M,N
j

= ∣χj(x⃗; a⃗)∣ = χ∣⋅∣j (x⃗; a⃗) = α̃(y⃗, x⃗; a⃗).

Case α = BITM+1,N
j :

Note that 0 ≤ j < N . Let α̃(z, y⃗, x⃗; a⃗) = χBIT
j (z, x⃗; a⃗). Then

α(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= BITM+1,N

j (z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= BIT(z,χj(x⃗; a⃗)) = χBIT

j (z, x⃗; a⃗) = α̃(z, y⃗, x⃗; a⃗).

Induction step.
Case COMP:

Suppose that

α(y⃗; b⃗) = γ(β0(y⃗; b⃗), . . . , βL−1(y⃗; b⃗); b⃗),

whrere γ, β0, . . . , βL−1 ∈ D̃. Then, by the induction hypothesis, there exist
γ̃, β̃0, . . . , β̃L−1 ∈ C̃ such that

γ(z⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = γ̃(z⃗, x⃗; a⃗),
βj(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = β̃j(y⃗, x⃗; a⃗)

for 0 ≤ j < L.
Since D̃ is closed under composition, define α̃ ∈ D̃ by

α̃(y⃗, x⃗; a⃗) = γ̃(β̃0(y⃗, x⃗; a⃗), . . . , β̃L−1(y⃗, x⃗; a⃗), x⃗; a⃗).

Then we have

α(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ(β0(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)), . . . , βL−1(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗));

χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ(β̃0(y⃗, x⃗; a⃗), . . . , β̃L−1(y⃗, x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ̃(β̃0(y⃗, x⃗; a⃗), . . . , β̃L−1(y⃗, x⃗; a⃗), x⃗; a⃗)
= α̃(y⃗, x⃗; a⃗).

80

Case BMIN:
Suppose that α ∈ D̃ is defined by bounded minimisation, then

α(z, y⃗; b⃗) =
⎧⎪⎪⎨⎪⎪⎩

the least w ≤ z such that β(w, y⃗; b⃗) ≠ 0 if it exists,

z + 1 otherwise,

where β ∈ D̃.
By induction hypothesis, there exists β ∈ D̃ such that

β(w, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = β̃(w, y⃗, x⃗; a⃗).

Since D̃ is closed under bounded minimisation, define α̃ ∈ D̃ by

α̃(z, y⃗, x⃗; a⃗) =
⎧⎪⎪⎨⎪⎪⎩

the least w ≤ z such that β̃(w, y⃗, x⃗; a⃗) ≠ 0 if it exists,

z + 1 otherwise.

Then we have

α(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))

=
⎧⎪⎪⎨⎪⎪⎩

the least w ≤ z such that β(w, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) ≠ 0 (if it exists)

z + 1 (otherwise)

=
⎧⎪⎪⎨⎪⎪⎩

the least w ≤ z such that β̃(w, y⃗, x⃗; a⃗) ≠ 0 (if it exists)

z + 1 (otherwise)

= α̃(z, y⃗, x⃗; a⃗).

Proposition 4.9. For each α ∈ DN with α ∈ Nm ×Wn → N and φ ∈ DW with
φ ∈ Nm ×Wn →W, there exist α̃, φ̃, φ̂ ∈ D̃ such that

α(x⃗; a⃗) = α̃(x⃗; a⃗),
BIT(z;φ(x⃗; a⃗)) = φ̃(z, x⃗; a⃗),

∣;φ(x⃗; a⃗)∣ = φ̂(x⃗; a⃗)

for each x⃗, a⃗ and z.

Proof. By simultaneous induction on the structures of α ∈ DN and φ ∈ DW.
Basis.
Case α = pNm,n

i :
Note that 0 ≤ i <m. Let α̃ = pNm,n

i . Then

α(x⃗; a⃗) = pNm,n
i (x⃗; a⃗) = xi = α̃(x⃗; a⃗).

81

Case φ = pWm,n
j :

Note that 0 ≤ j < n. Let φ̃ = BITm+1,n
j and φ̂ = ∣ ⋅ ∣m,n

j . Then

BIT(z;φ(x⃗; a⃗)) = BIT(z;pWm,n
j (x⃗; a⃗)) = BIT(z;aj)

= BITm+1,n
j (z, x⃗; a⃗) = φ̃(z, x⃗; a⃗),

∣;φ(x⃗; a⃗)∣ = ∣;pWm,n
j (x⃗; a⃗)∣ = ∣;aj ∣

= ∣(x⃗; a⃗)∣m,n
j = φ̂(x⃗; a⃗).

Case α = 0:
Note that m = n = 0. Let α̃ = 0, then 0 = 0.

Case α = S:
Note that m = 1, n = 0. Let α̃ = S, then S(x1;) = S(x1;).

Case α = �:
Note that m = 2, n = 0. Let α̃ = �, then x1 � x2 = x1 � x2.

Case α = ×:
Note that m = 2, n = 0. Let α̃ = ×, then x1 × x2 = x1 × x2.

Case α = ∣ ⋅ ∣:
Note that m = 0, n = 1. Let α̃ = ∣ ⋅ ∣0,10 . Then

α(;a1) = ∣;a1∣ = ∣(;a1)∣0,10 = α̃(;a1).

Case α = BIT:
Note that m = 1, n = 1. Let α̃ = BIT1,10 . Then

α(z;a1) = BIT(z;a1) = BIT1,10 (z;a1) = α̃(z;a1).

Induction step.
Case COMP(∈ DN):

Suppose that

α(x⃗; a⃗) = γ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)),

whrere γ, β0, . . . , βM−1 ∈ DN and χ0, . . . , χN−1 ∈ DW. Then, by the induction
hypothesis, there exist γ̃, β̃0, . . . , β̃M−1, χ̃0, . . . , χ̃N−1, χ̂0, . . . , χ̂N−1 ∈ D̃ such
that

γ(y⃗; b⃗) = γ̃(y⃗; b⃗), βi(x⃗; a⃗) = β̃i(x⃗; a⃗),
BIT(z;χj(x⃗; a⃗)) = χ̃j(z, x⃗; a⃗), ∣;χj(x⃗; a⃗)∣ = χ̂j(x⃗; a⃗)

for 0 ≤ i < M and 0 ≤ j < N . Since the bit contents and lengths of χj(x⃗; a⃗)
for 0 ≤ j < N are known, by Lemma 4.8, there exist γ̃′ ∈ D̃ such that

γ̃(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = γ̃′(y⃗, x⃗; a⃗).

82

Since D̃ is closed under composition, define α̃ ∈ D̃ by the following formula
using γ̃′ and β̃i for 0 ≤ i <M :

α̃(x⃗; a⃗) = γ̃′(β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗), x⃗; a⃗).

Then we have

α(x⃗; a⃗) = γ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ(β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ̃(β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= γ̃′(β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗), x⃗; a⃗)
= α̃(x⃗; a⃗).

Case COMP(∈ DW):
Suppose that

φ(x⃗; a⃗) = ψ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)),

whrere β0, . . . , βM−1 ∈ DN and ψ,χ0, . . . , χN−1 ∈ DW. Then, by the induction
hypothesis, there exist β̃0, . . . , β̃M−1, ψ̃, χ̃0, . . . , χ̃N−1, ψ̂, χ̂0, . . . , χ̂N−1 ∈ D̃ such
that

βi(x⃗; a⃗) = β̃i(x⃗; a⃗),
BIT(z;ψ(y⃗; b⃗)) = ψ̃(z, y⃗; b⃗), ∣;ψ(y⃗; b⃗)∣ = ψ̂(y⃗; b⃗),
BIT(z;χj(x⃗; a⃗)) = χ̃j(z, x⃗; a⃗), ∣;χj(x⃗; a⃗)∣ = χ̂j(x⃗; a⃗)

for 0 ≤ i < M and 0 ≤ j < N . Since the bit contents and lengths of χj(x⃗; a⃗)
for 0 ≤ j < N are known, by Lemma 4.8, there exist ψ̃′, ψ̂′ ∈ D̃ such that

ψ̃(z, y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = ψ̃′(z, y⃗, x⃗; a⃗),
ψ̂(y⃗;χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)) = ψ̂′(y⃗, x⃗; a⃗).

Since D̃ is closed under composition, define φ̃, φ̂ ∈ D̃ by the following formulas
using ψ̃′, ψ̂′ and β̃i for 0 ≤ i <M :

φ̃(z, x⃗; a⃗) = ψ̃′(z, β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗), x⃗; a⃗),
φ̂(x⃗; a⃗) = ψ̂′(β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗), x⃗; a⃗).

83

Then we have

BIT(z;φ(x⃗; a⃗)) = BIT(z;ψ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)))
= ψ̃(z, β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= ψ̃(z, β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= ψ̃′(z, β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗), x⃗; a⃗)
= φ̃(z, x⃗; a⃗),

∣;φ(x⃗; a⃗)∣ = ∣;ψ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))∣
= ψ̂(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= ψ̂(β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗))
= ψ̂′(β̃0(x⃗; a⃗), . . . , β̃M−1(x⃗; a⃗), x⃗; a⃗)
= φ̂(x⃗; a⃗).

Case BMIN:
Suppose that α ∈ DN is defined by bounded minimisation, then

α(z, x⃗; a⃗) =
⎧⎪⎪⎨⎪⎪⎩

the least y ≤ z such that β(y, x⃗; a⃗) ≠ 0 if it exists,

z + 1 otherwise,

where β ∈ DN.
By induction hypothesis, there exists β̃ ∈ D̃ such that

β(y, x⃗; a⃗) = β̃(y, x⃗; a⃗).

Since D̃ is closed under bounded minimisation, define α̃ ∈ D̃ by

α̃(z, x⃗; a⃗) =
⎧⎪⎪⎨⎪⎪⎩

the least y ≤ z such that β̃(y, x⃗; a⃗) ≠ 0 if it exists,

z + 1 otherwise.

Then we have
α(z, x⃗; a⃗) = α̃(z, x⃗; a⃗).

Case BC:
Suppose that φ ∈ DW with φ(z, x⃗; a⃗) ∈ Nm+1 ×Wn → W is defined by

bounded comprehension, then

∣;φ(z, x⃗; a⃗)∣ = z,
∀j < z [BIT(j;φ(z, x⃗; a⃗)) = 0↔ α(j, x⃗; a⃗) = 0],

84

where α ∈ DN with α(j, x⃗; a⃗) ∈ Nm+1 ×Wn → N.
By induction hypothesis, there exist α̃ ∈ D̃ such that

α(j, x⃗; a⃗) = α̃(j, x⃗; a⃗).

With respect to ∣;φ(z, x⃗; a⃗)∣, define φ̃ ∈ D̃ by φ̃(z, x⃗; a⃗) = z.
Then we have

∣;φ(z, x⃗; a⃗)∣ = z = φ̃(z, x⃗; a⃗).

With respect to BIT(j;φ(z, x⃗; a⃗)), since

BIT(j;φ(z, x⃗; a⃗)) = { sg(α(j, x⃗; a⃗);) if 0 ≤ j < z,
0 if j ≥ z,

define φ̂ ∈ D̃ by15

φ̂(j, z, x⃗; a⃗) = cond(j < z,0,sg(α̃(j, x⃗; a⃗););).

Then we have
BIT(j;φ(z, x⃗; a⃗)) = φ̂(j, z, x⃗; a⃗).

Proposition 4.10. For each α̃ ∈ D̃ with α̃ ∈ Nm ×Wm → N, there exists
f ∈M2 such that

α̃(x⃗;bin(k⃗)) = f(x⃗, k⃗)

for each x⃗ and k⃗.

Remark. In the discussion on the function algebra

A0 = [0,I,s0,s1,BIT, ∣ ⋅ ∣,#;COMP,CRN]

in Clote [2], it is shown that cut-off subtraction � belongs to A0 without
smash function #. By Proposition 2.25, [0,I,s0,s1, ∣ ⋅ ∣,BIT;COMP,CRN]
is contained in M2. Hence, cut-off subtraction � also belongs to M2. In
addition, inverse signum function sg(x) = 1 � x, signum function sg(x) =
sg(sg(x)) and conditional function cond(x, y, z) = sg(x)×y+sg(x)×z belong
toM2.

Proof. By induction on the structure of α̃ ∈ D̃.
Basis.
Case α̃ = pNm,n

i :

15Notice that Lemma 4.2 and Lemma 4.3 also hold for D̃.

85

Note that 0 ≤ i <m. Let f = Im,n
i . Then

α̃(x⃗;bin(k⃗)) = pNm,n
i (x⃗;bin(k⃗)) = xi = I

m,n
i (x⃗, k⃗) = f(x⃗, k⃗).

Case α̃ = 0:
Note that m = n = 0. Let f = 0, then 0 = 0.

Case α̃ = S:
Note that m = 1, n = 0. Let f = S, then S(x1;) = S(x1).

Case α̃ = �:
Note that m = 2, n = 0. Let f = �, then x1 � x2 = x1 � x2.

Case α̃ = ×:
Note that m = 2, n = 0. Let f = ×, then x1 × x2 = x1 × x2.

Case α̃ = ∣ ⋅ ∣m,n
j :

Note that 0 ≤ j < n. Since ∣ ⋅ ∣ belongs to M2 by Proposition 2.25, let
f(x⃗, k⃗) = ∣Im+n

m+j (x⃗, k⃗)∣. Then

α̃(x⃗;bin(k⃗)) = ∣(x⃗;bin(k⃗))∣m,n
j = ∣bin(kj)∣

= ∣kj ∣ = ∣Im+n
m+j (x⃗, k⃗)∣ = f(x⃗, k⃗).

Case α̃ = BITm+1,n
j :

Note that 0 ≤ j < n. Since BIT belongs to M2 by Proposition 2.25, let
f(z, x⃗, k⃗) = BIT(Im+1+n

0 (z, x⃗, k⃗),Im+1+n
m+1+j (z, x⃗, k⃗)). Then

α̃(z, x⃗;bin(k⃗)) = BITm+1,n
j (z, x⃗;bin(k⃗)) = BIT(z,bin(kj))

= BIT(z, kj) = BIT(Im+1+n
0 (z, x⃗, k⃗),Im+1+n

m+1+j (z, x⃗, k⃗)) = f(z, x⃗, k⃗).

Induction step.
Case COMP:

Suppose that

α̃(x⃗;bin(k⃗)) = γ̃(β̃0(x⃗;bin(k⃗)), . . . , β̃L−1(x⃗;bin(k⃗));bin(k⃗)),

whrere γ̃, β̃0, . . . , β̃L−1 ∈ D̃. Then, by the induction hypothesis, there exist
h, g0, . . . , gL−1 ∈M2 such that

γ̃(y⃗;bin(k⃗)) = h(y⃗, k⃗),
β̃j(x⃗;bin(k⃗)) = gj(x⃗, k⃗)

for 0 ≤ j < L.
SinceM2 is closed under composition, define f ∈M2 by

f(x⃗, k⃗) = h(g0(x⃗, k⃗), . . . , gL−1(x⃗, k⃗), k⃗).

86

Then we have

α̃(x⃗;bin(k⃗)) = γ̃(β̃0(x⃗;bin(k⃗)), . . . , β̃L−1(x⃗;bin(k⃗));bin(k⃗))
= γ̃(g0(x⃗, k⃗), . . . , gL−1(x⃗, k⃗);bin(k⃗))
= h(g0(x⃗, k⃗), . . . , gL−1(x⃗, k⃗), k⃗)
= f(x⃗, k⃗).

Case BMIN:
Suppose that α̃ ∈ D̃ is defined by bounded minimisation, then

α̃(z, x⃗;bin(k⃗)) =
⎧⎪⎪⎨⎪⎪⎩

the least y ≤ z such that β̃(y, x⃗;bin(k⃗)) ≠ 0 if it exists,

z + 1 otherwise,

where β̃ ∈ D̃.
By induction hypothesis, there exists g ∈M2 such that

β̃(y, x⃗;bin(k⃗)) = g(y, x⃗, k⃗).

SinceM2 is closed under bounded minimisation, define f ∈M2 by16

f(z, x⃗; k⃗) = cond(µy ≤ z[sg(g(y, x⃗, k⃗)) = 0],
cond(sg(g(0, x⃗, k⃗)),0, z + 1),
µy ≤ z[sg(g(y, x⃗, k⃗)) = 0]).

Then we have
α̃(z, x⃗;bin(k⃗)) = f(z, x⃗; k⃗).

Combining Proposition 4.9 with Proposition 4.10, we can derive the fol-
lowing corollary:

Corollary 4.11. For each α ∈ DN and φ ∈ DW, there exist f, g̃, ĝ ∈M2 such
that

α(x⃗;bin(k⃗)) = f(x⃗, k⃗),
BIT(z;φ(x⃗;bin(k⃗)) = g̃(z, x⃗, k⃗),

∣;φ(x⃗;bin(k⃗))∣ = ĝ(x⃗, k⃗)

for each x⃗, k⃗ and z.

16We write BMIN inM2 using function h(z, x⃗) as µy ≤ z[h(y, x⃗) = 0].

87

4.4 Representation of FLH functions by DW functions

We know that

FLH = [0,I,s0,s1,BIT, ∣ ⋅ ∣,#;COMP,CRN].

(Theorem 2.21). In this function class, the function BIT(x, y) equals MOD2

(⌊x/2y⌋). However, it is convenient for us to use the function bit(x, y) =
MOD2(⌊x/2∣y∣⌋) instead of BIT. Hence, firstly, we define a function algebra
in which BIT in FLH is replaced with bit, and prove their equivalence.

Definition 4.12.

A′
0 = [0,I,s0,s1,bit, ∣ ⋅ ∣,#;COMP,CRN],

where 0 is constant 0, I is projection function, s0 and s1 are binary successor
functions, bit is (lowercase) bit, ∣ ⋅ ∣ is length function, # is smash function,
COMP is composition and CRN is concatenation recursion on notation.

Remark. In the discussion on the function algebra A0 = [0,I,s0,s1,BIT, ∣ ⋅ ∣,
#;COMP,CRN] in Clote [2], it is shown that the reverse function rev(x), the
signum function sg(x), the inverse signum function sg(x), the conditional
function cond(x, y, z) and the most significant part function msp(x, y) belong
to A0. In these definitions, when BIT is used, we can replace BIT with bit,
hence these functions also belong to A′

0. We use this fact in the proof of the
next proposition.

Proposition 4.13 (Ishihara).

A′
0 = FLH.

Proof. (A′
0 ⫅ FLH) It is trivial by the euqation bit(x, y) = BIT(∣x∣, y) ∈ FLH.

(FLH ⫅ A′
0) Since χ¬(x) = sg(x), χ∧(x, y) = cond(x,0,sg(y)) and χ∨(x, y) =

cond(x,sg(y),1), we have χ⊕(x, y) = (¬x ∧ y) ∨ (x ∨ ¬y) belonging to A′
0.

Using CRN, we define dif(x, y) ∈ A′
0 which computes the number whose

bit is 1 if the bit of its position in x and the bit of its position in y are
different, and whose bit is 0 if the bit of its position in x and the bit of its
position in y are the same, provided that ∣x∣ = ∣y∣, as follows:

v(0, y) = 0,
v(s0(x), y) = sχ⊕(0,bit(x,y))(v(x, y)) (if x ≠ 0),
v(s1(x), y) = sχ⊕(1,bit(x,y))(v(x, y)),
dif(x, y) = v(x,rev(s1(y))).

88

Note that if x = y then dif(x, y) = 0, and if x ≠ y then ∣dif(x, y)∣ is the
maximum bit number of different bits between x and y, where 1 ≤ ∣dif(x, y)∣ ≤
∣x∣.

And, we have ∣y∣ � ∣x∣ = ∣msp(y, x)∣ ∈ A′
0.

The predicate x < y is true if ∣x∣ < ∣y∣, or true if ∣x∣ = ∣y∣ and the y’s bit of
the maximum bit number of different bits between x and y is 1. Hence, we
can define χ<(x, y) ∈ A′

0 as follows:

χ<(x, y) = cond(∣y∣ � ∣x∣,
cond(∣x∣ � ∣y∣,

cond(dif(x, y),0,bit(msp(dif(x, y),1), y)),
0),

1).

Next, using CRN, we define r(x, i) =min
z≤x
{∣z∣ = i} in A′

0 as follows:

t(0, i) = 0,
t(s0(x), i) = su(x,i)(t(x, i)) (if x ≠ 0),
t(s1(x), i) = su(x,i)(t(x, i)),

u(x, i) = cond(χ<(∣x∣, i),0,1),
r(x, i) = rev(t(x, i)).

Then, we can define BIT(i, x) ∈ A′
0 as follows:

BIT(i, x) = bit(r(x, i), x).

In the subsequent discussion of this section and in the next section, we
adopt A′

0 as FLH:

FLH = [0,I,s0,s1,bit, ∣ ⋅ ∣,#;COMP,CRN].

Next, we show that any function in FLH is represented by some function
in DW, that is,

∀r ∈ FLH ∃φ ∈ CW [bin(r(x⃗))) = φ(;bin(x⃗))],

(Proposition 4.14). In this proposition and in the following discussion, the
function bin(⋅) applied to a natural number in FLH is an identity function
which regards a natural number as its binary representation.

89

Proposition 4.14. For any r ∈ FLH with r ∈ Nm → N, there exists φ ∈ CW
such that

bin(r(x⃗)) = φ(;bin(x⃗))

for each x.

Proof. By induction on the structures of r ∈ FLH.
Basis.
Case r = 0:

Note that m = 0. Let α(i;) = 0. By bounded comprehension, there exists
ψ ∈ DW satisfying

∣;ψ(z;)∣ = z,
∀i < z [BIT(i;ψ(z;)) = 0↔ α(i;) = 0].

Let φ(;) = zero(;) = ψ(S(0;);), then we have

bin(0) = 0 = zero(;) = φ(;).

Case r = Imj :
Note that 0 ≤ j <m and Imj (x⃗) = xj.

Let φ = pW0,m
j . Then

bin(Imj (x⃗)) = bin(xj) = bin(xj) = pW
0,m
j (;bin(x⃗)) = φ(;bin(x⃗)).

Case r = s0:
Note that m = 1 and s0(x) = 2 ⋅ x.

Let α(i;a) = cond(i,0,BIT(i � 1;a);). By bounded comprehension, there
exists ψ ∈ DW satisfying

∣;ψ(z;a)∣ = z,
∀i < z [BIT(i;ψ(z;a)) = 0↔ α(i;a) = 0].

Let φ(;a) = ψ(S(∣;a∣;);a), then we have

bin(s0(x)) = bin(x)0 = φ(;bin(x)).

Case r = s1:
Note that m = 1 and s1(x) = 2 ⋅ x + 1.

Let α(i;a) = cond(i,S(0;),BIT(i�1;a);). By bounded comprehension, there
exists ψ ∈ DW satisfying

∣;ψ(z;a)∣ = z,
∀i < z [BIT(i;ψ(z;a)) = 0↔ α(i;a) = 0].

90

Let φ(;a) = ψ(S(∣;a∣;);a), then we have

bin(s1(x)) = bin(x)1 = φ(;bin(x)).

Case r = bit:
Note that m = 2 and bit(i, x) = MOD2(x/2∣i∣).

Let φ(;a, b) = BIT(∣;a∣; b). Then

bin(bit(i, x)) = φ(;bin(i),bin(x)).

Case r = ∣ ⋅ ∣:
Note that m = 1 and ∣x∣ = ⌈log2(x + 1)⌉.

Let φ(;a) = cond(∣;a∣,zero(;),bin(∣;a∣);). Then

bin(∣x∣) = φ(;bin(x)).

Case r =#:
Note that m = 2 and x#y = 2∣x∣⋅∣y∣. 2∣x∣⋅∣y∣ is the number in which the

∣x∣ ⋅ ∣y∣-th bit is 1 and the other bits are 0 in its binary representation.
Let α(i;a, b) = cond(χ=(∣;a∣× ∣; b∣, i;),0,S(0;);). By bounded comprehension,
there exists ψ ∈ DW satisfying

∣;ψ(z;a, b)∣ = z,
∀i < z [BIT(i;ψ(z;a, b)) = 0↔ α(i;a, b) = 0].

Let φ(;a, b) = ψ(S(∣;a∣ × ∣; b∣;);a, b). Then

bin(x#y) = φ(;bin(x),bin(y)).

Induction step.
Case COMP:

Suppose that
r(x⃗) = u(t0(x⃗), . . . , tL−1(x⃗)).

whrere u, t0, . . . , tL−1 ∈ FLH. Then, by the induction hypothesis, there exist
ψ,χ0, . . . , χL−1 ∈ DW such that

bin(u(y⃗)) = ψ(;bin(y⃗)),
bin(tj(x⃗)) = χj(;bin(x⃗))

for 0 ≤ j < L.
Since DW is closed under composition, define φ ∈ DW by

φ(;bin(x⃗)) = ψ(;χ0(;bin(x⃗)), . . . , χL−1(;bin(x⃗))).

91

Then we have17

bin(r(x⃗)) = bin(u(t0(x⃗), . . . , tL−1(x⃗)))
= ψ(;bin(t0(x⃗)), . . . ,bin(tL−1(x⃗)))
= ψ(;χ0(;bin(x⃗)), . . . , χL−1(;bin(x⃗)))
= φ(;bin(x⃗)).

Case CRN:
First, we prepare some auxiliary functions in DN and DW.

1. The function check(i;a) ∈ N ×W → N computes the i-th bit counting
from the most significant bit of a for 0 ≤ i < ∣a∣. We have

check(i;a) = BIT(∣;a∣ � 1 � i;a).

2. The function rev(;a) ∈ W → W computes the reverse of a. Applying
bounded comprehension to check(i;a), we obtain φ ∈ DW such that

∣;φ(z;a)∣ = z,
∀i < z [BIT(i;φ(z;a) = 0↔ check(i;a) = 0].

Then we have
rev(;a) = φ(∣;a∣;a).

3. The function left(i;a) ∈ N×W→W computes a string of i-many bits
counting from the most significant bit of a for 0 ≤ i ≤ ∣a∣. Using φ in 2.
above, we have

left(i;a) = rev(φ(i;a)).

Suppose that r ∈ FLH with r ∈ Nm+1 → N is defined by concatenation
recursion on notation, then

r(0, y⃗) = t(y⃗),
r(s0(x), y⃗) = su0(x,y⃗)(r(x, y⃗)) (if x ≠ 0),
r(s1(x), y⃗) = su1(x,y⃗)(r(x, y⃗)),

where t, u0(≤ 1), u1(≤ 1) ∈ FLH.
By induction hypothesis, there exist ψ,χ0, χ1 ∈ DW such that

bin(t(y⃗)) = ψ(;bin(y⃗)),
bin(u0(x, y⃗)) = χ0(;bin(x),bin(y⃗)),
bin(u1(x, y⃗)) = χ1(;bin(x),bin(y⃗)).

17To make the expression easier to see, we write the expression as this, but, more
precisely, apply the 1st equation and 2rd equation of I.H. simultaneously.

92

We want to show that there exists φ ∈ DW such that

bin(r(x, y⃗)) = φ(;bin(x),bin(y⃗)).

We define δ(i;bin(x),bin(y⃗)) ∈ DN which computes the bit corresponding
to the i-th bit counting from the most significant bit of bin(r(x, y⃗)) for
0 ≤ i < ∣bin(r(x, y⃗))∣.

Note that by the definition of CRN, bin(r(x, y⃗)) is obtained by attaching
a bit sequence in which each bit of bin(x) is replaced by the value of u0 or
u1 to the right end of bin(t(y⃗)).

In the case i < ∣ψ(;bin(y⃗))∣,

δ(i;bin(x),bin(y⃗)) corresponds to the i-th bit counting from the most sig-
nificant bit of bin(t(y⃗)), hence we have

δ(i;bin(x),bin(y⃗)) = BIT(∣ψ(;bin(y⃗))∣ � 1 � i;ψ(;bin(y⃗))).

In the case i ≥ ∣ψ(;bin(y⃗))∣,

δ(i;bin(x),bin(y⃗)) corresponds to the i-th bit counting from the most sig-
nificant bit of bin((r(x, y⃗)), and when the value of the corresponding bit of
bin(x) is z and the value of the left-side part of the corresponding bit of
bin(x) is x′, δ(i;bin(x),bin(y⃗)) is uz(x′, y⃗) = BIT(0;χz(;bin(x′),bin(y⃗))).
Hence we have

δ(i;bin(x),bin(y⃗))
= cond(check(i � ∣ψ(;bin(y⃗))∣;bin(x)),

BIT(0;χ0(;left(i � ∣ψ(;bin(y⃗))∣;bin(x)),bin(y⃗))),
BIT(0;χ1(;left(i � ∣ψ(;bin(y⃗))∣;bin(x)),bin(y⃗)));).

93

Therefore, unifying the above cases, we have

δ(i;bin(x),bin(y⃗))
= cond(i ≥ ∣ψ(;bin(y⃗))∣,

BIT(∣ψ(;bin(y⃗))∣ � 1 � i;ψ(;bin(y⃗))),
cond(check(i � ∣ψ(;bin(y⃗))∣;bin(x)),

BIT(0;χ0(;left(i � ∣ψ(;bin(y⃗))∣;bin(x)),bin(y⃗))),
BIT(0;χ1(;left(i � ∣ψ(;bin(y⃗))∣;bin(x)),bin(y⃗))););).

Applying bounded comprehension to δ, there exists φ′ ∈ DW satisfying

∣;φ′(z;bin(x),bin(y⃗))∣ = z,
∀i < z [BIT(i;φ′(z;bin(x),bin(y⃗))) = 0↔ δ(i;bin(x),bin(y⃗)) = 0].

Then, let

φ(;bin(x),bin(y⃗)) = rev(φ′(∣ψ(;bin(y⃗))∣ + ∣;bin(x)∣;bin(x),bin(y⃗))),

we have
bin(r(x, y⃗)) = φ(;bin(x),bin(y⃗)).

94

4.5 Representation of DN and DW functions by FLH

functions

In this section, we show that any function in DN is represented by some
function in FLH and that any function in DW is represented by some function
is FLH, that is,

∀α ∈ DN ∃r ∈ FLH [α(∣x⃗∣;bin(k⃗)) = ∣r(x⃗, k⃗)∣],
∀φ ∈ DW ∃t ∈ FLH [φ(∣x⃗∣;bin(k⃗)) = bin(t(x⃗, k⃗))]

(Proposition 4.15). Note that we make lengths of natural numbers in argu-
ments of functions in DN and DW correspond to natural numbers in arguments
of the corresponding functions in FLH, and we make values of functions in
DN correspond to lengths of values of the corresponding functions in FLH.

Proposition 4.15. For each α ∈ DN with α ∈ Nm ×Wn → N and φ ∈ DW with
φ ∈ Nm ×Wn →W, there exist r, t ∈ FLH, respectively, such that

α(∣x⃗∣;bin(k⃗)) = ∣r(x⃗, k⃗)∣,
φ(∣x⃗∣;bin(k⃗)) = bin(t(x⃗, k⃗))

for each x⃗, k⃗.

Proof. By simultaneous induction on the structures of α ∈ DN and φ ∈ DW.
Basis.
Case α = pNm,n

i :
Note that 0 ≤ i <m. Let r = Im+n

i . Then

α(∣x⃗∣;bin(k⃗)) = pNm,n
i (∣x⃗∣;bin(k⃗)) = ∣xi∣

= ∣Im+n
i (x⃗, k⃗)∣ = ∣r(x⃗, k⃗)∣.

Case φ = pWm,n
j :

Note that 0 ≤ j < n. Let r = Im+n
m+j . Then

α(∣x⃗∣;bin(k⃗)) = pWm,n
j (∣x⃗∣;bin(k⃗)) = bin(kj)

= bin(kj) = bin(Im+n
m+j (x⃗, k⃗)) = bin(r(x⃗, k⃗)).

Case α = 0:
Note that m = n = 0. Let r = 0, then 0 = ∣0∣.

Case α = S:
Note that m = 1, n = 0. Let r = s1, Then

α(∣x∣;) = S(∣x∣;) = ∣x∣ + 1 = ∣s1(x)∣ = ∣r(x)∣.

95

Case α = �:
Note thatm = 2, n = 0. Define the most significant part function msp(x, y) =

⌊x/2∣y∣⌋ using CRN as follows:

msp(0, y) = 0,
msp(s0(x), y) = sbit(y,s0(x))(msp(x, y)) (x ≠ 0),
msp(s1(x), y) = sbit(y,s1(x))(msp(x, y)).

Let r(x, y) = msp(x, y). Since ∣msp(x, y)∣ = ∣x∣ � ∣y∣, we have

α(∣x∣, ∣y∣;) = ∣x∣ � ∣y∣ = ∣msp(x, y)∣ = ∣r(x, y)∣.

Case α = ×:
Note that m = 2, n = 0. The function ⌊x/2⌋ = msp(x,s1(0)) belongs to

FLH. Let r(x, y) = ⌊(x#y)/2⌋(= 2∣x∣⋅∣y∣−1). Since ∣⌊(x#y)/2⌋∣ = ∣x∣ ⋅ ∣y∣, we have

α(∣x∣, ∣y∣;) = ∣x∣ × ∣y∣ = ∣⌊x#y
2
⌋∣ = ∣r(x, y)∣.

Case α = ∣ ⋅ ∣:
Note that m = 0, n = 1. Let r(k) = I10(k). Then

α(;bin(k)) = ∣;bin(k)∣ = ∣k∣ = ∣I10(k)∣ = ∣r(k)∣.

Case α = BIT:
Note that m = 1, n = 1. Let r(x, k) = bit(x, k). Then

α(∣x∣;bin(k)) = BIT(∣x∣;bin(k))
= BIT(∣x∣, k) = ∣bit(x, k)∣ = ∣r(x, k)∣.

Induction step.
Case COMP(∈ DN):

Suppose that

α(x⃗; a⃗) = γ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)),

whrere γ, β0, . . . , βM−1 ∈ DN and χ0, . . . , χN−1 ∈ DW. Then, by the induction
hypothesis, there exist t, u0, . . . , uM−1, v0, . . . , vN−1 ∈ FLH such that

γ(∣y⃗∣;bin(ℓ⃗)) = ∣t(y⃗, ℓ⃗)∣,
βi(∣x⃗∣;bin(k⃗)) = ∣ui(x⃗, k⃗)∣,
χj(∣x⃗∣;bin(k⃗)) = bin(vj(x⃗, k⃗))

96

for 0 ≤ i <M and 0 ≤ j < N . Since FLH is closed under composition, define
r ∈ FLH by

r(x⃗, k⃗) = t(u0(x⃗, k⃗), . . . , tM−1(x⃗, k⃗), v0(x⃗, k⃗), . . . , vN−1(x⃗, k⃗)).

Then we have18

α(∣x⃗∣;bin(k⃗))
= γ(β0(∣x⃗∣;bin(k⃗)), . . . , βM−1(∣x⃗∣;bin(k⃗));

χ0(∣x⃗∣;bin(k⃗)), . . . , χN−1(∣x⃗∣;bin(k⃗)))
= γ(∣u0(x⃗, k⃗)∣, . . . , ∣uM−1(x⃗, k⃗)∣; bin(v0(x⃗, k⃗)), . . . ,bin(vN−1(x⃗, k⃗)))
= ∣t(u0(x⃗, k⃗), . . . , uM−1(x⃗, k⃗), v0(x⃗, k⃗), . . . , vN−1(x⃗, k⃗))∣
= ∣r(x⃗, k⃗)∣.

Case COMP(∈ DW):
Suppose that

φ(x⃗; a⃗) = ψ(β0(x⃗; a⃗), . . . , βM−1(x⃗; a⃗);χ0(x⃗; a⃗), . . . , χN−1(x⃗; a⃗)),

whrere β0, . . . , βM−1 ∈ DN and ψ,χ0, . . . , χN−1 ∈ DW. Then, by the induction
hypothesis, there exist u0, . . . , uM−1, r, v0, . . . , vN−1 ∈ FLH such that

ψ(∣y⃗∣;bin(ℓ⃗)) = bin(r(y⃗, ℓ⃗)),
βi(∣x⃗∣;bin(k⃗)) = ∣ui(x⃗, k⃗)∣,
χj(∣x⃗∣;bin(k⃗)) = bin(vj(x⃗, k⃗))

for 0 ≤ i <M and 0 ≤ j < N . Since FLH is closed under composition, define
r ∈ FLH by

t(x⃗, k⃗) = r(u0(x⃗, k⃗), . . . , tM−1(x⃗, k⃗), v0(x⃗, k⃗), . . . , vN−1(x⃗, k⃗)).

Then we have19

φ(∣x⃗∣;bin(k⃗))
= ψ(β0(∣x⃗∣;bin(k⃗)), . . . , βM−1(∣x⃗∣;bin(k⃗));

χ0(∣x⃗∣;bin(k⃗)), . . . , χN−1(∣x⃗∣;bin(k⃗)))
= ψ(∣u0(x⃗, k⃗)∣, . . . , ∣uM−1(x⃗, k⃗)∣; bin(v0(x⃗, k⃗)), . . . ,bin(vN−1(x⃗, k⃗)))
= bin(r(u0(x⃗, k⃗), . . . , uM−1(x⃗, k⃗), v0(x⃗, k⃗), . . . , vN−1(x⃗, k⃗)))
= bin(t(x⃗, k⃗)).

18To make the expression easier to see, we write the expression as this, but, more
precisely, apply the 2nd equation of I.H. firstly, and then apply the 1st equation and 3rd
equation of I.H. simultaneously.

19Note the same as in the previous footnote.

97

Case BMIN:
Suppose that α ∈ DN with α ∈ Nm+1 ×Wn → N is defined by bounded

minimisation, then

α(z, x⃗; a⃗) =
⎧⎪⎪⎨⎪⎪⎩

the least y ≤ z such that β(y, x⃗; a⃗) ≠ 0 if it exists,

z + 1 otherwise,

where β ∈ DN.
By induction hypothesis, there exists t ∈ FLH such that

β(∣y∣, ∣x⃗∣;bin(k⃗)) = ∣t(y, x⃗; k⃗)∣.

Since FLH is closed under concatenation recursion on notation, define u by

u(0, x⃗, k⃗) = sg(∣t(0, x⃗, k⃗)∣),
u(s0(z), x⃗, k⃗) = ssg(∣t(s0(z),x⃗,k⃗)∣)(u(z, x⃗, k⃗)) (z ≠ 0),

u(s1(z), x⃗, k⃗) = ssg(∣t(s1(z),x⃗,k⃗)∣)(u(z, x⃗, k⃗)).

And, define r ∈ FLH by

r(z, x⃗, k⃗) = msp(s0(z), u(z, x⃗, k⃗)).

Then, since
∣r(z, x⃗, k⃗)∣ = ∣s0(z)∣ � ∣u(z, x⃗, k⃗)∣,

we have
α(∣z∣, ∣x⃗∣;bin(k⃗)) = ∣r(z, x⃗, k⃗)∣.

Case BC:
Suppose that φ ∈ DW with φ ∈ Nm+1 ×Wn → W is defined by bounded

comprehension, then

∣;φ(z, x⃗; a⃗)∣ = z,
∀j < z [BIT(j;φ(z, x⃗; a⃗)) = 0↔ α(j, x⃗; a⃗) = 0],

98

where α ∈ DN with α ∈ Nm+1 ×Wn → N.
By induction hypothesis, there exists r ∈ FLH such that

α(∣j∣, ∣x⃗∣;bin(k⃗)) = ∣r(j, x⃗; k⃗)∣.

Since FLH is closed under concatenation recursion on notation, define u by

u(0, x⃗, k⃗) = 1,
u(s0(z), x⃗, k⃗) = ssg(∣r(z,x⃗,k⃗)∣)(u(z, x⃗, k⃗)) (z ≠ 0),

u(s1(z), x⃗, k⃗) = ssg(∣r(z,x⃗,k⃗)∣)(u(z, x⃗, k⃗)).

And, define t ∈ FLH by

t(z, x⃗, k⃗) = msp(rev(u(z, x⃗, k⃗)),1).

Then, we have20

φ(∣z∣, ∣x⃗∣;bin(k⃗)) = bin(t(z, x⃗, k⃗)).

20For correctness of this equation, see the proof of Case BC in Proposition 3.30.

99

4.6 Inclusion of LH by M2
∗

In section 4.2 and section 4.3, we have associated functions inM2 with func-
tions in CN, and in section 4.4 and section 4.5, we have associated functions
in FLH with functions in DW. Using these correspondences, we obtain the
following theorem.

Theorem 4.16.
LH ⫅M2

∗.

Proof. Let s be any set in LH, then the charateristic function χs of s is in
FLH.
By Proposition 4.14, there exists φ ∈ CW such that

bin(χs(x⃗)) = φ(;bin(x⃗)).

By Corollary 4.11, there exists g̃ ∈M2 such that

BIT(j;φ(;bin(x⃗))) = g̃(j, x⃗).

Hence, we have
BIT(j; bin(χs(x⃗))) = g̃(j, x⃗).

Since χs is the characteristic function, we have

χs(x⃗) = BIT(0; bin(χs(x⃗))) = g̃(0, x⃗).

Hence,
χs ∈M2.

Therefore,
s ∈M2

∗.

100

5 Concluding remarks

5.1 Conclusions

We tried to take the correspondence between E2 and FPTIME and the corre-
spondence between M2 and FLH, and using these correspondences and the
relation FLH ⫋ FPTIME, we tried to show that M2 is properly included in
E2. This plan did not do well, however, we were able to prove the following
matters:

In chpter 3, we introduced 1-bounded course-of-values recursion (1-BCVR),
and defined the class E2+ as

E2+ = [0,I,S,+,×;COMP,BR, 1-BCVR].

We also defined the two intermediate classes CN and CW as follows:

CN = [pNm,n
i ,0,S,+,×, ∣ ⋅ ∣,BIT;COMP,BR,BCVR],

CW = [pWm,n
j ;COMP,BC].

Then, we have shown the following relations between E2+ and FPTIME

by means of the two intermediate classes CN and CW:

(3a) ∀f ∈ E2+ ∃α ∈ CN [f(x⃗) = α(x⃗;)],
(3b) ∀α ∈ CN ∃f ∈ E2+ [α(x⃗;bin(k⃗)) = f(x⃗, k⃗)],

∀φ ∈ CW ∃g̃ ∈ E2+ [BIT(z;φ(x⃗;bin(k⃗))) = g̃(z, x⃗, k⃗)],
∀φ ∈ CW ∃ĝ ∈ E2+ [∣;φ(x⃗;bin(k⃗))∣ = ĝ(x⃗, k⃗)],

(3c) ∀r ∈ FPTIME ∃α ∈ CN [BIT(i,bin(r(x⃗))) = α(i;bin(x⃗))],
∀r ∈ FPTIME ∃β ∈ CN [∣bin(r(x⃗))∣ = β(;bin(x⃗))],

(3d) ∀α ∈ CN ∃r ∈ FPTIME [α(∣x⃗∣;bin(k⃗)) = ∣r(x⃗, k⃗)∣],
∀φ ∈ CW ∃t ∈ FPTIME [φ(∣x⃗∣;bin(k⃗)) = bin(t(x⃗, k⃗))].

Using these relations, with respect to their set classes E2+∗ and PTIME, we
have shown that

PTIME ⫅ E2+∗ .

Similarly, in chapter 4, We defined the two intermediate classes DN and
DW as follows:

DN = [pNm,n
i ,0,S,�,×, ∣ ⋅ ∣,BIT;COMP,BMIN],

DW = [pWm,n
j ;COMP,BC].

101

Then, we have shown the following relations between M2 and FLH by
means of the two intermediate classes DN and DW:

(4a) ∀f ∈M2 ∃α ∈ DN [f(x⃗) = α(x⃗;)],
(4b) ∀α ∈ DN ∃f ∈M2 [α(x⃗;bin(k⃗)) = f(x⃗, k⃗)],

∀φ ∈ DW ∃g̃ ∈M2 [BIT(z;φ(x⃗;bin(k⃗))) = g̃(z, x⃗, k⃗)],
∀φ ∈ DW ∃ĝ ∈M2 [∣;φ(x⃗;bin(k⃗))∣ = ĝ(x⃗, k⃗)],

(4c) ∀r ∈ FLH ∃φ ∈ DW [bin(r(x⃗)) = φ(;bin(x⃗))],
(4d) ∀α ∈ DN ∃r ∈ FLH [α(∣x⃗∣;bin(k⃗)) = ∣r(x⃗, k⃗)∣],

∀φ ∈ DW ∃t ∈ FLH [φ(∣x⃗∣;bin(k⃗)) = bin(t(x⃗, k⃗))].

Using these relations, with respect to their set classesM2
∗ and LH, we have

shown that
LH ⫅M2

∗.

5.2 Directions for further research

In the following, we show some directions for further research.

1. E2+∗ ⫅ PTIME

To prove that PTIME ⫅ E2+∗ , we only use the relations (3b) and (3c).
It seems difficult to show that E2+∗ ⫅ PTIME with the current formulas
in the relations (3a) and (3d), but it may be possible to show that by
modifying these relations. If we can show the opposite inclusion, it will
hold that PTIME = E2+∗ , which means that the relationship between E2∗
and PTIME has been elucidated in a sense.

2. M2
∗ ⫅ LH

Similarly, to prove that LH ⫅M2
∗, we only use the relations (4b) and

(4c). It seems difficult to show thatM2
∗ ⫅ LH with the current formulas

in the relations (4a) and (4d), but it may be possible to show that by
modifying these relations. If we can show the opposite inclusion, it will
hold that LH =M2

∗. On the other hand, it is know that LTH =M2
∗

(Theorem 2.22), hence it will also hold that LH = LTH.

3. M2 ⫋ E2+

It is know that FLH ⫋ FPTIME. It may be possible to prove thatM2 ⫋
E2+ by using this fact and the above relations (3a)∼(3d), (4a)∼(4d) or
their modified relations.

102

4. M2 ⫋ E2

Though we have changed E2 to E2+ in order to make E2 correspond
with FPTIME, we return to E2. The difference between M2 and E2
is whether the recursive operator is bounded minimisation or bounded
recursion, and the difference of computational powers between them
seems to be large. Hence, it seems to be true thatM2 ⫋ E2.

103

Acknowledgements

I am very grateful to my supervisor Hajime Ishihara for giving me a chance
of this work. Without his helpful guidance and kind encouragement, I could
not obtain any research results. Among the things he has taught to me, the
ones that I think particularly important are:

• Don’t focus on studying, focus on thinking about the problems. (How-
ever, if you do not study, you will not grow.)

• Do trial and error.

Thanks to them, I was able to obtain some research results. During this
reseach, I have had a very enjoyable time.

I would also like to thank the members of Ishihara Laboratory for their
support.

Lastly, I would also like to thank my wife Natalie (Szu chia) for always
supporting me and my daughter Ririka for always playing with me.

104

References

[1] Bellantoni, S. and Cook, S. A new recursion-theoretic characterization
of the polytime functions. Comput. Complexity 2 (1992), no. 2, 97–110.

[2] Clote, P. Computation models and function algebras. Handbook of com-
putability theory, 589–681, Stud. Logic Found. Math., 140, North-
Holland, Amsterdam, 1999.

[3] Cobham, A. The intrinsic computational difficulty of functions. 1965
Logic, Methodology and Philos. Sci. (Proc. 1964 Internat. Congr.) pp.
24–30 North-Holland, Amsterdam.

[4] Grzegorczyk, A. Some classes of recursive functions. Rozprawy Matem-
atyczne. No. IV, Warszawa, 1953.

[5] Ishihara, H. Function algebraic characterizations of the polytime func-
tions. Comput. Complexity 8 (1999), no. 4, 346–356.

[6] Ishihara, H. A small hierarchy. Unpublished manuscript, 2018.

[7] Rose, H. E. Subrecursion: functions and hierarchies. Oxford Logic
Guides, 9. The Clarendon Press, Oxford University Press, New York,
1984.

105

